

ETSI TS 119 182-1 V1.1.1 (2021-03)

Electronic Signatures and Infrastructures (ESI);
JAdES digital signatures;

Part 1: Building blocks and JAdES baseline signatures

TECHNICAL SPECIFICATION

ETSI

ETSI TS 119 182-1 V1.1.1 (2021-03)2

Reference
DTS/ESI-0019182-1

Keywords
electronic signature, JSON

ETSI

650 Route des Lucioles
F-06921 Sophia Antipolis Cedex - FRANCE

Tel.: +33 4 92 94 42 00 Fax: +33 4 93 65 47 16

Siret N° 348 623 562 00017 - NAF 742 C

Association à but non lucratif enregistrée à la
Sous-Préfecture de Grasse (06) N° 7803/88

Important notice

The present document can be downloaded from:
http://www.etsi.org/standards-search

The present document may be made available in electronic versions and/or in print. The content of any electronic and/or
print versions of the present document shall not be modified without the prior written authorization of ETSI. In case of any

existing or perceived difference in contents between such versions and/or in print, the prevailing version of an ETSI
deliverable is the one made publicly available in PDF format at www.etsi.org/deliver.

Users of the present document should be aware that the document may be subject to revision or change of status.
Information on the current status of this and other ETSI documents is available at

https://portal.etsi.org/TB/ETSIDeliverableStatus.aspx

If you find errors in the present document, please send your comment to one of the following services:
https://portal.etsi.org/People/CommiteeSupportStaff.aspx

Copyright Notification

No part may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying
and microfilm except as authorized by written permission of ETSI.

The content of the PDF version shall not be modified without the written authorization of ETSI.
The copyright and the foregoing restriction extend to reproduction in all media.

© ETSI 2021.

All rights reserved.

DECT™, PLUGTESTS™, UMTS™ and the ETSI logo are trademarks of ETSI registered for the benefit of its Members.
3GPP™ and LTE™ are trademarks of ETSI registered for the benefit of its Members and

of the 3GPP Organizational Partners.
oneM2M™ logo is a trademark of ETSI registered for the benefit of its Members and

of the oneM2M Partners.
GSM® and the GSM logo are trademarks registered and owned by the GSM Association.

http://www.etsi.org/standards-search
http://www.etsi.org/deliver
https://portal.etsi.org/TB/ETSIDeliverableStatus.aspx
https://portal.etsi.org/People/CommiteeSupportStaff.aspx

ETSI

ETSI TS 119 182-1 V1.1.1 (2021-03)3

Contents

Intellectual Property Rights .. 5

Foreword ... 5

Modal verbs terminology .. 5

Introduction .. 5

1 Scope .. 7

2 References .. 8

2.1 Normative references ... 8

2.2 Informative references .. 9

3 Definition of terms, symbols, abbreviations and terminology ... 10

3.1 Terms .. 10

3.2 Symbols .. 10

3.3 Abbreviations ... 10

3.4 Terminology ... 11

4 General Requirements .. 12

5 Header parameters semantics and syntax ... 13

5.1 Use of header parameters defined in IETF RFC 7515 and IETF RFC 7797 .. 13

5.1.1 Introduction... 13

5.1.2 The alg (X.509 URL) header parameter ... 13

5.1.3 The cty (content type) header parameter .. 13

5.1.4 The kid (key identifier) header parameter .. 13

5.1.5 The x5u (X.509 URL) header parameter ... 14

5.1.6 The x5t (X.509 Certificate SHA-1 Thumbprint) header parameter .. 14

5.1.7 The x5t#S256 (X.509 Certificate SHA-256 Thumbprint) header parameter .. 14

5.1.8 The x5c (X.509 Certificate Chain) header parameter .. 14

5.1.9 The crit (critical) header parameter .. 15

5.1.10 The b64 header parameter ... 15

5.2 New signed header parameters ... 15

5.2.1 The sigT (claimed signing time) header parameter .. 15

5.2.2 Header parameters for certificate references... 16

5.2.2.1 Introduction ... 16

5.2.2.2 The x5t#o (X509 certificate digest) header parameter ... 16

5.2.2.3 The sigX5ts (X509 certificates digests) header parameter ... 16

5.2.3 The srCms (signer commitments) header parameter ... 17

5.2.4 The sigPl (signature production place) header parameter ... 18

5.2.5 The srAts (signer attributes) header parameter .. 18

5.2.6 The adoTst (signed data time-stamp) header parameter .. 20

5.2.7 The sigPId (signature policy identifier) header parameter .. 21

5.2.7.1 Semantics and syntax .. 21

5.2.7.2 Signature policy qualifiers .. 22

5.2.8 The sigD header parameter ... 23

5.2.8.1 Semantics and Syntax ... 23

5.2.8.2 Mechanism HttpHeaders ... 24

5.2.8.3 Mechanisms supported by URI references .. 25

5.2.8.3.1 General requirements ... 25

5.2.8.3.2 Mechanism ObjectIdByURI .. 25

5.2.8.3.3 Mechanism ObjectIdByURIHash .. 26

5.3 New unsigned header parameter .. 26

5.3.1 The etsiU header parameter ... 26

5.3.2 The cSig (counter signature) JSON object ... 29

5.3.3 The sigPSt JSON object.. 29

5.3.4 The sigTst JSON object.. 30

ETSI

ETSI TS 119 182-1 V1.1.1 (2021-03)4

5.3.5 JSON objects for validation data values ... 30

5.3.5.1 The xVals JSON array .. 30

5.3.5.2 The rVals JSON object .. 31

5.3.5.3 The axVals JSON array ... 32

5.3.5.4 The arVals JSON object .. 32

5.3.6 JSON values for long term availability and integrity of validation material .. 33

5.3.6.1 The tstVD JSON object .. 33

5.3.6.2 The arcTst JSON object .. 34

5.3.6.2.1 Semantics and syntax .. 34

5.3.6.2.2 Computation of message-imprint .. 34

5.4 Generally useful syntax .. 36

5.4.1 The oId data type .. 36

5.4.2 The pkiOb data type .. 37

5.4.3 Container for electronic time-stamps .. 37

5.4.3.1 Introduction ... 37

5.4.3.2 Containers for electronic time-stamps ... 38

5.4.3.3 The tstContainer type ... 38

6 JAdES baseline signatures.. 39

6.1 Signature levels .. 39

6.2 General requirements ... 40

6.2.1 Algorithm requirements .. 40

6.2.2 Notation for requirements ... 40

6.3 Requirements on JAdES components and services .. 42

Annex A (normative): Additional components Specification ... 47

A.1 Components for validation data ... 47

A.1.1 The xRefs JSON array ... 47

A.1.2 The rRefs JSON object ... 48

A.1.3 The axRefs JSON array ... 50

A.1.4 The arRefs JSON object ... 51

A.1.5 Time-stamps on references to validation data .. 52

A.1.5.1 The sigRTst JSON object ... 52

A.1.5.1.1 General .. 52

A.1.5.1.2 Computation of the message imprint with Base64url incorporation ... 52

A.1.5.1.3 Computation of the message imprint with JSON clear incorporation ... 52

A.1.5.2 The rfsTst JSON object.. 53

A.1.5.2.1 Semantics and syntax .. 53

A.1.5.2.2 Computation of the message imprint with Base64url incorporation ... 53

A.1.5.2.3 Computation of the message imprint with clear JSON incorporation ... 53

Annex B (normative): JSON Schema files ... 54

B.1 JSON Schema files location for JAdES components ... 54

Annex C (informative): Correspondence between XAdES tags and JAdES tags............................. 55

C.1 Correspondence between XAdES qualifying properties tags and JAdES component tags 55

Annex D (normative): Alternative mechanisms for long term availability and integrity of
validation data .. 56

Annex E (normative): Digest algorithms identifiers for JAdES signatures.................................... 57

Annex F (informative): Change History .. 58

History .. 59

ETSI

ETSI TS 119 182-1 V1.1.1 (2021-03)5

Intellectual Property Rights

Essential patents

IPRs essential or potentially essential to normative deliverables may have been declared to ETSI. The information
pertaining to these essential IPRs, if any, is publicly available for ETSI members and non-members, and can be found
in ETSI SR 000 314: "Intellectual Property Rights (IPRs); Essential, or potentially Essential, IPRs notified to ETSI in
respect of ETSI standards", which is available from the ETSI Secretariat. Latest updates are available on the ETSI Web
server (https://ipr.etsi.org/).

Pursuant to the ETSI IPR Policy, no investigation, including IPR searches, has been carried out by ETSI. No guarantee
can be given as to the existence of other IPRs not referenced in ETSI SR 000 314 (or the updates on the ETSI Web
server) which are, or may be, or may become, essential to the present document.

Trademarks

The present document may include trademarks and/or tradenames which are asserted and/or registered by their owners.
ETSI claims no ownership of these except for any which are indicated as being the property of ETSI, and conveys no
right to use or reproduce any trademark and/or tradename. Mention of those trademarks in the present document does
not constitute an endorsement by ETSI of products, services or organizations associated with those trademarks.

Foreword
This Technical Specification (TS) has been produced by ETSI Technical Committee Electronic Signatures and
Infrastructures (ESI).

The present document is part 1 of a multi-part deliverable covering JAdES digital signatures, as identified below:

Part 1: "Building blocks and JAdES baseline signatures";

Part 2: "Extended JAdES signatures".

One JSON schema file, whose location is detailed in clause B.1 and which contain JSON Schema definitions
complements the present document.

The present document has taken as starting point the paper [i.18] "Bringing JSON signatures to ETSI AdES framework:
meet JAdES signatures", by Juan Carlos Cruellas, in Computer Standards and Interfaces, Volume 71, August 2020.

Modal verbs terminology
In the present document "shall", "shall not", "should", "should not", "may", "need not", "will", "will not", "can" and
"cannot" are to be interpreted as described in clause 3.2 of the ETSI Drafting Rules (Verbal forms for the expression of
provisions).

"must" and "must not" are NOT allowed in ETSI deliverables except when used in direct citation.

Introduction
Electronic commerce has emerged as a frequent way of doing business between companies across local, wide area and
global networks. Trust in this way of doing business is essential for the success and continued development of
electronic commerce. It is therefore important that companies using this electronic means of doing business have
suitable security controls and mechanisms in place to protect their transactions and to ensure trust and confidence with
their business partners. In this respect digital signatures are an important security component that can be used to protect
information and provide trust in electronic business.

https://ipr.etsi.org/
https://portal.etsi.org/Services/editHelp!/Howtostart/ETSIDraftingRules.aspx

ETSI

ETSI TS 119 182-1 V1.1.1 (2021-03)6

The present document is intended to cover digital signatures supported by PKI and public key certificates, and aims to
meet the general requirements of the international community to provide trust and confidence in electronic transactions,
including, amongst other, applicable requirements from Regulation (EU) No 910/2014 [i.1].

The present document can be used for any transaction between an individual and a company, between two companies,
between an individual and a governmental body, etc. The present document is independent of any environment. It can
be applied to any environment e.g. smart cards, SIM cards, special programs for electronic signatures, etc.

The present document is part of a rationalized framework of standards (see ETSI TR 119 000 [i.4]).

ETSI

ETSI TS 119 182-1 V1.1.1 (2021-03)7

1 Scope
The present document:

1) Specifies a JSON [1] format for AdES signatures (JAdES signatures hereinafter) built on JSON Web
Signatures (JWS hereinafter) as specified in IETF RFC 7515 [2]. For this, the present document:

- Extends the JSON Web Signatures specified in IETF RFC 7515 [2] by defining an additional set of
JSON header parameters that can be incorporated in the JOSE Header (either in its JWS Protected
Header or its JWS Unprotected Header parts). Many of these new header parameters have the same
semantics as the attributes/properties defined in CAdES [i.2] and XAdES [4] digital signatures. Other
header parameters are defined to meet specific requirements that current JSON Web Signatures cannot
meet (e.g. for explicitly referencing detached JWS Payload). These new header parameters and their
corresponding types are defined in a JSON schema.

- Specifies the mechanisms for incorporating the aforementioned JSON components in JSON Web
Signatures [2] to build JAdES signatures, offering the same features as CAdES and XAdES in JSON
syntax, and therefore fulfilling the same requirements (such as the long-term validity of digital
signatures).

2) Defines four levels of JAdES baseline signatures addressing incremental requirements to maintain the validity
of the signatures over the long term. Each level requires the presence of certain JAdES header parameters,
suitably profiled for reducing the optionality as much as possible. The aforementioned levels provide the basic
features necessary for a wide range of business and governmental use cases for electronic procedures and
communications to be applicable to a wide range of communities when there is a clear need for
interoperability of digital signatures used in electronic documents.

EXAMPLE: An example of requirements raised in specific domains is signing HTTP messages exchanged by
parties in certain environments, which require signing both the HTTP body and some specific http
headers. The format specified in IETF RFC 7515 [2] does not provide any native mechanism for
individually identifying a detached JWS Payload. Clause 5.2.8 of the present document defines
sigD, a new JSON header parameter that allows to identify one or more detached data objects
which, suitably processed and concatenated, form the detached JWS Payload.

Procedures for creation, augmentation, and validation of JAdES digital signatures are out of scope.

NOTE 1: ETSI EN 319 102-1 [i.3] specifies procedures for creation, augmentation and validation of other types of
AdES digital signatures.

The present multi-part deliverable aims at supporting electronic signatures independent of any specific regulatory
framework.

NOTE 2: Specifically, but not exclusively, it is the aim that JAdES digital signatures specified in the present
multi-part deliverable can be used to meet the requirements of electronic signatures, advanced electronic
signatures, qualified electronic signatures, electronic seals, advanced electronic seals, and qualified
electronic seals as defined in Regulation (EU) No 910/2014 [i.1].

ETSI

ETSI TS 119 182-1 V1.1.1 (2021-03)8

2 References

2.1 Normative references
References are either specific (identified by date of publication and/or edition number or version number) or
non-specific. For specific references, only the cited version applies. For non-specific references, the latest version of the
referenced document (including any amendments) applies.

Referenced documents which are not found to be publicly available in the expected location might be found at
https://docbox.etsi.org/Reference.

NOTE: While any hyperlinks included in this clause were valid at the time of publication, ETSI cannot guarantee
their long term validity.

The following referenced documents are necessary for the application of the present document.

[1] IETF RFC 8259 (December 2017): "The JavaScript Object Notation (JSON) Data Interchange
Format".

[2] IETF RFC 7515 (May 2015): "JSON Web Signature (JWS)".

[3] IETF RFC 3061 (February 2001): "A URN Namespace of Object Identifiers".

[4] ETSI EN 319 132-1: "Electronic Signatures and Infrastructures (ESI); XAdES digital signatures;
Part 1: Building blocks and XAdES baseline signatures".

[5] IETF RFC 5035 (August 2007): "Enhanced Security Services (ESS) Update: Adding CertID
Algorithm Agility".

[6] Recommendation ITU-T X.509: "Information technology - Open Systems Interconnection - The
Directory: Public-key and attribute certificate frameworks".

[7] IETF RFC 3161 (August 2001): "Internet X.509 Public Key Infrastructure Time Stamp Protocol
(TSP)".

[8] IETF RFC 5280 (May 2008): "Internet X.509 Public Key Infrastructure Certificate and Certificate
Revocation List (CRL) Profile".

[9] IETF RFC 6960 (June 2013): "X.509 Internet Public Key Infrastructure Online Certificate Status
Protocol - OCSP".

[10] IETF RFC 5816 (April 2010): "ESSCertIDv2 Update for RFC 3161".

[11] IETF RFC 3494 (March 2003): "Lightweight Directory Access Protocol version 2 (LDAPv2) to
Historic Status".

[12] IETF RFC 4648 (October 2006): "The Base16, Base32, and Base64 Data Encodings".

[13] IETF RFC 3230 (January 2002): "Instance Digests in HTTP".

[14] IETF RFC 7797 (February 2016): "JSON Web Signature (JWS) Unencoded Payload Option".

[15] IETF RFC 3339 (July 2002): "Date and Time on the Internet: Timestamps".

[16] IETF RFC 7518 (May 2015): "JSON Web Algorithms (JWA)".

[17] IETF RFC 3986 (January 2005): "Uniform Resource Identifier (URI): Generic Syntax".

[18] IETF RFC 2616 (June 1999): "Hypertext Transfer Protocol - HTTP/1.1".

[19] draft-handrews-json-schema-01 (March 2018): "JSON Schema: A Media Type for Describing
JSON Documents".

https://docbox.etsi.org/Reference

ETSI

ETSI TS 119 182-1 V1.1.1 (2021-03)9

[20] draft-handrews-json-schema-validation-01 (March 2018): "JSON Schema Validation: A
Vocabulary for Structural Validation of JSON".

[21] ETSI TS 119 312 (V1.3.1): "Electronic Signatures and Infrastructures (ESI); Cryptographic
Suites".

[22] FIPS Publication 180-4 (August 2015): "Secure Hash Standard (SHS)", National Institute of
Standards and Technology.

[23] FIPS Publication 202 (August 2015): "SHA-3 Standard: Permutation-Based Hash and Extendable-
Output Functions", National Institute of Standards and Technology.

2.2 Informative references
References are either specific (identified by date of publication and/or edition number or version number) or
non-specific. For specific references, only the cited version applies. For non-specific references, the latest version of the
referenced document (including any amendments) applies.

NOTE: While any hyperlinks included in this clause were valid at the time of publication, ETSI cannot guarantee
their long term validity.

The following referenced documents are not necessary for the application of the present document but they assist the
user with regard to a particular subject area.

[i.1] Regulation (EU) No 910/2014 of the European Parliament and of the Council on electronic
identification and trust services for electronic transactions in the internal market and repealing
Directive 1999/93/EC. OJ L 257, 28.08.2014, p. 73-114.

[i.2] ETSI EN 319 122-1: "Electronic Signatures and Infrastructures (ESI); CAdES digital signatures;
Part 1: Building blocks and CAdES baseline signatures".

[i.3] ETSI EN 319 102-1: "Electronic Signatures and Infrastructures (ESI); Procedures for Creation and
Validation of AdES Digital Signatures; Part 1: Creation and Validation".

[i.4] ETSI TR 119 000: "Electronic Signatures and Infrastructures (ESI); The framework for
standardization of signatures: overview".

[i.5] ETSI TR 119 001: "Electronic Signatures and Infrastructures (ESI); The framework for
standardization of signatures; Definitions and abbreviations".

[i.6] ETSI TR 119 100: "Electronic Signatures and Infrastructures (ESI); Guidance on the use of
standards for signature creation and validation".

[i.7] ETSI TS 119 172-1: "Electronic Signatures and Infrastructures (ESI); Signature Policies; Part 1:
Building blocks and table of contents for human readable signature policy documents".

[i.8] OASIS Standard: "Assertions and Protocols for the OASIS Security Assertion Markup Language
(SAML) V2.0".

[i.9] ETSI TS 101 533-1: "Electronic Signatures and Infrastructures (ESI); Data Preservation Systems
Security; Part 1: Requirements for Implementation and Management".

[i.10] IETF RFC 4998: "Evidence Record Syntax (ERS)".

[i.11] W3C Recommendation (19 November 2019): "Verifiable Credentials Data Model 1.0".

[i.12] draft-cavage-http-signatures-10 (May 2018): "Signing HTTP Messages".

[i.13] JSON Schema Specification in json-schema.org website.

NOTE: Available at https://json-schema.org/specification.html.

[i.14] draft-handrews-json-schema-02 (September 2019): "JSON Schema: A Media Type for Describing
JSON Documents".

https://json-schema.org/specification.html

ETSI

ETSI TS 119 182-1 V1.1.1 (2021-03)10

[i.15] draft-handrews-json-schema-validation-02 (September 2019): "JSON Schema Validation: A
Vocabulary for Structural Validation of JSON".

[i.16] IETF RFC 7517 (May 2015): "JSON Web Key (JWK)".

[i.17] ISO 3166-1: "Codes for the representation of names of countries and their subdivisions --
Part 1: Country code".

[i.18] Juan Carlos Cruellas: "Bringing JSON signatures to ETSI AdES framework: meet JAdES
signatures". Computer Standards and Interfaces, Volume 71, August 2020.

3 Definition of terms, symbols, abbreviations and
terminology

3.1 Terms
For the purposes of the present document, the terms given in ETSI TR 119 001 [i.5], IETF RFC 7515 [2] and the
following apply:

JAdES signature: JSON Web Signature

NOTE: As specified in IETF RFC 7515 [2], or other parts of this multi-part deliverable.

JWS Signature Value: digital signature cryptographic value calculated over a sequence of octets derived from the JWS
Protected Header and data to be signed

NOTE 1: IETF RFC 7515 [2] uses the term JWS Signature for this concept. The present document does not use this
term, but the JWS Signature Value, for the sake of terminological coherence of other AdES
specifications.

NOTE 2: The present document uses the term JSON Web Signature, as defined by IETF RFC 7515 [2], i.e. for
denoting the JSON data structure for representing a digitally signed message.

3.2 Symbols
Void.

3.3 Abbreviations
For the purposes of the present document, the following abbreviations apply:

ASCII American Standard Code For Information Interchange
ASN.1 Abstract Syntax Notation 1
CA Certification Authority
CRL Certificate Revocation List
FIPS Federal Information Processing Standards
HTTP Hyper Text Transfer Protocol
IETF Internet Engineering Task Force
ISO International Organization for Standardization
ITU-T International Telecommunication Union Telecommunication Standardization Sector
JOSE JSON Object Signing and Encryption
JSON JavaScript Object Notation
JWS JSON Web Signature
OCSP Online Certificate Status Protocol
OID Object IDentifier
PKI Public Key Infrastructure
RFC Request For Comments
SAML Security Assertion Markup Language

ETSI

ETSI TS 119 182-1 V1.1.1 (2021-03)11

SHA Secure Hash Algorithm
SIM Subscriber Identification Module
SPO Service Provision Option
URI Uniform Resource Identifier
URL Uniform Resource Locator
URN Uniform Resource Name
UTC Coordinated Universal Time

3.4 Terminology
The present document adopts, wherever it is possible the same terminology as the terminology used in IETF
RFC 7515 [2] and in IETF RFC 8259 [1].

Therefore, within the present document, the term "JSON Web Signature" shall denote the JSON structure specified in
IETF RFC 7515 [2].

The present document uses the term "JSON value" for denoting JSON objects, or JSON arrays, or JSON numbers, or
JSON strings, i.e. a subset of the potential meanings of "JSON value" listed in clause 3 of IETF RFC 8259 [1].

The present document uses the term "header parameter" for denoting a JSON object, JSON array, JSON number, or
JSON string, which is member either of the JWS Protected Header or the JWS Unprotected Header specified in IETF
RFC 8259 [1].

The present document uses the term "member" for denoting a JSON object's member, as specified in clause 4 of IETF
RFC 8259 [1].

The present document uses the term "element" or "element of the array" for denoting the contents of a position within a
JSON array (specified in clause 5 of IETF RFC 8259 [1]).

NOTE: These last terms will be used for denoting each of the JSON values that will be added to the etsiU
JSON array (specified in clause 5.3.1 of the present document), which will be incorporated in the JWS
Unprotected header as a header parameter. Therefore, these JSON values will play, within the present
document, an equivalent role to the role played by the unsigned attributes in CAdES and the unsigned
qualifying properties in XAdES.

The present document uses the term "JAdES component" or "component" for denoting any JAdES signature
constituent, regardless it is a header parameter, a member of a JSON Object, an element of a JSON array, or any other
JSON Value.

The present document uses this special font for denoting tags of JAdES components.

As for the names of the header parameters and elements of the etsiU JSON array, the following criteria and
conventions have been used:

1) The names have been selected to have a maxim length of 8 characters; most of the names are shorter.

2) The names of header parameters qualifying the signature itself use to start with "sig".

3) The names of header parameters qualifying the signer use to start with "sr".

4) The names of header parameters qualifying the data to be signed use to start with "sd".

5) The names of header parameters dealing with time-stamp tokens use to finalize with "tst".

6) The names of header parameters dealing with certificates use to start or contain "x" (following the convention
of IETF RFC 7515 [2], which defines the header parameters x5u, x5c, x5t, and x5t#S256).

7) The names of header parameters dealing with revocation values (CRLs or OCSP responses) use to start or
contain "r".

8) The names of header parameters dealing with attribute certificates or the corresponding revocation values use
to start "a".

ETSI

ETSI TS 119 182-1 V1.1.1 (2021-03)12

9) The names of header parameters dealing with values (of certificates or revocation values) use to contain
"Vals".

10) The names of header parameters dealing with references (to certificates or revocation values) use to contain
"Refs" (except x5t, and x5t#S256, which have been defined in IETF RFC 7515 [2], contain references to
certificates, and do not include it).

4 General Requirements
The JAdES components defined in the present document shall be carried within the JOSE header as specified in IETF
RFC 7515 [2].

All the JAdES signed header parameters specified in clause 5.2 of the present document, as well as: cty, kid, crit,
and x5u header parameters specified in IETF RFC 7515 [2] and further profiled in clause 5.1 of the present document,
if required to be present, shall be incorporated as header parameters of the JWS Protected Header of the JSON Web
Signature, specified in IETF RFC 7515 [2].

JAdES signatures may be serialized using either JWS Compact Serialization or JWS JSON Serialization as specified in
clause 3 of IETF RFC 7515 [2].

JWS Unprotected Header in JAdES signatures shall contain only one header parameter, namely the etsiU header
parameter (specified in clause 5.3 of the present document), which is defined as a JSON array.

NOTE 1: The rationale for this is that the JWS Unprotected Header is a JSON object, and no order may be inferred
in its different members. This is the reason why the present document defines etsiU header parameter as
a JSON array.

NOTE 2: The elements of this JSON array will contain JSON values that play for JAdES signatures the same role
as the role played by the unsigned attributes for CAdES signatures, and the role played by the unsigned
qualifying properties for XAdES signatures.

NOTE 3: An immediate consequence is that a time-stamp token present within the arcTst object specified in
clause 5.3.6.2 of the present document, protects the JWS Payload, the JWS Protected Header, the JAdES
Signature Value, and the etsiU header parameter within the JWS Unprotected Header.

Header parameters defined by IETF RFC 7515 [2] and IETF RFC 7797 [14] not further profiled within the present
document may be added as header parameters within the JAdES signature, following the requirements specified in the
present document.

In JAdES signatures, the JWS Payload may be attached or detached.

Detached JWS Payload may either be one detached object, or result from the concatenation of more than one detached
data objects. See the specification of sigD signed header parameter in clause 5.2.8 of the present document.

NOTE 4: At the moment of producing the present document, JSON Schema was under development. The working
draft being used at the present document was the one specified by draft-handrews-json-schema-01 [19],
and draft-handrews-json-schema-validation-01 [20]. These documents, though, do not correspond to the
latest version (draft-handrews-json-schema-02 [i.14], and draft-handrews-json-schema-
validation-02 [i.15]) due to the fact that tools checking correctness of JSON schema files have not been
yet completed. The drafts of JSON schema specifications may be accessed at JSON Schema Specification
in json-schema.org website [i.13].

NOTE 5: Although at the moment of producing the present document there exist several proposals for JSON
canonicalization algorithms, none have been formally adopted by any standardisation organization.
Nevertheless, the present document uses placeholders for identifiers of canonicalization algorithms in a
number of components that could use them if such algorithms are standardized in the future.

ETSI

ETSI TS 119 182-1 V1.1.1 (2021-03)13

5 Header parameters semantics and syntax

5.1 Use of header parameters defined in IETF RFC 7515 and
IETF RFC 7797

5.1.1 Introduction

This clause defines additional requirements for the use of some of header parameters specified in IETF RFC 7515 [2].

JAdES signatures may incorporate any of the header parameters specified in IETF RFC 7515 [2] and IETF
RFC 7797 [14].

NOTE: Clause 6.3 also specifies requirements (mainly of presence and cardinality), for the use of some of the
header parameters specified in IETF RFC 7515 [2] for JAdES baseline signatures.

5.1.2 The alg (X.509 URL) header parameter

Semantics

The alg header parameter shall be a signed header parameter that qualifies the signature.

The alg header parameter shall have the semantics specified in IETF RFC 7515 [2], clause 4.1.1.

Syntax

The alg header parameter shall have the syntax specified in IETF RFC 7515 [2], clause 4.1.1.

Its value should be one of the algorithms for digital signatures recommended by in ETSI TS 119 312 [21].

5.1.3 The cty (content type) header parameter

Semantics

The cty header parameter shall be a signed header parameter that qualifies the JWS Payload.

The cty header parameter shall have the semantics specified in IETF RFC 7515 [2], clause 4.1.10.

The cty header parameter should not be present if the sigD header parameter, specified in clause 5.2.8 of the present
document, is present within the JAdES signature.

The cty header parameter should not be present if the content type is implied by the JWS Payload.

The cty header parameter shall not be present if the JWS Payload is a (counter-signed) signature.

NOTE: The sigD header parameter has one member that contains information of the format and type of the
constituents of the JWS Payload.

Syntax

The cty header parameter shall have the syntax specified in IETF RFC 7515 [2], clause 4.1.10.

5.1.4 The kid (key identifier) header parameter

Semantics

The kid header parameter shall be a signed header parameter that qualifies the signature.

The kid header parameter shall have the semantics specified in IETF RFC 7515 [2], clause 4.1.4.

ETSI

ETSI TS 119 182-1 V1.1.1 (2021-03)14

The content of kid header parameter shall be the base64 (IETF RFC 4648 [12]) encoding of one DER-encoded
instance of type IssuerSerial type defined in IETF RFC 5035 [5].

The header parameter kid shall be used as a hint that can help to identify the signing certificate if other header
parameters referencing or containing the signing certificate are present in the JAdES signature.

Syntax

The kid header parameter shall have the syntax specified in IETF RFC 7515 [2], clause 4.1.4.

5.1.5 The x5u (X.509 URL) header parameter

Semantics

The x5u header parameter shall be a signed header parameter that qualifies the signature.

The x5u header parameter shall have the semantics specified in IETF RFC 7515 [2], clause 4.1.5.

The x5u member shall be used as a hint, as implementations can have alternative ways for retrieving the referenced
certificate if it is not found at the referenced place.

Syntax

The x5u header parameter shall have the syntax specified in IETF RFC 7515 [2], clause 4.1.5.

5.1.6 The x5t (X.509 Certificate SHA-1 Thumbprint) header parameter

JAdES signatures shall not contain the x5t header parameter specified in clause 4.1.7 of IETF RFC 7515 [2].

5.1.7 The x5t#S256 (X.509 Certificate SHA-256 Thumbprint) header
parameter

Semantics

The x5t#S256 shall be a signed header parameter that qualifies the signature.

The x5t#S256 header parameter shall have the semantics specified in IETF RFC 7515 [2], clause 4.1.8.

Syntax

The x5t#S256 header parameter shall have the syntax specified in IETF RFC 7515 [2], clause 4.1.8.

A JAdES signature shall have at least one of the following header parameters in its JWS Protected Header: x5t#S256
(specified in clause 4.1.8 of IETF RFC 7515 [2]), x5c (specified in clause 4.1.6 of IETF RFC 7515 [2]), sigX5ts
(specified in clause 5.2.2.3 of the present document), or x5t#o (specified in clause 5.2.2 of the present document).

NOTE 1: The simultaneous presence of x5t#S256 and x5t#o header parameters is allowed for facilitating
interoperability whilst implementations migrate from x5t#S256 to x5t#o.

NOTE 2: Profiles of JAdES can allow some of the combinations of the aforementioned header parameters.

5.1.8 The x5c (X.509 Certificate Chain) header parameter

Semantics

The x5c header parameter shall be a signed header parameter.

The x5c header parameter shall have the semantics specified in IETF RFC 7515 [2], clause 4.1.6.

Syntax

The x5c header parameter shall have the syntax specified in IETF RFC 7515 [2], clause 4.1.6.

ETSI

ETSI TS 119 182-1 V1.1.1 (2021-03)15

5.1.9 The crit (critical) header parameter

Semantics

The crit header parameter shall be a signed header parameter that qualifies the signature.

The crit header parameter shall have the semantics specified in IETF RFC 7515 [2], clause 4.1.11.

The JAdES signatures incorporating any signed header parameter specified in clause 5.2 shall incorporate the signed
crit header parameter.

Syntax

The crit header parameter shall have the syntax specified in IETF RFC 7515 [2], clause 4.1.11.

The elements of the crit JSON array shall be the names of all the signed header parameters that are present in the
JAdES signatures and specified in clause 5.2.

5.1.10 The b64 header parameter

Semantics

The b64 header parameter shall be a signed header parameter.

The b64 header parameter shall have the semantics specified in IETF RFC 7797 [14], clause 3.

Syntax

The b64 header parameter shall have the syntax specified in IETF RFC 7797 [14], clause 3.

If the sigD header parameter is present with its member set to
"http://uri.etsi.org/19182/HttpHeaders" then the b64 header parameter shall be present and set to
"false".

5.2 New signed header parameters

5.2.1 The sigT (claimed signing time) header parameter

Semantics

The sigT header parameter shall be a signed header parameter that qualifies the signature.

The sigT header parameter's value shall specify the time at which the signer claims to have performed the signing
process.

Syntax

The sigT header parameter shall be defined as in the JSON Schema file whose location is detailed in clause B.1, and is
copied below for information:

"sigT": {"type": "string", "format": "date-time"},

The contents of the string:

1) Shall be formatted as specified in IETF RFC 3339 " [15].

2) Shall be the UTC time for date and time.

3) Shall not contain the part corresponding to fraction of seconds.

EXAMPLE: "2019-11-19T17:28:15Z".

ETSI

ETSI TS 119 182-1 V1.1.1 (2021-03)16

5.2.2 Header parameters for certificate references

5.2.2.1 Introduction

The present clause defines two new signed parameters namely, the x5t#o, which extends the semantics of x5t#S256
for allowing different digest algorithms than the SHA256, and the sigX5ts, which contains references to several
certificates within the certification path, including one reference to the signing certificate, computed using a certain
arbitrary digest algorithm.

5.2.2.2 The x5t#o (X509 certificate digest) header parameter

Semantics

The x5t#o header parameter shall be a signed header parameter that qualifies the signature.

The x5t#o header parameter shall contain an identifier of a digest algorithm different than the identifier of SHA-256,
and the digest value of the referenced certificate.

NOTE 1: For instance, the signature validation policy can mandate other certificates to be present which can
include all the certificates up to the trust anchor.

NOTE 2: The identifier of SHA-256 is not allowed because for this algorithm, x5t#256 header parameter has been
already specified in IETF RFC 7515 [2].

The x5t#o header parameter shall not contain any other information.

Syntax

The x5t#o header parameter shall be defined as in the JSON Schema file whose location is detailed in clause B.1, and
is copied below for information.

"x5t#o": {
 "type": "object",
 "properties": {
 "digAlg": {"type": "string"},
 "digVal": {"type": "string", "contentEncoding": "base64"}
 },
 "required": ["digAlg","digVal"],
 "additionalProperties": false
},

The digAlg member shall identify the digest algorithm.

The digVal member shall contain the base64url-encoded value of the digest computed on the DER-encoded
certificate.

5.2.2.3 The sigX5ts (X509 certificates digests) header parameter

Semantics

The sigX5ts header parameter shall be a signed header parameter that qualifies the signature.

The sigX5ts header parameter shall contain several references of certificates within the certification path of the
signing certificate, each one formed by the identifier of a digest algorithm and the digest value of the referenced
certificate.

NOTE: This header parameter is not used when only the reference to the signing certificate is required. Instead,
the x5t#o header parameter is used in such occasions.

This element may contain digest values computed with algorithm SHA-256.

The first reference within the sigX5ts header parameter shall be the reference of the signing certificate.

The sigX5ts header parameter shall not contain any other information.

ETSI

ETSI TS 119 182-1 V1.1.1 (2021-03)17

Syntax

The sigX5ts header parameter shall be defined as in the JSON Schema file whose location is detailed in clause B.1,
and is copied below for information:

"sigX5ts": {
 "type": "array",
 "items": {"$ref": "#/definitions/x5t%23o"},
 "minItems": 2
},

5.2.3 The srCms (signer commitments) header parameter

Semantics

The srCms header parameter shall be a signed header parameter that qualifies JWS Payload.

The srCms header parameter shall indicate the commitment made by the signer when signing.

The srCms header parameter shall express the commitment type with a URI.

The srCms header parameter may contain a sequence of qualifiers providing more information about the commitment.

NOTE 1: The commitment type can be:

 defined as part of the signature policy, in which case, the commitment type has precise semantics
that are defined as part of the signature policy; or

 be a registered type, in which case, the commitment type has precise semantics defined by
registration, under the rules of the registration authority. Such a registration authority can be a
trading association or a legislative authority.

NOTE 2: The specification of commitment type identifiers is outside the scope of the present document. For a list
of predefined commitment type identifiers, see ETSI TS 119 172-1 [i.7].

Syntax

This header parameter shall be carried in the JWS Protected Header.

The srCms header parameter shall be defined as in the JSON Schema file whose location is detailed in clause B.1, and
is copied below for information:

"srCms":{
 "type": "array",
 "items": {
 "type": "object",
 "properties":{
 "commId": {"$ref": "#/definitions/oId"},
 "commQuals":{
 "type": "array",
 "items": {"type":"object"},
 "minItems": 1
 }
 },
 "required": ["commId"],
 "additionalProperties": false
 },
 "minItems": 1
},

Each item of the srCms header parameter shall indicate one commitment made by the signer, which may be further
qualified.

The commId member of every array item is an instance of oId type, which is specified in clause 5.4.1 of the present
document, whose id member shall have a URI as value, uniquely identifying one commitment made by the signer.

The commQuals member provides means to include additional qualifying information on the commitment made by
the signer.

ETSI

ETSI TS 119 182-1 V1.1.1 (2021-03)18

5.2.4 The sigPl (signature production place) header parameter

Semantics

The sigPl header parameter shall be a signed header parameter that qualifies the signer.

The sigPl header parameter shall specify an address associated with the signer at a particular geographical (e.g. city)
location.

Syntax

This header parameter shall be carried in the JWS Protected Header.

The sigPl header parameter shall be defined as in the JSON Schema file whose location is detailed in clause B.1, and
is copied below for information.

NOTE: Its definition follows the specification of PostaAddress type in schema.org
(https://schema.org/PostalAddress).

"sigPl":{
 "type": "object",
 "properties":{
 "addressCountry": {"type": "string"},
 "addressLocality": {"type": "string"},
 "addressRegion": {"type": "string"},
 "postOfficeBoxNumber": {"type": "string"},
 "postalCode": {"type": "string"},
 "streetAddress": {"type": "string"}
 },
 "minProperties": 1,
 "additionalProperties": false
},

This addressCountry member shall contain may contain either the name of the country or its two-letter
ISO 3166-1 [i.17] alpha-2 country code.

This header parameter shall be carried in the JWS Protected Header.

5.2.5 The srAts (signer attributes) header parameter

Semantics

The srAts header parameter shall be a signed header parameter that qualifies the signer.

The srAts header parameter shall encapsulate signer attributes (e.g. role). This header parameter may encapsulate the
following types of attributes:

• attributes claimed by the signer;

• attributes certified in attribute certificates issued by an Attribute Authority; or/and

• assertions signed by a third party.

Syntax

This header parameter shall be carried in the JWS Protected Header.

The srAts header parameter shall be defined as in the JSON Schema file whose location is detailed in clause B.1, and
is copied below for information:

"qArrays":{
 "type": "array",
 "items": {
 "type": "object",
 "properties": {
 "mediaType": {"type": "string"},
 "encoding": {"type": "string"},
 "qVals": {
 "type": "array",

https://schema.org/PostalAddress

ETSI

ETSI TS 119 182-1 V1.1.1 (2021-03)19

 "minItems": 1
 }
 },
 "required": ["mediaType", "encoding", "qVals"],
 "additionalProperties": false
 },
 "minItems": 1
},

"srAts":{
 "type": "object",
 "properties": {
 "certified":{
 "type": "array",
 "items": {"$ref": "#/definitions/certifiedAttrs"},
 "minItems": 1
 },
 "claimed": {"$ref": "#/definitions/qArrays"},
 "signedAssertions": {"$ref": "#/definitions/qArrays"}
 },
 "minProperties": 1,
 "additionalProperties": false
},

"certifiedAttrs": {
 "type": "object",
 "properties": {
 "x509AttrCert":{"$ref": "#/definitions/pkiOb"},
 "otherAttrCert":{"$ref": "#/definitions/pkiOb"}
 },
 "oneOf":[
 {
 "required":["x509AttrCert"]
 },
 {
 "required":["otherAttrCert"]
 }
],
 "additionalProperties": false
},

EXAMPLE: W3C Recommendation [i.11] defines a JSON model for credentials that could become content of
the claimed member.

The certifiedAttrs member shall contain a non-empty array of certified attributes, which shall be one of the
following:

• the base64 encoding of DER-encoded X509 attribute certificates conformant to Recommendation
ITU-T X.509 [6] issued to the signer, within the X509AttrCert member; or

• attribute certificates (issued, in consequence, by Attribute Authorities) in different syntax than the one
specified in Recommendation ITU-T X.509 [6], within the OtherAttrCert member. The definition of
specific OtherAttrCert is outside of the scope of the present document.

The signedAssertions member shall contain a non-empty array of assertions signed by a third party.

NOTE 1: A signed assertion is stronger than a claimed attribute, since a third party asserts with a signature that the
attribute of the signer is valid. However, it is less restrictive than an attribute certificate.

The claimed member shall contain a non-empty array of attributes claimed by the signer.

Both the signedAssertions and the claimed members shall be instances of qArrays type. Each instance of
this type shall be a JSON array whose elements are JSON objects. Each JSON object shall contain three members,
namely:

a) The mediaType member, which shall contain a string identifying the type of the signed assertions or the
claimed attributes present in qVals member, and shall meet the requirements specified in clause 8.4 of
draft-handrews-json-schema-validation-01 [20].

ETSI

ETSI TS 119 182-1 V1.1.1 (2021-03)20

b) The encoding member, which shall contain a string identifying the encoding of the signed assertions or the
claimed attributes present in qVals member, and shall meet the requirements specified in clause 8.3 of
draft-handrews-json-schema-validation-01 [20].

c) The qVals member, which shall be a JSON array of at least one item. The elements of qVals JSON array
shall be the values of the signed assertions or the claimed attributes encoded as indicated within the
encoding member.

NOTE 2: Instances of qArrays type allow to incorporate signed assertions and/or claimed attributes of different
types and different encodings.

The definition of specific content types for signedAssertions and claimed attributes is outside of the scope of the
present document.

NOTE 3: A possible content for signedAssertions can be a signed SAML [i.8] assertion.

Empty srAts header parameters shall not be generated.

5.2.6 The adoTst (signed data time-stamp) header parameter

Semantics

The adoTst header parameter shall be a signed header parameter that qualifies the JWS Payload.

The adoTst header parameter shall encapsulate one or more electronic time-stamps, generated before the signature
production, whose message imprint computation input shall be the JWS Payload of the JAdES signature.

Syntax

This header parameter shall be carried in the JWS Protected Header.

The adoTst header parameter shall be defined as in the JSON Schema file whose location is detailed in clause B.1,
and is copied below for information.

"adoTst": {"$ref": "#/definitions/tstContainer"},

The message imprint computation input for the time-stamp token shall be an octet stream built as indicated below:

1) If the sigD header parameter, as specified in clause 5.2.8 of the present document, is absent then:

a) If the b64 header parameter specified in clause 3 of IETF RFC 7797 [14] is present and set to "false"
then concatenate the JWS Payload value.

b) If the b64 header parameter specified in clause 3 of IETF RFC 7797 [14] is present and set to "true",
OR it is absent, then concatenate the base64url-encoded JWS Payload.

2) Else, if the sigD header parameter is present:

a) If the value of its mId member is "http://uri.etsi.org/19182/HttpHeaders" then
concatenate the bytes resulting from processing the contents of its pars member as specified in
clause 5.2.8.2 of the present document except the "Digest" string element. The processing of the
"Digest" string element in the pars array shall consist in retrieving the bytes of the body of the
HTTP message.

NOTE 1: The rationale for this is that the body of an HTTP message is signed indirectly: the JWS signature value is
computed, not on the its value, but on its digest value computed with a certain digest algorithm.
Therefore, in order to protect the HTTP body against the risk of the digest value becoming weak, the
input to the timestamp token's message imprint computation, should contain the digest value of the HTTP
body computed with a strong digest algorithm, which may be different from the initial one if this is
expected to become weak soon.

ETSI

ETSI TS 119 182-1 V1.1.1 (2021-03)21

b) If the value of its mId member is "http://uri.etsi.org/19182/ObjectIdByURI" or
"http://uri.etsi.org/19182/ObjectIdByURIHash" then concatenate the bytes resulting
from processing the contents of its pars member as specified in clause 5.2.8.3.2 of the present
document.

NOTE 2: The rationale for applying the processing specified in clause 5.2.8.3.2 of the present document to the case
of the mechanism identified by "http://uri.etsi.org/19182/ObjectIdByURIHash" is the
fact that this is an indirect signing mechanism, i.e. based on signing digest values of data objects, instead
the data objects themselves. Time-stamping not the digest values but the retrieved data objects, protects
against future weaknesses of the digest algorithms used in sigD.

If the JWS Payload is detached and the JAdES signature does not incorporate the sigD signed header parameter, then it
is out of the scope to specify how to retrieve the JWS Payload.

The adoTst header parameter shall not contain the canonAlg member.

5.2.7 The sigPId (signature policy identifier) header parameter

5.2.7.1 Semantics and syntax

Semantics

The sigPId header parameter shall be a signed header parameter qualifying the signature.

The sigPId header parameter shall contain either an explicit identifier of a signature policy or an indication that there
is an implied signature policy that the relying party should be aware of.

NOTE: ETSI TS 119 172-1 [i.7] specifies a framework for signature policies.

Syntax

This header parameter shall be carried in the JWS Protected Header.

The sigPId header parameter shall be defined as in the JSON Schema file whose location is detailed in clause B.1,
and is copied below for information.

"sigPId": {
 "type": "object",
 "properties": {
 "id": {"$ref": "#/definitions/oId"},
 "digAlg": {"type": "string"},
 "digVal": {"type": "string", "contentEncoding": "base64"},
 "digPSp": {"type": "boolean"},
 "sigPQuals": {
 "type": "array",
 "items": {"$ref":"#/definitions/sigPQual"},
 "minItems": 1
 }
 },
 "required": ["id"],
 "additionalProperties": false
},

The id member shall be used for referencing the signature policy explicitly. It shall uniquely identify a specific version
of the signature policy.

The digAlg and digVal members shall contain, respectively, the identifier of the digest algorithm and the digest
value of the object obtained after processing id.

The digPSp member shall be a boolean. When present and set to "true", it shall indicate that the digest of the
signature policy document has been computed as specified in a technical specification. Absence of this member shall be
considered as if present and set to "false". If this member is present and set to "true", then the qualifier spDSpec
qualifier shall be present and shall identify the aforementioned technical specification.

The sigPQuals member shall be a non-empty array of qualifiers of the signature policy.

ETSI

ETSI TS 119 182-1 V1.1.1 (2021-03)22

The sigPQuals member may contain one or more qualifiers of the same type.

Clause 5.2.7.2 specifies three signature policy qualifiers.

5.2.7.2 Signature policy qualifiers

Semantics

This clause specifies the following three qualifiers for the signature policy:

• A URL where a copy of the signature policy document can be obtained (spURI choice).

• A user notice that should be displayed when the signature is validated (spUserNotice choice).

• An identifier of the technical specification that defines the syntax used for producing the signature policy
document (spDSpec choice).

Syntax

The spURI , spUserNotice , and spDSpec qualifiers shall be defined as in the JSON Schema file whose location
is detailed in clause B.1, and are copied below for information.

"sigPQual": {
 "type": "object",
 "properties": {
 "spUserNotice": {"$ref": "#/definitions/spUserNotice"},
 "spURI": {"$ref": "#/definitions/spURI"},
 "spDSpec": {"$ref": "#/definitions/spDSpec"}
 },
 "minProperties": 1,
 "maxProperties": 1
},

"spURI": {"type": "string", "format": "uri"},

"spUserNotice": {
 "type": "object",
 "properties": {
 "noticeRef": {
 "type": "object",
 "properties": {
 "organization": {"type": "string"},
 "noticeNumbers": {
 "type": "array",
 "items": {"type": "integer"},
 "minItems" : 1
 }
 },
 "required": ["organization","noticeNumbers"],
 "additionalProperties": false
 },
 "explText": {"type": "string"}
 },
 "minProperties": 1,
 "additionalProperties": false
},

"spDSpec": {"$ref": "#/definitions/oId"},

The spURI qualifier shall contain a URL value where a copy of the signature policy document can be obtained.

NOTE 1: This URL can reference, for instance, a remote site (which can be managed by an entity entitled for this
purpose) from where (signing/validating) applications can retrieve the signature policy document.

The spUserNotice qualifier shall contain information that is intended for being displayed whenever the signature is
validated.

The explText member shall contain the text of the notice to be displayed.

NOTE 2: Other notices can come from the organization issuing the signature policy.

ETSI

ETSI TS 119 182-1 V1.1.1 (2021-03)23

The noticeRef member shall name an organization and shall identify by numbers (noticeNumbers member) a
group of textual statements prepared by that organization, so that the application could get the explicit notices from a
notices file.

The spDSpec member shall identify the technical specification that defines the syntax used for producing the signature
policy document.

5.2.8 The sigD header parameter

5.2.8.1 Semantics and Syntax

Semantics

The sigD header parameter shall be a signed header parameter.

The sigD header parameter shall not appear in JAdES signatures whose JWS Payload is attached.

The sigD header parameter may appear in JAdES signatures whose JWS Payload is detached.

A JAdES signature shall have at most one sigD header parameter.

The sigD header parameter shall:

1) Reference one or more detached data objects.

2) Specify how the aforementioned references shall be processed for contributing to build the sequence of octets
that shall be the JWS Payload of the JAdES signature.

3) Allow to define different mechanisms for meeting the two aforementioned requirements.

Chaining of references shall not be allowed. Only the data objects directly referenced within the sigD header
parameter shall contribute to build the JWS Payload. If some referenced object contains in its turn references to other
data objects, these last data objects shall not contribute to build the JWS Payload.

NOTE: This is for avoiding building trees of referenced and distributed data objects, which would complicate the
validation of JAdES signatures.

The sigD header parameter may also incorporate base64url-encoded digest values of the referenced data objects within
one string.

The sigD header parameter may also incorporate any additional information for meeting requirements 1) and 2) as
required by the mechanisms mentioned in 3).

Syntax

This header parameter shall be carried in the JWS Protected Header.

The sigD header parameter shall be defined as in the JSON Schema file whose location is detailed in clause B.1, and is
copied below for information.

"sigD":{
 "type": "object",
 "properties": {
 "mId" : {"type":"string", "format": "uri"},
 "pars" : {
 "type": "array",
 "items": {"type": "string"},
 "minItems": 1
 },
 "hashM" : {"type":"string"},
 "hashV" : {
 "type": "array",
 "items": {"type": "string","contentEncoding": "base64"},
 "minItems": 1
 },
 "ctys" : {
 "type": "array",

ETSI

ETSI TS 119 182-1 V1.1.1 (2021-03)24

 "items": {"type": "string"},
 "minItems": 1
 }
 },
 "required": ["mId"],
 "additionalProperties": false
},

The mId member shall be present. It shall be an URI identifying the mechanism used for referencing and processing
each referenced data object for building the JWS Payload. The present document defines 3 referencing mechanisms
with their corresponding identifiers in clauses 5.2.8.2, 5.2.8.3.2, and 5.2.8.3.3.

The pars member shall be present. It shall be a non-empty array of strings. Each element of the array shall contain a
reference to one data object, as required by the identification mechanism identified in the mId member.

The hashM member shall be a string identifying a digest algorithm. Its value shall be one of the identifiers defined in
IETF RFC 7518 [16], or any future specification that amends, complements, or supersedes it. The presence of this
member shall be conditional on the definition of the identification mechanism. If this member is present, then hashV
member shall be present.

The hashV member shall be a non-empty array of strings. Each element of the array shall contain:

1) The base64url-encoded digest value of the data object referenced by the parameter value that is present in the
same position of the pars array if the b64 header parameter is present and set to "false".

2) The base64url-encoded digest value of the base64url-encoded data object referenced by the parameter value
that is present in the same position of the pars array if the b64 header parameter is absent or it is present and
set to "true".

The presence of the hashV member shall be conditional on the definition of the identification mechanism. If this
member is present, then hashM member shall be present.

The ctys member shall be a non-empty an array of strings. The contents of each element of this array shall have the
same semantics of the cty header parameter specified in clause 4.1.10 of IETF RFC 7515 [2].

There shall be as many elements within the ctys array as elements within the array pars. Each element of the ctys
array shall contain the information corresponding to the data object referenced by the parameter value that is present in
the same position of the pars array, except if the content type is implied by the data object or the data object is a
counter-signed signature: in these cases, the element of the ctys array shall have as value an empty string.

5.2.8.2 Mechanism HttpHeaders

The URL identifying this referencing mechanism shall be "http://uri.etsi.org/19182/HttpHeaders".

If this mechanism is used, then the b64 header parameter shall be present and set to "false".

For this referencing mechanism, neither hashV, neither hashM member, nor ctys shall be present.

Using this referencing mechanism, a JAdES signature may explicitly reference several HTTP headers and sign them, as
well as the HTTP message body.

For this referencing mechanism, the contents of the pars member shall be an array of lowercased names of HTTP
header fields.

The HTTP message body may also be signed by incorporating into the HTTP message the Digest HTTP header
specified in clause 4.3.2 of IETF RFC 3230 [13], whose content is the digest of the message body.

The HTTP headers shall be processed and concatenated in the order their lowercased names appear within the pars
member to form the JWS Payload, as follows;

a) If the HTTP header name is "(request target)" then generate the header field value by concatenating the lower-
cased method (e.g. get, put), a space character, and the path and query parts of the target URI (the "path-
absolute" production and optionally a '?' character followed by the "query" production see clauses 3.3 and 3.4
of IETF RFC 3986 [17]).

ETSI

ETSI TS 119 182-1 V1.1.1 (2021-03)25

b) For other HTTP header names create the header field string by concatenating the lowercased header field name
followed with a colon ':', a space character, and the header field value. Any leading and trailing white spaces
are removed. If there are multiple instances of the same header field, all header field values associated with the
header field shall be concatenated, separated by a ASCII comma and an ASCII space ', ', and used in the order
in which they will appear in the transmitted HTTP message.

c) Insert newline character after all but the last HTTP header value.

NOTE 1: The above are equivalent to the steps required for signature string construction as defined in clause 2.3 of
Internet draft draft-cavage-http-signatures-10 [i.12].

NOTE 2: Clauses 5.2.6 and 5.3.6.2.2 of the present document specify the processing of the "Digest" string
element in the pars array in clauses for building its contribution to the message imprint computation
input when generating time-stamp tokens encapsulated within the adoTst and arcTst respectively.
That processing is required because in this mechanism the body of the HTTP message is indirectly signed
(what is signed is its digest, not the HTTP message body itself).

5.2.8.3 Mechanisms supported by URI references

5.2.8.3.1 General requirements

This clause specifies two mechanisms that use URIs for referencing the data objects contributing to build the JWS
Payload.

For these referencing mechanisms, the contents of the pars member shall be an array of strings. Each string shall be an
URI, appertaining to the group of URIs that can be classified as locators according to clause 1.1.3 of IETF
RFC 3986 [17]. Each URI shall refer one data object.

NOTE: According to IETF RFC 3986 [17], URIs that can be classified as locators (URLs are the obvious
example) "provide a means of locating the resource by describing its primary access mechanism".

If the URI-reference does not include a scheme, then HTTP scheme shall be assumed.

Dereferencing URIs in the HTTP scheme shall be supported. Dereferencing an URI in the HTTP scheme shall comply
with the Status Code Definitions specified in clause 10 of IETF RFC 2616 [18].

Dereferencing URIs in other locator schemes may be supported. Dereferencing URIs within one of such schemes shall
be conducted as defined in the corresponding scheme specification.

5.2.8.3.2 Mechanism ObjectIdByURI

The URI identifying this referencing mechanism shall be "http://uri.etsi.org/19182/ObjectIdByURI".

For this referencing mechanism, neither hashV , nor hashM shall be present. Member ctys may be present.

The semantics and syntax of ctys shall be as specified in clause 5.2.8.1 of the present document.

The stream of octets corresponding to the contribution of the JWS Payload to the computation of the JWS Signature
Value shall be generated as indicated below:

1) Initialize the stream of octets to an empty stream.

2) While there are URIs in the pars array not visited:

- Take the next one.

- Dereference the URI, as specified in clause 5.2.8.3.1 of the present document.

- If the b64 header parameter specified in clause 3 of IETF RFC 7797 [14] is absent or is present and set
to "true", then base64url encode the retrieved object octets.

- Concatenate the resulting octets to the stream of octets to be signed.

ETSI

ETSI TS 119 182-1 V1.1.1 (2021-03)26

5.2.8.3.3 Mechanism ObjectIdByURIHash

The URL identifying this referencing mechanism shall be
"http://uri.etsi.org/19182/ObjectIdByURIHash".

For this referencing mechanism, the hashV, and the hashM members shall be present. Member ctys may be present.

The semantics and syntax of hashM, hashV ,and ctys shall be as specified in clause 5.2.8.1 of the present document.

For computing the digest values, whose base64url encodings appear within the hashV member, each data object
referenced within the pars member, shall be retrieved as specified in clause 5.2.8.3.1 of the present document.

When using this mechanism, the JWS Payload shall contribute as an empty stream to the computation of the JWS
Signature Value.

NOTE 1: As this sigD is a signed header parameter, and it already includes the digest of the components of the
JWS Payload, the JWS Payload is indirectly signed by signing the sigD signed header parameter, and
consequently, this referencing mechanism does not require that the JWS Payload directly contributes to
the computation of the JWS Signature Value.

If the JWS Payload is required for other purposes than computing the JWS Signature Value when this mechanism is
used, it shall be generated as specified in clause 5.2.8.3.2.

NOTE 2: The generation of this JWS Payload is required, for instance, for generating the adoTst or the arcTst
header parameters.

5.3 New unsigned header parameter

5.3.1 The etsiU header parameter

Semantics

The etsiU unprotected header parameter shall be a JSON array whose elements contain JSON values that are not
signed by the JAdES signature.

NOTE 1: The rationale for this is as follows: the computation of certain time-stamp tokens message imprints is
performed by digesting the concatenation of sets of unsigned header parameters, and this concatenation
needs to be performed following an order; the JSON array allows to define such an order: the unsigned
header parameters are concatenated following the order of appearance within the JSON array.

NOTE 2: As it has been specified in clause 4 of the present document etsiU header parameter is incorporated in
the JWS Unprotected Header specified in clause 3.2 of IETF RFC 7515 [2]. Consequently, all its
elements will also be unprotected, and its elements will play in JAdES signatures the same role as the role
played by the unsigned attributes for CAdES signatures, and the role played by the unsigned qualifying
properties for XAdES signature.

The etsiU header parameter shall contain JSON values that qualify the JAdES signature itself, or the signer, or the
JWS Payload.

NOTE 3: Because the etsiU header parameter is present within the JWS Unprotected Header, then JWS JSON
Serialization as specified in IETF RFC 7515 [2], clause 3.2, needs to be employed as the alternative to
JWS Compact Serialization.

The components present within the etsiU header parameter shall appear as clear instances of unsigned components or
as their corresponding base64url encodings.

NOTE 4: While clear instances of unsigned components require some type of canonicalization if they contribute to
the computation of a time-stamp message imprint, their base64url-encoded values will not require such
canonicalization. The present document is neutral about which alternative should be used.

ETSI

ETSI TS 119 182-1 V1.1.1 (2021-03)27

NOTE 5: The contents of the components of the etsiU header parameters can appear as clear instances of
unsigned components or as their corresponding basee64url encodings regardless the presence or absence
of the b64 header parameter and its value if present, as the b64 header parameter only affects to the JWS
Payload representation and the input to the JWS Signature Value computation.

The present document specifies:

1) A JSON object (sigPSt) containing details for facilitating access to a signature policy document, in
clause 5.3.3.

2) A JSON object (cSig) containing details for containing a counter-signature of the JAdES signature itself, in
clause 5.3.2.

3) A JSON object (sigTst) containing a time-stamp token on the JWS Signature Value, in clause 5.3.4.

4) A JSON array (xVals) containing CA certificates required for validating the signature, in clause 5.3.5.1.

5) A JSON object (rVals) containing values of revocation data required for validating the signature, in
clause 5.3.5.2.

6) A JSON array (axVals) containing certificates of Attribute Authorities required for validating the signature,
in clause 5.3.5.3.

7) A JSON object (arVals) containing values of revocation data of Attribute Authorities required for validating
the signature, in clause 5.3.5.4.

8) A JSON object (tstVD) containing validation data (certificate and values of revocation data) for time-stamp
tokens present in the signature, in clause 5.3.6.1.

9) A JSON object (arcTst) containing one or more time-stamp tokens on all the components of the JAdES
signature, in clause 5.3.6.2.

10) A JSON array (xRefs) containing references to certificates required for validating the signature, in
clause A.1.1.

11) A JSON object (rRefs) containing references to revocation data required for validating the signature, in
clause A.1.2.

12) A JSON array (axRefs) containing references to certificates of Attribute Authorities required for validating
the signature, in clause A.1.3.

13) A JSON object (arRefs) containing references to revocation data of Attribute Authorities required for
validating the signature, in clause A.1.4.

14) A JSON object (sigRTst) containing a time-stamp token on the references to the validation material and the
JWS Signature Value, in clause A.1.5.1.

15) A JSON object (rfsTst) containing a time-stamp token on the references to the validation material, in
clause A.1.5.2.

All the JSON arrays and JSON objects listed above shall be placed within the etsiU header parameter if they are
incorporated into the JAdES signature.

Syntax

The etsiU header parameter shall be defined as in the JSON Schema file whose location is detailed in clause B.1, and
is copied below for information.

"etsiU": {
 "type": "array",
 "oneOf": [
 {
 "items": {"$ref": "#/definitions/etsiUClearInstance"}
 },
 {
 "items": {"type": "string", "contentEncoding": "base64"}

ETSI

ETSI TS 119 182-1 V1.1.1 (2021-03)28

 }
],
 "minItems": 1
},

"etsiUClearInstance": {
 "type": "object",
 "properties": {
 "sigPSt": {"$ref": "#/definitions/sigPSt"},
 "sigTst": {"$ref": "#/definitions/sigTst"},
 "xVals": {"$ref": "#/definitions/xVals"},
 "rVals": {"$ref": "#/definitions/rVals"},
 "axVals": {"$ref": "#/definitions/axVals"},
 "arVals": {"$ref": "#/definitions/arVals"},
 "tstVD": {"$ref": "#/definitions/tstVD"},
 "arcTst": {"$ref": "#/definitions/arcTst"},
 "xRefs": {"$ref": "#/definitions/xRefs"},
 "rRefs": {"$ref": "#/definitions/rRefs"},
 "axRefs": {"$ref": "#/definitions/axRefs"},
 "arRefs": {"$ref": "#/definitions/arRefs"},
 "sigRTst": {"$ref": "#/definitions/sigRTst"},
 "rfsTst": {"$ref": "#/definitions/rfsTst"},
 "cSig": {"$ref": "rfcs/rfc7515.json#/definitions/jws"}
 },
 "minProperties": 1,
 "maxProperties": 1
}

The etsiU header parameter shall be a non-empty array.

The etsiU header parameter shall be incorporated as member of the header JSON object of the JSON Web
Signature.

NOTE 6: The json schema file rfc7515.json, referenced within the etsiUClearInstance, is distributed
by ETSI within subfolder rfcs. See clause B.1 for details on the location of the JSON schema files.

NOTE 7: The header member is the place reserved by IETF RFC 7515 [2] for unsigned header parameters in
JSON Web Signatures. Clause 3.2 of IETF RFC 7515 [2] leaves its content open. The present document
suitably profiles its contents.

NOTE 8: The cSig member, specified in clause 5.3.2 of the present document, is a countersignature of the JAdES
signature. Its inner structure is defined in a separate JSON schema file whose details appear in clause B.1
of the present document, which is provided for helping implementations to validate the inner structure of
JSON Web Signatures.

The content of any element of the etsiU array shall be either an unsigned JSON value in clear (clear JSON
incorporation), or its base64url encoding (base64url incorporation).

The array shall not contain JSON values in clear in some positions, and base64url encoded unsigned JSON values in
others. Either all of them shall be incorporated in clear or shall be incorporated base64url encoded.

The etsiU header parameter should be the only header parameter incorporated to the JWS Unprotected Header. Any
unprotected JSON value that is not specified in the present document should be incorporated as an element of the
etsiU header parameter.

NOTE 9: Adding these components into the etsiU header parameter allows to properly secure them in the long-
term using arcTst.

If the etsiU header parameter contains JSON values in clear, instances of tstContainer type shall have the
canonAlg member, except for the sigTst JSON object.

If the etsiU header parameter contains bas64url-encoded JSON values, instances of tstContainer type shall not
have the canonAlg member.

ETSI

ETSI TS 119 182-1 V1.1.1 (2021-03)29

5.3.2 The cSig (counter signature) JSON object

Semantics

The cSig JSON object shall contain one counter signature of the JAdES signature where cSig is incorporated. This
counter signature may also be a JAdES signature.

Syntax

The cSig JSON object contains either a JSON Web Signature or a JAdES signature that signs the JWS Signature
Value of the embedding JAdES signature.

One JAdES counter signature may itself be counter signed using a cSig JSON object, signing the JWS Signature
Value of the first counter signature, built as described above.

NOTE: This is an alternative way of constructing arbitrarily long series of counter signatures, each one signing
the JWS Signature Value of the one where it is directly embedded.

5.3.3 The sigPSt JSON object

Semantics

The sigPSt JSON object shall contain either:

• the signature policy document which is referenced in the sigPId JSON object so that the signature policy
document can be used for offline and long-term validation; or

• a URI referencing a local store where the signature policy document can be retrieved.

Syntax

This JSON object shall be carried in the JWS Unprotected Header.

The sigPSt shall be defined as in the JSON Schema file whose location is detailed in clause B.1, and are copied
below for information.

"sigPSt": {
 "type":"object",
 "properties": {
 "sigPolDoc": {"type": "string", "contentEncoding": "base64"},
 "sigPolLocalURI": {"type": "string", "format": "uri-reference"},
 "spDSpec": {"$ref": "#/definitions/oId"}
 },
 "oneOf": [
 {
 "required": ["sigPolDoc"]
 },
 {
 "required": ["sigPolLocalURI"]
 }
],
 "minProperties": 1,
 "additionalProperties": false
},

The sigPolDoc member shall contain the base64 encoded signature policy.

The sigPolLocalURI member shall have as value the URI referencing a local store where the present document can
be retrieved.

NOTE 1: Contrary to the spURI, the sigPolLocalURI points to a local file.

The spDSpec member shall identify the technical specification that defines the syntax used for producing the signature
policy document.

NOTE 2: It is the responsibility of the entity incorporating the signature policy to the signature-policy-store to make
sure that the correct document is securely stored.

ETSI

ETSI TS 119 182-1 V1.1.1 (2021-03)30

NOTE 3: Being an unsigned JSON object, it is not protected by the digital signature. If the sigPId JSON object is
incorporated into the signature and contains the hashAV member with the digest value of the signature
policy document, any alteration of the signature policy document present within sigPSt or within a
local store, would be detected by the failure of the digests comparison.

5.3.4 The sigTst JSON object

Semantics

The sigTst JSON object shall encapsulate one or more electronic time-stamps time-stamping the JWS Signature
Value.

Syntax

This JSON object shall be carried in the JWS Unprotected Header.

The sigTst JSON object shall be defined as in the JSON Schema file whose location is detailed in clause B.1, and is
copied below for information.

"sigTst": {"$ref": "#/definitions/tstContainer"},

The input of the message imprint computation for the time-stamp tokens encapsulated by sigTst JSON object shall be
the base64url-encoded JWS Signature Value.

NOTE: In a signature serialized with JWS JSON Serialization, this is the same as the content of the signature
member.

The sigTst JSON object shall not contain the canonAlg member.

5.3.5 JSON objects for validation data values

5.3.5.1 The xVals JSON array

Semantics

The xVals JSON array:

1) Shall contain the certificate of the trust anchor, if such certificate does exist and if it is not already present
within other component of the underlying JSON Web Signature. If this certificate is present within another
component of the underlying JSON Web Signature, it should not be included.

2) Shall contain the CA certificates within the signing certificate path that are not already present within other
component of the underlying JSON Web Signature. The certificates present within other component of the
underlying JSON Web Signature should not be included.

3) Shall contain the signing certificate if it is not already present within other component of the underlying JSON
Web Signature. If this certificate is present within other component of the underlying JSON Web Signature, it
should not be included.

4) Shall contain certificates used to sign revocation status information (e.g. CRLs or OCSP responses) of
certificates in 1), 2) and 3), and certificates within their respective certificate paths that are not present in the
signature. Certificate values present within the signature, including certificate values within the revocation
status information themselves should not be included.

5) Shall not contain CA certificates that pertain exclusively to the certificate paths of certificates used to sign
attribute certificates or signed assertions within srAts, or electronic time-stamps. And

6) May contain a set of certificates used to validate any countersignature incorporated into the JAdES signature
that are not present in other components of the JAdES signature or its countersignatures. This set may include
any of the certificates listed in 1), 2), 3) and 4) referred to signing certificates of countersignatures instead of
the signing certificate of the JAdES signature. The certificates present elsewhere in the JAdES signature or its
countersignatures should not be included.

ETSI

ETSI TS 119 182-1 V1.1.1 (2021-03)31

Syntax

The xVals array parameter shall be defined as in the JSON Schema file whose location is detailed in clause B.1, and is
copied below for information.

"xVals": {
 "type": "array",
 "items": {
 "type":"object",
 "properties": {
 "x509Cert": {"$ref": "#/definitions/pkiOb"},
 "otherCert": {"$ref": "#/definitions/pkiOb"}
 },
 "oneOf": [
 {
 "required": ["x509Cert"]
 },
 {
 "required": ["otherCert"]
 }
],
 "additionalProperties": false
 },
 "minItems": 1
},

An x509Cert item shall contain the base64 encoding of one DER-encoded X.509 certificate.

An otherCert item is a placeholder for potential future new formats of certificates.

5.3.5.2 The rVals JSON object

Semantics

The rVals JSON object:

1) shall contain revocation values corresponding to CA certificates within the signing certificate path if they are
not already present within another component of the underlying JSON Web Signature. It shall not contain a
revocation value for the trust anchor. The revocation values present within another component of the
underlying JSON Web Signature should not be included;

2) shall contain a revocation value for the signing certificate if it is not already present within another component
of the underlying JSON Web Signature. If it is present within another component of the underlying JSON it
should not be included;

3) may contain revocation values corresponding to certificates used to sign CRLs or OCSP responses of 1) and 2)
and certificates within their respective certificate paths. The revocation values present already present within
another component of the underlying JSON Web Signature should not be included;

4) shall not contain revocation values corresponding to CA certificates that pertain exclusively to the certificate
paths of certificates used to sign attribute certificates or signed assertions within srAts, or electronic time-
stamps; and

5) may contain revocation values corresponding to the signing certificate of any countersignature incorporated
into the JAdES signature as well as to the CA certificates in its certificate path. This set may include any of the
revocation values listed in 1), 2) and 3) referred to signing certificates of countersignatures instead of the
signing certificate of the JAdES signature. However, those revocation values among the aforementioned ones
that are already present in other components of the JAdES signature should not be included.

Syntax

The rVals JSON object shall be defined as in the JSON Schema file whose location is detailed in clause B.1, and is
copied below for information.

"rVals": {
 "type": "object",
 "properties":{
 "crlVals": {
 "type": "array",

ETSI

ETSI TS 119 182-1 V1.1.1 (2021-03)32

 "items": {"$ref":"#/definitions/pkiOb"},
 "minItems": 1
 },
 "ocspVals": {
 "type": "array",
 "items": {"$ref":"#/definitions/pkiOb"},
 "minItems": 1
 },
 "otherVals": {
 "type": "array",
 "items": {"type":"object"},
 "minItems": 1
 }
 },
 "minProperties": 1 ,
 "additionalProperties": false
},

crlVals member shall be a non-empty array of encoded X.509 CRLs [8].

Each item of crlVals array shall contain the base64 encoding of a DER-encoded X.509 CRLs [8].

If the validation data contain one or more Delta CRLs, the crlVals member shall contain the set of CRLs required to
provide complete revocation lists.

ocspVals member shall be a non-empty array of encoded OCSP responses [9].

Each item of ocspVals array shall contain the base64 encoding of a DER-encoded OCSPResponse defined in IETF
RFC 6960 [9].

The otherVals member provides a placeholder for other revocation information that can be used in the future. Their
semantics and syntax are outside the scope of the present document.

5.3.5.3 The axVals JSON array

Semantics

The axVals JSON array:

1) shall contain the value(s) of the signing certificate(s) of the attribute certificate(s) and signed assertion(s)
incorporated into the XAdES signature;

2) shall contain, if not present within the signature, the value(s) of the certificate(s) for the trust anchor(s) if such
certificates exist, and the CA certificate values within path of the signing certificate(s) of the attribute
certificate(s) and signed assertion(s) incorporated into the XAdES signature. Certificate values present within
the signature should not be included; and

3) may contain the certificate values used to sign CRLs or OCSP responses and the certificates values within
their respective certificate paths, used for validating the signing certificate(s) of the attribute certificate(s) and
signed assertion(s) incorporated into the XAdES signature. Certificate values present within the signature,
including certificate values within the revocation status information themselves should not be included.

Syntax

The axVals JSON array shall be defined as in the JSON Schema file whose location is detailed in clause B.1, and is
copied below for information.

"axVals": {"$ref": "#/definitions/xVals"},

5.3.5.4 The arVals JSON object

Semantics

The arVals JSON object:

1) shall contain the revocation value(s) of the certificate(s) that sign the attribute certificate(s) and signed
assertion(s) incorporated into the XAdES signature;

ETSI

ETSI TS 119 182-1 V1.1.1 (2021-03)33

2) shall contain, if not incorporated into the signature, the revocation values corresponding to CA certificates
within the path(s) of the signing certificate(s) of the attribute certificate(s) and signed assertion(s) incorporated
into the XAdES signature. It shall not contain revocation values for the trust anchors. Values already
incorporated into the signature should not be included; and

3) may contain the revocation values on certificates used to sign CRLs or OCSP responses and certificates within
their respective certificate paths, which are used for validating the signing certificate(s) of the attribute
certificate(s) and signed assertion(s) incorporated into the XAdES signature. Revocation values already
incorporated into the signature should not be included.

Syntax

The arVals JSON object shall be defined as in the JSON Schema file whose location is detailed in clause B.1, and is
copied below for information.

"arVals": {"$ref": "#/definitions/rVals"},

If the validation data contain one or more Delta CRLs, this JSON object shall include the set of CRLs required to
provide complete revocation lists.

5.3.6 JSON values for long term availability and integrity of validation
material

5.3.6.1 The tstVD JSON object

Semantics

The tstVD JSON object shall be a container for validation data required for carrying a full verification of the
electronic time-stamps embedded within any of the different electronic time-stamp container JSON objects defined in
the present document.

The tstVD JSON object shall allow incorporating certificate values.

The tstVD JSON object shall allow incorporating revocation values.

Syntax

The tstVD JSON object shall be defined as in the JSON Schema file whose location is detailed in clause B.1, and is
copied below for information.

"tstVD": {
 "type": "object",
 "properties": {
 "xVals": {"$ref": "#/definitions/xVals"},
 "rVals": {"$ref": "#/definitions/rVals"}
 },
 "minProperties": 1 ,
 "additionalProperties": false
},

The xVals member shall contain certificates used in the full verification of electronic time-stamps.

The xVals member may contain all the certificates required for a full verification of the electronic time-stamps.

The xVals member may also contain only some of the certificate values if the rest are present elsewhere in the JAdES
signature (for instance within the electronic time-stamp itself, or in other tstVD created for other electronic time-
stamps).

The rVals member shall contain revocation values used in the full verification of electronic time-stamps embedded in
one JAdES time-stamp container.

The rVals member may contain all the revocation values required for a full verification of the electronic time-stamps.

ETSI

ETSI TS 119 182-1 V1.1.1 (2021-03)34

The rVals member may also contain only some of the revocation values if the rest are present elsewhere in the JAdES
signature (for instance within the electronic time-stamp itself, or in other tstVD created for other electronic time-
stamps).

If the tstVD JSON object contains validation data for time-stamp tokens encapsulated in the adoTst header
parameter then it shall be added at the beginning of the array within the etsiU header parameter.

NOTE: The incorporation of the aforementioned tstVD JSON object cannot take place after the incorporation of
the first arcTst JSON object, as this would break the verification of its message imprint.

If the tstVD JSON object contains validation data for time-stamp tokens that are encapsulated in a JSON object
different than the adoTst header parameter, then it shall be added in the array of the etsiU header parameter
immediately after the item containing the aforementioned JSON object containing the electronic time-stamp.

5.3.6.2 The arcTst JSON object

5.3.6.2.1 Semantics and syntax

Semantics

The arcTst JSON object shall encapsulate electronic time-stamps computed on the JWS Payload, the JWS Protected
Header, the JAdES Signature Value, and the etsiU JSON array within the JWS Unprotected Header at the time of
generating each electronic time-stamp.

NOTE 1: The purpose of this JSON object is to tackle the long-term availability and integrity of the validation
material.

NOTE 2: As it has been anticipated in clause 4 any header parameter different than etsiU JSON array present
within the JWS Unprotected Header is not protected by the time-stamps encapsulated by this JSON
object.

Syntax

The arcTst JSON object shall be defined as in the JSON Schema file whose location is detailed in clause B.1, and is
copied below for information.

"arcTst": {"$ref": "#/definitions/tstContainer"},

If the JAdES signature incorporates a cSig JSON object, all the required material for conducting the validation of the
counter-signature shall be incorporated into the JAdES signature before generating the first arcTst JSON object. This
may be done within the counter-signature itself or within the containers available within the counter-signed JAdES
signature.

The contents of the cSig JSON object should not be changed, once it has been time-stamped by the arcTst.

NOTE 3: If a cSig JSON object is time-stamped by the arcTst, any ulterior change of its contents (by addition
of unsigned JSON values if the countersignature is a JAdES signature, for instance) would make the
validation of the arcTst fail.

The tstContainer member shall be as specified in clause 5.4.3.3 of the present document.

5.3.6.2.2 Computation of message-imprint

5.3.6.2.2.1 Processing

The message imprint computation input shall be an octet stream resulting from the concatenation of the components in
the order they are listed below:

1) If the sigD header parameter is absent then:

a) If the b64 header parameter specified in clause 3 of IETF RFC 7797 [14] is present and set to "false"
then concatenate the JWS Payload value.

ETSI

ETSI TS 119 182-1 V1.1.1 (2021-03)35

b) If the b64 header parameter specified in clause 3 of IETF RFC 7797 [14] is present and set to "true",
OR it is absent, then concatenate the base64url-encoded JWS Payload.

2) If the sigD header parameter is present:

a) If the value of its mId member is "http://uri.etsi.org/19182/HttpHeaders" then
concatenate the bytes resulting from processing the contents of its pars member as specified in
clause 5.2.8.2 of the present document except the "Digest" string element. The processing of the
"Digest" string element in the pars array shall consist in retrieving the bytes of the body of the
HTTP message.

NOTE 1: The rationale for this is that the body of an HTTP message is signed indirectly: the JWS signature value is
computed, not on the its value, but on its digest value computed with a certain digest algorithm.
Therefore, in order to protect the HTTP body against the risk of the digest value becoming weak, the
input to the timestamp token's message imprint computation, should contain the digest value of the HTTP
body computed with a strong digest algorithm, which may be different from the initial one if this is
expected to become weak soon.

b) Else if the value of its mId member is "http://uri.etsi.org/19182/ObjectIdByURI" or
"http://uri.etsi.org/19182/ObjectIdByURIHash" then concatenate the bytes resulting
from processing the contents of its pars member as specified in clause 5.2.8.3.2 of the present
document.

NOTE 2: The rationale for applying the processing specified in clause 5.2.8.3.2 of the present document to the case
of the mechanism identified by "http://uri.etsi.org/19182/ObjectIdByURIHash" is the
fact that this is an indirect signing mechanism, i.e. based on signing digest values of data objects, instead
the data objects themselves. Time-stamping not the digest values but the retrieved data objects, protects
against future weaknesses of the digest algorithms used in sigD.

3) The character '.'.

4) The value of the JWS Protected Header, base64url encoded, followed by the character '.'.

5) The value of the JAdES Signature Value, base64url encoded.

6) The character '.'.

7) If the elements of the etsiU array appear as the base64url encodings of the unsigned components, then
proceed as specified in clause 5.3.6.2.2.2 of the present document. If the elements of the etsiU array appear
as clear instances of unsigned components, then proceed as specified in clause 5.3.6.2.2.3 of the present
document.

5.3.6.2.2.2 Contribution of etsiU with base64url incorporation

The contribution of the etsiU array when its elements contain the base64url encodings of the unsigned components,
shall be generated as follows:

1) Perform the following steps:

a) the xVals JSON array shall be incorporated, base64url encoded, into the signature if it is not already
present and the signature misses some of the certificates listed in clause 5.3.5.1 that are required to validate
the JAdES signature;

b) the rVals JSON object shall be incorporated, base64url encoded, into the signature if it is not already
present and the signature misses some of the revocation data listed in clause 5.3.5.2 that are required to
validate the JAdES signature;

c) the axVals JSON array shall be incorporated, base64url encoded, into the signature if not already present
and the following conditions are true: attribute certificate(s) or signed assertions have been incorporated
into the signature, and the signature misses some certificates required for their validation; and

ETSI

ETSI TS 119 182-1 V1.1.1 (2021-03)36

d) the arVals JSON object shall be incorporated, base64url encoded, into the signature if not already
present and the following conditions are true: attribute certificates or signed assertions have been
incorporated into the signature, and the signature misses some revocation values required for their
validation.

2) Take the components of the etsiU array in the order they appear within the array, and concatenate them to the
final octet stream.

5.3.6.2.2.3 Contribution of etsiU with clear JSON incorporation

The contribution of the etsiU array when its elements contain clear instances of unsigned components, shall be
generated as follows:

1) Perform the following steps:

a) the xVals JSON array shall be canonicalized and incorporated, in clear JSON, into the signature if it is
not already present and the signature misses some of the certificates listed in clause 5.3.5.1 that are
required to validate the JAdES signature;

b) the rVals JSON object shall be canonicalized and incorporated, in clear JSON, into the signature if it is
not already present and the signature misses some of the revocation data listed in clause 5.3.5.2 that are
required to validate the JAdES signature;

c) the axVals JSON array shall be canonicalized and incorporated, in clear JSON, into the signature if not
already present and the following conditions are true: attribute certificate(s) or signed assertions have been
incorporated into the signature, and the signature misses some certificates required for their validation; and

d) the arVals JSON object shall be canonicalized and incorporated, in clear JSON, into the signature if not
already present and the following conditions are true: attribute certificates or signed assertions have been
incorporated into the signature, and the signature misses some revocation values required for their
validation.

2) Take the components of the etsiU array in the order they appear within the array, canonicalize each one of
them using the canonicalization algorithm identified in canonAlg member, and concatenate each resulting
octet stream to the final octet stream.

5.4 Generally useful syntax

5.4.1 The oId data type

Semantics

Instances of oId data type shall contain a unique and permanent identifier of one data object.

Instances of oId data type may contain a textual description of the nature of the data object qualified by the instance of
the oId data type.

Instances of oId data type may contain a number of references to documents where additional information about the
nature of the data object qualified by the instance of the bjectId data type, can be found.

Syntax

The oId shall be defined as in the JSON Schema file whose location is detailed in clause B.1, and is copied below for
information.

"oId": {
 "type": "object",
 "properties": {
 "id": {"type": "string", "format": "uri"},
 "desc": {"type": "string"},
 "docRefs":{
 "type": "array",
 "items": {"type": "string", "format": "uri"},

ETSI

ETSI TS 119 182-1 V1.1.1 (2021-03)37

 "minItems": 1
 }
 },
 "required": ["id"],
 "additionalProperties": false
},

The id member shall contain a permanent identifier. Once the identifier is assigned, it shall not be re-assigned again.

The value of the id member shall be an URI. If the identifier of the object is an OID then the value of this member
shall be encoded as an URN as specified by the IETF RFC 3061 [3].

If both an OID and a URI exist identifying one object, the URI value should be used in the id member.

The desc member shall contain an informal text describing the object.

The docRefs member shall contain an arbitrary number of URI values pointing to further explanatory documentation
of the data object identified by the instance of this type.

5.4.2 The pkiOb data type

Semantics

The pkiOb data type shall be used to incorporate PKI objects, which can be non-JSON encoded, into the JAdES
signature.

NOTE: Examples of such PKI objects, include X.509 certificates and revocation lists, OCSP responses, attribute
certificates, and electronic time-stamps.

Syntax

The pkiOb type shall be defined as in the JSON Schema file whose location is detailed in clause B.1, and is copied
below for information.

"pkiOb": {
 "type": "object",
 "properties":{
 "encoding": {"type": "string", "format": "uri"},
 "specRef": {"type": "string"},
 "val": {"type": "string", "contentEncoding" : "base64"}
 },
 "required": ["val"],
 "additionalProperties": false
},

The content of this data type shall be the PKI object, base64 encoded.

The encoding member's value shall be a URI identifying the encoding used in the original PKI object. The values for
the URI shall be one of the values defined in clause 5.1.3 of ETSI EN 319 132-1 [4].

If the encoding member is not present, then the contents of val member shall be the result of base64 encoding the
DER-encoded ASN.1 data.

5.4.3 Container for electronic time-stamps

5.4.3.1 Introduction

The present document specifies JSON objects that act as electronic time-stamps containers.

Electronic time-stamps within the aforementioned containers may time-stamp isolated components or concatenations of
several components of JAdES signatures.

This clause specifies a JSON type for containers of electronic time-stamps.

ETSI

ETSI TS 119 182-1 V1.1.1 (2021-03)38

5.4.3.2 Containers for electronic time-stamps

Below follows the list of the electronic time-stamps containers that are defined by the present document:

• Containers for electronic time-stamps proving that the JWS Payload has been created before certain time
instant: adoTst.

• Container for electronic time-stamps proving that the signature value has been computed before a certain time
instant (to protect against repudiation in case of a key compromise): sigTst.

• Container for electronic time-stamps time-stamping the signature and validation data values, for providing
long term JAdES signatures: arcTst.

• Containers for electronic time-stamps on components that contain references to validation data, namely:
rfsTst and sigRTst. (specified in clause A.1.5 of the present document).

5.4.3.3 The tstContainer type

Semantics

The tstContainer type shall:

• allow encapsulating IETF RFC 3161 [7] electronic time-stamps as well as electronic time-stamps in other
formats;

• provide means for managing electronic time-stamps computed on a concatenation of JAdES components
(including detached JWS Payload); and

• allow encapsulating more than one electronic time-stamp generated for the same set of JAdES components
(including detached JWS Payload), each one issued by different TSAs, for instance.

Syntax

The tstContainer type shall be defined as in the JSON Schema file whose location is detailed in clause B.1, and is
copied below for information.

"tstContainer":{
 "type": "object",
 "properties": {
 "canonAlg": {"type": "string", "format": "uri"},
 "tstTokens": {
 "type": "array",
 "items": {"$ref":"#/definitions/tstToken"},
 "minItems": 1
 }
 },
 "required": ["tstTokens"],
 "additionalProperties": false
},

"tstToken":{
 "type": "object",
 "properties":{
 "type": {"type": "string"},
 "encoding": {"type": "string", "format": "uri"},
 "specRef": {"type": "string"},
 "val": {"type": "string", "contentEncoding" : "base64"}
 },
 "required": ["val"],
 "additionalProperties": false
},

The tstContainer's tstTokens member shall contain a non-empty array of JSON objects each one encapsulating
one electronic time-stamp token.

The tstToken's type member shall identify the type of the time-stamp token. For IETF RFC 3161 [7] time-stamp
tokens this member shall not be present.

ETSI

ETSI TS 119 182-1 V1.1.1 (2021-03)39

The tstToken's encoding member shall be an URI and shall identify the encoding used for the time-stamp token.
For IETF RFC 3161 [7] time-stamp tokens this member shall not be present.

The tstToken's specRef member shall identify the technical specification that has defined the used time-stamp
token. For IETF RFC 3161 [7] time-stamp tokens this member shall not be present.

Finally the tstToken's val member shall contain the base64 encoding of the electronic time-stamp token itself. For
IETF RFC 3161 [7] time-stamp tokens this member shall contain the base64 encoding of the DER-encoded electronic
time-stamp token.

In JAdES signatures, the containers of time-stamp tokens time-stamping components within the etsiU unsigned
header parameter, implicitly identify what components are time-stamped and how they contribute to the input of the
message imprint's computation. No further information in the time-stamp token container is required.

NOTE: This is because all the components of a JAdES signature are placed within JAdES signature itself.

The tstContainer's canonAlg member shall contain the identifier of a canonicalization algorithm.

If the tstContainer's canonAlg member is present, then the bytes concatenated for building the time-stamp's
message imprint input, shall be the bytes resulting from applying the canonicalization algorithm to all the time-stamped
JAdES components.

If the tstContainer's canonAlg is absent then the bytes concatenated for building the time-stamp's message
imprint input, shall be the bytes of each of the time-stamped JAdES components themselves.

6 JAdES baseline signatures

6.1 Signature levels
Clause 6 defines four levels of JAdES baseline signatures, intended to facilitate interoperability and to encompass the
life cycle of JAdES signature, namely:

a) B-B level provides requirements for the incorporation of signed header parameters and some unsigned
components within the etsiU unsigned header parameter when the signature is generated.

b) B-T level provides requirements for the generation and inclusion, for an existing signature, of a trusted token
proving that the signature itself actually existed at a certain date and time.

c) B-LT level provides requirements for the incorporation of all the material required for validating the signature
in the signature document. This level aims to tackle the long-term availability of the validation material.

d) B-LTA level provides requirements for the incorporation of electronic time-stamps that allow validation of the
signature long time after its generation. This level aims to tackle the long-term availability and integrity of the
validation material.

NOTE 1: ETSI TR 119 100 [i.6] provides a description on the life-cycle of a signature and the rationales on which
level is suitable in which situation.

NOTE 2: The levels c) to d) are appropriate where the technical validity of signature needs to be preserved for a
period of time after signature creation where certificate expiration, revocation and/or algorithm
obsolescence is of concern. The specific level applicable depends on the context and use case.

NOTE 3: B-LTA level targets long term availability and integrity of the validation material of digital signatures
over long term. The B-LTA level can help to validate the signature beyond many events that limit its
validity (for instance, the weakness of used cryptographic algorithms, or expiration of validation data).
The use of B-LTA level is considered an appropriate preservation and transmission technique for signed
data.

ETSI

ETSI TS 119 182-1 V1.1.1 (2021-03)40

NOTE 4: Conformance to B-LT level, when combined with appropriate additional preservation techniques tackling
the long term availability and integrity of the validation material is sufficient to allow validation of the
signature long time after its generation. The assessment of the effectiveness of preservation techniques for
signed data other than implementing the B-LTA level are out of the scope of the present document. The
reader is advised to consider legal instruments in force and/or other standards (for example ETSI
TS 101 533-1 [i.9] or IETF RFC 4998 [i.10]) that can indicate other preservation techniques. Annex C
defines what needs to be taken into account when using other techniques for long term availability and
integrity of validation data and incorporating a new component in the etsiU unsigned header parameter
derived from these techniques into the signature.

6.2 General requirements

6.2.1 Algorithm requirements

The algorithms and key lengths used to generate and augment digital signatures should be as specified in ETSI
TS 119 312 [21].

NOTE: Cryptographic suites recommendations defined in ETSI TS 119 312 [21] can be superseded by national
recommendations.

In addition, MD5 algorithm shall not be used as digest algorithm.

6.2.2 Notation for requirements

The present clause describes the notation used for defining the requirements of the different JAdES signature levels.

The requirements on the header parameters and certain other signature's components for each JAdES signature level are
expressed in Table C.1. A row in the table either specifies requirements for a header parameter, other signature's
component, or a service.

A service can be provided by different header parameters, by other signature's components, or by other mechanisms
(service provision options hereinafter). In these cases, the specification of the requirements for a service is provided by
three or more rows. The first row contains the requirements of the service. The requirements for the header parameters,
other signature's components, and/or mechanisms used to provide the service are stated in the following rows.

Table 1 contains 8 columns. Below follows a detailed explanation of their meanings and contents:

1) Column "Header parameters/Elements in etsiU unsigned header parameter/Services":

a) In the case where the cell identifies a Service, the cell content starts with the keyword "Service" followed
by the name of the service.

b) In the case where the header parameter or other signature's component provides a service, this cell
contains "SPO" (for Service Provision Option), followed by the name of the header parameter or the
other signature's component.

c) Otherwise, this cell contains the name of the header parameter or the other signature's component.

2) Column "Presence in B-B level": This cell contains the specification of the presence of the header parameter or
other signature's component, or the provision of a service, for JAdES-B-B signatures.

3) Column "Presence in B-T level": This cell contains the specification of the presence of the header parameter or
other signature's component, or the provision of a service, for JAdES-B-T signatures.

4) Column "Presence in B-LT level": This cell contains the specification of the presence of the header parameter
or other signature's component, or the provision of a service, for JAdES-B-LT signatures.

ETSI

ETSI TS 119 182-1 V1.1.1 (2021-03)41

5) Column "Presence in B-LTA level": This cell contains the specification of the presence of the header
parameter or other signature's component, or the provision of a service, for JAdES-B-LTA signatures. Below
follow the values that can appear in columns "Presence in B-B", "Presence in B-T", "Presence in B-LT", and
"Presence in B-LTA":

- "shall be present": means that the header parameter or signature's component shall be incorporated to the
signature, and shall be as specified in the document referenced in column "References", further profiled
with the additional requirements referenced in column "Requirements", and with the cardinality indicated
in column "Cardinality".

- "shall not be present": means that the header parameter or signature's component shall not be
incorporated to the signature.

- "may be present": means that the header parameter or signature's component may be incorporated to the
signature, and shall be as specified in the document referenced in column "References", further profiled
with the additional requirements referenced in column "Requirements", and with the cardinality indicated
in column "Cardinality".

- "shall be provided": means that the service identified in the first column of the row shall be provided as
further specified in the SPO-related rows. This value only appears in rows that contain requirements for
services. It does not appear in rows that contain requirements for header parameters or signature's
components.

- "conditioned presence": means that the incorporation to the signature of the item identified in the first
column is conditioned as per the requirements referenced in column "Requirements" and requirements in
specifications and clauses referenced by column "References", with the cardinality indicated in column
"Cardinality".

- "*": means that the header parameter or signature's component (service) identified in the first column
should not be incorporated to the signature (provided) in the corresponding level. Upper signature levels
may specify other requirements.

NOTE: Incorporating an unsigned component within the etsiU header parameter that is marked with a "*" into
a signature can lead to cases where a higher level cannot be achieved, except by removing the
corresponding component.

6) Column "Cardinality": This cell indicates the cardinality of the header parameter or other signature's
component. If the cardinality is the same for all the levels, only the values listed below appear. Otherwise the
content specifies the cardinality for each level. See the example at the end of the present clause showing this
situation. Below follows the values indicating the cardinality:

- 0: The signature shall not incorporate any instance of the header parameter or the signature's component.

- 1: The signature shall incorporate exactly one instance of the header parameter or the signature's
component.

- 0 or 1: The signature shall incorporate zero or one instance of the header parameter or the signature's
component.

- ≥ 0: The signature shall incorporate zero or more instances of the header parameter or the signature's
component.

- ≥ 1: The signature shall incorporate one or more instances of the header parameter or the signature's
component.

7) Column "References": This shall contain either the number of the clause specifying the header parameter in
the present document, or a reference to the document and clause that specifies the other signature's component.

8) Column "Additional requirements and notes": This cell contains numbers referencing notes and/or letters
referencing additional requirements on the header parameter or the other signature's component. Both notes
and additional requirements are listed in Table 1.

ETSI

ETSI TS 119 182-1 V1.1.1 (2021-03)42

6.3 Requirements on JAdES components and services
The four JAdES signature levels specified in the present clause shall be built as specified in clause 4 of the present
document.

Table 1 shows the presence and cardinality requirements on the signature header parameters, other components, and
services indicated in the first column for the four JAdES baseline signature levels, namely: JAdES-B-B, JAdES-B-T,
JAdES-B-LT, and JAdES-B-LTA). Additional requirements are detailed below the table suitably labelled with the letter
indicated in the last column.

NOTE 1: JAdES-B-B signatures that incorporate only the header parameters and other components that are
mandatory in Table C.1, and that implement the mandatory requirements, contain the lowest number of
header parameters and other components, with the consequent benefits for interoperability.

In JAdES baseline signatures the components that act as electronic time-stamps containers shall encapsulate only IETF
RFC 3161 [7] updated by IETF RFC 5816 [10] time-stamp tokens.

Any header parameter specified in IETF RFC 7515 [2] or IETF RFC 7797 [14], and not further profiled in clause 5.1,
may be present (cardinality of 0 or 1) in the four levels defined in Table 1.

ETSI

ETSI TS 119 182-1 V1.1.1 (2021-03)43

Table 1: Requirements for JAdES-B-B, JAdES-B-T, JAdES-B-LT, and JAdES-B-LTA signatures

Header parameters/Elements in etsiU
unsigned header parameter/Services

Presence in
B-B level

Presence in
B-T level

Presence in
B-LT level

Presence in
B-LTA level

Cardinality References Additional
requirements

and notes
alg shall be present shall be present shall be present shall be present 1 Clause 5.1.2

cty conditioned
presence

conditioned
presence

conditioned
presence

conditioned
presence

0 or 1 Clause 5.1.3 2

kid may be present may be present may be present may be present 0 or 1 Clause 5.1.4

x5u may be present may be present may be present may be present 0 or 1 Clause 5.1.5

x5c Conditioned
presence

Conditioned
presence

Conditioned
presence

Conditioned
presence

0 or 1 Clause 5.1.8 3

crit Conditioned
presence

Conditioned
presence

Conditioned
presence

Conditioned
presence

 Clause 5.1.9 4

sigT shall be present shall be present shall be present shall be present 1 Clause 5.2.1 a

Service: signing a reference of the signing
certificate

Conditioned
presence

Conditioned
presence

Conditioned
presence

Conditioned
presence

1 3

 SPO: x5t#256 conditioned
presence

conditioned
presence

conditioned
presence

conditioned
presence

0 or 1 Clause 5.1.7

 SPO: x5t#o conditioned
presence

conditioned
presence

conditioned
presence

conditioned
presence

0 or 1 Clause 5.2.2

 SPO: sigX5ts conditioned
presence

conditioned
presence

conditioned
presence

conditioned
presence

0 or 1 Clause 5.2.2

sigD may be present may be present may be present may be present 0 or 1 Clause 5.2.8
srAts may be present may be present may be present may be present 0 or 1 Clause 5.2.5
srCms may be present may be present may be present may be present ≥ 0 Clause 5.2.3
sigPl may be present may be present may be present may be present 0 or 1 Clause 5.2.4
sigPId may be present may be present may be present may be present 0 or 1 Clause 5.2.7
cSig may be present may be present may be present may be present ≥ 0 Clause 5.3.2
adoTst may be present may be present may be present may be present ≥ 0 Clause 5.3.3 5
sigPSt may be present may be present may be present may be present 0 or 1 Clause 5.3.3 b
sigTst * shall be present shall be present shall be present B-B: ≥ 0 Clause 5.3.4 c, d

5 B-T, B-LT,
B-LTA: ≥ 1

xVals * * conditioned
presence

conditioned
presence

0 or 1 Clause 5.3.5.1 e, 6

xRefs * * shall not be
present

shall not be
present

B-B, B-T: 0 or 1 Clause A.1.1 f, g
B-LT, B-LTA: 0

axVals * * conditioned
presence

conditioned
presence

0 or 1 Clause 5.3.5.3 e, 7

axRefs * * shall not be
present

shall not be
present

B-B, B-T: 0 or 1 Clause A.1.3 f, g, h
B-LT, B-LTA: 0

ETSI

ETSI TS 119 182-1 V1.1.1 (2021-03)44

Header parameters/Elements in etsiU
unsigned header parameter/Services

Presence in
B-B level

Presence in
B-T level

Presence in
B-LT level

Presence in
B-LTA level

Cardinality References Additional
requirements

and notes
rVals * * conditioned

presence
conditioned
presence

0 or 1 Clause 5.3.5.2 i, 8

rRefs * * shall not be
present

shall not be
present

B-B, B-T: 0 or 1 Clause A.1.2

B-LT, B-LTA: 0
arVals * * conditioned

presence
conditioned
presence

0 or 1 Clause 5.3.5.4 i, 9

arRefs * * shall not be
present

shall not be
present

B-B, B-T: 0 or 1 Clause A.1.4 h
B-LT, B-LTA: 0

sigRTst * * shall not be
present

shall not be
present

B-B, B-T: ≥ 0 Clause A.1.5.1

B-LT, B-LTA: 0
rfsTst * * shall not be

present
shall not be

present
B-B, B-T: ≥ 0 Clause A.1.5.2

B-LT, B-LTA: 0
Service: Incorporation of validation data for
electronic time-stamps

* * shall be provided shall be provided - - j, k
10

 SPO: tstVD * * conditioned
presence

conditioned
presence

≥ 0 Clause 5.3.6.1

 SPO: certificate and revocation values
embedded in the electronic time-stamp itself

* * conditioned
presence

conditioned
presence

≥ 0 -

arcTst * * * shall be present ≥ 1 Clause 5.3.6.2 l, m

ETSI

ETSI TS 119 182-1 V1.1.1 (2021-03)45

Additional requirements:

a) Requirement for sigT. The generator shall include the claimed UTC time when the signature was generated
as content of the sigT header parameter.

b) Requirement for sigPSt. This header parameter may be incorporated into the JAdES signature only if the
sigPId is also incorporated and it contains the hashAV member with the digest value of the signature policy
document. Otherwise the sigPSt shall not be incorporated into the JAdES signature.

c) Requirement for sigTst. Each sigTst shall contain only one electronic time-stamp.

d) Requirement for sigTst. The electronic time-stamps encapsulated within the sigTst shall be created
before the signing certificate has been revoked or has expired.

e) Requirement for xVals and axVals. Duplication of certificate values within the signature should be
avoided.

f) Requirement for xRefs and axRefs. The references to certificates should not include the kid member.

g) Requirement for xRefs and axRefs. The references to certificates shall not include the x5u member.

h) Requirement for axRefs and arRefs. The axRefs and arRefs may be used when a at least an attribute
certificate or a signed assertion is incorporated into the JAdES signature. Otherwise, axRefs and arRefs
shall not be used.

i) Requirement for rVals and arVals. Duplication of revocation values within the signature should be
avoided.

j) Requirement for service "incorporation of validation data for electronic time-stamps". The validation data for
electronic time-stamps shall be present within the tstVD or embedded in the electronic time-stamp itself.

k) Requirement for service "incorporation of validation data for electronic time-stamps". The validation data for
electronic time-stamps should be included within tstVD.

l) Requirement for arcTst. Each arcTst may contain more than one electronic time-stamp issued by
different TSAs.

m) Requirement for arcTst. Before generating and incorporating a new arcTst, all the validation material
required for validating the JAdES signature shall be included. This validation material shall include all the
certificates and all certificate status information (like CRLs or OCSP responses) required for:

- validating the signing certificate;

- validating the signing certificate of any countersignature incorporated into the signature;

- validating any attribute certificate or signed assertion present in the signature; and

- validating the signing certificate of any previous electronic time-stamp already incorporated into the
signature within any JAdES electronic time-stamp container component (including any arcTst).

NOTE 2: On cty, and ctys within sigD: see clauses 5.1.4 and 5.2.8.1 of the present document for details of
their conditioned presence.

NOTE 3: On x5c and service "signing a reference of the signing certificate". Clause 5.1.7 specifies the conditions
that decide the presence or absence of the x5c, x5t#S256, and x5t#o header parameters in a JAdES
signature.

NOTE 4: On crit. Clause 5.1.9 specifies the conditions that decide the presence or absence of the crit header
parameter in a JAdES signature.

NOTE 5: On sigTst, adoTst. Several instances of these components can be incorporated into the JAdES
signature, coming from different TSAs.

NOTE 6: On xVals. Clause 5.3.5.1 specifies the conditions that decide the presence or absence of the xVals
element of etsiU JSON array in a JAdES signature.

ETSI

ETSI TS 119 182-1 V1.1.1 (2021-03)46

NOTE 7: On axVals. Clause 5.3.5.3 specifies the conditions that decide the presence or absence of the axVals
element of etsiU JSON array in a JAdES signature.

NOTE 8: On rVals. Clause 5.3.5.2 specifies the conditions that decide the presence or absence of the rVals
element of etsiU JSON array in a JAdES signature.

NOTE 9: On arVals. Clause 5.3.5.4 specifies the conditions that decide the presence or absence of the arVals
element of etsiU JSON array in a JAdES signature.

NOTE 10: On service "incorporation of validation data for electronic time-stamps": the incorporation of the
validation material of the electronic time-stamps ensures that the JAdES signature actually contains all
the validation material needed.

ETSI

ETSI TS 119 182-1 V1.1.1 (2021-03)47

Annex A (normative):
Additional components Specification

A.1 Components for validation data

A.1.1 The xRefs JSON array
Semantics

The xRefs JSON array:

1) shall contain the reference to the certificate of the trust anchor if such certificate does exist, and the references
to CA certificates within the signing certificate path;

2) shall not contain the reference to the signing certificate;

3) may contain references to certificates in the path of the certificates used for signing the electronic time-stamps
already incorporated into the signature when the xRefs is incorporated, including references to the electronic
time-stamps' signing certificates and references to certificates of trust anchors if such certificates do exist;

4) may contain references to the certificates used to sign CRLs or OCSP responses for certificates referenced by
references in 1) and 3), and references to certificates within their respective certificate paths; and

5) shall not contain references to CA certificates that pertain exclusively to the certificate paths of certificates
used to sign attribute certificates or signed assertions within srAts.

NOTE 1: The references to certificates exclusively used in the validation of attribute certificate or signed assertions
are stored within axRefs (see clause A.1.3).

Syntax

The xRefs member shall be defined as in the JSON Schema file whose location is detailed in clause B.1, and is copied
below for information.

"x5Ids": {
 "type": "array",
 "items": {"$ref": "#/definitions/certId"},
 "minItems": 1
},

"certId":{
 "type": "object",
 "properties":{
 "digAlg": {"type": "string"},
 "digVal": {"type": "string", "contentEncoding": "base64"},
 "kid": {"type": "string", "contentEncoding" : "base64"},
 "x5u": {"type": "string", "format": "uri-reference"}
 },
 "required": ["digAlg","digVal"] ,
 "additionalProperties": false
},

"xRefs": {"$ref": "#/definitions/x5Ids"},

The digAlg member of shall identify the digest algorithm.

The digVal member shall contain the base64url-encoded value of the digest computed on the DER-encoded
certificate.

The content of kid member shall be the base64 encoding of one DER-encoded instance of type IssuerSerial type
defined in IETF RFC 5035 [5].

ETSI

ETSI TS 119 182-1 V1.1.1 (2021-03)48

NOTE 2: The information in the kid member is only a hint, that can help to identify the certificate whose digest
matches the value present in the reference. But the binding information is the digest of the certificate.

The x5u member shall provide an indication of where the referenced certificate can be found.

NOTE 3: It is intended that the x5u member is used as a hint, as implementations can have alternative ways for
retrieving the referenced certificate if it is not found at the referenced place.

If at least one of the following: xVals, axVals, or the arcTst, is incorporated into the signature, all the certificates
referenced in xRefs shall be present elsewhere in the signature.

A.1.2 The rRefs JSON object
Semantics

The rRefs JSON object:

1) shall contain a reference to a revocation value for the signing certificate;

2) shall contain the references to the revocation values (e.g. CRLs or OCSP values) corresponding to CA
certificates within the signing certificate path. It shall not contain references to revocation values for the trust
anchor;

NOTE 1: A trust anchor is by definition trusted, thus no revocation information for the trust anchor is used during
the validation.

3) may contain references to revocation values (e.g. CRLs or OCSP values) corresponding to certificates in the
path of signing certificates of electronic time-stamps already incorporated into the signature when the rRefs
is incorporated. It shall not contain references to revocation values for the trust anchors of these certificates;

4) may contain references to the revocation values corresponding to certificates used to sign CRLs or OCSP
responses referenced in references from 1), 2) and 3) and to certificates within their respective certificate
paths; and

5) shall not contain references to the revocation values corresponding to CA certificates that pertain exclusively
to the certificate paths of certificates used to sign attribute certificates or signed assertions within srAts.

NOTE 2: The references to revocation values exclusively used in the validation of attribute certificate or signed
assertions are stored within arRefs (see clause A.1.4).

References within rRefs may be references to CRLs, OCSP responses and other type of revocation data.

Syntax

rRefs shall be defined as in the JSON Schema file whose location is detailed in clause B.1, and is copied below for
information.

"rRefs": {
 "type": "object",
 "properties": {
 "crlRefs": {
 "type": "array",
 "items": {
 "type": "object",
 "properties": {
 "digAlg": {"type": "string"},
 "digVal": {"type": "string", "contentEncoding": "base64"},
 "crlId": {
 "type": "object",
 "properties": {
 "issuer": {"type": "string", "contentEncoding" : "base64"},
 "issueTime": {"type": "string", "format": "date-time"},
 "number": {"type": "number"},
 "uri": {"type": "string", "format": "uri-reference"}
 },
 "required": ["issuer","issueTime"],
 "additionalProperties": false
 }

ETSI

ETSI TS 119 182-1 V1.1.1 (2021-03)49

 },
 "required": ["digAlg","digVal"] ,
 "additionalProperties": false
 },
 "minItems": 1
 },
 "ocspRefs":{
 "type": "array",
 "items": {
 "type": "object",
 "properties": {
 "ocspId": {
 "type": "object",
 "properties": {
 "responderId": {
 "type": "object",
 "properties": {
 "byName": {"type": "string", "contentEncoding" : "base64"},
 "byKey": {"type": "string", "contentEncoding" : "base64"}
 },
 "oneOf":[
 {
 "required": ["byName"]
 },
 {
 "required": ["byKey"]
 }
],
 "additionalProperties": false
 },
 "producedAt": {"type": "string", "format": "date-time"},
 "uri": {"type": "string", "format": "uri-reference"}
 },
 "required": ["responderId", "producedAt"],
 "additionalProperties": false
 },
 "digAlg": {"type": "string"},
 "digVal": {"type": "string", "contentEncoding": "base64"}
 },
 "required": ["ocspId","digAlg","digVal"],
 "additionalProperties": false
 },
 "minItems": 1
 },
 "otherRefs": {
 "type": "array",
 "items": {"type":"object"},
 "minItems": 1
 }
 },
 "minProperties": 1,
 "additionalProperties": false
},

Empty rRefs shall not be incorporated.

The crlRefs member shall contain an array of references to CRLs.

Each item within the CRLRefs array shall contain one reference to one CRL.

The digAlg and digVal members of one item within the crlRefs array shall contain one indication of a digest
algorithm, and the base64url encoding of the digest value of the DER-encoded referenced CRL, respectively.

The crlId member needs not to be present if the referenced CRL can be inferred from other information.

The crlId member of the items within the crlRefs array shall include the name issuer in its issuer member.

The value of crlId's issuer member shall fulfil the requirements specified in IETF RFC 3494 [11] for strings
representing Distinguished Names.

The crlId member of the items within the crlRefs array shall include the time when the CRL was issued in its
issueTime member.

ETSI

ETSI TS 119 182-1 V1.1.1 (2021-03)50

The crlId member of the items within the crlRefs array may include the number of the CRL in its number
member.

NOTE 3: The number member is an optional hint helping to get the CRL whose digest matches the value present
in the reference.

The crlId's uri member shall indicate one place where the referenced CRL can be found.

NOTE 4: It is intended that this component be used as a hint, as implementations can have alternative ways for
retrieving the referenced CRL if it is not found at the referenced place.

If one or more of the identified CRLs are a Delta CRL, this component shall include references to the set of CRLs
required to provide complete revocation lists.

The ocspRefs member shall contain a non-empty array of references to OCSP responses.

Each item within the ocspRefs array shall contain one reference to one OCSP response.

The ocspId member of the items within the ocspRefs array shall include an identifier of the responder in its
responderID member.

If the responder is identified by its name, then the responderID's byName member shall contain the base64
encoding of the DER-encoded aforementioned name.

If the responder is identified by the digest of the server's public key computed as mandated in IETF RFC 6960 [9], then
the base64 encoding of the DER-encoded of byKey field specified in IETF RFC 6960 [9] shall appear within the
responderID's byKey member.

The ocspId member of the items within the ocspRefs array shall include the generation time of the OCSP response
in its producedAt member.

The value in ocspId's producedAt member shall indicate the same time as the time indicated by the ProducedAt
field of the referenced OCSP response.

The ocspId's uri member shall indicate one place where the referenced OCSP response can be found.

NOTE 5: This value is not the address where the OCSP service can be reached. In addition to that, it is intended
that this component be used as a hint, as implementations can have alternative ways for retrieving the
referenced OCSP response if it is not found at the referenced place.

The digAlg and digVal members of the items within the ocspRefs array shall contain one indication of a digest
algorithm, and the base64url encoding of the DER-encoded OCSPResponse field defined in IETF RFC 6960 [9],
respectively.

References to alternative forms of validation data may be included in this component making use of the otherRefs
member, a sequence whose items may contain any kind of information. Their semantics and syntax are outside the
scope of the present document.

If at least one of the following: rVals, arVals, or the arcTst, is incorporated into the signature, all the revocation
data referenced in rRefs shall be present elsewhere in the signature.

A.1.3 The axRefs JSON array
Semantics

The axRefs JSON array:

1) shall contain, if they are not present within xRefs or x5t#o header parameters, the references to the trust
anchors if certificates exist for them, and the references to CA certificates within the path of the signing
certificate(s) of the attribute certificate(s) and signed assertion(s) incorporated into the JAdES signature.
References present within xRefs or x5t#o header parameters should not be included;

ETSI

ETSI TS 119 182-1 V1.1.1 (2021-03)51

2) shall contain, if they are not present within xRefs or x5t#o header parameters, the reference(s) to the
signing certificate(s) of the attribute certificate(s) and signed assertion(s) incorporated into the JAdES
signature. References present within xRefs or x5t#o header parameters should not be included; and

3) may contain references to the certificates used to sign CRLs or OCSP responses and certificates within their
respective certificate paths, which are used for validating the signing certificate(s) of the attribute certificate(s)
and signed assertion(s) incorporated into the JAdES signature. References present within xRefs or x5t#o
should not be included.

Syntax

axRefs shall be defined as in the JSON Schema file whose location is detailed in clause B.1, and is copied below for
information.

"axRefs": {"$ref": "#/definitions/x5Ids"},

If at least one of the following: xVals, axVals, or the arcTst, is incorporated into the signature, all the certificates
referenced in axRefs shall be present elsewhere in the signature.

NOTE 1: The information in the kid member is only a hint, that can help to identify the certificate whose digest
matches the value present in the reference. But the binding information is the digest of the certificate.

NOTE 2: It is intended that the x5u member is used as a hint, as implementations can have alternative ways for
retrieving the referenced certificate if it is not found at the referenced place.

A.1.4 The arRefs JSON object
Semantics

The arRefs JSON object:

1) Shall contain, if they are not present within rRefs, the references to the revocation values corresponding to
CA certificates within the path(s) of the signing certificate(s) of the attribute certificate(s) and signed
assertion(s) incorporated into the JAdES signature. It shall not contain a revocation value for the trust anchors.
References present within rRefs should not be included.

NOTE: A trust anchor is by definition trusted, thus no revocation information for the trust anchor is used during
the validation.

2) Shall contain, if they are not present within the rRefs, the references to the revocation value(s) for the
signing certificate(s) of the attribute certificate(s) and signed assertion(s) incorporated into the JAdES
signature. References present within rRefs should not be included. And

3) May contain references to the revocation values on certificates used to sign CRLs or OCSP responses and
certificates within their respective certificate paths, which are used for validating the signing certificate(s) of
the attribute certificate(s) and signed assertion(s) incorporated into the JAdES signature. References present
within rRefs component should not be included.

Syntax

arRefs shall be defined as in the JSON Schema file whose location is detailed in clause B.1, and is copied below for
information.

"arRefs": {"$ref": "#/definitions/rRefs"},

If one or more of the identified CRLs are a Delta CRL, this component shall include references to the set of CRLs
required to provide complete revocation lists.

If at least one of the following: rVals, arVals, or the arcTst, is incorporated into the signature, all the revocation
data referenced in arRefs shall be present elsewhere in the signature.

ETSI

ETSI TS 119 182-1 V1.1.1 (2021-03)52

A.1.5 Time-stamps on references to validation data

A.1.5.1 The sigRTst JSON object

A.1.5.1.1 General

Semantics

The sigRTst JSON object shall encapsulate electronic time-stamps on the JWS Signature Value, the signature time-
stamp, if present, and the JAdES components containing references to validation data.

Syntax

The sigRTst JSON object shall be defined as in the JSON Schema file whose location is detailed in clause B.1, and
is copied below for information.

"sigRTst": {"$ref": "#/definitions/tstContainer"},

This JSON object shall contain an electronic time-stamp that time-stamps the member encapsulating the JWS Signature
Value, and the following components when they are present: sigTst, xRefs, rRefs, axRefs, and arRefs.

If none of the following components: xRefs, rRefs, axRefs, and arRefs is present, the sigRTst JSON object
shall not be generated.

A.1.5.1.2 Computation of the message imprint with Base64url incorporation

The message imprint computation input shall be the concatenation of the components, in the order they are listed below:

1) The value of the base64url-encoded JWS Signature Value.

NOTE: If the JAdES signature is serialized with JWS JSON Serialization, this is the value within the member
signature.

2) The character '.'.

3) Those among the following components that appear before sigRTst, in their order of appearance within the
etsiU array, base64url-encoded:

- sigTst if it is present;

- xRefs if it is present;

- rRefs if it is present;

- axRefs if it is present; and

- arRefs if it is present.

A.1.5.1.3 Computation of the message imprint with JSON clear incorporation

The message imprint computation input shall be the concatenation of the components, in the order they are listed below:

1) The value of the base64url-encoded JWS Signature Value.

NOTE: If the JAdES signature is serialized with JWS JSON Serialization, this is the value within the member
signature.

2) The character '.'.

3) Those among the following components that appear before sigRTst, in their order of appearance within the
etsiU array, canonicalized using the canonicalization algorithm identified in canonAlg member:

- sigTst if it is present;

ETSI

ETSI TS 119 182-1 V1.1.1 (2021-03)53

- xRefs if it is present;

- rRefs if it is present;

- axRefs if it is present; and

- arRefs if it is present.

A.1.5.2 The rfsTst JSON object

A.1.5.2.1 Semantics and syntax

Semantics

The rfsTst JSON object shall encapsulate electronic time-stamps on the JAdES components containing references to
validation data.

Syntax

The rfsTst JSON object shall be defined as in the JSON Schema file whose location is detailed in clause B.1, and is
copied below for information.

"rfsTst": {"$ref": "#/definitions/tstContainer"},

This JSON object shall contain an electronic time-stamp that time-stamps the following JAdES components when they
are present: xRefs, rRefs, axRefs, and arRefs.

If none of the aforementioned JAdES components is present, the rfsTst JSON object shall not be generated.

A.1.5.2.2 Computation of the message imprint with Base64url incorporation

The message imprint computation input shall be the concatenation of the components listed below, base64url encoded,
in their order of appearance within the etsiU array:

• xRefs if it is present;

• rRefs if it is present;

• axRefs if it is present; and

• arRefs if it is present.

A.1.5.2.3 Computation of the message imprint with clear JSON incorporation

The message imprint computation input shall be the concatenation of the components listed below, canonicalized using
the canonicalization algorithm identified in canonAlg member, in their order of appearance within the etsiU array:

• xRefs if it is present;

• rRefs if it is present;

• axRefs if it is present; and

• arRefs if it is present.

ETSI

ETSI TS 119 182-1 V1.1.1 (2021-03)54

Annex B (normative):
JSON Schema files

B.1 JSON Schema files location for JAdES components
The file at https://forge.etsi.org/rep/esi/x19_182_JAdES/raw/v1.1.1/19182-jsonSchema.json (19182-jsonSchema.json)
contains the definitions of the components specified in the present document.

The file at https://forge.etsi.org/rep/esi/x19_182_JAdES/raw/v1.1.1/19182-protected-jsonSchema.json
(19182-protected-jsonSchema.json) may be used by implementers to validate the conformance of the JWS Protected
Header of a JAdES signature against the JSON Schema definitions within 19182-jsonSchema.json.

The file at https://forge.etsi.org/rep/esi/x19_182_JAdES/raw/v1.1.1/19182-unprotected-jsonSchema.json
(19182-unprotected-jsonSchema.json) may be used by implementers to validate the conformance of the JWS
Unprotected Header of a JAdES signature against the JSON Schema definitions within 19182-jsonSchema.json.

Additionally, ETSI provides additional JSON schema files, for facilitating implementers to check the structure of JWS
signatures. In case of conflicts between these JSON schemas and the IETF RFC 7515 [2], IETF RFC 7517 [i.16],
IETF RFC 7797 [14], IETF RFC 7515 [2], IETF RFC 7517 [i.16] and IETF RFC 7797 [14] shall take precedence.

Below follows the list of these additional JSON schema files:

• The file at https://forge.etsi.org/rep/esi/x19_182_JAdES/raw/v1.1.1/rfcs/rfc7515.json (rfc7515.json). This file
contains JSON schema definitions for the structures defined in IETF RFC 7515 [2].

• The file at https://forge.etsi.org/rep/esi/x19_182_JAdES/raw/v1.1.1/rfcs/rfc7515-jws.json (rfc7515-jws.json).
This file may be used by implementers for checking conformance of a JWS signature against the JSON
Schema definitions in file rfc7515.json.

• The file at https://forge.etsi.org/rep/esi/x19_182_JAdES/raw/v1.1.1/rfcs/rfc7515-protected.json
(rfc7515-protected.json). This file may be used by implementers for checking conformance of the JWS
Protected Header of a JWS signature against the JSON Schema definitions in file rfc7515.json.

• The file at https://forge.etsi.org/rep/esi/x19_182_JAdES/raw/v1.1.1/rfcs/rfc7515-unprotected.json
(rfc7515-unprotected.json). This file may be used by implementers for checking conformance of the JWS
Unprotected Header of a JWS signature against the JSON Schema definitions in file rfc7515.json.

• The file at https://forge.etsi.org/rep/esi/x19_182_JAdES/raw/v1.1.1/rfcs/rfc7517.json (rfc7517.json). This file
contains JSON schema definitions for the structures defined in IETF RFC 7517 [i.16].

• The file at https://forge.etsi.org/rep/esi/x19_182_JAdES/raw/v1.1.1/rfcs/rfc7797.json (rfc7797.json). This file
contains JSON schema definitions for the structures defined in IETF RFC 7797 [14].

https://forge.etsi.org/rep/esi/x19_182_JAdES/raw/v1.1.1/19182-jsonSchema.json
https://forge.etsi.org/rep/esi/x19_182_JAdES/raw/v1.1.1/19182-protected-jsonSchema.json
https://forge.etsi.org/rep/esi/x19_182_JAdES/raw/v1.1.1/19182-unprotected-jsonSchema.json
https://forge.etsi.org/rep/esi/x19_182_JAdES/raw/v1.1.1/rfcs/rfc7515.json
https://forge.etsi.org/rep/esi/x19_182_JAdES/raw/v1.1.1/rfcs/rfc7515-jws.json
https://forge.etsi.org/rep/esi/x19_182_JAdES/raw/v1.1.1/rfcs/rfc7515-protected.json
https://forge.etsi.org/rep/esi/x19_182_JAdES/raw/v1.1.1/rfcs/rfc7515-unprotected.json
https://forge.etsi.org/rep/esi/x19_182_JAdES/raw/v1.1.1/rfcs/rfc7517.json
https://forge.etsi.org/rep/esi/x19_182_JAdES/raw/v1.1.1/rfcs/rfc7797.json

ETSI

ETSI TS 119 182-1 V1.1.1 (2021-03)55

Annex C (informative):
Correspondence between XAdES tags and JAdES tags

C.1 Correspondence between XAdES qualifying
properties tags and JAdES component tags

Table C.1 shows the correspondence between the tags used by the XAdES qualifying properties and the tags used by
the JAdES components.

Table C.1: Correspondence between XAdES and JAdES tags

XAdES tag JAdES tag
UnsignedProperties etsiU
SigningTime sigT
SigningCertificateV2 (reference to the

signing certificate only -for
extencing semantics of x5t#256
specified in IETF RFC 7515 [2])

x5t#o

SigningCertificateV2 (references to the
signing certificate and other
certificates within the cert path,
for mimiking XAdES and CAdES).

sigX5ts

SigaturePolicyIdentifier sigPId
SignatureProductionPlaceV2 sigPl
SignerRoleV2 srAts
DataObjectFormat sdF
AllDataObjectsTimeStamp adoTst
CommitmentTypeIndication srCms
CounterSignature cSig
IndividualDataObjectsTimeStamp idoTst
SignaturePolicyStore sigPSt
SignatureTimeStamp sigTst
OIdentifier oId
EncapsualtedPKIDataType pkiOb
ArchiveTimeStamp arcTst
RefsOnlyTimeStampV2 rfsTst
SigAndRefsTimeStampV2 sigRTst
CertificateValues xVals
RevocationValues rVals
AttrAuthoritiesCVals axVals
AttributeRevocationValues arVals
TimeStampValidationData tstVD
CompleteCertificateRefs xRefs
RevocationRefs rRefs
AttributeCertificateRefsV2 axRefs
AttributeRevocationRefs arRefs

ETSI

ETSI TS 119 182-1 V1.1.1 (2021-03)56

Annex D (normative):
Alternative mechanisms for long term availability and
integrity of validation data
There may be mechanisms to achieve long-term availability and integrity of validation data different from the ones
described in clause 5.3.6.

If such a mechanism is incorporated using an unsigned component into the signature, then for this mechanism shall be
specified:

1) The clear specification of the semantics and syntax of the component including its unique identifier.

2) The strategy of how this mechanism guarantees that all necessary parts of the signature are protected by this
component.

3) The strategy of how to handle signatures containing components defined in the present document.

EXAMPLE: The objects defined in IETF RFC 4998 [i.10], Annex A are examples of such alternative
mechanisms but they only handle points 1) and 2).

ETSI

ETSI TS 119 182-1 V1.1.1 (2021-03)57

Annex E (normative):
Digest algorithms identifiers for JAdES signatures
This annex defines cryptographic digest algorithms and identifiers to be used with the JAdES signatures.

The digest algorithms are the digest algorithms identified in ETSI TS 119 312 [21].

Table E.1: Identifiers for digest algorithms

Short hash function name Identifier References
SHA-224 S224 FIPS Publication 180-4 [22]
SHA-256 S256 FIPS Publication 180-4 [22]
SHA-384 S384 FIPS Publication 180-4 [22]
SHA-512 S512 FIPS Publication 180-4 [22]
SHA-512/256 S512-256 FIPS Publication 180-4 [22]
SHA3-256 S3-256 FIPS Publication 202 [23]
SHA3-384 S3-384 FIPS Publication 202 [23]
SHA3-512 S3-512 FIPS Publication 202 [23]

ETSI

ETSI TS 119 182-1 V1.1.1 (2021-03)58

Annex F (informative):
Change History

Date Version Information about changes

January 2020 0.0.1 Version based on previous version circulated in October 2019 at ESI 68 (with a wrong
TS number) after amendments of relevant parts.

January 2020 0.0.2 Consolidated version for getting feedback from ETSI ESI members and liaised entities.

May 2020 0.0.3 Consolidated version with changes implemented as per disposition to comments for
version 0.0.2.

September 2020 0.0.4 Incorporated resolutions for all the comments received for v0.0.3.
November 2020 0.0.5 Incorporated resolutions for comments received for v0.0.4.

September 2020 0.0.6
Incorporated resolutions for comments received for v0.0.5. They include some changes
in JSON schema. New JSON schema files have been added to the package, some
referring to JWS.

January 2021 0.0.7 Incorporated resolutions for comments to v0.0.6 received during the Remote Consensus
process.

ETSI

ETSI TS 119 182-1 V1.1.1 (2021-03)59

History
Document history

V1.1.1 March 2021 Publication

	Intellectual Property Rights
	Foreword
	Modal verbs terminology
	Introduction
	1 Scope
	2 References
	2.1 Normative references
	2.2 Informative references

	3 Definition of terms, symbols, abbreviations and terminology
	3.1 Terms
	3.2 Symbols
	3.3 Abbreviations
	3.4 Terminology

	4 General Requirements
	5 Header parameters semantics and syntax
	5.1 Use of header parameters defined in IETF RFC 7515 and IETF RFC 7797
	5.1.1 Introduction
	5.1.2 The alg (X.509 URL) header parameter
	5.1.3 The cty (content type) header parameter
	5.1.4 The kid (key identifier) header parameter
	5.1.5 The x5u (X.509 URL) header parameter
	5.1.6 The x5t (X.509 Certificate SHA-1 Thumbprint) header parameter
	5.1.7 The x5t#S256 (X.509 Certificate SHA-256 Thumbprint) header parameter
	5.1.8 The x5c (X.509 Certificate Chain) header parameter
	5.1.9 The crit (critical) header parameter
	5.1.10 The b64 header parameter

	5.2 New signed header parameters
	5.2.1 The sigT (claimed signing time) header parameter
	5.2.2 Header parameters for certificate references
	5.2.2.1 Introduction
	5.2.2.2 The x5t#o (X509 certificate digest) header parameter
	5.2.2.3 The sigX5ts (X509 certificates digests) header parameter

	5.2.3 The srCms (signer commitments) header parameter
	5.2.4 The sigPl (signature production place) header parameter
	5.2.5 The srAts (signer attributes) header parameter
	5.2.6 The adoTst (signed data time-stamp) header parameter
	5.2.7 The sigPId (signature policy identifier) header parameter
	5.2.7.1 Semantics and syntax
	5.2.7.2 Signature policy qualifiers

	5.2.8 The sigD header parameter
	5.2.8.1 Semantics and Syntax
	5.2.8.2 Mechanism HttpHeaders
	5.2.8.3 Mechanisms supported by URI references
	5.2.8.3.1 General requirements
	5.2.8.3.2 Mechanism ObjectIdByURI
	5.2.8.3.3 Mechanism ObjectIdByURIHash

	5.3 New unsigned header parameter
	5.3.1 The etsiU header parameter
	5.3.2 The cSig (counter signature) JSON object
	5.3.3 The sigPSt JSON object
	5.3.4 The sigTst JSON object
	5.3.5 JSON objects for validation data values
	5.3.5.1 The xVals JSON array
	5.3.5.2 The rVals JSON object
	5.3.5.3 The axVals JSON array
	5.3.5.4 The arVals JSON object

	5.3.6 JSON values for long term availability and integrity of validation material
	5.3.6.1 The tstVD JSON object
	5.3.6.2 The arcTst JSON object
	5.3.6.2.1 Semantics and syntax
	5.3.6.2.2 Computation of message-imprint

	5.4 Generally useful syntax
	5.4.1 The oId data type
	5.4.2 The pkiOb data type
	5.4.3 Container for electronic time-stamps
	5.4.3.1 Introduction
	5.4.3.2 Containers for electronic time-stamps
	5.4.3.3 The tstContainer type

	6 JAdES baseline signatures
	6.1 Signature levels
	6.2 General requirements
	6.2.1 Algorithm requirements
	6.2.2 Notation for requirements

	6.3 Requirements on JAdES components and services

	Annex A (normative): Additional components Specification
	A.1 Components for validation data
	A.1.1 The xRefs JSON array
	A.1.2 The rRefs JSON object
	A.1.3 The axRefs JSON array
	A.1.4 The arRefs JSON object
	A.1.5 Time-stamps on references to validation data
	A.1.5.1 The sigRTst JSON object
	A.1.5.1.1 General
	A.1.5.1.2 Computation of the message imprint with Base64url incorporation
	A.1.5.1.3 Computation of the message imprint with JSON clear incorporation

	A.1.5.2 The rfsTst JSON object
	A.1.5.2.1 Semantics and syntax
	A.1.5.2.2 Computation of the message imprint with Base64url incorporation
	A.1.5.2.3 Computation of the message imprint with clear JSON incorporation

	Annex B (normative): JSON Schema files
	B.1 JSON Schema files location for JAdES components

	Annex C (informative): Correspondence between XAdES tags and JAdES tags
	C.1 Correspondence between XAdES qualifying properties tags and JAdES component tags

	Annex D (normative): Alternative mechanisms for long term availability and integrity of validation data
	Annex E (normative): Digest algorithms identifiers for JAdES signatures
	Annex F (informative): Change History
	History

