ETSI TS 125222 v4.7.0 (2003-12)

Universal Mobile Telecommunications System (UMTS); Multiplexing and channel coding (TDD) (3GPP TS 25.222 version 4.7.0 Release 4)

ETS

Reference
RTS/TSGR-0125222v470

Keywords
UMTS

ETSI

650 Route des Lucioles
F-06921 Sophia Antipolis Cedex - FRANCE
Tel.: +33492944200 Fax: +33493654716
Siret No 34862356200017 - NAF 742 C
Association à but non lucratif enregistrée à la
Sous-Préfecture de Grasse (06) N ${ }^{\circ} 7803 / 88$
\qquad
Important notice
Individual copies of the present document can be downloaded from:

> http://www.etsi.org

The present document may be made available in more than one electronic version or in print. In any case of existing or perceived difference in contents between such versions, the reference version is the Portable Document Format (PDF). In case of dispute, the reference shall be the printing on ETSI printers of the PDF version kept on a specific network drive within ETSI Secretariat.

Users of the present document should be aware that the document may be subject to revision or change of status. Information on the current status of this and other ETSI documents is available at
http://portal.etsi.org/tb/status/status.asp
If you find errors in the present document, send your comment to:
editor@etsi.org
Copyright Notification
No part may be reproduced except as authorized by written permission.
The copyright and the foregoing restriction extend to reproduction in all media.
© European Telecommunications Standards Institute 2003.
All rights reserved.
DECT $^{\top M}$, PLUGTESTS ${ }^{\text {TM }}$ and UMTS ${ }^{\text {TM }}$ are Trade Marks of ETSI registered for the benefit of its Members. TIPHON ${ }^{\top M}$ and the TIPHON logo are Trade Marks currently being registered by ETSI for the benefit of its Members. 3GPP ${ }^{\text {TM }}$ is a Trade Mark of ETSI registered for the benefit of its Members and of the 3GPP Organizational Partners.

Intellectual Property Rights

IPRs essential or potentially essential to the present document may have been declared to ETSI. The information pertaining to these essential IPRs, if any, is publicly available for ETSI members and non-members, and can be found in ETSI SR 000 314: "Intellectual Property Rights (IPRs); Essential, or potentially Essential, IPRs notified to ETSI in respect of ETSI standards", which is available from the ETSI Secretariat. Latest updates are available on the ETSI Web server (http://webapp.etsi.org/IPR/home.asp).

Pursuant to the ETSI IPR Policy, no investigation, including IPR searches, has been carried out by ETSI. No guarantee can be given as to the existence of other IPRs not referenced in ETSI SR 000314 (or the updates on the ETSI Web server) which are, or may be, or may become, essential to the present document.

Foreword

This Technical Specification (TS) has been produced by ETSI 3rd Generation Partnership Project (3GPP).
The present document may refer to technical specifications or reports using their 3GPP identities, UMTS identities or GSM identities. These should be interpreted as being references to the corresponding ETSI deliverables.

The cross reference between GSM, UMTS, 3GPP and ETSI identities can be found under http://webapp.etsi.org/key/queryform.asp .

Contents

Intellectual Property Rights 2
Foreword 2
Foreword 5
1 Scope 6
2 References 6
3 Definitions, symbols and abbreviations 6
3.1 Definitions 6
3.2 Symbols. 6
3.3 Abbreviations 7
4 Multiplexing, channel coding and interleaving 8
4.1 General 8
4.2 Transport channel coding/multiplexing 9
4.2.1 \quad CRC attachment 12
4.2.1.1 CRC calculation 12
4.2.1.2 Relation between input and output of the CRC attachment block. 12
4.2.2 Transport block concatenation and code block segmentation13
4.2.2.1 Concatenation of transport blocks 13
4.2.2.2 Code block segmentation 13
4.2.3 Channel coding 14
4.2.3.1 Convolutional coding 15
4.2.3.2 Turbo coding 15
4.2.3.2.1 Turbo coder 15
4.2.3.2.2 Trellis termination for Turbo coder 16
4.2.3.2.3 Turbo code internal interleaver 17
4.2.3.2.3.1 \quad Bits-input to rectangular matrix with padding 17
4.2.3.3 Concatenation of encoded blocks 20
4.2.4 Radio frame size equalisation20
4.2.5 \quad 1st interleaving20
4.2.5.1 Relation between input and output of $1^{\text {st }}$ interleaving 21
4.2.6 Radio frame segmentation 21
4.2.7 Rate matching 22
4.2.7.1 Determination of rate matching parameters 23
4.2.7.1.1 Uncoded and convolutionally encoded TrCHs 24
4.2.7.1.2 Turbo encoded TrCHs 24
4.2.7.2 Bit separation and collection for rate matching. 25
4.2.7.2.1 Bit separation 27
4.2.7.2.2 \quad Bit collection 28
4.2.7.3 Rate matching pattern determination 28
4.2.8 \quad TrCH multiplexing 29
4.2.9 \quad Bit Scrambling 30
4.2.10 Physical channel segmentation 30
4.2.11 \quad 2nd interleaving 30
4.2.11.1 Frame related 2nd interleaving. 31
4.2.11.2 Timeslot related $2^{\text {nd }}$ interleaving 32
4.2.11A Sub-frame segmentation for the 1.28 Mcps option 34
4.2.12 Physical channel mapping 34
4.2.12.1 Physical channel mapping for the 3.84 Mcps option 34
4.2.12.1.1 Mapping scheme 35
4.2.12.2 Physical channel mapping for the 1.28 Mcps option 36
4.2.12.2.1 Mapping scheme. 36
4.2.13 Multiplexing of different transport channels onto one CCTrCH , and mapping of one CCTrCH onto physical channels 37
4.2.13.1 Allowed CCTrCH combinations for one UE 38
4.2.13.1.1 Allowed CCTrCH combinations on the uplink 38
4.2.13.1.2 Allowed CCTrCH combinations on the downlink 38
4.2.14 Transport format detection. 38
4.2.14.1 Blind transport format detection 38
4.2.14.2 Explicit transport format detection based on TFCI 38
4.2.14.2.1 Transport Format Combination Indicator (TFCI) 38
4.3 Coding for layer 1 control for the 3.84 Mcps option 39
4.3.1 Coding of transport format combination indicator (TFCI) 39
4.3.1.1 Coding of long TFCI lengths39
4.3.1.2 Coding of short TFCI lengths 40
4.3.1.2.1 Coding very short TFCIs by repetition 40
4.3.1.2.2 Coding short TFCIs using bi-orthogonal codes 40
4.3.1.3 Mapping of TFCI code word 41
4.3.2 Coding and Bit Scrambling of the Paging Indicator 41
4.4 Coding for layer 1 control for the 1.28 Mcps option. 42
4.4.1 Coding of transport format combination indicator (TFCI) for QPSK. 42
4.4.1.1 Mapping of TFCI code word. 42
4.4.2 Coding of transport format combination indicator (TFCI) for 8PSK 43
4.4.2.1 Coding of long TFCI lengths 43
4.4.2.2 Coding of short TFCI lengths 45
4.4.2.2.1 Coding very short TFCIs by repetition 45
4.4.2.3 Mapping of TFCI code word. 46
4.4.3 Coding and Bit Scrambling of the Paging Indicator 47
4.4.4 Coding of the Fast Physical Access Channel (FPACH) information bits 47
Annex A (informative): Change history 49
History 50

Foreword

This Technical Specification (TS) has been produced by the $3^{\text {rd }}$ Generation Partnership Project (3GPP).
The contents of the present document are subject to continuing work within the TSG and may change following formal TSG approval. Should the TSG modify the contents of the present document, it will be re-released by the TSG with an identifying change of release date and an increase in version number as follows:

Version x.y.z
where:
x the first digit:
1 presented to TSG for information;
2 presented to TSG for approval;
3 or greater indicates TSG approved document under change control.
y the second digit is incremented for all changes of substance, i.e. technical enhancements, corrections, updates, etc.
z
the third digit is incremented when editorial only changes have been incorporated in the document.

1 Scope

The present document describes multiplexing, channel coding and interleaving for UTRA Physical Layer TDD mode.

2 References

The following documents contain provisions which, through reference in this text, constitute provisions of the present document.

- References are either specific (identified by date of publication, edition number, version number, etc.) or non-specific.
- For a specific reference, subsequent revisions do not apply.
- For a non-specific reference, the latest version applies. In the case of a reference to a 3GPP document (including a GSM document), a non-specific reference implicitly refers to the latest version of that document in the same Release as the present document.
[1] 3GPP TS 25.202: "UE capabilities".
[2] 3GPP TS 25.211: "Transport channels and physical channels (FDD)".
[3] 3GPP TS 25.212: "Multiplexing and channel coding (FDD)".
[4] 3GPP TS 25.213: "Spreading and modulation (FDD)".
[5] 3GPP TS 25.214: "Physical layer procedures (FDD)".
[6] 3GPP TS 25.215: "Physical layer - Measurements (FDD)".
[7] 3GPP TS 25.221: "Transport channels and physical channels (TDD)".
[9] 3GPP TS 25.223: "Spreading and modulation (TDD)".
[10] 3GPP TS 25.224: "Physical layer procedures (TDD)".
[11] 3GPP TS 25.225: "Measurements".
[12]
3GPP TS 25.331: "RRC Protocol Specification".

3 Definitions, symbols and abbreviations

3.1 Definitions

For the purposes of the present document, the following terms and definitions apply.
TrCH number: The transport channel number identifies a TrCH in the context of L 1 . The L 3 transport channel identity (TrCH ID) maps onto the L1 transport channel number. The mapping between the transport channel number and the TrCH ID is as follows: TrCH 1 corresponds to the TrCH with the lowest $\mathrm{TrCH} \operatorname{ID}, \mathrm{TrCH} 2$ corresponds to the TrCH with the next lowest TrCH ID and so on.

3.2 Symbols

For the purposes of the present document, the following symbols apply:

$$
\begin{array}{ll}
\lceil x\rceil & \text { round towards } \infty, \text { i.e. integer such that } x \leq\lceil x\rceil<x+1 \\
\lfloor x\rfloor & \text { round towards }-\infty, \text { i.e. integer such that } x-1<\lfloor x\rfloor \leq x
\end{array}
$$

$|x| \quad$ absolute value of x
Unless otherwise is explicitly stated when the symbol is used, the meaning of the following symbols are:

i	TrCH number
j	TFC number
k	Bit number
l	TF number
m	Transport block number
n	Radio frame number
p	PhCH number
r	Code block number
I	Number of TrCHs in a CCTrCH.
C_{i}	Number of code blocks in one TTI of TrCH i.
F_{i}	Number of radio frames in one TTI of TrCH i.
M_{i}	Number of transport blocks in one TTI of TrCH i.
$N_{\text {TCFI code word }}$	Number of TFCI code word bits after TFCI encoding
P	Number of PhCHs used for one CCTrCH.
$P L$	Puncturing Limit. Signalled from higher layers
$R M_{i}$	Rate Matching attribute for TrCH i. Signalled from higher layers.

Temporary variables, i.e. variables used in several (sub)clauses with different meaning.
x, X
y, Y
z, Z

3.3 Abbreviations

For the purposes of the present document, the following abbreviations apply:

<ACRONYM>	<Explanation>
ARQ	Automatic Repeat on Request
BCH	Broadcast Channel
BER	Bit Error Rate
BS	Base Station
BSS	Base Station Subsystem
CBR	Constant Bit Rate
CCCH	Common Control Channel
CCTrCH	Coded Composite Transport Channel
CDMA	Code Division Multiple Access
CFN	Connection Frame Number
CRC	Cyclic Redundancy Check
DCA	Dynamic Channel Allocation
DCCH	Dedicated Control Channel
DCH	Dedicated Channel
DL	Downlink
DRX	Discontinuous Reception
DSCH	Downlink Shared Channel
DTX	Discontinuous Transmission
FACH	Forward Access Channel
FDD	Frequency Division Duplex
FDMA	Frequency Division Multiple Access
FEC	Forward Error Control
FER	Frame Error Rate
GF	Galois Field
JD	Joint Detection
L1	Layer 1
L2	Layer 2
LLC	Logical Link Control
MA	Multiple Access
MAC	Medium Access Control

MS	Mobile Station
MT	Mobile Terminated
NRT	Non-Real Time
OVSF	Orthogonal Variable Spreading Factor
PC	Power Control
PCCC	Parallel Concatenated Convolutional Code
PCH	Paging Channel
PhCH	Physical Channel
PI	Paging Indicator (value calculated by higher layers)
P	Paging Indicator (indicator set by physical layer)
QoS	Quality of Service
QPSK	Quaternary Phase Shift Keying
RACH	Random Access Channel
RF	Radio Frequency
RLC	Radio Link Control
RRC	Radio Resource Control
RRM	Radio Resource Management
RSC	Recursive Systematic Convolutional Coder
RT	Real Time
RU	Resource Unit
SCCC	Serial Concatenated Convolutional Code
SCH	Synchronization Channel
SNR	Signal to Noise Ratio
TCH	Traffic channel
TDD	Time Division Duplex
TDMA	Time Division Multiple Access
TFC	Transport Format Combination
TFCI	Transport Format Combination Indicator
TPC	Transmit Power Control
TrBk	Transport Block
TrCH	Transport Channel
TTI	Transmission Time Interval
UE	User Equipment
UL	Uplink
UMTS	Universal Mobile Telecommunications System
USCH	Uplink Shared Channel
UTRA	UMTS Terrestrial Radio Access
VBR	Variable Bit Rate

4 Multiplexing, channel coding and interleaving

4.1 General

Data stream from/to MAC and higher layers (Transport block / Transport block set) is encoded/decoded to offer transport services over the radio transmission link. Channel coding scheme is a combination of error detection, error correcting (including rate matching), and interleaving and transport channels mapping onto/splitting from physical channels.

In the UTRA-TDD mode, the total number of basic physical channels (a certain time slot one spreading code on a certain carrier frequency) per frame is given by the maximum number of time slots and the maximum number of CDMA codes per time slot.

4.2 Transport channel coding/multiplexing

Figure 1 illustrates the overall concept of transport-channel coding and multiplexing. Data arrives to the coding/multiplexing unit in form of transport block sets, once every transmission time interval. The transmission time interval is transport-channel specific from the set $\left\{5 \mathrm{~ms}^{\left({ }^{(1)}\right)}, 10 \mathrm{~ms}, 20 \mathrm{~ms}, 40 \mathrm{~ms}, 80 \mathrm{~ms}\right\}$.

Note: ${ }^{\left({ }^{* 1)}\right.}$ may be applied for PRACH for 1.28 Mcps TDD
The following coding/multiplexing steps can be identified:

- add CRC to each transport block (see subclause 4.2.1);
- TrBk concatenation / Code block segmentation (see subclause 4.2.2);
- channel coding (see subclause 4.2.3) ;
- radio frame size equalization (see subclause 4.2.4);
- interleaving (two steps, see subclauses 4.2.5 and 4.2.10);
- radio frame segmentation (see subclause 4.2.6);
- rate matching (see subclause 4.2.7);
- multiplexing of transport channels (see subclause 4.2.8);
- bit scrambling (see subclause 4.2.9);
- physical channel segmentation (see subclause 4.2.10);
- sub-frame segmentation(see subclause 4.2 .11 A only for 1.28 Mcps TDD)
- mapping to physical channels (see subclause 4.2.12).

The coding/multiplexing steps for uplink and downlink are shown in figures 1 and 1A.

Figure 1: Transport channel multiplexing structure for uplink and downlink for 3.84Mcps TDD

Figure 1A: Transport channel multiplexing structure for uplink and downlink of 1.28 Mcps TDD

Primarily, transport channels are multiplexed as described above, i.e. into one data stream mapped on one or several physical channels. However, an alternative way of multiplexing services is to use multiple CCTrCHs (Coded Composite Transport Channels), which corresponds to having several parallel multiplexing chains as in figures 1 and 1 A , resulting in several data streams, each mapped to one or several physical channels.

4.2.1 CRC attachment

Error detection is provided on transport blocks through a Cyclic Redundancy Check (CRC). The size of the CRC is 24, $16,12,8$ or 0 bits and it is signalled from higher layers what CRC size that should be used for each transport channel.

4.2.1.1 CRC calculation

The entire transport block is used to calculate the CRC parity bits for each transport block. The parity bits are generated by one of the following cyclic generator polynomials:

$$
\begin{aligned}
& \mathrm{g}_{\mathrm{CRC} 24}(D)=D^{24}+D^{23}+D^{6}+D^{5}+D+1 \\
& \mathrm{~g}_{\mathrm{CRC} 16}(D)=D^{16}+D^{12}+D^{5}+1 \\
& \mathrm{~g}_{\mathrm{CRC} 12}(D)=D^{12}+D^{11}+D^{3}+D^{2}+D+1 \\
& \mathrm{~g}_{\mathrm{CRC} 8}(D)=D^{8}+D^{7}+D^{4}+D^{3}+D+1
\end{aligned}
$$

Denote the bits in a transport block delivered to layer 1 by $a_{i m 1}, a_{i m 2}, a_{i m 3}, \mathrm{~K}, a_{i m A_{i}}$, and the parity bits by $p_{i m 1}, p_{i m 2}, p_{i m 3}, \mathrm{~K}, p_{i m L_{i}} . A_{i}$ is the size of a transport block of $\operatorname{TrCH} i, m$ is the transport block number, and L_{i} is the number of parity bits. L_{i} can take the values $24,16,12,8$, or 0 depending on what is signalled from higher layers.
The encoding is performed in a systematic form, which means that in $\mathrm{GF}(2)$, the polynomial:

$$
a_{i m 1} D^{A_{i}+23}+a_{i m 2} D^{A_{i}+22}+\mathrm{K}+a_{i m A_{i}} D^{24}+p_{i m 1} D^{23}+p_{i m 2} D^{22}+\mathrm{K}+p_{i m 23} D^{1}+p_{i m 24}
$$

yields a remainder equal to 0 when divided by $g_{\text {CRC24 }}(D)$, polynomial:

$$
a_{i m 1} D^{A_{i}+15}+a_{i m 2} D^{A_{i}+14}+\mathrm{K}+a_{i m A_{i}} D^{16}+p_{i m 1} D^{15}+p_{i m 2} D^{14}+\mathrm{K}+p_{i m 15} D^{1}+p_{i m 16}
$$

yields a remainder equal to 0 when divided by $g_{\text {CRC16 }}(D)$, polynomial:

$$
a_{i m 1} D^{A_{i}+11}+a_{i m 2} D^{A_{i}+10}+\mathrm{K}+a_{i m A_{i}} D^{12}+p_{i m 1} D^{11}+p_{i m 2} D^{10}+\mathrm{K}+p_{i m 11} D^{1}+p_{i m 12}
$$

yields a remainder equal to 0 when divided by $\mathrm{g}_{\mathrm{CRC} 12}(D)$ and the polynomial:

$$
a_{i m 1} D^{A_{i}+7}+a_{i m 2} D^{A_{i}+6}+\mathrm{K}+a_{i m A_{i}} D^{8}+p_{i m 1} D^{7}+p_{i m 2} D^{6}+\mathrm{K}+p_{i m 7} D^{1}+p_{i m 8}
$$

yields a remainder equal to 0 when divided by $g_{\text {CRC } 8}(D)$.
If no transport blocks are input to the CRC calculation $\left(M_{i}=0\right)$, no CRC attachment shall be done. If transport blocks are input to the CRC calculation $\left(M_{i} \neq 0\right)$ and the size of a transport block is zero $\left(A_{i}=0\right)$, CRC shall be attached, i.e. all parity bits equal to zero.

4.2.1.2 Relation between input and output of the CRC attachment block

The bits after CRC attachment are denoted by $b_{i m 1}, b_{i m 2}, b_{i m 3}, \mathrm{~K}, b_{i m B_{i}}$, where $B_{i}=A_{i}+L_{i}$. The relation between $a_{i m k}$ and $b_{i m k}$ is:

$$
\begin{aligned}
& b_{i m k}=a_{i m k} \quad k=1,2,3, \ldots, A_{i} \\
& b_{i m k}=p_{i m\left(L_{i}+1-\left(k-A_{i}\right)\right)} \quad k=A_{i}+1, A_{i}+2, A_{i}+3, \ldots, A_{i}+L_{i}
\end{aligned}
$$

4.2.2 Transport block concatenation and code block segmentation

All transport blocks in a TTI are serially concatenated. If the number of bits in a TTI is larger than the maximum size of a code block, then code block segmentation is performed after the concatenation of the transport blocks. The maximum size of the code blocks depends on whether convolutional, turbo coding or no coding is used for the TrCH .

4.2.2.1 Concatenation of transport blocks

The bits input to the transport block concatenation are denoted by $b_{i m 1}, b_{i m 2}, b_{i m 3}, \mathrm{~K}, b_{i m B_{i}}$ where i is the TrCH number, m is the transport block number, and B_{i} is the number of bits in each block (including CRC). The number of transport blocks on $\operatorname{TrCH} i$ is denoted by M_{i}. The bits after concatenation are denoted by $x_{i 1}, x_{i 2}, x_{i 3}, \mathrm{~K}, x_{i X_{i}}$, where i is the TrCH number and $X_{i}=M_{i} B_{i}$. They are defined by the following relations:

$$
\begin{aligned}
& x_{i k}=b_{i 1 k} \quad k=1,2, \ldots, B_{i} \\
& x_{i k}=b_{i, 2,\left(k-B_{i}\right)} \quad k=B_{i}+1, B_{i}+2, \ldots, 2 B_{i} \\
& x_{i k}=b_{i, 3,\left(k-2 B_{i}\right)} k=2 B_{i}+1,2 B_{i}+2, \ldots, 3 B_{i}
\end{aligned}
$$

n

$$
x_{i k}=b_{i, M_{i},\left(k-\left(M_{i}-1\right) B_{i}\right)} k=\left(M_{i}-1\right) B_{i}+1,\left(M_{i}-1\right) B_{i}+2, \ldots, M_{i} B_{i}
$$

4.2.2.2 Code block segmentation

Segmentation of the bit sequence from transport block concatenation is performed if $X_{i}>Z$. The code blocks after segmentation are of the same size. The number of code blocks on $\operatorname{TrCH} i$ is denoted by C_{i}. If the number of bits input to the segmentation, X_{i}, is not a multiple of C_{i}, filler bits are added to the beginning of the first block. If turbo coding is selected and $X_{i}<40$, filler bits are added to the beginning of the code block. The filler bits are transmitted and they are always set to 0 . The maximum code block sizes are:

- convolutional coding: $Z=504$;
- turbo coding: $Z=5114$;
- no channel coding: $Z=$ unlimited.

The bits output from code block segmentation, for $C_{i} \neq 0$, are denoted by $o_{i r 1}, o_{i r 2}, o_{i r 3}, \mathrm{~K}, o_{i r K_{i}}$, where i is the TrCH number, r is the code block number, and K_{i} is the number of bits per code block.

Number of code blocks:
$C_{i}= \begin{cases}\left\lceil X_{i} / Z\right\rceil & \text { when } Z \neq \text { unlimited } \\ 0 & \text { when } Z=\text { unlimited } \text { and } X_{i}=0 \\ 1 & \text { when } Z=\text { unlimited } \text { and } X_{i} \neq 0\end{cases}$
Number of bits in each code block (applicable for $C_{i} \neq 0$ only):
if $X_{i}<40$ and Turbo coding is used, then

$$
K_{i}=40
$$

else

$$
K_{i}=\left\lceil X_{i} / C_{i}\right\rceil
$$

end if

Number of filler bits: $Y_{i}=C_{i} K_{i}-X_{i}$
for $k=1$ to $Y_{i} \quad--$ Insertion of filler bits

$$
o_{i 1 k}=0
$$

end for

$$
\text { for } k=Y_{i}+1 \text { to } K_{i}
$$

$$
o_{i 1 k}=x_{i,\left(k-Y_{i}\right)}
$$

end for

$$
r=2 \quad-- \text { Segmentation }
$$

while $r \leq C_{i}$

$$
\text { for } k=1 \text { to } K_{i}
$$

$$
o_{i r k}=x_{i,\left(k+(r-1) \cdot K_{i}-Y_{i}\right)}
$$

end for

$$
\mathrm{r}=\mathrm{r}+1
$$

end while

4.2.3 Channel coding

Code blocks are delivered to the channel coding block. They are denoted by $o_{i r 1}, o_{i r 2}, o_{i r 3}, \mathrm{~K}, o_{i r K_{i}}$, where i is the TrCH number, r is the code block number, and K_{i} is the number of bits in each code block. The number of code blocks on $\operatorname{TrCH} i$ is denoted by C_{i}. After encoding the bits are denoted by $y_{i r 1}, y_{i r 2}, y_{i r 3}, \mathrm{~K}, y_{i r Y_{i}}$, where Y_{i} is the number of encoded bits. The relation between $o_{i r k}$ and $y_{i r k}$ and between K_{i} and Y_{i} is dependent on the channel coding scheme.

The following channel coding schemes can be applied to transport channels:

- convolutional coding;
- turbo coding;
- no coding.

Usage of coding scheme and coding rate for the different types of TrCH is shown in tables 1 and 1 A . The values of Y_{i} in connection with each coding scheme:

- convolutional coding with rate $1 / 2: Y_{i}=2 * K_{i}+16$; rate $1 / 3: Y_{i}=3 * K_{i}+24$;
- turbo coding with rate $1 / 3: Y_{i}=3 * K_{i}+12$;
- no coding: $\mathrm{Y}_{\mathrm{i}}=\mathrm{K}_{\mathrm{i}}$.

Table 1: Usage of channel coding scheme and coding rate for 3.84Mcps TDD

Type of TrCH	Coding scheme	Coding rate
BCH	Convolutional coding	1/2
PCH		
RACH		
DCH, DSCH, FACH, USCH		1/3, 1/2
	Turbo coding	1/3
	No coding	

Table 1A: Usage of channel coding scheme and coding rate for 1.28 Mcps TDD

Type of TrCH	Coding scheme	Coding rate
BCH	Convolutional coding	1/3
PCH		1/3, 1/2
RACH		1/2
DCH, DSCH, FACH, USCH		1/3, 1/2
	Turbo coding	1/3
	No coding	

4.2.3.1 Convolutional coding

Convolutional codes with constraint length 9 and coding rates $1 / 3$ and $1 / 2$ are defined.
The configuration of the convolutional coder is presented in figure 2.
Output from the rate $1 / 3$ convolutional coder shall be done in the order output 0 , output 1 , output 2 , output 0 , output 1 , output 2 , output $0, \ldots$,output 2 . Output from the rate $1 / 2$ convolutional coder shall be done in the order output 0 , output 1 , output 0 , output 1 , output $0, \ldots$, output 1 .

8 tail bits with binary value 0 shall be added to the end of the code block before encoding.
The initial value of the shift register of the coder shall be "all 0 " when starting to encode the input bits.

Figure 2: Rate $1 / 2$ and rate $1 / 3$ convolutional coders

4.2.3.2 Turbo coding

4.2.3.2.1 Turbo coder

The scheme of Turbo coder is a Parallel Concatenated Convolutional Code (PCCC) with two 8-state constituent encoders and one Turbo code internal interleaver. The coding rate of Turbo coder is $1 / 3$. The structure of Turbo coder is illustrated in figure 3.

The transfer function of the 8 -state constituent code for PCCC is:

$$
\mathrm{G}(\mathrm{D})=\left[1, \frac{g_{1}(D)}{g_{0}(D)}\right],
$$

where

$$
\begin{aligned}
& g_{0}(D)=1+D^{2}+D^{3} \\
& g_{1}(D)=1+D+D^{3} .
\end{aligned}
$$

The initial value of the shift registers of the 8 -state constituent encoders shall be all zeros when starting to encode the input bits.

Output from the Turbo coder is , $\mathrm{Y}^{\prime}(0), \mathrm{X}(1), \mathrm{Y}(1), \mathrm{Y}^{\prime}(1)$, etc:

$$
x_{1}, z_{1}, z_{1}^{\prime}, x_{2}, z_{2}, z_{2}^{\prime}, \ldots, x_{K}, z_{K}, z_{K}^{\prime}
$$

where $x_{1}, x_{2}, \ldots, x_{K}$ are the bits input to the Turbo coder i.e. both first 8 -state constituent encoder and Turbo code internal interleaver, and K is the number of bits, and $z_{1}, z_{2}, \ldots, z_{K}$ and $z_{1}^{\prime}, z_{2}^{\prime}, \ldots, z_{K}^{\prime}$ are the bits output from first and second 8 -state constituent encoders, respectively.

The bits output from Turbo code internal interleaver are denoted by $x^{\prime}, x^{\prime}{ }_{2}, \ldots, x_{K}^{\prime}$, and these bits are to be input to the second 8 -state constituent encoder.

Figure 3: Structure of rate $1 / 3$ Turbo coder (dotted lines apply for trellis termination only)

4.2.3.2.2 Trellis termination for Turbo coder

Trellis termination is performed by taking the tail bits from the shift register feedback after all information bits are encoded. Tail bits are padded after the encoding of information bits.

The first three tail bits shall be used to terminate the first constituent encoder (upper switch of figure 3 in lower position) while the second constituent encoder is disabled. The last three tail bits shall be used to terminate the second constituent encoder (lower switch of figure 3 in lower position) while the first constituent encoder is disabled.

The transmitted bits for trellis termination shall then be:

$$
x_{K+1}, z_{K+1}, x_{K+2}, z_{K+2}, x_{K+3}, z_{K+3}, x_{K+1}^{\prime}, z_{K+1}^{\prime}, x_{K+2}^{\prime}, z_{K+2}^{\prime}, x_{K+3}^{\prime}, z_{K+3}^{\prime} .
$$

4.2.3.2.3 Turbo code internal interleaver

The Turbo code internal interleaver consists of bits-input to a rectangular matrix with padding, intra-row and inter-row permutations of the rectangular matrix, and bits-output from the rectangular matrix with pruning. The bits input to the Turbo code internal interleaver are denoted by $x_{1}, x_{2}, x_{3}, \mathrm{~K}, x_{K}$, where K is the integer number of the bits and takes one value of $40 \leq K \leq 5114$. The relation between the bits input to the Turbo code internal interleaver and the bits input to the channel coding is defined by $x_{k}=o_{i r k}$ and $K=K_{i}$.

The following subclause specific symbols are used in subclauses 4.2.3.2.3.1 to 4.2.3.4.3.3:

K	Number of bits input to Turbo code internal interleaver
R	Number of rows of rectangular matrix
C	Number of columns of rectangular matrix
p	Prime number
v	Primitive root
$\langle s(j)\rangle_{j \in\{0,1, \Lambda, p-2\}} \quad$ Base sequence for intra-row permutation	
q_{i}	Minimum prime integers
r_{i}	Permuted prime integers
$\langle T(i)\rangle_{i \in\{0,1, \Lambda, R-1\}} \quad$ Inter-row permutation pattern	
$\left\langle U_{i}(j)\right\rangle_{j \in\{0,1, \Lambda, C-1\}} \quad$ Intra-row permutation pattern of i-th row	

4.2.3.2.3.1 Bits-input to rectangular matrix with padding

The bit sequence $x_{1}, x_{2}, x_{3}, \mathrm{~K}, x_{K}$ input to the Turbo code internal interleaver is written into the rectangular matrix as follows.
(1) Determine the number of rows of the rectangular matrix, R, such that:

$$
R=\left\{\begin{array}{l}
5, \text { if }(40 \leq K \leq 159) \\
10, \text { if }((160 \leq K \leq 200) \text { or }(481 \leq K \leq 530)) \\
20, \text { if }(K=\text { any other value })
\end{array}\right.
$$

The rows of rectangular matrix are numbered $0,1, \ldots, R-1$ from top to bottom.
(2) Determine the prime number to be used in the intra-permutation, p, and the number of columns of rectangular matrix, C, such that:
if ($481 \leq K \leq 530$) then

$$
p=53 \text { and } C=p .
$$

else
Find minimum prime number p from table 2 such that

$$
K \leq R \times(p+1)
$$

and determine C such that

$$
C= \begin{cases}p-1 & \text { if } K \leq R \times(p-1) \\ p & \text { if } R \times(p-1)<K \leq R \times p \\ p+1 & \text { if } R \times p<K\end{cases}
$$

end if
The columns of rectangular matrix are numbered $0,1, \ldots, C-1$ from left to right.
Table 2: List of prime number p and associated primitive root \boldsymbol{v}

\boldsymbol{p}	\boldsymbol{v}	\boldsymbol{p}	\boldsymbol{v}	\boldsymbol{p}	\boldsymbol{v}	\boldsymbol{p}	\boldsymbol{v}	\boldsymbol{p}	\boldsymbol{v}
7	3	47	5	101	2	157	5	223	3
11	2	53	2	103	5	163	2	227	2
13	2	59	2	107	2	167	5	229	6
17	3	61	2	109	6	173	2	233	3
19	2	67	2	113	3	179	2	239	7
23	5	71	7	127	3	181	2	241	7
29	2	73	5	131	2	191	19	251	6
31	3	79	3	137	3	193	5	257	3
37	2	83	2	139	2	197	2		
41	6	89	3	149	2	199	3		
43	3	97	5	151	6	211	2		

(3) Write the input bit sequence $x_{1}, x_{2}, x_{3}, \mathrm{~K}, x_{K}$ into the $R \times C$ rectangular matrix row by row starting with bit y_{1} in column 0 of row 0 :

$$
\left[\begin{array}{ccccc}
y_{1} & y_{2} & y_{3} & \mathrm{~K} & y_{C} \\
y_{(C+1)} & y_{(C+2)} & y_{(C+3)} & \mathrm{K} & y_{2 C} \\
\mathrm{M} & \mathrm{M} & \mathrm{M} & \mathrm{~K} & \mathrm{M} \\
y_{((R-1) C+1)} & y_{((R-1) C+2)} & y_{((R-1) C+3)} & \mathrm{K} & y_{R \times C}
\end{array}\right] .
$$

where $y_{\mathrm{k}}=x_{\mathrm{k}}$ for $k=1,2, \ldots, K$ and if $R \times C>K$, the dummy bits are padded such that $y_{k}=0$ or 1 for $k=K+1$, $K+2, \ldots, R \times C$. These dummy bits are pruned away from the output of the rectangular matrix after intra-row and inter-row permutations.

4.2.3.2.3.2 Intra-row and inter-row permutations

After the bits-input to the $R \times C$ rectangular matrix, the intra-row and inter-row permutations for the $R \times C$ rectangular matrix are performed stepwise by using the following algorithm with steps (1) - (6).
(1) Select a primitive root v from table 2 in section 4.2.3.2.3.1, which is indicated on the right side of the prime number p.
(2) Construct the base sequence $\langle s(j)\rangle_{j \in\{0,1, \Lambda, p-2\}}$ for intra-row permutation as:
$s(j)=(v \times s(j-1)) \bmod p, j=1,2, \ldots(p-2)$, and $s(0)=1$.
(3) Assign $q_{0}=1$ to be the first prime integer in the sequence $\left\langle q_{i}\right\rangle_{i \in\{0,1, \Lambda, R-1\}}$, and determine the prime integer q_{i} in the sequence $\left\langle q_{i}\right\rangle_{i \in\{0,1, \Lambda, R-1\}}$ to be a least prime integer such that g.c.d $\left(q_{i}, p-1\right)=1, q_{i}>6$, and $q_{i}>q_{(i-1)}$ for each $i=1,2, \ldots, R-1$. Here g.c.d. is greatest common divisor.
(4) Permute the sequence $\left\langle q_{i}\right\rangle_{i \in\{0,1, \Lambda, R-1\}}$ to make the sequence $\left\langle r_{i}\right\rangle_{i \in\{0,1, \Lambda, R-1\}}$ such that

$$
r_{T(i)}=q_{i}, i=0,1, \ldots ., R-1
$$

where $\langle T(i)\rangle_{i \in\{0,1, \Lambda, R-1\}}$ is the inter-row permutation pattern defined as the one of the four kind of patterns, which are shown in table 3, depending on the number of input bits K.

Table 3: Inter-row permutation patterns for Turbo code internal interleaver

Number of input bits K	Number of rows R	Inter-row permutation patterns $\langle T(0), T(1), \ldots, T(R-1)>$
$(40 \leq K \leq 159)$	5	$<4,3,2,1,0>$
$(160 \leq K \leq 200)$ or $(481 \leq K \leq 530)$	10	$<9,8,7,6,5,4,3,2,1,0>$
$(2281 \leq K \leq 2480)$ or $(3161 \leq K \leq 3210)$	20	$<19,9,14,4,0,2,5,7,12,18,16,13,17,15,3,1,6,11,8,10>$
$K=$ any other value	20	$<19,9,14,4,0,2,5,7,12,18,10,8,13,17,3,1,16,6,15,11>$

(5) Perform the i-th $(i=0,1, \ldots, R-1)$ intra-row permutation as:
if $(C=p)$ then

$$
U_{i}(j)=s\left(\left(j \times r_{i}\right) \bmod (p-1)\right), \quad j=0,1, \ldots,(p-2), \text { and } U_{i}(p-1)=0
$$

where $U_{i}(j)$ is the original bit position of j-th permuted bit of i-th row.
end if
if $(\mathrm{C}=p+1)$ then

$$
U_{i}(j)=s\left(\left(j \times r_{i}\right) \bmod (p-1)\right), \quad j=0,1, \ldots,(p-2) . \quad U_{i}(p-1)=0, \text { and } U_{i}(p)=p
$$

where $U_{i}(j)$ is the original bit position of j-th permuted bit of i-th row, and
if ($K=R \times C$) then
Exhange $U_{R-I}(p)$ with $U_{R-I}(0)$.
end if
end if
if $(C=p-1)$ then

$$
U_{i}(j)=s\left(\left(j \times r_{i}\right) \bmod (p-1)\right)-1, \quad j=0,1, \ldots,(p-2)
$$

where $U_{i}(j)$ is the original bit position of j-th permuted bit of i-th row.
end if
(6) Perform the inter-row permutation for the rectangular matrix based on the pattern $\langle T(i)\rangle_{i \in\{0,1, \Lambda, R-1\}}$,
where $T(i)$ is the original row position of the i-th permuted row.

4.2.3.2.3.3 Bits-output from rectangular matrix with pruning

After intra-row and inter-row permutations, the bits of the permuted rectangular matrix are denoted by y_{k}^{\prime} :

$$
\left[\begin{array}{ccclc}
y_{1}^{\prime} & y_{(R+1)}^{\prime} & y_{(2 R+1)}^{\prime} & \mathrm{K} y_{((C-1) R+1)}^{\prime} \\
y_{2}^{\prime} & y_{(R+2)}^{\prime} & y_{(2 R+2)}^{\prime} & \mathrm{K} & y_{((C-1) R+2)}^{\prime} \\
\mathrm{M} & \mathrm{M} & \mathrm{M} & \mathrm{~K} & \mathrm{M} \\
y_{R}^{\prime} & y_{2 R}^{\prime} & y_{3 R}^{\prime} & \mathrm{K} & y_{C \times R}^{\prime}
\end{array}\right]
$$

The output of the Turbo code internal interleaver is the bit sequence read out column by column from the intra-row and inter-row permuted $R \times C$ rectangular matrix starting with bit y_{1}^{\prime} in row 0 of column 0 and ending with bit $y_{C R}^{\prime}$ in row R - 1 of column $C-1$. The output is pruned by deleting dummy bits that were padded to the input of the rectangular matrix before intra-row and inter row permutations, i.e. bits y_{k}^{\prime} that corresponds to bits y_{k} with $k>K$ are removed from
the output. The bits output from Turbo code internal interleaver are denoted by $x_{1}^{\prime}, x_{2}^{\prime}, \ldots, x_{K}^{\prime}$, where x_{1}^{\prime} corresponds to the bit y_{k}^{\prime} with smallest index k after pruning, x_{2}^{\prime} to the bit y_{k}^{\prime} with second smallest index k after pruning, and so on. The number of bits output from Turbo code internal interleaver is K and the total number of pruned bits is:
$R \times C-K$.

4.2.3.3 Concatenation of encoded blocks

After the channel coding for each code block, if C_{i} is greater than 1, the encoded blocks are serially concatenated so that the block with lowest index r is output first from the channel coding block, otherwise the encoded block is output from channel coding block as it is. The bits output are denoted by $c_{i 1}, c_{i 2}, c_{i 3}, \mathrm{~K}, c_{i E_{i}}$, where i is the TrCH number and $E_{i}=$ $C_{i} Y_{i}$. The output bits are defined by the following relations:

$$
\begin{aligned}
& c_{i k}=y_{i 1 k} \quad k=1,2, \ldots, Y_{i} \\
& c_{i k}=y_{i, 2,\left(k-Y_{i}\right)} \quad k=Y_{i}+1, Y_{i}+2, \ldots, 2 Y_{i} \\
& c_{i k}=y_{i, 3,\left(k-2 Y_{i}\right)} \quad k=2 Y_{i}+1,2 Y_{i}+2, \ldots, 3 Y_{i} \\
& \mathbf{n} \\
& c_{i k}=y_{i, C_{i},\left(k-\left(C_{i}-1\right) Y_{i}\right)} \quad k=\left(C_{i}-1\right) Y_{i}+1,\left(C_{i}-1\right) Y_{i}+2, \ldots, C_{i} Y_{i}
\end{aligned}
$$

If no code blocks are input to the channel coding $\left(C_{i}=0\right)$, no bits shall be output from the channel coding, i.e. $E_{i}=0$.

4.2.4 Radio frame size equalisation

Radio frame size equalisation is padding the input bit sequence in order to ensure that the output can be segmented in F_{i} data segments of same size as described in the subclause 4.2.6.

The input bit sequence to the radio frame size equalisation is denoted by $c_{i 1}, c_{i 2}, c_{i 3}, \mathrm{~K}, c_{i E_{i}}$, where i is TrCH number and E_{i} the number of bits. The output bit sequence is denoted by $t_{i 1}, t_{i 2}, t_{i 3}, \mathrm{~K}, t_{i T_{i}}$, where T_{i} is the number of bits. The output bit sequence is derived as follows:

$$
\begin{aligned}
& t_{i k}=c_{i k} \text {, for } \mathrm{k}=1 \ldots E_{i} \text { and } \\
& t_{i k}=\{0,1\} \text { for } \mathrm{k}=E_{i}+1 \ldots T_{i}, \text { if } E_{i}<T_{i}
\end{aligned}
$$

where

$$
\mathrm{T}_{i}=F_{i} * N_{i} \text { and }
$$

$N_{i}=\left\lceil E_{i} / F_{i}\right\rceil$ is the number of bits per segment after size equalisation.

4.2.5 1st interleaving

The $1^{\text {st }}$ interleaving is a block interleaver with inter-column permutations. The input bit sequence to the block interleaver is denoted by $x_{i, 1}, x_{i, 2}, x_{i, 3}, \mathrm{~K}, x_{i, X_{i}}$, where i is TrCH number and X_{i} the number of bits. Here X_{i} is guaranteed to be an integer multiple of the number of radio frames in the TTI. The output bit sequence from the block interleaver is derived as follows:

1) select the number of columns C 1 from table 4 depending on the TTI. The columns are numbered $0,1, \ldots, \mathrm{C} 1-1$ from left to right.
2) determine the number of rows of the matrix, R1 defined as
$\mathrm{R} 1=X_{i} / \mathrm{C} 1$.

The rows of the matrix are numbered $0,1, \ldots, \mathrm{R} 1-1$ from top to bottom.
3) write the input bit sequence into the $\mathrm{R} 1 \times \mathrm{C} 1$ matrix row by row starting with bit $x_{i, 1}$ in column 0 of row 0 and ending with bit $x_{i,(\mathrm{Rl} \times \mathrm{C} 1)}$ in column C1-1 of row R1-1:

$$
\left[\begin{array}{ccccc}
x_{i, 1} & x_{i, 2} & x_{i, 3} & \mathrm{~K} & x_{i, \mathrm{C} 1} \\
x_{i,(\mathrm{C} 1+1)} & x_{i,(\mathrm{C} 1+2)} & x_{i,(\mathrm{C} 1+3)} & \mathrm{K} & x_{i,(2 \times \mathrm{Cl})} \\
\mathrm{M} & \mathrm{M} & \mathrm{M} & \mathrm{~K} & \mathrm{M} \\
x_{i,((\mathrm{R} 1-1) \times \mathrm{C} 1+1)} & x_{i,((\mathrm{R} 1-1) \times \mathrm{C} 1+2)} & x_{i,((\mathrm{R} 1-1) \times \mathrm{C} 1+3)} & \mathrm{K} & x_{i,(\mathrm{R} 1 \times \mathrm{C} 1)}
\end{array}\right]
$$

4) Perform the inter-column permutation for the matrix based on the pattern $\left\langle\mathrm{P} 1_{\mathrm{C} 1}(j)\right\rangle_{j \in\{0,1, \mathrm{~K}, \mathrm{C} 1-1\}}$ shown in table 4, where $\mathrm{P} 1_{\mathrm{C} 1}(j)$ is the original column position of the j-th permuted column. After permutation of the columns, the bits are denoted by $y_{i, k}$:

$$
\left[\begin{array}{ccclc}
y_{i, 1} & y_{i,(\mathrm{R} 1+1)} & y_{i,(2 \times \mathrm{R} 1+1)} & \mathrm{K} & y_{i,((\mathrm{C} 1-1) \times \mathrm{R} 1+1)} \\
y_{i, 2} & y_{i,(\mathrm{R} 1+2)} & y_{i,(2 \times \mathrm{R} 1+2)} & \mathrm{K} & y_{i,((\mathrm{C} 1-1) \times \mathrm{R} 1+2)} \\
\mathrm{M} & \mathrm{M} & \mathrm{M} & \mathrm{~K} & \mathrm{M} \\
y_{i, \mathrm{R} 1} & y_{i,(2 \times \mathrm{R} 1)} & y_{i,(3 \times \mathrm{R} 1)} & \mathrm{K} & y_{i,(\mathrm{C} 1 \times \mathrm{R} 1)}
\end{array}\right]
$$

5) Read the output bit sequence $y_{i, 1}, y_{i, 2}, y_{i, 3}, \mathrm{~K}, y_{i,(\mathrm{C} 1 \times \mathrm{R} 1)}$ of the block interleaver column by column from the inter-column permuted $\mathrm{R} 1 \times \mathrm{C} 1$ matrix. Bit $y_{i, 1}$ corresponds to row 0 of column 0 and bit $y_{i,(\mathrm{R} 1 \times \mathrm{C} 1)}$ corresponds to row R1-1 of column C1-1.

Table 4 Inter-column permutation patterns for 1st interleaving

TTI	Number of columns C1	Inter-column permutation patterns $\left\langle\mathbf{P 1}_{\left.\mathbf{C 1}_{1}(\mathbf{0}), \mathbf{P 1}_{\mathbf{C 1}}(\mathbf{1}), \ldots, \mathbf{P 1}_{\mathbf{C} 1}(\mathbf{C 1} 1 \mathbf{1})\right\rangle}\right.$
$5 \mathrm{~ms}{ }^{\left({ }^{(1)}, 10 \mathrm{~ms}\right.}$	1	$<0>$
20 ms	2	$<0,1>$
40 ms	4	$<0,2,1,3>$
80 ms	8	$<0,4,2,6,1,5,3,7>$

4.2.5.1 Relation between input and output of $1^{\text {st }}$ interleaving

The bits input to the $1^{\text {st }}$ interleaving are denoted by $t_{i, 1}, t_{i, 2}, t_{i, 3}, \mathrm{~K}, t_{i, T_{i}}$, where i is the TrCH number and T_{i} the number of bits. Hence, $x_{i, k}=t_{i, k}$ and $X_{i}=T_{i}$.

The bits output from the $1^{\text {st }}$ interleaving are denoted by $d_{i, 1}, d_{i, 2}, d_{i, 3}, \mathrm{~K}, d_{i, T_{i}}$, and $d_{i, k}=y_{i, k}$.

4.2.6 Radio frame segmentation

When the transmission time interval is longer than 10 ms , the input bit sequence is segmented and mapped onto consecutive F_{i} radio frames. Following radio frame size equalisation the input bit sequence length is guaranteed to be an integer multiple of F_{i}.

The input bit sequence is denoted by $x_{i 1}, x_{i 2}, x_{i 3}, \mathrm{~K}, x_{i X_{i}}$ where i is the TrCH number and X_{i} is the number bits. The F_{i} output bit sequences per TTI are denoted by $y_{i, n_{i} 1}, y_{i, n_{i} 2}, y_{i, n_{i} 3}, \mathrm{~K}, y_{i, n_{i} Y_{i}}$ where n_{i} is the radio frame number in current TTI and Y_{i} is the number of bits per radio frame for $\operatorname{TrCH} i$. The output sequences are defined as follows:

$$
y_{i, n_{i} k}=x_{i,\left(\left(n_{i}-1\right) \cdot Y_{i}\right)+k}, n_{i}=1 \ldots F_{i}, k=1 \ldots Y_{i}
$$

where
$Y_{i}=\left(X_{i} / F_{i}\right)$ is the number of bits per segment.
The n_{i}-th segment is mapped to the n_{i}-th radio frame of the transmission time interval.
The input bit sequence to the radio frame segmentation is denoted by $d_{i 1}, d_{i 2}, d_{i 3}, \mathrm{~K}, d_{i T_{i}}$, where i is the TrCH number and T_{i} the number of bits. Hence, $x_{i k}=d_{i k}$ and $X_{i}=T_{i}$.

The output bit sequence corresponding to radio frame n_{i} is denoted by $e_{i 1}, e_{i 2}, e_{i 3}, \mathrm{~K}, e_{i N_{i}}$, where i is the TrCH number and N_{i} is the number of bits. Hence, $e_{i, k}=y_{i, n_{i} k}$ and $N_{i}=Y_{i}$.

4.2.7 Rate matching

Rate matching means that bits on a TrCH are repeated or punctured. Higher layers assign a rate-matching attribute for each TrCH . This attribute is semi-static and can only be changed through higher layer signalling. The rate-matching attribute is used when the number of bits to be repeated or punctured is calculated.

The number of bits on a TrCH can vary between different transmission time intervals. When the number of bits between different transmission time intervals is changed, bits are repeated to ensure that the total bit rate after TrCH multiplexing is identical to the total channel bit rate of the allocated physical channels.

If no bits are input to the rate matching for all TrCHs within a CCTrCH , the rate matching shall output no bits for all TrCH s within the CCTrCH .

Notation used in subclause 4.2.7 and subclauses:
$N_{i j}: \quad$ Number of bits in a radio frame before rate matching on $\operatorname{TrCH} i$ with transport format combination j.
$\Delta N_{i, j}$: If positive - number of bits to be repeated in each radio frame on $\operatorname{TrCH} i$ with transport format
If negative - number of bits to be punctured in each radio frame on $\operatorname{TrCH} i$ with transport format combination j.
$R M_{i}$: Semi-static rate matching attribute for $\mathrm{TrCH} i$. Signalled from higher layers.
PL: Puncturing limit. This value limits the amount of puncturing that can be applied in order to minimise the number of physical channels. Signalled from higher layers. The allowed puncturing in $\%$ is actually equal to $(1-\mathrm{PL}) * 100$.
$N_{\text {datata },}$: Total number of bits that are available for a CCTrCH in a radio frame with transport format combination j .
$P: \quad$ number of physical channels used in the current frame.
$P_{\max }$: maximum number of physical channels allocated for a CCTrCH .
$U_{p}: \quad$ Number of data bits in the physical channel p with $\mathrm{p}=1 \ldots \mathrm{P}$ during a radio frame.
$I: \quad$ Number of TrCH in a CCTrCH.
$Z_{i j}: \quad$ Intermediate calculation variable.
$F_{i}: \quad$ Number of radio frames in the transmission time interval of $\operatorname{TrCH} i$.
$n_{i}: \quad$ Radio frame number in the transmission time interval of $\operatorname{TrCH} i\left(0 \leq n_{i}<F_{i}\right)$.
q : Average puncturing or repetition distance(normalised to only show the remaining rate matching on top of an integer number of repetitions).
$P 1_{F}\left(n_{i}\right)$: The column permutation function of the $1^{\text {st }}$ interleaver, $\mathrm{P} 1_{F}(\mathrm{x})$ is the original position of column with number x after permutation. P 1 is defined on table 4 of section 4.2 .5 (note that P_{F} self-inverse).
$\mathrm{S}[\mathrm{n}]$: \quad The shift of the puncturing or repetition pattern for radio frame n_{i} when $n=\mathrm{P} 1_{F_{i}}\left(n_{i}\right)$.
$T F_{i}(j)$: Transport format of TrCH i for the transport format combination j .
$T F S(i)$: The set of transport format indexes l for TrCH i.
$e_{i n i}: \quad$ Initial value of variable e in the rate matching pattern determination algorithm of subclause 4.2.7.3.
$e_{\text {plus }}: \quad$ Increment of variable e in the rate matching pattern determination algorithm of subclause 4.2.7.3.
$e_{\text {minus }}: \quad$ Decrement of variable e in the rate matching pattern determination algorithm of subclause 4.2.7.3.
$b: \quad$ Indicates systematic and parity bits.
$b=1$: Systematic bit. $X(t)$ in subclause 4.2.3.2.1.
$b=2: 1^{\text {st }}$ parity bit (from the upper Turbo constituent encoder). $Y(t)$ in subclause 4.2.3.2.1.
$b=3: 2^{\text {nd }}$ parity bit (from the lower Turbo constituent encoder). $Y^{\prime}(t)$ in subclause 4.2.3.2.1.
Note: when the TTI is 5 msec for 1.28 Mcps , the above notation refers to a sub-frame rather than a radio frame. In this case, $F_{i}=1$ and $n_{i}=0$.

4.2.7.1 Determination of rate matching parameters

The following relations, defined for all $\operatorname{TFC} j$, are used when calculating the rate matching pattern:

$$
\begin{aligned}
& Z_{0, j}=0 \\
& Z_{i, j}=\left[\frac{\left(\left(\sum_{m=1}^{i} R M_{m} \times N_{m, j}\right) \times N_{\text {data, }}\right)}{\sum_{m=1}^{I} R M_{m} \times N_{m, j}}\right] \text { for all } \mathrm{i}=1 \ldots I(1) \\
& \Delta N_{i, j}=Z_{i, j}-Z_{i-1, j}-N_{i, j} \text { for all } \mathrm{i}=1 \ldots I
\end{aligned}
$$

Puncturing can be used to minimise the required transmission capacity. The maximum amount of puncturing that can be applied is 1-PL, PL is signalled from higher layers. The possible values for $\mathrm{N}_{\text {data }}$ depend on the number of physical channels $\mathrm{P}_{\text {max }}$, allocated to the respective CCTrCH , and on their characteristics (spreading factor, length of midamble and TFCI code word, usage of TPC and multiframe structure), which is given in [7].

For each physical channel an individual minimum spreading factor $S p_{\text {min }}$ is transmitted by means of the higher layers. Denote the number of data bits in each physical channel by $U_{p, S p}$, where p indicates the sequence number $1 \leq p \leq P_{\max }$ and $S p$ indicates the spreading factor with the possible values $\{16,8,4,2, l\}$ of this physical channel. The index p is described in section 4.2 .12 with the following modifications: spreading factor (Q) is replaced by the minimum spreading factor $S p_{\text {min }}$ and k is replaced by the channelization code index at $Q=S p_{\text {min }}$. Then, for $N_{\text {data }}$ one of the following values in ascending order can be chosen:
$\left\{U_{1, S 1_{\text {min }}}, U_{1, S 1_{\text {min }}}+U_{2, S 2_{\text {min }}}, U_{1, S 1_{\text {min }}}+U_{2, S 2_{\text {min }}}+\ldots+U_{\left.P_{\max }, S P_{\max }\right)_{\text {min }}}\right\}$
Optionally, if indicated by higher layers for the UL the UE shall vary the spreading factor autonomously, so that $N_{\text {data }}$ is one of the following values in ascending order:
$\left\{U_{1,16}, \ldots, U_{1, S 1_{\min }}, U_{1, S 1_{\min }}+U_{2,16}, \ldots, U_{1, S 1_{\min }}+U_{2, S 2_{\min }}, \ldots, U_{1, S 1_{\min }}+U_{2, S 2_{\min }}+\ldots+U_{P_{\max }, 16}, \ldots, U_{1, S 1_{\min }}+U_{2, S 2_{\min }}+\ldots+U_{P_{\max }\left(S S_{\max }\right)_{\min }}\right\}$
$\mathrm{N}_{\text {data, } \mathrm{j}}$ for the transport format combination j is determined by executing the following algorithm:

$$
\text { SET1 }=\left\{\mathrm{N}_{\text {data }} \text { such that }\left(\min _{1 \leq y \leq I}\left\{R M_{y}\right\}\right) \times N_{d a t a}-P L \times \sum_{x=1}^{I} R M_{x} \times N_{x, j} \text { is non negative }\right\}
$$

$\mathrm{N}_{\text {data, } \mathrm{j}}=\min$ SET1
The number of bits to be repeated or punctured, $\Delta N_{i, j}$, within one radio frame (one sub-frame when the TTI is 5 msec) for each TrCH i is calculated with the relations given at the beginning of this subclause for all possible transport format combinations j and selected every radio frame (sub-frame). The number of physical channels corresponding to $\mathrm{N}_{\text {data }, \mathrm{j}}$, shall be denoted by P .

If $\Delta N_{i, j}=0$ then the output data of the rate matching is the same as the input data and the rate matching algorithm of subclause 4.2.7.3 does not need to be executed.

Otherwise, the rate matching pattern is calculated with the algorithm described in subclause 4.2.7.3. For this algorithm the parameters $\mathrm{e}_{\text {ini }}, \mathrm{e}_{\text {plus }}, \mathrm{e}_{\text {minus }}$, and X_{i} are needed, which are calculated according to the equations in subclauses 4.2.7.1.1 and 4.2.7.1.2.

4.2.7.1.1 Uncoded and convolutionally encoded TrCHs

$$
\mathrm{a}=2
$$

$$
\Delta \mathrm{N}_{\mathrm{i}}=\Delta \mathrm{N}_{\mathrm{i}, \mathrm{j}}
$$

$$
X_{i}=N_{i, j}
$$

$\mathrm{R}=\Delta N_{i, j} \bmod N_{i, j}--$ note: in this context $\Delta N_{i, j} \bmod N_{i, j}$ is in the range of 0 to $N_{i, j}-1$ i.e. $-1 \bmod 10=9$.

$$
\begin{gathered}
\text { if } \mathrm{R} \neq 0 \text { and } 2 \times \mathrm{R} \leq N_{i, j} \\
\text { then } \mathrm{q}=\left\lceil N_{i, j} / R\right\rceil
\end{gathered}
$$

else

$$
\mathrm{q}=\left\lceil N_{i, j} /\left(R-N_{i, j}\right)\right\rceil
$$

endif
NOTE 1: q is a signed quantity.
If q is even
then $\mathrm{q}^{\prime}=\mathrm{q}+\operatorname{gcd}\left(|\mathrm{q}|, F_{i}\right) / F_{i}--$ where $\operatorname{gcd}\left(|\mathrm{q}|, F_{i}\right)$ means greatest common divisor of $|\mathrm{q}|$ and F_{i}
NOTE 2: q ' is not an integer, but a multiple of $1 / 8$.
else

$$
\mathrm{q}^{\prime}=\mathrm{q}
$$

endif

$$
\begin{aligned}
& \text { for } \mathrm{x}=0 \text { to } F_{i}-1 \\
& \qquad \mathrm{~S}\left[\mid\left\lfloor\mathrm{xx} \times \mathrm{q}^{\prime}\right\rfloor \bmod F_{i}\right]=\left(\|\left\lfloor\mathrm{x}^{*} \mathrm{q}^{\prime}\right\rfloor \operatorname{div} F_{i}\right)
\end{aligned}
$$

end for

$$
\begin{aligned}
& e_{\text {ini }}=\left(\mathrm{a} \times \mathrm{S}\left[\mathrm{P}_{F i}\left(n_{i}\right)\right] \times\left|\Delta N_{i}\right|+1\right) \bmod \left(\mathrm{a} \times N_{i, j}\right) \\
& e_{\text {plus }}=\mathrm{a} \times X_{i} \\
& \mathrm{e}_{\text {minus }}=\mathrm{a} \times\left|\Delta \mathrm{N}_{\mathrm{i}}\right|
\end{aligned}
$$

puncturing for $\Delta N_{i}<0$, repetition otherwise.

4.2.7.1.2 Turbo encoded TrCHs

If repetition is to be performed on turbo encoded TrCHs , i.e. $\Delta N_{i, j}>0$, the parameters in subclause 4.2.7.1.1 are used.

If puncturing is to be performed, the parameters below shall be used. Index b is used to indicate systematic $(b=1), 1^{\text {st }}$ parity $(b=2)$, and $2^{\text {nd }}$ parity bit $(b=3)$.

$$
\begin{aligned}
& \mathrm{a}=2 \text { when } b=2 \\
& \mathrm{a}=1 \text { when } b=3 \\
& \Delta N_{i}= \begin{cases}\left\lfloor\Delta N_{i, j} / 2\right\rfloor, & b=2 \\
\left\lfloor\Delta N_{i, j} / 2\right\rceil, & b=3\end{cases}
\end{aligned}
$$

If ΔN_{i} is calculated as 0 for $b=2$ or $b=3$, then the following procedure and the rate matching algorithm of subclause 4.2.7.3 don't need to be performed for the corresponding parity bit stream.

$$
\begin{aligned}
& \mathrm{X}_{\mathrm{i}}=\left\lfloor\mathrm{N}_{\mathrm{i}, \mathrm{j}} / 3\right\rfloor \\
& \mathrm{q}=\left\lfloor\mathrm{X}_{\mathrm{i}} /\left|\Delta \mathrm{N}_{\mathrm{i}}\right|\right\rfloor \\
& \mathrm{if}(\mathrm{q} \leq 2)
\end{aligned}
$$

$$
\text { for } r=0 \text { to } F_{i}-1
$$

$$
\mathrm{S}\left[(3 \times r+\mathrm{b}-1) \bmod F_{i}\right]=r \bmod 2
$$

end for
else
if q is even

$$
\text { then } \mathrm{q}^{\prime}=\mathrm{q}-\operatorname{gcd}\left(\mathrm{q}, F_{i}\right) / F_{i}-- \text { where } \operatorname{gcd}\left(\mathrm{q}, F_{i}\right) \text { means greatest common divisor of } \mathrm{q} \text { and } F_{i}
$$

NOTE: $\quad q^{\prime}$ is not an integer, but a multiple of $1 / 8$.

$$
\text { else } \quad q^{\prime}=q
$$

endif

$$
\text { for } x=0 \text { to } F_{i}-1
$$

$$
\mathrm{r}=\left\lceil x \times \mathrm{q}^{\prime}\right\rceil \bmod F_{i} ;
$$

$\mathrm{S}\left[(3 \times \mathrm{r}+\mathrm{b}-1) \bmod F_{i}\right]=\left\lceil x \times \mathrm{q}^{\prime}\right\rceil \operatorname{div} F_{i} ;$
endfor
endif
For each radio frame, the rate-matching pattern is calculated with the algorithm in subclause 4.2.7.3, where:
X_{i} is as above,
$e_{\text {ini }}=\left(\mathrm{a} \times \mathrm{S}\left[\mathrm{P} 1 F_{i}\left(n_{i}\right)\right] \times \cdot\left|\Delta N_{i}\right|+X_{i}\right) \bmod \left(\mathrm{a} \times \mathrm{X}_{\mathrm{i}}\right)$, if $e_{i n i}=0$ then $e_{\text {ini }}=\mathrm{a} \times X_{i}$
$e_{p l u s}=\mathrm{a} \times X_{i}$
$e_{\text {minus }}=\mathrm{a} \times\left|\Delta N_{i}\right|$

4.2.7.2 Bit separation and collection for rate matching

The systematic bits of turbo encoded TrCHs shall not be punctured, the other bits may be punctured. The systematic bits, first parity bits, and second parity bits in the bit sequence input to the rate matching block are therefore separated into three sequences.

The first sequence contains:

- All of the systematic bits that are from turbo encoded TrCHs .
- From 0 to 2 first and/or second parity bits that are from turbo encoded TrCHs. These bits come into the first sequence when the total number of bits in a block after radio frame segmentation is not a multiple of three.
- Some of the systematic, first parity and second parity bits that are for trellis termination.

The second sequence contains:

- All of the first parity bits that are from turbo encoded TrCHs, except those that go into the first sequence when the total number of bits is not a multiple of three.
- Some of the systematic, first parity and second parity bits that are for trellis termination.

The third sequence contains:

- All of the second parity bits that are from turbo encoded TrCHs , except those that go into the first sequence when the total number of bits is not a multiple of three.
- Some of the systematic, first parity and second parity bits that are for trellis termination.

The second and third sequences shall be of equal length, whereas the first sequence can contain from 0 to 2 more bits. Puncturing is applied only to the second and third sequences.

The bit separation function is transparent for uncoded TrCHs , convolutionally encoded TrCHs , and for turbo encoded TrCHs with repetition. The bit separation and bit collection are illustrated in figures 4 and 5 .

Figure 4: Puncturing of turbo encoded TrCHs

Figure 5: Rate matching for uncoded TrCHs, convolutionally encoded TrCHs, and for turbo encoded TrCHs with repetition

The bit separation is dependent on the $1^{\text {st }}$ interleaving and offsets are used to define the separation for different TTIs. b indicates the three sequences defined in this section, with $b=1$ indicating the first sequence, $b=2$ the second one, and b $=3$ the third one.

The offsets α_{b} for these sequences are listed in table 5 .
Table 5: TTI dependent offset needed for bit separation

TTI (ms)	$\boldsymbol{\alpha}_{1}$	$\boldsymbol{\alpha}_{2}$	$\boldsymbol{\alpha}_{3}$
10,40	0	1	2
20,80	0	2	1

The bit separation is different for different radio frames in the TTI. A second offset is therefore needed. The radio frame number for $\operatorname{TrCH} i$ is denoted by n_{i}. and the offset by $\beta_{n_{i}}$.

Table 6: Radio frame dependent offset needed for bit separation

TTI (ms)	$\boldsymbol{\beta}_{0}$	$\boldsymbol{\beta}_{1}$	$\boldsymbol{\beta}_{2}$	$\boldsymbol{\beta}_{3}$	$\boldsymbol{\beta}_{4}$	$\boldsymbol{\beta}_{5}$	$\boldsymbol{\beta}_{6}$	$\boldsymbol{\beta}_{7}$
10	0	NA						
20	0	1	NA	NA	NA	NA	NA	NA
40	0	1	2	0	NA	NA	NA	NA
80	0	1	2	0	1	2	0	1

4.2.7.2.1 Bit separation

The bits input to the rate matching are denoted by $e_{i, 1}, e_{i, 2}, e_{i, 3}, \mathrm{~K}, e_{i, N_{i}}$, where i is the TrCH number and N_{i} is the number of bits input to the rate matching block. Note that the transport format combination number j for simplicity has been left out in the bit numbering, i.e. $N_{i}=N_{i j}$. The bits after separation are denoted by $x_{b, i, 1}, x_{b, i, 2}, x_{b, i, 3}, \mathrm{~K}, x_{b, i, X_{i}}$. For turbo encoded TrCHs with puncturing, b indicates the three sequences defined in section 4.2.7.2, with $b=1$ indicating the first sequence, and so forth. For all other cases b is defined to be $1 . X_{i}$ is the number of bits in each separated bit sequence. The relation between $e_{i, k}$ and $x_{b, i, k}$ is given below.

For turbo encoded TrCHs with puncturing:

$$
x_{1, i, k}=e_{i, 3(k-1)+1+\left(\alpha_{1}+\beta_{n_{i}}\right) \bmod 3} \quad k=1,2,3, \ldots, X_{i} \quad X_{i}=\left\lfloor N_{i} / 3\right\rfloor
$$

$$
\begin{array}{lll}
x_{1, i,\left\lfloor N_{i} / 3\right\rfloor+k}=e_{i, 3\left\lfloor N_{i} / 3\right\rfloor+k} & k=1, \ldots, N_{i} \bmod 3 & \text { Note: When }\left(N_{i} \bmod 3\right)=0 \text { this row is not needed. } \\
x_{2, i, k}=e_{i, 3(k-1)+1+\left(\alpha_{2}+\beta_{n_{i}}\right) \bmod 3} & k=1,2,3, \ldots, X_{i} & X_{i}=\left\lfloor N_{i} / 3\right\rfloor \\
x_{3, i, k}=e_{i, 3(k-1)+1+\left(\alpha_{3}+\beta_{n_{i}}\right) \bmod 3} & k=1,2,3, \ldots, X_{i} & X_{i}=\left\lfloor N_{i} / 3\right\rfloor
\end{array}
$$

For uncoded TrCHs , convolutionally encoded TrCHs , and turbo encoded TrCHs with repetition:

$$
x_{1, i, k}=e_{i, k} \quad k=1,2,3, \ldots, X_{i} \quad X_{i}=N_{i}
$$

4.2.7.2.2 Bit collection

The bits $x_{b, i, k}$ are input to the rate matching algorithm described in subclause 4.2.7.3. The bits output from the rate matching algorithm are denoted $y_{b, i, 1}, y_{b, i, 2}, y_{b, i, 3}, \mathrm{~K}, y_{b, i, Y_{i}}$.

Bit collection is the inverse function of the separation. The bits after collection are denoted by $z_{b, i, 1}, z_{b, i, 2}, z_{b, i, 3}, \mathrm{~K}, z_{b, i, Y_{i}}$. After bit collection, the bits indicated as punctured are removed and the bits are then denoted by $f_{i, 1}, f_{i, 2}, f_{i, 3}, \mathrm{~K}, f_{i, V_{i}}$, where i is the TrCH number and $V_{i}=N_{i, j}+\Delta N_{i, j}$. The relations between $y_{b, i, k}, z_{b, i, k}$, and $f_{i, k}$ are given below.

For turbo encoded TrCHs with puncturing ($Y_{i}=X_{i}$):

$$
\begin{array}{ll}
z_{i, 3(k-1)+1+\left(\alpha_{1}+\beta_{n_{i}}\right) \bmod 3}=y_{1, i, k} & k=1,2,3, \ldots, Y_{I} \\
z_{i, 3\left\lfloor N_{i} / 3\right\rfloor+k}=y_{\left.1, i, L N_{i} / 3\right\rfloor+k} & k=1, \ldots, N_{i} \bmod 3 \quad \text { Note: When }\left(N_{i} \bmod 3\right)=0 \text { this row is not needed. } \\
z_{i, 3(k-1)+1+\left(\alpha_{2}+\beta_{n_{i}}\right) \bmod 3}=y_{2, i, k} & k=1,2,3, \ldots, Y_{i} \\
z_{i, 3(k-1)+1+\left(\alpha_{3}+\beta_{n_{i}}\right) \bmod 3}=y_{3, i, k} & k=1,2,3, \ldots, Y_{i}
\end{array}
$$

After the bit collection, bits $z_{i, k}$ with value δ, where $\delta \notin\{0,1\}$, are removed from the bit sequence. Bit $f_{i, 1}$ corresponds to the bit $z_{i, k}$ with smallest index k after puncturing, bit $f_{i, 2}$ corresponds to the bit $z_{i, k}$ with second smallest index k after puncturing, and so on.

For uncoded TrCHs , convolutionally encoded TrCHs , and turbo encoded TrCHs with repetition:

$$
z_{i, k}=y_{1, i, k} \quad k=1,2,3, \ldots, Y_{i}
$$

When repetition is used, $f_{i, k}=z_{i, k}$ and $Y_{i}=V_{i}$.
When puncturing is used, $Y_{i}=X_{i}$ and bits $z_{i, k}$ with value δ, where $\delta \notin\{0,1\}$, are removed from the bit sequence. Bit $f_{i, 1}$ corresponds to the bit $z_{i, k}$ with smallest index k after puncturing, bit $f_{i, 2}$ corresponds to the bit $z_{i, k}$ with second smallest index k after puncturing, and so on.

4.2.7.3 Rate matching pattern determination

The bits input to the rate matching are denoted by $x_{i, 1}, x_{i, 2}, x_{i, 3}, \mathrm{~K}, x_{i, X_{i}}$, where i is the TrCH and X_{i} is the parameter given in subclauses 4.2.7.1.1 and 4.2.7.1.2.

NOTE: The transport format combination number j for simplicity has been left out in the bit numbering.
The rate matching rule is as follows:
if puncturing is to be performed
$e=e_{i n i} \quad-$ initial error between current and desired puncturing ratio
$\mathrm{m}=1 \quad-$ index of current bit
do while $\mathrm{m}<=X_{i}$
$e=e-e_{\text {minus }} \quad$-- update error
if $\mathrm{e}<=0$ then $\quad-$ check if bit number m should be punctured
set bit $x_{i, m}$ to δ where $\delta \notin\{0,1\}$
$e=e+e_{p l u s} \quad$-- update error
end if
$\mathrm{m}=\mathrm{m}+1 \quad$-- next bit
end do
else
$\mathrm{e}=e_{\text {ini }} \quad-$ initial error between current and desired puncturing ratio
$\mathrm{m}=1 \quad--$ index of current bit
do while $\mathrm{m}<=X_{i}$
$e=e-e_{\text {minus }} \quad$-- update error
do while $\mathrm{e}<=0 \quad$-- check if bit number m should be repeated
repeat bit $x_{i, m}$
$e=e+e_{\text {plus }} \quad$-- update error
end do
$m=m+1 \quad--$ next bit
end do
end if
A repeated bit is placed directly after the original one.

4.2.8 $\quad \mathrm{TrCH}$ multiplexing

Every 10 ms , one radio frame from each TrCH is delivered to the TrCH multiplexing. These radio frames are serially multiplexed into a coded composite transport channel (CCTrCH). If the TTI is smaller than 10 ms , then no TrCH multiplexing is performed.

The bits input to the TrCH multiplexing are denoted by $f_{i, 1}, f_{i, 2}, f_{i, 3}, \mathrm{~K}, f_{i, V_{i}}$, where i is the TrCH id number and V_{i} is the number of bits in the radio frame of $\operatorname{TrCH} i$. The number of TrCHs is denoted by I. The bits output from TrCH multiplexing are denoted by $h_{1}, h_{2}, h_{3}, \mathrm{~K}, h_{S}$, where S is the number of bits, i.e. $S=\sum_{i} V_{i}$. $\mathrm{The} \operatorname{TrCH}$ multiplexing is defined by the following relations:

$$
\begin{array}{ll}
h_{k}=f_{1, k} & k=1,2, \ldots, V_{1} \\
h_{k}=f_{2,\left(k-V_{1}\right)} & k=V_{1}+1, V_{1}+2, \ldots, V_{1}+V_{2} \\
h_{k}=f_{3,\left(k-\left(V_{1}+V_{2}\right)\right)} \quad k=\left(V_{1}+V_{2}\right)+1,\left(V_{1}+V_{2}\right)+2, \ldots,\left(V_{1}+V_{2}\right)+V_{3}
\end{array}
$$

n

$$
h_{k}=f_{I,\left(k-\left(V_{1}+V_{2}+\mathrm{K}+V_{I-1}\right)\right)} \quad k=\left(V_{1}+V_{2}+\ldots+V_{I-1}\right)+1,\left(V_{1}+V_{2}+\ldots+V_{I-1}\right)+2, \ldots,\left(V_{1}+V_{2}+\ldots+V_{I-1}\right)+V_{I}
$$

4.2.9 Bit Scrambling

The bits output from the TrCH multiplexer are scrambled in the bit scrambler. The bits input to the bit scrambler are denoted by $h_{1}, h_{2}, h_{3}, \mathrm{~K}, h_{S}$, where S is the number of bits input to the bit scrambling block equal to the total number of bits on the CCTrCH . The bits after bit scrambling are denoted $s_{1}, s_{2}, s_{3}, \mathrm{~K}, s_{S}$.

Bit scrambling is defined by the following relation:

$$
s_{k}=h_{k} \oplus p_{k} \quad k=1,2 \mathrm{~K}, S
$$

and p_{k} results from the following operation:

$$
p_{k}=\left(\sum_{i=1}^{16} g_{i} \cdot p_{k-i}\right) \bmod 2 ; p_{k}=0 ; k<1 ; p_{1}=1 ; g=\{0,0,0,0,0,0,0,0,0,0,1,0,1,1,0,1\}
$$

4.2.10 Physical channel segmentation

When more than one PhCH is used, physical channel segmentation divides the bits among the different PhCHs . The bits input to the physical channel segmentation are denoted by $s_{1}, s_{2}, s_{3}, \mathrm{~K}, s_{S}$, where S is the number of bits input to the physical channel segmentation block. The number of PhCHs after rate matching is denoted by P, as defined in subclause 4.2.7.1.

The bits after physical channel segmentation are denoted $u_{p, 1}, u_{p, 2}, u_{p, 3}, \mathrm{~K}, u_{p, U_{p}}$, where p is PhCH number and U_{p} is the in general variable number of bits in the respective radio frame for each PhCH . The relation between s_{k} and $u_{p, k}$ is given below.

Bits on first PhCH after physical channel segmentation:

$$
u_{1, k}=s_{k} \quad k=1,2, \ldots, U_{1}
$$

Bits on second PhCH after physical channel segmentation:

$$
u_{2, k}=s_{\left(k+U_{1}\right)} \quad k=1,2, \ldots, U_{2}
$$

Bits on the $P^{\text {th }} \mathrm{PhCH}$ after physical channel segmentation:

$$
u_{P, k}=s_{\left(k+U_{1}+\mathrm{K}+U_{P-1}\right)} \quad k=1,2, \ldots, U_{P}
$$

4.2.11 2nd interleaving

The $2^{\text {nd }}$ interleaving is a block interleaver and consists of bits input to a matrix with padding, the inter-column permutation for the matrix and bits output from the matrix with pruning. The 2 nd interleaving can be applied jointly to all data bits transmitted during one frame, or separately within each timeslot, on which the CCTrCH is mapped. The selection of the 2 nd interleaving scheme is controlled by higher layer.

4.2.11.1 Frame related 2nd interleaving

In case of frame related $2^{\text {nd }}$ interleaving, the bits input to the block interleaver are denoted by $x_{1}, x_{2}, x_{3}, \mathrm{~K}, x_{U}$, where U is the total number of bits after TrCH multiplexing transmitted during the respective radio frame with $S=U=\sum_{p} U_{p}$.

The relation between x_{k} and the bits $u_{p, k}$ in the respective physical channels is given below:

$$
\begin{array}{ll}
x_{k}=u_{1, k} & k=1,2, \ldots, U_{1} \\
x_{\left(k+U_{1}\right)}=u_{2, k} & k=1,2, \ldots, U_{2} \\
\ldots & \\
x_{\left(k+U_{1}+\ldots+U_{P-1}\right)}=u_{P, k} & k=1,2, \ldots, U_{P}
\end{array}
$$

The following steps have to be performed once for each CCTrCH :
(1) Assign $\mathrm{C} 2=30$ to be the number of columns of the matrix. The columns of the matrix are numbered $0,1,2, \ldots$, C2-1 from left to right.
(2) Determine the number of rows of the matrix, R2, by finding minimum integer R2 such that:
$U \leq \mathrm{R} 2 \times \mathrm{C} 2$.
The rows of rectangular matrix are numbered $0,1,2, \ldots, \mathrm{R} 2-1$ from top to bottom.
(3) Write the input bit sequence $x_{1}, x_{2}, x_{3}, \mathrm{~K}, x_{U}$ into the $\mathrm{R} 2 \times \mathrm{C} 2$ matrix row by row starting with bit y_{1} in column 0 of row 0 :

$$
\left[\begin{array}{ccccc}
y_{1} & y_{2} & y_{3} & \mathrm{~K} & y_{\mathrm{C} 2} \\
y_{(\mathrm{C} 2+1)} & y_{(\mathrm{C} 2+2)} & y_{(\mathrm{C} 2+3)} & \mathrm{K} & y_{(2 \times \mathrm{C} 2)} \\
\mathrm{M} & \mathrm{M} & \mathrm{M} & \mathrm{~K} & \mathrm{M} \\
y_{((\mathrm{R} 2-1) \times \mathrm{C} 2+1)} & y_{((\mathrm{R} 2-1) \times \mathrm{C} 2+2)} & y_{((\mathrm{R} 2-1) \times \mathrm{C} 2+3)} & \mathrm{K} & y_{(\mathrm{R} 2 \times \mathrm{C} 2)}
\end{array}\right]
$$

where $y_{k}=x_{k}$ for $k=1,2, \ldots, U$ and if $\mathrm{R} 2 \times \mathrm{C} 2>U$, the dummy bits are padded such that $y_{k}=0$ or 1 for $k=$ $U+1, U+2, \ldots, \mathrm{R} 2 \times \mathrm{C} 2$. These dummy bits are pruned away from the output of the matrix after the intercolumn permutation.
(4) Perform the inter-column permutation for the matrix based on the pattern $\langle\mathrm{P} 2(j)\rangle_{j \in\{0,1, \mathrm{~K}, \mathrm{C} 2-1\}}$ that is shown in table 7, where $\mathrm{P}_{2}(j)$ is the original column position of the j-th permuted column. After permutation of the columns, the bits are denoted by y_{k}^{\prime}.

$$
\left[\begin{array}{cccl}
y_{1}^{\prime} & y_{(\mathrm{R} 2+1)}^{\prime} & y_{(2 \times \mathrm{R} 2+1)}^{\prime} & \mathrm{K} y_{((\mathrm{C} 2-1) \times \mathrm{R} 2+1)}^{\prime} \\
y_{2}^{\prime} & y_{(\mathrm{R} 2+2)}^{\prime} & y_{(2 \times \mathrm{R} 2+2)}^{\prime} & \mathrm{K} y_{((\mathrm{C} 2-1) \times \mathrm{R} 2+2)}^{\prime} \\
\mathrm{M} & \mathrm{M} & \mathrm{M} & \mathrm{~K} \\
\mathrm{M} \\
y_{\mathrm{R} 2}^{\prime} & y_{(2 \times \mathrm{R} 2)}^{\prime} & y_{(3 \times \mathrm{R} 2)}^{\prime} & \mathrm{K} \\
y_{(\mathrm{C} 2 \times \mathrm{R} 2)}^{\prime}
\end{array}\right]
$$

(5) The output of the block interleaver is the bit sequence read out column by column from the inter-column permuted $\mathrm{R} 2 \times \mathrm{C} 2$ matrix. The output is pruned by deleting dummy bits that were padded to the input of the matrix before the inter-column permutation, i.e. bits y_{k}^{\prime} that corresponds to bits y_{k} with $k>U$ are removed from the output. The bits at the output of the block interleaver are denoted by $z_{1}, z_{2}, \mathrm{~K}, z_{U}$, where z_{1}
corresponds to the bit y_{k}^{\prime} with smallest index k after pruning, z_{2} to the bit y_{k}^{\prime} with second smallest index k after pruning, and so on.

The bits $z_{1}, z_{2}, \mathrm{~K}, z_{U}$ shall be segmented as follows:

$$
\begin{array}{ll}
u_{1, k}=z_{k} & k=1,2, \ldots, U_{l} \\
u_{2, k}=z_{\left(k+U_{1}\right)} & k=1,2, \ldots, U_{2} \\
\ldots & \\
u_{P, k}=z_{\left(k+U_{1}+\mathrm{K}+U_{P-1}\right)} & k=1,2, \ldots, U_{P}
\end{array}
$$

The bits after frame related $2^{\text {nd }}$ interleaving are denoted by $v_{t, 1}, v_{t, 2}, \ldots, v_{t, U_{t}}$, where t refers to the timeslot sequence number and U_{t} is the number of bits transmitted in this timeslot during the respective radio frame.

Let T be the number of time slots in a CCTrCH during the respective radio frame (where for 1.28 Mcps TDD, the respective radio frame includes subframes 1 and 2), and $t=1, \mathrm{~K}, T$. The physical layer shall assign the time slot sequence number t in ascending order of the allocated time slots in the CCTrCH in the respective radio frame. In time slot t, R_{t} refers to the number of physical channels within the respective time slot and $r=1, \mathrm{~K}, R_{t}$. The relation between r and t and the physical channel sequence number p as detailed in 4.2.12.1 is given by:

$$
\begin{aligned}
& p=r \quad t=1 \\
& p=R_{1}+R_{2}, \mathrm{~K}, R_{t-1}+r \quad 1<t \leq T
\end{aligned}
$$

Defining the relation $u_{t, r, k}=u_{p, k}$ and denoting $U_{t r}$ as the number of bits for physical channel r in time slot t, the relation between $v_{t, k}$ and $u_{t, r, k}$ is given below:

$$
\begin{array}{ll}
v_{t, k}=u_{t, 1, k} & k=1,2, \ldots, U_{t 1} \\
v_{t,\left(k+U_{t 1}\right)}=u_{t, 2, k} & k=1,2, \ldots, U_{t 2} \\
\ldots & \\
v_{t,\left(k+U_{t 1}+\ldots+U_{t\left(R_{t}-1\right)}\right)}=u_{t, R_{t}, k} & k=1,2, \ldots, U_{t R_{t}}
\end{array}
$$

4.2.11.2 Timeslot related $2^{\text {nd }}$ interleaving

In case of timeslot related $2^{\text {nd }}$ interleaving, the bits input to the block interleaver are denoted by $x_{t, 1}, x_{t, 2}, x_{t, 3}, \mathrm{~K}, x_{t, U_{t}}$, where t is the timeslot sequence number, and U_{t} is the number of bits transmitted in this timeslot during the respective radio frame.

Let T be the number of time slots in a CCTrCH during the respective radio frame (where for 1.28 Mcps TDD, the respective radio frame includes subframes 1 and 2), and $t=1, \mathrm{~K}, T$. The physical layer shall assign the time slot sequence number t in ascending order of the allocated time slots in the CCTrCH in the respective radio frame. In timeslot t, R_{t} refers to the number of physical channels within the respective timeslot and $r=1, \mathrm{~K}, R_{t}$. The relation between r and t and the physical channel sequence number p as detailed in 4.2.12.1 is given by:

$$
\begin{aligned}
& p=r \quad t=1 \\
& p=R_{1}+R_{2}, \mathrm{~K}, R_{t-1}+r \quad 1<t \leq T
\end{aligned}
$$

Defining the relation $u_{t, r, k}=u_{p, k}$ and denoting $U_{t r}$ as the number of bits for physical channel r in time slot t, the relation between $x_{t, k}$ and $u_{t, r, k}$ is given below:

$$
\begin{array}{ll}
x_{t, k}=u_{t, 1, k} & k=1,2, \ldots, U_{t 1} \\
x_{t,\left(k+U_{t 1}\right)}=u_{t, 2, k} & k=1,2, \ldots, U_{t 2} \\
\ldots & \\
x_{t,\left(k+U_{t 1}+\ldots+U_{t\left(R_{t}-1\right)}\right)}=u_{t, R_{t}, k} & k=1,2, \ldots, U_{t R_{t}}
\end{array}
$$

The following steps have to be performed for each timeslot t, on which the respective CCTrCH is mapped:
(1) Assign $\mathrm{C} 2=30$ to be the number of columns of the matrix. The columns of the matrix are numbered $0,1,2, \ldots$, C2-1 from left to right.
(2) Determine the number of rows of the matrix, R2, by finding minimum integer R2 such that:
$U_{t} \leq \mathrm{R} 2 \times \mathrm{C} 2$.
The rows of rectangular matrix are numbered $0,1,2, \ldots, \mathrm{R} 2-1$ from top to bottom.
(3) Write the input bit sequence $x_{t, 1}, x_{t, 2}, x_{t, 3}, \mathrm{~K}, x_{t, U_{t}}$ into the $\mathrm{R} 2 \times \mathrm{C} 2$ matrix row by row starting with bit $y_{t, 1}$ in column 0 of row 0 :

$$
\left[\begin{array}{ccclc}
y_{t, 1} & y_{t, 2} & y_{t, 3} & \mathrm{~K} & y_{t, \mathrm{C} 2} \\
y_{t,(\mathrm{C} 2+1)} & y_{t,(\mathrm{C} 2+2)} & y_{t,(\mathrm{C} 2+3)} & \mathrm{K} & y_{t,(2 \times \mathrm{C} 2)} \\
\mathrm{M} & \mathrm{M} & \mathrm{M} & \mathrm{~K} & \mathrm{M} \\
y_{t,(\mathrm{R} 2-1) \times \mathrm{C} 2+1)} & y_{t,(\mathrm{R} 2-1) \times \mathrm{C} 2+2)} & y_{t,(\mathrm{R} 2-1) \times \mathrm{C} 2+3)} & \mathrm{K} & y_{t,(\mathrm{R} 2 \times \mathrm{C} 2)}
\end{array}\right]
$$

where $y_{t, k}=x_{t, k}$ for $k=1,2, \ldots, U_{t}$ and if $\mathrm{R} 2 \times \mathrm{C} 2>U_{t}$, the dummy bits are padded such that $y_{t, k}=0$ or 1 for $k=U_{t}+1, U_{t}+2, \ldots, \mathrm{R} 2 \times \mathrm{C} 2$. These dummy bits are pruned away from the output of the matrix after the intercolumn permutation.
(4) Perform the inter-column permutation for the matrix based on the pattern $\langle\mathrm{P} 2(j)\rangle_{j \in\{0,1, \mathrm{~K}, \mathrm{C} 2-1\}}$ that is shown in table 7, where $\mathrm{P} 2(j)$ is the original column position of the j-th permuted column. After permutation of the columns, the bits are denoted by $y_{t, k}^{\prime}$.

$$
\left[\begin{array}{ccclc}
y_{t, 1}^{\prime} & y_{t,(\mathrm{R} 2+1)}^{\prime} & y_{t,(2 \times \mathrm{R} 2+1)}^{\prime} & \mathrm{K} y_{t,((\mathrm{C} 2-1) \times \mathrm{R} 2+1)}^{\prime} \\
y_{t, 2}^{\prime} & y_{t,(\mathrm{R} 2+2)}^{\prime} & y_{t,(2 \times \mathrm{R} 2+2)}^{\prime} & \mathrm{K} & y_{t,((\mathrm{C} 2-1) \times \mathrm{R} 2+2)}^{\prime} \\
\mathrm{M} & \mathrm{M} & \mathrm{M} & \mathrm{~K} & \mathrm{M} \\
y_{t, \mathrm{R} 2}^{\prime} & y_{t,(2 \times \mathrm{R} 2)}^{\prime} & y_{t,(3 \times \mathrm{R} 2)}^{\prime} & \mathrm{K} & y_{t,(\mathrm{C} 2 \times \mathrm{R} 2)}^{\prime}
\end{array}\right]
$$

(5) The output of the block interleaver is the bit sequence read out column by column from the inter-column permuted $\mathrm{R} 2 \times \mathrm{C} 2$ matrix. The output is pruned by deleting dummy bits that were padded to the input of the matrix before the inter-column permutation, i.e. bits $y_{t, k}^{\prime}$ that corresponds to bits $y_{t, k}$ with $k>U_{t}$ are removed from the output. The bits after time slot $2^{\text {nd }}$ interleaving are denoted by $v_{t, 1}, v_{t, 2}, \mathrm{~K}, v_{t, U_{t}}$, where $v_{t, 1}$ corresponds to the bit $y_{t, k}^{\prime}$ with smallest index k after pruning, $v_{t, 2}$ to the bit $y_{t, k}^{\prime}$ with second smallest index k after pruning, and so on.

Table 7 Inter-column permutation pattern for 2nd interleaving

Number of Columns C2	Inter-column permutation pattern < P2(0), P2(1),., P2(C2-1) \rangle
30	$<0,20,10,5,15,25,3,13,23,8,18,28,1,11,21$
	$6,16,26,4,14,24,19,9,29,12,2,7,22,27,17>$

4.2.11A Sub-frame segmentation for the 1.28 Mcps option

In the 1.28 Mcps TDD, it is needed to add a sub-frame segmentation unit between 2 nd interleaving unit and physical channel mapping unit when the TTI of the CCTrCh is greater than 5 msec . In this case, the operation of rate-matching guarantees that the size of bit streams is an even number and can be subdivided into 2 sub-frames. The transport channel multiplexing structure for uplink and downlink is shown in figure 1A.

The input to the sub-frame segmentation unit is segmented into timeslot chunks, where each timeslot chunk contains all of the bits that are to be transmitted in a given timeslot position in both of the sub-frames.

The input bit sequence is denoted by $x_{i 1}, x_{i 2}, x_{i 3}, \mathrm{~K}, x_{i X_{i}}$ where i is the timeslot number and X_{i} is the number of bits transmitted in timeslot i in each sub-frame. The two output bit sequences per radio frame are denoted by $y_{i, n, 1}, y_{i, n, 2}$, $y_{i, n, 3}, \ldots, y_{i, n, Y i}$ where n is the sub-frame number in current radio frame and Y_{i} is the number of bits per sub-frame for timeslot i. The output sequences are defined as follows:
$y_{i, n, k}=x_{i,\left((n-1) . Y_{i}\right)+k}, \mathrm{n}=1$ or $2, \mathrm{k}=1 \ldots \mathrm{Y}_{\mathrm{i}}$
where
$\mathrm{Y}_{\mathrm{i}}=\left(\mathrm{X}_{\mathrm{i}} / 2\right)$ is the number of bits in timeslot i per sub-frame,
$x_{i k}$ is the $\mathrm{k}^{\text {th }}$ bit of the input bit sequence and
$y_{i, n, k}$ is the $\mathrm{k}^{\text {th }}$ bit of the output bit sequence corresponding to the $\mathrm{n}^{\text {th }}$ sub-frame

4.2.12 Physical channel mapping

4.2.12.1 Physical channel mapping for the 3.84 Mcps option

The PhCH for both uplink and downlink is defined in [6]. The bits after physical channel mapping are denoted by $w_{p, 1}, w_{p, 2}, \mathrm{~K}, w_{p, U_{p}}$, where p is the PhCH number corresponding to the sequence number $l \leq p \leq P$ of this physical channel as detailed below, U_{p} is the number of bits in one radio frame for the respective PhCH , and $P \leq . P_{\max }$. The bits $\mathrm{w}_{p, k}$ are mapped to the PhCHs so that the bits for each PhCH are transmitted over the air in ascending order with respect to k.

The physical layer shall assign the physical channel sequence number p to the physical channels of the CCTrCH in the respective radio frame, treating each allocated timeslot in ascending order. If within a timeslot there are multiple physical channels they shall first be ordered in ascending order of the spreading factor (Q) and subsequently by channelisation code index (k), as shown in [9].

The mapping of the bits $v_{t, 1}, v_{t, 2}, \ldots, v_{t, U_{t}}$ is performed like block interleaving, writing the bits into columns, but a PhCH with an odd number is filled in forward order, whereas a PhCH with an even number is filled in reverse order.

The mapping scheme, as described in the following subclause, shall be applied individually for each timeslot t used in the current frame. Therefore, the bits $v_{t, 1}, v_{t, 2}, \ldots, v_{t, U_{t}}$ are assigned to the bits of the physical channels
$w_{t, 1,1 \ldots U_{t 1}}, w_{t, 2,1 \ldots U_{t 2}}, \ldots, w_{t, P_{t}, \ldots U_{t p_{t}}}$ in each timeslot.

In uplink there are at most two codes allocated ($\mathrm{P} \leq 2$). If there is only one code, the same mapping as for downlink is applied. Denote SF1 and SF2 the spreading factors used for code 1 and 2, respectively. For the number of consecutive bits to assign per code bs_{k} the following rule is applied:
if
$\mathrm{SF} 1>=\mathrm{SF} 2$ then $\mathrm{bs}_{1}=1 ; \mathrm{bs}_{2}=\mathrm{SF} 1 / \mathrm{SF} 2 ;$
else
$\mathrm{SF} 2>\mathrm{SF} 1$ then $\mathrm{bs}_{1}=\mathrm{SF} 2 / \mathrm{SF} 1 ; \mathrm{bs}_{2}=1 ;$
end if
In the downlink case bs_{p} is 1 for all physical channels.

4.2.12.1.1 Mapping scheme

Notation used in this subclause:
P_{t} : number of physical channels for timeslot $\mathrm{t}, P_{t}=1 . .2$ for uplink ; $P_{t}=1 \ldots 16$ for downlink
$U_{t, p}$: capacity in bits for the physical channel p in timeslot t
$U_{t .}: \quad$ total number of bits to be assigned for timeslot t
bs_{p} : number of consecutive bits to assign per code
for downlink all $\mathrm{bs}_{\mathrm{p}}=1$
for uplink if SF1 >=SF2 then $\mathrm{bs}_{1}=1 ; \mathrm{bs}_{2}=\mathrm{SF} 1 / \mathrm{SF} 2$;
if $\mathrm{SF} 2>\mathrm{SF} 1$ then $\mathrm{bs}_{1}=\mathrm{SF} 2 / \mathrm{SF} 1 ; \mathrm{bs}_{2}=1$;
fb_{p} : number of already written bits for each code
pos: intermediate calculation variable
for $\mathrm{p}=1$ to P_{t}
-- reset number of already written bits for every physical channel

$$
\mathrm{fb}_{\mathrm{p}}=0
$$

end for
$\mathrm{p}=1$
-- start with PhCH \#1
for $\mathrm{k}=1$ to U_{t}.

$$
\text { do while }\left(\mathrm{fb}_{\mathrm{p}}==U_{t, p}\right) \quad \text {-- physical channel filled up already ? }
$$

$$
\mathrm{p}=\left(\mathrm{p} \bmod \mathrm{P}_{\mathrm{t}}\right)+1
$$

end do
if $(\mathrm{p} \bmod 2)=0$

$$
\operatorname{pos}=U_{t, p}-\mathrm{fb}_{\mathrm{p}} \quad-- \text { reverse order }
$$

else

$$
\operatorname{pos}=\mathrm{fb}_{\mathrm{p}}+1
$$

-- forward order
endif

$$
\begin{array}{ll}
w_{\mathrm{t}, \mathrm{ppos}}=v_{\mathrm{t}, \mathrm{k}} & - \text { assignment } \\
\mathrm{fb}_{\mathrm{p}}=\mathrm{fb}_{\mathrm{p}}+1 & - \text { Increment number of already written bits }
\end{array}
$$

if $\left(\mathrm{fb}_{\mathrm{p}} \bmod \mathrm{bs}_{\mathrm{p}}\right)==0 \quad-$ Conditional change to the next physical channel

$$
\mathrm{p}=\left(\mathrm{p} \bmod \mathrm{P}_{\mathrm{t}}\right)+1
$$

end if
end for

4.2.12.2 Physical channel mapping for the 1.28 Mcps option

The bit streams from the sub-frame segmentation unit are mapped onto code channels of time slots in sub-frames.
The bits after physical channel mapping are denoted by $w_{p 1}, w_{p 2}, \mathrm{~K}, w_{p U_{p}}$, where p is the PhCH number and Up is the number of bits in one sub-frame for the respective PhCH . The bits wpk are mapped to the PhCHs so that the bits for each PhCH are transmitted over the air in ascending order with respect to k .

The mapping of the bits $\mathrm{y}_{\mathrm{t}, \mathrm{n}, 1}, \mathrm{y}_{\mathrm{t}, \mathrm{n}, 2,} \mathrm{y}_{\mathrm{t}, \mathrm{n}, 3}, \ldots, \mathrm{y}_{\mathrm{t}, \mathrm{n}, \mathrm{Ut}}$ is performed like block interleaving, writing the bits into columns, but a PhCH with an odd number is filled in forward order, were as a PhCH with an even number is filled in reverse order.

The mapping scheme, as described in the following subclause, shall be applied individually for each timeslot t used in the current subframe. Therefore, the bits $\mathrm{y}_{\mathrm{t}, \mathrm{n}, 1}, \mathrm{y}_{\mathrm{t}, \mathrm{n}, 2}, \mathrm{y}_{\mathrm{t}, \mathrm{n}, 3}, \ldots, \mathrm{y}_{\mathrm{t}, \mathrm{n}, \mathrm{Ut}}$ are assigned to the bits of the physical channels $w_{t 1,1, \ldots U_{t 1}}, w_{t 2,1 \ldots U_{t 2}} \ldots, w_{t P_{t}, \ldots . . U_{t P_{t}}}$ in each timeslot.

In uplink there are at most two codes allocated ($\mathrm{P} \leq 2$). If there is only one code, the same mapping as for downlink is applied. Denote SF1 and SF2 the spreading factors used for code 1 and 2, respectively. For the number of consecutive bits to assign per code bsk the following rule is applied:
if
$\mathrm{SF} 1>=\mathrm{SF} 2$ then $\mathrm{bs}_{1}=1 ; \mathrm{bs}_{2}=\mathrm{SF} 1 / \mathrm{SF} 2$;
else
$\mathrm{SF} 2>\mathrm{SF} 1$ then $\mathrm{bs}_{1}=\mathrm{SF} 2 / \mathrm{SF} 1 ; \mathrm{bs}_{2}=1$;
end if
In the downlink case bs_{p} is 1 for all physical channels.

4.2.12.2.1 Mapping scheme

Notation used in this subclause:
P_{t} : number of physical channels for timeslot $t, P_{t}=1 . .2$ for uplink; $P_{t}=1 \ldots 16$ for downlink
U_{tp} : capacity in bits for the physical channel p in timeslot t in the current sub-frame
U_{t} : total number of bits to be assigned for timeslot t in the current sub-frame
$\mathrm{n}=$ index of the current sub-frame (1 or 2)
bs_{p} : number of consecutive bits to assign per code
for downlink all $\mathrm{bs}_{\mathrm{p}}=1$
for uplink if $\mathrm{SF} 1>=\mathrm{SF} 2$ then $\mathrm{bs}_{1}=1 ; \mathrm{bs}_{2}=\mathrm{SF} 1 / \mathrm{SF} 2$;

$$
\text { if } \mathrm{SF} 2>\mathrm{SF} 1 \text { then } \mathrm{bs}_{1}=\mathrm{SF} 2 / \mathrm{SF} 1 ; \mathrm{bs}_{2}=1 \text {; }
$$

fb_{p} : number of already written bits for each code
pos: intermediate calculation variable
for $\mathrm{p}=1$ to $\mathrm{P}_{\mathrm{t}} \quad-$ reset number of already written bits for every physical channel
$\mathrm{fb}_{\mathrm{p}}=0$
end for
$\mathrm{p}=1 \quad-$ start with $\mathrm{PhCH} \# 1$
for $\mathrm{k}=1$ to U_{t}.
do while $\left(\mathrm{fb}_{\mathrm{p}}==\mathrm{U}_{\mathrm{t}, \mathrm{p}}\right) \quad$-- physical channel filled up already?
$\mathrm{p}=(\mathrm{p} \bmod \mathrm{P} t)+1 ;$
end do
if $(\mathrm{p} \bmod 2)==0$
pos $=U_{t, p}-\mathrm{fb}_{\mathrm{p}} \quad$-- reverse order
else
pos $=\mathrm{fb}_{\mathrm{p}}+1 \quad-$ forward order
end if
$\mathrm{w}_{\mathrm{tp}, \mathrm{pos}}=\mathrm{y}_{\mathrm{t}, \mathrm{n}, \mathrm{k}} \quad--$ assignment
$\mathrm{fb}_{\mathrm{p}}=\mathrm{fb}+1 \quad-$ Increment number of already written bits
If $\left(\mathrm{fb}_{\mathrm{p}} \bmod \mathrm{bs}_{\mathrm{p}}\right)==0 \quad$-- Conditional change to the next physical channel
$\mathrm{p}=(\mathrm{p} \bmod \mathrm{P} \mathrm{t})+1 ;$
end if
end for

4.2.13 Multiplexing of different transport channels onto one CCTrCH, and mapping of one CCTrCH onto physical channels

Different transport channels can be encoded and multiplexed together into one Coded Composite Transport Channel (CCTrCH). The following rules shall apply to the different transport channels which are part of the same CCTrCH :

1) Transport channels multiplexed into one CCTrCh shall have co-ordinated timings. When the TFCS of a CCTrCH is changed because one or more transport channels are added to the CCTrCH or reconfigured within the CCTrCH , or removed from the CCTrCH , the change may only be made at the start of a radio frame with CFN fulfilling the relation
$C F N \bmod \mathrm{~F}_{\text {max }}=0$,
where $\mathrm{F}_{\max }$ denotes the maximum number of radio frames within the transmission time intervals of all transport channels which are multiplexed into the same CCTrCH , including any transport channels i which are added reconfigured or have been removed, and CFN denotes the connection frame number of the first radio frame of the changed CCTrCH .

After addition or reconfiguration of a transport channel i within a CCTrCH , the TTI of transport channel i may only start in radio frames with CFN fulfilling the relation
$\mathrm{CFN}_{\mathrm{i}} \bmod \mathrm{F}_{\mathrm{i}}=0$.
2) Different CCTrCHs cannot be mapped onto the same physical channel.
3) One CCTrCH shall be mapped onto one or several physical channels.
4) Dedicated Transport channels and common transport channels cannot be multiplexed into the same CCTrCH .
5) For the common transport channels, only the FACH and PCH may belong to the same CCTrCH .
6) Each CCTrCH carrying a BCH shall carry only one BCH and shall not carry any other Transport Channel.
7) Each CCTrCH carrying a RACH shall carry only one RACH and shall not carry any other Transport Channel.

Hence, there are two types of CCTrCH .
CCTrCH of dedicated type, corresponding to the result of coding and multiplexing of one or several DCH.
CCTrCH of common type, corresponding to the result of the coding and multiplexing of a common channel, i.e. RACH and USCH in the uplink and DSCH, BCH, FACH or PCH in the downlink, respectively.

Transmission of TFCI is possible for CCTrCH containing Transport Channels of:

- dedicated type;
- USCH type;
- DSCH type;
- FACH and/or PCH type.

4.2.13.1 Allowed CCTrCH combinations for one UE

4.2.13.1.1 Allowed CCTrCH combinations on the uplink

The following CCTrCH combinations for one UE are allowed, also simultaneously:

1) several CCTrCH of dedicated type;
2) several CCTrCH of common type.

4.2.13.1.2 Allowed CCTrCH combinations on the downlink

The following CCTrCH combinations for one UE are allowed, also simultaneously:
3) several CCTrCH of dedicated type;
4) several CCTrCH of common type.

4.2.14 Transport format detection

Transport format detection can be performed both with and without Transport Format Combination Indicator (TFCI). If a TFCI is transmitted, the receiver detects the transport format combination from the TFCI. When no TFCI is transmitted, so called blind transport format detection may be used, i.e. the receiver side uses the possible transport format combinations as a priori information.

4.2.14.1 Blind transport format detection

Blind Transport Format Detection is optional both in the UE and the UTRAN. Therefore, for all CCTrCH a TFCI shall be transmitted, including the possibility of a TFCI code word length zero, if only one TFC is defined.

4.2.14.2 Explicit transport format detection based on TFCI

4.2.14.2.1 Transport Format Combination Indicator (TFCI)

The Transport Format Combination Indicator (TFCI) informs the receiver of the transport format combination of the CCTrCHs. As soon as the TFCI is detected, the transport format combination, and hence the individual transport channels' transport formats are known, and decoding of the transport channels can be performed.

4.3 Coding for layer 1 control for the 3.84 Mcps option

4.3.1 Coding of transport format combination indicator (TFCI)

Encoding of the TFCI depends on its length. If there are 6-10 bits of TFCI the channel encoding is done as described in subclause 4.3.1.1. Also specific coding of less than 6 bits is possible as explained in subclause 4.3.1.2.

4.3.1.1 Coding of long TFCI lengths

The TFCI is encoded using a $(32,10)$ sub-code of the second order Reed-Muller code. The coding procedure is as shown in figure 6.

Figure 6: Channel coding of the TFCI bits
If the TFCI consists of less than 10 bits, it is padded with zeros to 10 bits, by setting the most significant bits to zero. TFCI is encoded by the $(32,10)$ sub-code of second order Reed-Muller code. The code words of the $(32,10)$ sub-code of second order Reed-Muller code are linear combination of some among 10 basis sequences. The basis sequences are as follows in table 8.

Table 8: Basis sequences for $(32,10)$ TFCI code

\mathbf{I}	$\mathbf{M}_{\mathbf{i}, \mathbf{0}}$	$\mathbf{M}_{\mathbf{i}, \mathbf{1}}$	$\mathbf{M}_{\mathbf{i}, \mathbf{2}}$	$\mathbf{M}_{\mathbf{i}, \mathbf{3}}$	$\mathbf{M}_{\mathbf{l}, \mathbf{4}}$	$\mathbf{M}_{\mathbf{i}, \mathbf{5}}$	$\mathbf{M}_{\mathbf{i}, \mathbf{6}}$	$\mathbf{M}_{\mathbf{i}, 7}$	$\mathbf{M}_{\mathbf{i}, \mathbf{8}}$	$\mathbf{M}_{\mathbf{i}, \mathbf{9}}$
0	1	0	0	0	0	1	0	0	0	0
1	0	1	0	0	0	1	1	0	0	0
2	1	1	0	0	0	1	0	0	0	1
3	0	0	1	0	0	1	1	0	1	1
4	1	0	1	0	0	1	0	0	0	1
5	0	1	1	0	0	1	0	0	1	0
6	1	1	1	0	0	1	0	1	0	0
7	0	0	0	1	0	1	0	1	1	0
8	1	0	0	1	0	1	1	1	1	0
9	0	1	0	1	0	1	1	0	1	1
10	1	1	0	1	0	1	0	0	1	1
11	0	0	1	1	0	1	0	1	1	0
12	1	0	1	1	0	1	0	1	0	1
13	0	1	1	1	0	1	1	0	0	1
14	1	1	1	1	0	1	1	1	1	1
15	1	0	0	0	1	1	1	1	0	0
16	0	1	0	0	1	1	1	1	0	1
17	1	1	0	0	1	1	1	0	1	0
18	0	0	1	0	1	1	0	1	1	1
19	1	0	1	0	1	1	0	1	0	1
20	0	1	1	0	1	1	0	0	1	1
21	1	1	1	0	1	1	0	1	1	1
22	0	0	0	1	1	1	0	1	0	0
23	1	0	0	1	1	1	1	1	0	1
24	0	1	0	1	1	1	1	0	1	0
25	1	1	0	1	1	1	1	0	0	1
26	0	0	1	1	1	1	0	0	1	0
27	1	0	1	1	1	1	1	1	0	0
28	0	1	1	1	1	1	1	1	1	0
29	1	1	1	1	1	1	1	1	1	1
30	0	0	0	0	0	1	0	0	0	0
31	0	0	0	0	1	1	1	0	0	0

The TFCI bits $a_{0}, a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, a_{6}, a_{7}, a_{8}, a_{9}$ (where a_{0} is LSB and a_{9} is MSB) shall correspond to the TFC index (expressed in unsigned binary form) defined by the RRC layer to reference the TFC of the CCTrCH in the associated radio frame.

The output TFCI code word bits b_{i} are given by:
$b_{i}=\sum_{n=0}^{9}\left(a_{n} \times M_{i, n}\right) \bmod 2$
where $i=0, \ldots, 31 . \mathrm{N}_{\text {TFCI } \text { code word }}=32$.

4.3.1.2 Coding of short TFCI lengths

4.3.1.2.1 Coding very short TFCls by repetition

If the number of TFCI bits is 1 or 2 , then repetition will be used for coding. In this case each bit is repeated to a total of 4 times giving 4-bit transmission $\left(\mathrm{N}_{\text {TFCI code word }}=4\right)$ for a single TFCI bit and 8 -bit transmission $\left(\mathrm{N}_{\text {TFCI code word }}=8\right)$ for 2 TFCI bits. The TFCI bit(s) a_{0} (or a_{0} and a_{1} where a_{0} is the LSB) shall correspond to the TFC index (expressed in unsigned binary form) defined by the RRC layer to reference the TFC of the CCTrCH in the associated radio frame.

In the case of $N_{\text {TFCI code word }}=4$, the TFCI codeword $\left\{b_{0}, b_{1}, b_{2}, b_{3}\right\}$ is equal to the sequence $\left\{a_{0}, a_{0}, a_{0}, a_{0}\right\}$.
In the case of $N_{\text {TFCI code word }}=8$, the TFCI codeword $\left\{b_{0}, b_{1}, \ldots, b_{7}\right\}$ is equal to the sequence $\left\{a_{0}, a_{1}, a_{0}, a_{1}, a_{0}, a_{1}, a_{0}, a_{1}\right\}$.

4.3.1.2.2 Coding short TFCls using bi-orthogonal codes

If the number of TFCI bits is in the range 3 to 5 the TFCI is encoded using a $(16,5)$ bi-orthogonal (or first order ReedMuller) code. The coding procedure is as shown in figure 7.

Figure 7: Channel coding of short length TFCI bits
If the TFCI consists of less than 5 bits, it is padded with zeros to 5 bits, by setting the most significant bits to zero. The code words of the $(16,5)$ bi-orthogonal code are linear combinations of 5 basis sequences as defined in table 9 .

Table 9: Basis sequences for $(16,5)$ TFCI code

\mathbf{i}	$\mathbf{M}_{\mathbf{i}, \mathbf{0}}$	$\mathbf{M}_{\mathbf{i}, \mathbf{1}}$	$\mathbf{M}_{\mathbf{i}, \mathbf{2}}$	$\mathbf{M}_{\mathbf{i}, \mathbf{3}}$	$\mathbf{M}_{\mathbf{i}, \mathbf{4}}$
0	1	0	0	0	1
1	0	1	0	0	1
2	1	1	0	0	1
3	0	0	1	0	1
4	1	0	1	0	1
5	0	1	1	0	1
6	1	1	1	0	1
7	0	0	0	1	1
8	1	0	0	1	1
9	0	1	0	1	1
10	1	1	0	1	1
11	0	0	1	1	1
12	1	0	1	1	1
13	0	1	1	1	1
14	1	1	1	1	1
15	0	0	0	0	1

The TFCI bits $a_{0}, a_{1}, a_{2}, a_{3}, a_{4}$ (where a_{0} is LSB and a_{4} is MSB) shall correspond to the TFC index (expressed in unsigned binary form) defined by the RRC layer to reference the TFC of the CCTrCH in the associated radio frame.

The output code word bits b_{j} are given by:
$b_{i}=\sum_{n=0}^{4}\left(a_{n} \times M_{i, n}\right) \bmod 2$
where $i=0, \ldots, 15 . \mathrm{N}_{\text {TFCI code word }}=16$.

4.3.1.3 Mapping of TFCI code word

The mapping of the TFCI code word to the TFCI bit positions in a timeslot shall be as follows.
Denote the number of bits in the TFCI code word by $\mathrm{N}_{\text {TFCI code word }}$, denote the TFCI code word bits by b_{k} where $\mathrm{k}=0 \ldots$ $\mathrm{N}_{\text {TFCI code word }}-1$.

Figure 8: Mapping of TFCI code word bits to timeslot
The locations of the first and second parts of the TFCI code word in the timeslot is defined in [7].
If the shortest transmission time interval of any constituent TrCH is at least 20 ms the successive TFCI code words in the frames in the TTI shall be identical. If TFCI is transmitted on multiple timeslots in a frame each timeslot shall have the same TFCI code word.

4.3.2 Coding and Bit Scrambling of the Paging Indicator

The paging indicator $\mathrm{P}_{\mathrm{q}}, q=0, \ldots, N_{\mathrm{Pl}^{-}}-1, \mathrm{P}_{q} \in\{0,1\}$ is an identifier to instruct the UE whether there is a paging message for the groups of mobiles that are associated to the PI, calculated by higher layers, and the associated paging indicator P_{q}. The length L_{PI} of the paging indicator is $\mathrm{L}_{\mathrm{PI}}=2, \mathrm{~L}_{\mathrm{PI}}=4$ or $\mathrm{L}_{\mathrm{PI}}=8$ symbols. $N_{\mathrm{PIB}}=2 * N_{\mathrm{PI}}{ }^{*} L_{\mathrm{PI}}$ bits are used for the paging indicator transmission in one radio frame. The mapping of the paging indicators to the bits $e_{i}, i=1, \ldots, N_{\text {PIB }}$ is shown in table 10.

Table 10: Mapping of the paging indicator

$\mathbf{P}_{\mathbf{q}}$	Bits $\left\{\mathbf{e}_{\text {LLpitq}}+1, \mathbf{e}_{2 L p^{i} q}+2, \ldots, \boldsymbol{e}_{\text {LLpit }}(\mathbf{q}+1)\right\}$	Meaning
0	$\{0,0, \ldots, 0\}$	There is no necessity to receive the PCH
1	$\{1,1, \ldots, 1\}$	There is the necessity to receive the PCH

If the number S of bits in one radio frame available for the PICH is bigger than the number $N_{\text {PIB }}$ of bits used for the transmission of paging indicators, the sequence $e=\left\{e_{1}, e_{2}, \ldots, e_{\text {NPIB }}\right\}$ is extended by S - $N_{\text {PIB }}$ bits that are set to zero, resulting in a sequence $h=\left\{h_{1}, h_{2}, \ldots, h_{S}\right\}$:

$$
\begin{aligned}
& h_{k}=e_{k}, \quad k=1, \ldots, N_{P I B} \\
& h_{k}=0, \quad k=N_{P I B}+1, \ldots, S
\end{aligned}
$$

The bits $h_{k}, k=1, \ldots, S$ on the PICH then undergo bit scrambling as defined in section 4.2.9.
The bits $s_{k}, k=1, \ldots, \mathrm{~S}$ output from the bit scrambler are then transmitted over the air as shown in [7].

4.4 Coding for layer 1 control for the 1.28 Mcps option

4.4.1 Coding of transport format combination indicator (TFCI) for QPSK

The coding of TFCI for 1.28 Mcps TDD is same as that of 3.84 Mcps TDD.cf.[4.3.1 'Coding of transport format combination indicator'].

4.4.1.1 Mapping of TFCI code word

Denote the number of bits in the TFCI code word by $\mathrm{N}_{\text {TFCI code word, }}$, and denote the TFCI code word bits by b_{k}, where $\mathrm{k}=$ $0, \ldots, \mathrm{~N}_{\text {TFCI code word }}-1$

When the number of bits in the TFCI code word is $8,16,32$, the mapping of the TFCI code word to the TFCI bit positions shall be as follows:

Figure 9: Mapping of TFCI code word bits to TFCI position in 1.28 Mcps TDD option, where $\mathbf{N}=\mathbf{N}_{\text {TFCI }}$ code word .

When the number of bits of the TFCI code word is 4 , then the TFCI code word is equally divided into two parts for the consecutive two subframe and mapped onto the end of the first data field in each of the consecutive subframes.The mapping for $\mathrm{N}_{\text {TFCI code word }}=4$ is shown in figure 10:

Figure 10: Mapping of TFCI code word bits to TFCI position in 1.28 Mcps TDD option, when $\mathrm{N}_{\text {TFCI code word. }}=4$

The location of the 1st to 4th parts of the TFCI code word in the timeslot is defined in [7].

If the shortest transmission time interval of any constituent TrCH is at least 20 ms , then successive TFCI code words in the frames within the TTI shall be identical. If a TFCI is transmitted on multiple timeslots in a frame each timeslot shall have the same TFCI code word.

4.4.2 Coding of transport format combination indicator (TFCI) for 8PSK

Encoding of TFCI bits depends on the number of them and the modulation in use. When 2 Mcps service is transmitted, 8PSK modulation is applied in 1.28 Mcps TDD option. The encoding scheme for TFCI when the number of bits are $6-$ 10, and less than 6 bits is described in section 4.4.2.1 and 4.4.2.2, respectively.

4.4.2.1 Coding of long TFCI lengths

When the number of TFCI bits is $6-10$, the TFCI bits are encoded by using a $(64,10)$ sub-code of the second order Reed-Muller code, then 16 bits out of 64 bits are punctured (Puncturing positions are $0,4,8,13,16,20,27,31,34,38$, $41,44,50,54,57,61^{\text {st }}$ bits). The coding procedure is shown in Figure 11.

Figure 11: Channel coding of long TFCI bits for 8PSK
If the TFCI consists of less than 10 bits, it is padded with zeros to 10 bits, by setting the most significant bits to zero. The code words of the punctured $(48,10)$ sub-code of the second order Reed-Muller codes are linear combination of 10 basis sequences. The basis sequences are shown in Table 11.

Table 11: Basis sequences for $(48,10)$ TFCI code

1	$\mathrm{M}_{\mathbf{i}, \mathbf{0}}$	$\mathbf{M}_{\mathrm{i}, 1}$	$\mathrm{M}_{\mathbf{i}, 2}$	$\mathbf{M i}_{\mathbf{i}, 3}$	$\mathbf{M}_{1,4}$	$\mathbf{M}_{\mathbf{i}, 5}$	$\mathbf{M}_{\mathbf{i}, 6}$	$\mathbf{M}_{\mathbf{l}, 7}$	$\mathbf{M}_{1,8}$	$\mathbf{M}_{\mathbf{i}, 9}$
0	1	0	0	0	0	0	1	0	1	0
1	0	1	0	0	0	0	1	1	0	0
2	1	1	0	0	0	0	1	1	0	1
3	1	0	1	0	0	0	1	1	1	0
4	0	1	1	0	0	0	1	0	1	0
5	1	1	1	0	0	0	1	1	1	0
6	1	0	0	1	0	0	1	1	1	1
7	0	1	0	1	0	0	1	1	0	1
8	1	1	0	1	0	0	1	0	1	0
9	0	0	1	1	0	0	1	1	0	0
10	0	1	1	1	0	0	1	1	0	1
11	1	1	1	1	0	0	1	1	1	1
12	1	0	0	0	1	0	1	0	1	1
13	0	1	0	0	1	0	1	1	1	0
14	1	1	0	0	1	0	1	0	0	1
15	1	0	1	0	1	0	1	0	1	1
16	0	1	1	0	1	0	1	1	0	0
17	1	1	1	0	1	0	1	1	1	0
18	0	0	0	1	1	0	1	0	0	1
19	1	0	0	1	1	0	1	0	1	1
20	0	1	0	1	1	0	1	0	1	0
21	0	0	1	1	1	0	1	0	1	0
22	1	0	1	1	1	0	1	1	0	1
23	0	1	1	1	1	0	1	1	1	0
24	0	0	0	0	0	1	1	1	0	1
25	1	0	0	0	0	1	1	1	1	0
26	1	1	0	0	0	1	1	1	1	1
27	0	0	1	0	0	1	1	0	1	1
28	1	0	1	0	0	1	1	1	0	1
29	1	1	1	0	0	1	1	0	1	1
30	0	0	0	1	0	1	1	0	0	1
31	0	1	0	1	0	1	1	0	0	1
32	1	1	0	1	0	1	1	1	1	1
33	1	0	1	1	0	1	1	0	0	1
34	0	1	1	1	0	1	1	1	1	0
35	1	1	1	1	0	1	1	1	0	1
36	0	0	0	0	1	1	1	1	1	0
37	1	0	0	0	1	1	1	0	1	1
38	1	1	0	0	1	1	1	1	1	1
39	0	0	1	0	1	1	1	1	0	0
40	1	0	1	0	1	1	1	1	0	0
41	1	1	1	0	1	1	1	1	1	1
42	0	0	0	1	1	1	1	1	1	1
43	0	1	0	1	1	1	1	0	1	0
44	1	1	0	1	1	1	1	0	1	0
45	0	0	1	1	1	1	1	0	1	1
46	0	1	1	1	1	1	1	0	0	1
47	1	1	1	1	1	1	1	1	0	0

Let's define the TFCI bits as $a_{0}, a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, a_{6}, a_{7}, a_{8}, a_{9}$, where a_{0} is the LSB and a_{9} is the MSB. The TFCI bits shall correspond to the TFC index (expressed in unsigned binary form) defined by the RRC layer to reference the TFC of the CCTrCH in the associated radio frame.

The output TFCI code word bits b_{i} are given by:
$b_{i}=\sum_{n=0}^{9}\left(a_{n} \times M_{i, n}\right) \bmod 2$
where $\mathrm{i}=0 \ldots 47 . \mathrm{N}_{\text {TFCI code word }}=48$.

4.4.2.2 Coding of short TFCI lengths

4.4.2.2.1 Coding very short TFCls by repetition

When the number of TFCI bits is 1 or 2 , then repetition will be used for the coding. In this case, each bit is repeated to a total of 6 times giving 6-bit transmission $\left(\mathrm{N}_{\text {TFCI code word }}=6\right)$ for a single TFCI bit and 12-bit transmission $\left(\mathrm{N}_{\text {TFCI code word }}\right.$ $=12$) for 2 TFCI bits. The TFCI bit(s) a_{0} (or a_{0} and a_{1} where a_{0} is the LSB) shall correspond to the TFC index (expressed in unsigned binary form) defined by the RRC layer to reference the TFC of the CCTrCH in the associated radio frame.

In the case of $N_{\text {TFCI code word }}=6$, the TFCI codeword $\left\{b_{0}, b_{1}, b_{2}, b_{3}, b_{4}, b_{5}\right\}$ is equal to the sequence $\left\{a_{0}, a_{0}, a_{0}, a_{0}, a_{0}, a_{0}\right\}$.
In the case of $N_{\text {TFCI code word }}=12$, the TFCI codeword $\left\{b_{0}, b_{1}, \ldots, b_{11}\right\}$ is equal to the sequence $\left\{a_{0}, a_{1}, a_{0}, a_{1}, a_{0}, a_{1}, a_{0}, a_{1}\right.$, $\left.\mathrm{a}_{0}, \mathrm{a}_{1}, \mathrm{a}_{0}, \mathrm{a}_{1}\right\}$.4.4.2.2.2 Coding short TFCIs using bi-orthogonal codes

If the number of TFCI bits is in the range of 3 to 5 , the TFCI bits are encoded using a $(32,5)$ first order Reed-Muller code, then 8 bits out of 32 bits are punctured (Puncturing positions are $0,1,2,3,4,5,6,7^{\text {th }}$ bits). The coding procedure is shown in Figure 12.

Figure 12: Channel coding of short TFCI bits for 8PSK
If the TFCI consists of less than 5 bits, it is padded with zeros to 5 bits, by setting the most significant bits to zero. The code words of the punctured $(32,5)$ first order Reed-Muller codes are linear combination of 5 basis sequences shown in Table 12.

Table 12: Basis sequences for $(24,5)$ TFCl code

\mathbf{I}	$\mathbf{M}_{\mathbf{i}, \mathbf{0}}$	$\mathbf{M}_{\mathbf{i}, \mathbf{1}}$	$\mathbf{M}_{\mathbf{i}, \mathbf{2}}$	$\mathbf{M}_{\mathbf{i}, \mathbf{3}}$	$\mathbf{M}_{\mathbf{i}, \mathbf{4}}$
0	0	0	0	1	0
1	1	0	0	1	0
2	0	1	0	1	0
3	1	1	0	1	0
4	0	0	1	1	0
5	1	0	1	1	0
6	0	1	1	1	0
7	1	1	1	1	0
8	0	0	0	0	1
9	1	0	0	0	1
10	0	1	0	0	1
11	1	1	0	0	1
12	0	0	1	0	1
13	1	0	1	0	1
14	0	1	1	0	1
15	1	1	1	0	1
16	0	0	0	1	1
17	1	0	0	1	1
18	0	1	0	1	1
19	1	1	0	1	1
20	0	0	1	1	1
21	1	0	1	1	1
22	0	1	1	1	1
23	1	1	1	1	1

Let's define the TFCI bits as $a_{0}, a_{1}, a_{2}, a_{3}, a_{4}$, where a_{0} is the LSB and a_{4} is the MSB. The TFCI bits shall correspond to the TFC index (expressed in unsigned binary form) defined by the RRC layer to reference the TFC of the CCTrCH in the associated radio frame.

The output code word bits b_{i} are given by:
$b_{i}=\sum_{n=0}^{4}\left(a_{n} \times M_{i, n}\right) \bmod 2$
where $\mathrm{i}=0 \ldots 23 . \mathrm{N}_{\text {TFCI code word }}=24$.

4.4.2.3 Mapping of TFCI code word

Denote the number of bits in the TFCI code word by $\mathrm{N}_{\text {TFCI code word }}$, and denote the TFCI code word bits by b_{k}, where $k=$ $0, \ldots, N_{\text {TFCI code word }}-1$.

When the number of bits in the TFCI code word is 12,24 or 48 , the mapping of the TFCI code word to the TFCI bit positions in a time slot shall be as follows.

Figure 13: Mapping of TFCI code word bits to timeslot in 1.28 Mcps TDD option, where $\mathbf{N}=\mathbf{N}_{\text {TFCI }}$ code word.

When the number of bits in the TFCI code word is 6 , the TFCI code word is equally divided into two parts for the consecutive two sub-frames and mapped onto the first data field in each of the consecutive sub-frames. The mapping of the TFCI code word to the TFCI bit positions in a time slot shall be as shown in figure 14.

Figure 14: Mapping of TFCI code word bits to timeslot in 1.28 Mcps TDD option when $\mathrm{N}_{\text {TFCI }}$ code word $=6$
The location of the 1st to 4th parts of the TFCI code word in the timeslot is defined in [7].

4.4.3 Coding and Bit Scrambling of the Paging Indicator

The paging indicator $\mathrm{P}_{\mathrm{q}}, q=0, \ldots, N_{\mathrm{PI}^{-}} 1, \mathrm{P}_{q} \in\{0,1\}$ is an identifier to instruct the UE whether there is a paging message for the groups of mobiles that are associated to the PI, calculated by higher layers, and the associated paging indicator P_{q}. The length L_{PI} of the paging indicator is $\mathrm{L}_{\mathrm{PI}}=2, \mathrm{~L}_{\mathrm{PI}}=4$ or $\mathrm{L}_{\mathrm{PI}}=8$ symbols. $N_{\mathrm{PIB}}=2 * N_{\mathrm{PI}} * L_{\mathrm{PI}}$ bits are used for the paging indicator transmission in one radio frame. The mapping of the paging indicators to the bits $e_{i}, i=1, \ldots, N_{\text {PIB }}$ is shown in table 13.

Table 13: Mapping of the paging indicator

$\mathbf{P}_{\mathbf{q}}$	Bits $\left\{\mathbf{e}_{2 L_{\mathrm{p} 1}{ }^{*}+1}, \mathbf{e}_{\left.2 \mathrm{Lp}_{\mathrm{p} q}{ }^{*}+2, \ldots, \mathbf{e}_{2 L_{\mathrm{p} 1}(\mathrm{q}+1)}\right\}}\right.$	Meaning
0	$\{0,0, \ldots, 0\}$	There is no necessity to receive the PCH
1	$\{1,1, \ldots, 1\}$	There is the necessity to receive the PCH

If the number S of bits in one radio frame available for the PICH is bigger than the number $N_{\text {PIB }}$ of bits used for the transmission of paging indicators, the sequence $e=\left\{e_{1}, e_{2}, \ldots, e_{\text {NPIB }}\right\}$ is extended by S - $N_{\text {PIB }}$ bits that are set to zero, resulting in a sequence $h=\left\{h_{1}, h_{2}, \ldots, h_{S}\right\}$:

$$
\begin{aligned}
& k=e_{k}, \quad k=1, \ldots, N_{P I B} \\
& k=0, \quad k=N_{P I B}+1, \ldots, S
\end{aligned}
$$

The bits $h_{k}, k=1, \ldots, S$ on the PICH then undergo bit scrambling as defined in section 4.2.9.
The bits $s_{k}, k=1, \ldots, \mathrm{~S}$ output from the bit scrambler are then transmitted over the air as shown in [7].

4.4.4 Coding of the Fast Physical Access Channel (FPACH) information bits

The FPACH burst is composed by 32 information bits which are block coded and convolutional coded, and then delivered in one sub-frame as follows:

1. The 32 information bits are protected by 8 parity bits for error detection as described in sub-clause 4.2.1.1.
2. Convolutional code with constraint length 9 and coding rate $1 / 2$ is applied as described in sub-clause \quad 4.2.3.1. The size of data block $\mathrm{c}(\mathrm{k})$ after convolutional encoder is 96 bits.
3. To adjust the size of the data block $\mathrm{c}(\mathrm{k})$ to the size of the FPACH burst, 8 bits are punctured as described in subclause 4.2.7 with the following clarifications:

- $\mathrm{N}_{i, j}=96$ is the number of bits in a radio sub-frame before rate matching
- $\Delta \mathbf{N}_{i, j, j}=-8$ is the number of bits to punctured in a radio sub-frame
- $\mathrm{e}_{\mathrm{ini}}=\mathrm{a} \times \mathrm{N}_{i j}$

The 88 bits after rate matching are then delivered to the intra-frame interleaving.
4. The bits in input to the interleaving unit are denoted as $\{x(0), \ldots, x(87)\}$. The coded bits are block rectangular interleaved according to the following rule: the input is written row by row, the output is read column by column.

$$
\left[\begin{array}{ccccc}
x(0) & x(1) & x(2) & \mathrm{K} & x(7) \\
x(8) & x(9) & x(10) & \mathrm{K} & x(15) \\
\mathrm{M} & \mathrm{M} & \mathrm{M} & \mathrm{~K} & \mathrm{M} \\
x(80) & x(81) & x(82) & \mathrm{K} & x(87)
\end{array}\right]
$$

Hence, the interleaved sequence is denoted by y (i) and are given by:
$y(0), y(1), \ldots, y(87)=x(0), x(8), \ldots, x(80), x(1), \ldots, x(87)$.

Annex A (informative): Change history

Change history							
Date	TSG \#	TSG Doc.	CR	Rev	Subject/Comment	Old	New
14/01/00	RAN_05	RAN_05			Approved at TSG RAN \#5 and placed under Change Control		3.0.0
14/01/00	RAN_06	RP-99694	001	3	Correction of rate matching parameters for repetition after 1st Interleaving in 25.222	3.0.0	3.1.0
14/01/00	RAN_06	RP-99694	002	1	Clarification of bit separation and collection	3.0.0	3.1.0
14/01/00	RAN_06	RP-99694	003		Changing the initial offset value for convolutional code rate matching	3.0.0	3.1.0
14/01/00	RAN 06	RP-99693	004	1	Editorial corrections to TS 25.222	3.0 .0	3.1.0
14/01/00	RAN_06	RP-99694	007		Update of rate matching rule for TDD	3.0.0	3.1.0
14/01/00	RAN_06	RP-99694	009	1	Modified physical channel mapping scheme	3.0.0	3.1.0
14/01/00	RAN_06	RP-99694	013		Introduction of TFCI for S-CCPCH in TDD mode	3.0.0	3.1.0
14/01/00	RAN_06	RP-99694	015	-	TFCI coding and mapping in TDD	3.0.0	3.1.0
14/01/00					Change history was added by the editor	3.1.0	3.1.1
31/03/00	RAN 07	RP-000068	017	-	Corrections to TS 25.222	3.1.1	3.2.0
31/03/00	RAN_07	RP-000068	018		Refinements of Physical Channel Mapping	3.1.1	3.2.0
31/03/00	RAN_07	RP-000068	019	1	TFCI coding specification in TDD	3.1.1	3.2.0
31/03/00	RAN_07	RP-000068	021		Modification of Turbo code internal interleaver	3.1.1	3.2.0
31/03/00	RAN_07	RP-000068	023		Update of TS 25.222 - clarification of BTFD for TDD	3.1.1	3.2.0
31/03/00	RAN_07	RP-000068	025	-	Change of TFCI basis for TDD	3.1.1	3.2.0
31/03/00	RAN_07	RP-000068	026		Padding Function for Turbo coding of small blocks	3.1.1	3.2.0
31/03/00	RAN_07	RP-000068	027	-	Editorial modification of shifting parameter calculation for turbo code puncturing	3.1.1	3.2.0
31/03/00	RAN 07	RP-000068	029	1	Editorial changes of channel coding section	3.1.1	3.2 .0
26/06/00	RAN_08	RP-000272	030	-	Parity bit attachment to 0 size transport block	3.2.0	3.3.0
26/06/00	RAN_08	RP-000272	031		Correction of the mapping formula	3.2 .0	3.3.0
26/06/00	RAN_08	RP-000272	034	-	Alignment of Multiplexing for TDD	3.2.0	3.3.0
26/06/00	RAN_08	RP-000272	036	2	Bit separation of the Turbo encoded data	3.2 .0	3.3.0
26/06/00	RAN_08	RP-000272	038	2	Revision of code block segmentation description	3.2.0	3.3.0
26/06/00	RAN_08	RP-000272	039	-	Editorial corrections in channel coding section	3.2 .0	3.3.0
23/09/00	RAN 09	RP-000345	040	1	Update of TS 25.222	3.3.0	3.4.0
23/09/00	RAN_09	RP-000345	041	1	Editorial corrections in Turbo code internal interleaver section	3.3.0	3.4.0
23/09/00	RAN_09	RP-000345	042		Paging Indicator Terminology	3.3 .0	3.4.0
23/09/00	RAN_09	RP-000345	043	1	Bit separation and collection for rate matching	3.3.0	3.4.0
23/09/00	RAN_09	RP-000345	048		Puncturing Limit definition in WG1 specification	3.3.0	3.4.0
15/12/00	RAN_10	RP-000543	049	-	Clarification on the Ci formula	3.4.0	3.5.0
15/12/00	RAN_10	RP-000543	050		Correction on TFCI \& TPC Transmission	3.4 .0	3.5.0
15/12/00	RAN_10	RP-000543	053	1	Editorial corrections in TS 25.222	3.4 .0	3.5.0
16/03/01	RAN_11			-	Approved as Release 4 specification (v4.0.0) at TSG RAN \#11	3.5.0	4.0.0
16/03/01	RAN_11	RP-010063	051	1	Bit Scrambling for TDD	3.5.0	4.0.0
16/03/01	RAN 11	RP-010063	054	1	Corrections \& Clarifications for TS25.222	3.5.0	4.0.0
16/03/01	RAN_11	RP-010071	055	1	Inclusion of 1.28Mcps TDD in TS 25.222	3.5.0	4.0.0
21/09/01	RAN_13	RP-010523	057	-	TFCI Terminology	4.0.0	4.1.0
21/09/01	RAN_13	RP-010529	058	-	5 ms TTI for PRACH for 1.28 Mcps TDD	4.0 .0	4.1.0
21/09/01	RAN_13	RP-010529	060	-	A correction on the meaning of FPACH in TS 25.222	4.0.0	4.1.0
14/12/01	RAN_14	RP-010747	059	-	Bit Scrambling for TDD	4.1.0	4.2.0
14/12/01	RAN_14	RP-010747	061	-	Corrections in clause 4.1 and 4.2 of TS 25.222	4.1.0	4.2.0
08/03/02	RAN_15	RP-020050	063	1	Correction to addition of padding zeros to PICH in TDD	4.2 .0	4.3.0
08/03/02	RAN_15	RP-020050	065	3	Clarification of the requirement for the determination of the rate matching parameters and editorial corrections to 25.222	4.2.0	4.3.0
07/06/02	RAN_16	RP-020311	071	1	Second Stage Interleaving and Physical Channel Mapping	4.3 .0	4.4.0
07/06/02	RAN_16	RP-020311	075	1	Zero padding for TFCI (3.84Mcps TDD)	4.3.0	4.4.0
07/06/02	RAN_16	RP-020314	072	-	Correction to addition of padding zeros to PICH in 1.28 Mcps TDD	4.3 .0	4.4.0
07/06/02	RAN_16	RP-020314	085	-	Zero padding for TFCI (1.28Mcps TDD)	4.3.0	4.4.0
19/09/02	RAN_17	RP-020570	096	1	Clarification of the definition of layer 1 transport channel numbers	4.4.0	4.5.0
22/12/02	RAN_18	RP-020843	099	1	Corrections to TFCI encoding of very short TFCI lengths	4.5.0	4.6.0
22/12/02	RAN_18	RP-020843	101	1	Corrections to TFCI encoding of very short TFCI lengths	4.5.0	4.6.0
22/12/02	RAN_18	RP-020852	106		Editorial modification to the section numberings	4.5.0	4.6.0
06/01/04	RAN_22	RP-030646	117	1	Correction of subframe segmentation, physical channel mapping \& rate matching for 1.28Mcps TDD	4.6.0	4.7.0

History

Document history		
V4.0.0	March 2001	Publication
V4.1.0	September 2001	Publication
V4.2.0	December 2001	Publication
V4.3.0	March 2002	Publication
V4.4.0	June 2002	Publication
V4.5.0	September 2002	Publication
V4.6.0	December 2002	Publication
V4.7.0	December 2003	Publication

