

ETSI TS 102 796 V1.3.1 (2015-10)

Hybrid Broadcast Broadband TV

TECHNICAL SPECIFICATION

ETSI

ETSI TS 102 796 V1.3.1 (2015-10)2

Reference
RTS/JTC-030

Keywords
broadcasting, DVB, HTML, internet, multimedia

ETSI

650 Route des Lucioles
F-06921 Sophia Antipolis Cedex - FRANCE

Tel.: +33 4 92 94 42 00 Fax: +33 4 93 65 47 16

Siret N° 348 623 562 00017 - NAF 742 C

Association à but non lucratif enregistrée à la
Sous-Préfecture de Grasse (06) N° 7803/88

Important notice

The present document can be downloaded from:
http://www.etsi.org/standards-search

The present document may be made available in electronic versions and/or in print. The content of any electronic and/or
print versions of the present document shall not be modified without the prior written authorization of ETSI. In case of any

existing or perceived difference in contents between such versions and/or in print, the only prevailing document is the
print of the Portable Document Format (PDF) version kept on a specific network drive within ETSI Secretariat.

Users of the present document should be aware that the document may be subject to revision or change of status.
Information on the current status of this and other ETSI documents is available at

http://portal.etsi.org/tb/status/status.asp

If you find errors in the present document, please send your comment to one of the following services:
https://portal.etsi.org/People/CommiteeSupportStaff.aspx

Copyright Notification

No part may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying
and microfilm except as authorized by written permission of ETSI.

The content of the PDF version shall not be modified without the written authorization of ETSI.
The copyright and the foregoing restriction extend to reproduction in all media.

© European Telecommunications Standards Institute 2015.

© European Broadcasting Union 2015.
All rights reserved.

DECTTM, PLUGTESTSTM, UMTSTM and the ETSI logo are Trade Marks of ETSI registered for the benefit of its Members.

3GPPTM and LTE™ are Trade Marks of ETSI registered for the benefit of its Members and
of the 3GPP Organizational Partners.

GSM® and the GSM logo are Trade Marks registered and owned by the GSM Association.
HbbTV® is a registered trademark of HbbTV Association.

http://www.etsi.org/standards-search
http://portal.etsi.org/tb/status/status.asp
https://portal.etsi.org/People/CommiteeSupportStaff.aspx

ETSI

ETSI TS 102 796 V1.3.1 (2015-10)3

Contents
Intellectual Property Rights .. 12

Foreword ... 12

Modal verbs terminology .. 12

Introduction .. 13

1 Scope .. 14

2 References .. 15

2.1 Normative references ... 15

2.2 Informative references .. 18

3 Definitions and abbreviations ... 18

3.1 Definitions .. 18

3.2 Abbreviations ... 19

4 Overview .. 21

4.1 Applications ... 21

4.2 Architecture (informative) .. 22

4.2.1 Introduction... 22

4.2.2 System overview ... 22

4.2.3 Functional terminal components ... 23

4.3 Terminal capabilities and extensions .. 24

4.4 Specification overview ... 24

4.5 Referenced W3C Specifications ... 26

5 User experience (informative) .. 26

5.0 Introduction .. 26

5.1 Visual appearance of interactive applications .. 26

5.1.1 Balance of video and application .. 26

5.1.2 Service selection and event change ... 27

5.2 User input ... 28

5.3 Access to interactive applications .. 29

5.3.1 Overview of ways of access .. 29

5.3.2 Inaccessibility of applications ... 29

5.3.3 Starting broadcast-related autostart applications .. 30

5.3.3.1 Possible states of an autostart application ... 30

5.3.3.2 "Red Button" applications ... 31

5.3.4 Starting digital teletext applications .. 31

5.3.5 Starting broadcast-independent applications .. 32

5.4 Exiting and hiding broadcast-related applications .. 33

5.5 Companion Screens .. 33

5.6 User interface issues ... 34

5.6.1 Advertising broadcast applications ... 34

5.6.2 Co-existence with CI and CI Plus MMI.. 34

5.6.3 Encrypted channels ... 34

6 Service and application model ... 34

6.1 Application model .. 34

6.2 Application lifecycle .. 35

6.2.1 Introduction... 35

6.2.2 Starting and stopping applications .. 35

6.2.2.1 Summary ... 35

6.2.2.2 Behaviour when selecting a broadcast service .. 36

6.2.2.3 Behaviour while a broadcast service is selected .. 37

6.2.2.4 Time-shifting behaviour .. 40

6.2.2.5 Simultaneous broadcast/broadband/CI Plus application signalling ... 40

6.2.2.5.1 Priority ... 40

6.2.2.5.2 Not currently operational broadband connection ... 41

6.2.2.5.3 Currently operational broadband connection and error accessing initial page 41

ETSI

ETSI TS 102 796 V1.3.1 (2015-10)4

6.2.2.5.4 Not currently operational CI Plus protocol .. 41

6.2.2.5.5 Currently operational CI Plus connection and error accessing file system 41

6.2.2.5.6 Application launch failure ... 41

6.2.2.6 Broadcast-independent applications .. 41

6.2.2.6.1 Lifecycle issues ... 41

6.2.2.7 Suspension of access to broadcast resources ... 42

6.2.2.8 Behaviour on encrypted broadcast services .. 43

6.2.2.9 Applications launched from non-HbbTV® application environments .. 44

6.2.2.10 Parental ratings .. 44

6.2.2.11 Other general behaviour .. 44

6.2.3 Application lifecycle example (informative) .. 45

6.3 Application boundary ... 46

6.3.1 Introduction... 46

6.3.2 Origin .. 46

6.3.3 Application boundary definition ... 46

7 Formats and protocols .. 48

7.1 General formats and protocols .. 48

7.1.1 Graphic formats .. 48

7.1.2 Audio description .. 48

7.2 Broadcast-specific format and protocols .. 48

7.2.1 System, video, audio and subtitle formats .. 48

7.2.2 Protocol for application transport ... 48

7.2.3 Signalling of applications ... 49

7.2.3.1 Broadcast signalling .. 49

7.2.3.2 Broadcast-independent application signalling ... 52

7.2.4 Synchronization .. 53

7.2.5 DSM-CC carousel ... 54

7.2.5.1 Mounting related constraints ... 54

7.2.5.2 Initial carousel mounting ... 54

7.2.5.3 Subsequent carousel mountings (during the lifecycle of an application) .. 54

7.2.5.4 Constraints .. 54

7.2.6 Data services ... 54

7.2.7 File system acceleration .. 55

7.2.7.1 Introduction ... 55

7.2.7.2 HbbTV® stored groups descriptor .. 55

7.2.7.3 Group location descriptor .. 56

7.2.7.4 Group Manifest file name ... 56

7.2.8 Protocol for download .. 56

7.3 Broadband-specific format and protocols ... 56

7.3.1 System, video and audio formats .. 56

7.3.1.1 General requirements .. 56

7.3.1.2 Systems layers ... 57

7.3.1.3 Video ... 58

7.3.1.4 Audio ... 59

7.3.1.5 Subtitles ... 59

7.3.1.5.1 TTML based subtitles .. 59

7.3.1.5.2 Broadcast subtitles ... 61

7.3.2 Protocols ... 62

7.3.2.1 Protocols for streaming ... 62

7.3.2.2 Protocols for download ... 62

7.3.2.3 Void... 62

7.3.2.4 HTTP User-Agent header ... 62

7.3.2.5 HTTP Redirects ... 63

8 Browser application environment .. 63

8.1 DAE specification usage .. 63

8.2 Defined JavaScript APIs .. 63

8.2.1 Acquisition of DSM-CC stream events .. 63

8.2.1.1 Adding and removing stream event listeners .. 63

8.2.1.2 DSM-CC StreamEvent event .. 64

8.2.2 Carousel objects access with XMLHttpRequest ... 64

ETSI

ETSI TS 102 796 V1.3.1 (2015-10)5

8.2.3 APIs for media synchronization.. 65

8.2.3.1 Introduction (Informative) .. 65

8.2.3.2 The MediaSynchroniser embedded object .. 67

8.2.3.2.0 General .. 67

8.2.3.2.1 Properties ... 67

8.2.3.2.2 Methods ... 69

8.2.3.2.3 DOM2 events .. 74

8.2.3.2.4 Error codes .. 74

8.2.3.3 The CorrelationTimestamp class ... 75

8.2.3.3.1 General .. 75

8.2.3.3.2 Properties ... 75

8.2.4 APIs for automatic deletion of downloaded content ... 76

8.2.5 APIs for obtaining the LCN of a service... 76

8.2.6 Companion Screen discovery APIs .. 77

8.2.6.1 HbbTVCSManager embedded object ... 77

8.2.6.2 DiscoveredTerminal class ... 80

8.2.6.3 DiscoveredCSLauncher class .. 80

9 System integration .. 81

9.1 Mapping from APIs to protocols .. 81

9.1.1 Unicast streaming ... 81

9.1.1.1 General streaming requirements.. 81

9.1.1.2 HTTP streaming .. 81

9.1.2 Unicast content download ... 81

9.2 URLs .. 82

9.3 Other file formats ... 83

9.3.1 Stream event ... 83

9.3.2 MPEG DASH event integration.. 83

9.3.2.1 General .. 83

9.3.2.2 HTML5 media element ... 84

9.4 Presentation of adaptive bitrate content .. 85

9.4.1 General .. 85

9.4.2 Behaviour for HTML5 media objects ... 85

9.4.3 Behaviour for the AV Control object .. 86

9.5 Downloading content via FDP ... 87

9.5.1 Download registration... 87

9.5.2 Single file with multiple URLs ... 88

9.5.3 Properties of the Download object .. 88

9.5.4 Download state diagram ... 88

9.6 Media element integration .. 90

9.6.1 General .. 90

9.6.2 Resource management .. 90

9.6.3 Transition behaviour ... 90

9.6.4 Reporting and control of buffering ... 91

9.6.5 Distinguishing multiple media tracks (informative) ... 91

9.6.6 Controls attribute .. 92

9.6.7 DRM ... 92

9.6.8 Parental Rating Errors ... 92

9.6.9 Downloaded Content .. 92

9.6.10 Video presentation .. 92

9.6.11 getStartDate method ... 92

9.7 Synchronization .. 93

9.7.1 Synchronization and video objects ... 93

9.7.1.1 video/broadcast object ... 93

9.7.1.2 HTML5 media element ... 94

9.7.1.3 AV Control object ... 95

9.7.2 Tolerance .. 96

9.7.3 Timeline availability ... 97

9.7.4 Minimum synchronization accuracy ... 97

10 Capabilities ... 97

10.1 Display model .. 97

ETSI

ETSI TS 102 796 V1.3.1 (2015-10)6

10.2 Terminal capabilities and functions .. 97

10.2.1 Minimum terminal capabilities ... 97

10.2.2 User input ... 101

10.2.2.1 Key events ... 101

10.2.2.2 Mouse and wheel events ... 102

10.2.3 Terminal functions .. 103

10.2.3.1 Favourites and bookmarks .. 103

10.2.3.2 Streaming and Download .. 103

10.2.3.3 PVR ... 103

10.2.3.4 Download via broadcast using FDP .. 103

10.2.4 HbbTV® reported capabilities and option strings .. 104

10.2.5 Void .. 106

10.2.6 Parental access control .. 106

10.2.6.1 Broadcast channel ... 106

10.2.6.2 Broadband delivered content ... 106

10.2.6.3 Downloaded content.. 107

10.2.6.4 PVR ... 107

10.2.6.5 Synchronization and parental access control ... 108

10.2.7 Component selection... 108

10.2.7.1 General .. 108

10.2.7.2 Component selection by the terminal .. 109

10.2.7.3 Component selection by the application ... 109

10.2.7.4 Single decoder model .. 110

10.2.7.5 Multi-decoder model ... 110

10.2.8 Multi-stream media synchronization .. 111

10.2.8.1 General .. 111

10.2.8.2 Synchronization using gen-locked STC .. 112

10.2.8.3 Other synchronization cases .. 113

10.2.8.4 Supported combinations .. 113

10.2.9 Inter-device media synchronization .. 115

10.2.9.1 General .. 115

10.2.9.2 Master terminal ... 115

10.2.9.3 Slave terminal ... 115

10.2.10 Application to media synchronization .. 115

11 Security... 116

11.1 Application and service security .. 116

11.2 TLS and Root Certificates .. 116

11.2.1 TLS support .. 116

11.2.2 Cipher suites ... 117

11.2.3 Root certificates .. 117

11.2.4 Signature algorithms ... 118

11.2.5 Key sizes and elliptic curves ... 118

11.2.6 Backward compatibility .. 119

11.3 TLS client certificates .. 119

11.4 CI Plus .. 119

11.4.1 CI Plus communication ... 119

11.4.2 IP delivery Host player mode ... 120

11.4.2.1 Error handling in "IP delivery Host player mode" .. 120

11.4.2.2 DRM metadata source ... 120

11.4.3 Auxiliary file system ... 120

11.5 Protected content via broadband .. 120

11.6 Protected content via download .. 121

11.7 Terminal WebSocket service endpoints ... 121

12 Privacy .. 121

12.0 Overview .. 121

12.1 Terminal privacy features ... 121

12.1.1 Tracking preference expression (DNT) .. 121

12.1.1.0 Background ... 121

12.1.1.1 Principles ... 122

12.1.1.2 Expressing a tracking preference .. 122

ETSI

ETSI TS 102 796 V1.3.1 (2015-10)7

12.1.1.2.1 Expression format .. 122

12.1.1.2.2 DNT header field for HTTP requests .. 122

12.1.2 Third party cookies ... 123

12.1.3 Blocking tracking websites ... 123

12.1.4 Persistent storage .. 123

12.2 Respecting privacy in applications ... 123

13 Media synchronization ... 124

13.1 General (informative) ... 124

13.2 Architecture (informative) .. 124

13.2.1 General .. 124

13.2.2 Multi-stream synchronization ... 124

13.2.3 Inter-device synchronization ... 126

13.2.4 Master media and other media .. 129

13.3 Media synchronization states and transitions ... 130

13.3.1 States overview (informative) ... 130

13.3.2 Multi-stream synchronization ... 131

13.3.3 Becoming a master terminal ... 132

13.3.4 Ceasing to be a master terminal .. 132

13.3.5 Becoming a slave terminal .. 132

13.3.6 Ceasing to be a slave terminal .. 133

13.3.7 Transient errors ... 133

13.3.8 Permanent errors ... 134

13.4 Timelines and timestamping... 134

13.4.1 Reference point for timestamping ... 134

13.4.2 Supported timelines and their selection .. 134

13.4.3 Synchronization timeline .. 136

13.4.3.1 Timelines for the MediaSynchroniser API .. 136

13.4.3.2 Synchronization timeline for Inter-device synchronization .. 136

13.5 Buffer for media synchronization ... 136

13.5.1 General .. 136

13.5.2 Media synchronization buffering cases... 137

13.5.3 Media synchronization buffer model .. 138

13.6 Content Identification Information service endpoint .. 139

13.6.1 General .. 139

13.6.2 CSS-CII service endpoint (master terminal) ... 139

13.6.3 Use of CSS-CII service endpoint (slave terminal) .. 140

13.7 Wall clock synchronization .. 141

13.7.1 General .. 141

13.7.2 Wall clock properties .. 141

13.7.3 WC-Server (master terminal) .. 142

13.7.4 WC-Client (slave terminal) ... 142

13.8 Timeline Synchronization service endpoint ... 143

13.8.1 General .. 143

13.8.2 CSS-TS service endpoint (master terminal) .. 143

13.8.2.1 General .. 143

13.8.2.2 Synchronization timeline availability .. 144

13.8.2.3 Frequency of control timestamp messages .. 144

13.8.2.4 Controlling timing of presentation .. 144

13.8.3 SC function (slave terminal) ... 145

13.8.3.1 General .. 145

13.8.3.2 Setup-data message ... 146

13.8.3.3 Sending Actual, Earliest and Latest Presentation Timestamps ... 146

13.8.3.4 Value of Actual, Earliest and Latest Presentation Timestamps ... 147

13.8.3.5 Adjusting timing of presentation in response to Control Timestamps .. 148

13.9 Trigger Events .. 149

13.10 Sequence diagrams for timeline synchronization (Informative) ... 149

13.10.1 General .. 149

13.10.2 Initiation of timeline synchronization ... 149

13.10.3 Protocols interactions for beginning inter-device synchronization ... 151

13.10.4 Termination of timeline synchronization .. 152

13.10.5 Detailed protocol interaction (HTML5 media element presenting ISOBMFF as master media) 153

ETSI

ETSI TS 102 796 V1.3.1 (2015-10)8

13.10.6 Detailed protocol interaction (AV Control object presenting DASH as master media) 156

13.10.7 Detailed protocol interaction (video/broadcast object as master media) .. 159

13.10.8 Detailed protocol interaction (two media objects at the slave terminal) ... 163

13.11 Application to media synchronization .. 166

13.11.1 General .. 166

13.11.2 Reading the media playback position of media objects .. 167

13.11.3 Reading the media playback position of the MediaSynchroniser object .. 167

14 Companion screens... 168

14.1 Introduction .. 168

14.2 Description of framework (informative) .. 168

14.2.1 Supported features .. 168

14.2.2 Model .. 168

14.2.2.1 Launching a companion screen application .. 168

14.2.2.2 Application to application communication ... 170

14.2.2.3 Remotely launching HbbTV® applications .. 171

14.3 Requirements for launching a CS application from an HbbTV® application .. 171

14.3.1 Support for 'launching a CS application from an HbbTV® application' .. 171

14.3.2 The Launcher application ... 172

14.4 Launching a CS application from an HbbTV® application ... 173

14.4.1 CS OS identification ... 173

14.4.1.1 General (informative) .. 173

14.4.1.2 Syntax and semantics .. 173

14.4.1.3 Hints on how to derive the CS OS identifier on Android™ (informative) .. 174

14.4.1.4 Hints on how to derive the CS OS identifier on iOS™ (informative) ... 175

14.4.2 Payload format for Install and Launch operations .. 176

14.4.2.1 Permissible Operations .. 176

14.4.2.2 JSON payload format .. 176

14.4.2.2.1 Introduction ... 176

14.4.2.2.2 Install operation ... 177

14.4.2.2.3 Launch operation ... 177

14.4.2.2.4 JSON payload schema ... 178

14.4.2.2.5 Handling Special Characters in URLs (Informative) ... 179

14.5 Application to application communications ... 179

14.5.1 General .. 179

14.5.2 Service endpoints provided by the terminal .. 180

14.5.3 Handling of new connections from clients ... 181

14.5.4 Connection pairing .. 182

14.5.5 Paired connections .. 184

14.6 Launching an HbbTV® application from a CS application ... 185

14.6.1 Introduction... 185

14.6.2 Launching an HbbTV® application protocol ... 185

14.6.3 Providing HbbTV® user agent ... 187

14.7 Discovering terminals and their service endpoints ... 188

14.7.1 Introduction... 188

14.7.2 Terminal and service endpoint discovery ... 188

14.7.3 Discovery example (informative) ... 189

14.7.3.1 DIAL Service Discovery ... 189

14.7.3.2 DIAL Rest Service .. 190

14.8 Cross-Origin support .. 191

Annex A (normative): OIPF DAE specification profile .. 192

A.1 Detailed section-by-section definition for volume 5 .. 192

A.2 Modifications, extensions and clarifications to volume 5 .. 207

A.2.1 Resource management .. 207

A.2.2 Void .. 208

A.2.3 Void .. 208

A.2.4 Extensions to the video/broadcast object .. 208

A.2.4.1 State machine and related changes ... 208

ETSI

ETSI TS 102 796 V1.3.1 (2015-10)9

A.2.4.2 Access to the video/broadcast object .. 208

A.2.5 Extensions to the AV Control object .. 209

A.2.5.1 New queue method ... 209

A.2.5.2 State machine and related changes ... 210

A.2.5.3 Support for TTML subtitles .. 210

A.2.5.4 Support for media synchronization with subtitle-only streams ... 210

A.2.5.5 Using an A/V Control object to play downloaded content ... 211

A.2.6 HTML Profile ... 212

A.2.6.1 Void .. 212

A.2.6.2 MIME type and DOCTYPE.. 212

A.2.6.3 Void .. 213

A.2.6.4 Browser History .. 213

A.2.6.5 Attribute reflection for visual embedded objects .. 213

A.2.7 Extensions to the oipfObjectFactory object .. 213

A.2.8 Void .. 213

A.2.9 Access to EIT Schedule Information .. 213

A.2.10 Correction to the application/oipfDownloadManager object ... 213

A.2.11 Extensions to the Download class .. 214

A.2.12 HTML5 media element mapping ... 214

A.2.12.1 Inband VideoTracks, AudioTracks and TextTracks ... 214

A.2.12.2 Out-of-band text tracks ... 216

A.2.12.3 Modifications to clause 8.4.6 .. 216

A.2.13 Extensions to the AVSubtitleComponent class .. 217

A.2.14 Modifications to clause H.2 "Interaction with the video/broadcast and AV Control objects" 217

A.2.15 Extensions to the OIPF-defined capability negotiation mechanism ... 218

A.2.16 Graphics performance .. 220

A.2.17 Notification of change of components .. 221

A.2.18 Clarification regarding the reserve() method of the application/oipfDownloadManager object 221

A.2.19 Correction to the registerDownloadURL() method .. 221

A.2.20 Extensions to the Configuration class .. 222

A.2.20.1 Extensions to Represent Subtitle Presentation .. 222

A.2.20.2 Extensions for time-shift ... 223

A.2.21 AVComponent.componentTag ... 223

A.2.22 Modifications to clause 8.4.2.. 223

A.2.23 AVAudioComponent.. 223

A.3 Modifications, extensions and clarifications to volume 5a .. 223

A.3.0 General ... 223

A.3.1 Additional support for TextTracks and Cues ... 224

A.3.2 Additional support for getStartDate in HTML5 media elements ... 224

A.3.3 Event model.. 224

A.3.4 Resize event .. 224

A.3.5 HTML5 recommendation ... 224

A.3.6 Support for volume controls ... 225

A.3.7 Support for multiple audio tracks ... 225

Annex B (normative): Support for protected content delivered via broadband 226

B.1 Introduction .. 226

B.2 Common Encryption for ISOBMFF ... 226

Annex C (informative): Support for analogue broadcasting networks ... 227

C.1 Scope .. 227

C.2 AIT retrieval and monitoring ... 227

C.3 Tuning to a new channel .. 227

C.4 Other aspects .. 228

Annex D (informative): Server root certificate selection policy ... 229

D.1 Introduction .. 229

ETSI

ETSI TS 102 796 V1.3.1 (2015-10)10

D.2 Background .. 229

D.3 Policy .. 229

Annex E (normative): Profiles of MPEG DASH ... 231

E.1 Introduction (informative) .. 231

E.2 Requirements relating to the MPD ... 231

E.2.1 Profile definition .. 231

E.2.2 Numerical requirements ... 231

E.2.3 Metadata requirements ... 231

E.2.4 Role Related requirements ... 231

E.2.5 Audio Channel Configuration requirements ... 231

E.2.6 Content protection signalling ... 232

E.3 Restrictions on content ... 232

E.3.1 Restrictions on file format .. 232

E.3.1.1 ISO Base Media File Format .. 232

E.3.2 Restrictions on adaptation sets ... 232

E.4 Requirements on terminals ... 232

E.4.1 DASH profile support .. 232

E.4.2 Transitions between representations ... 232

E.4.2.1 Video tracks .. 232

E.4.2.2 Audio tracks .. 232

E.4.3 Buffering .. 232

E.4.4 ISO File Format support ... 233

Annex F (informative): DRM Integration.. 234

F.1 Introduction .. 234

F.2 General issues ... 234

F.3 DRM Agent API ... 234

F.4 Content via the AV Control object ... 234

F.5 Content via the HTML5 media element ... 235

Annex G (informative): Implementer guidelines for media synchronization 236

G.1 General ... 236

G.2 Managing delay throughout distribution network .. 236

G.3 Managing multiple content timelines ... 237

G.4 Synchronization with no buffer in the HbbTV® terminal ... 237

G.4.0 General ... 237

G.4.1 Inter-device media synchronization with the HbbTV® terminal as master with no buffer 238

G.4.2 Multi-stream (Intra-device) media synchronization with no buffer for broadcast within the HbbTV®
terminal .. 238

Annex H (normative): HbbTV® File Delivery Protocol (FDP) .. 240

H.1 High-level principles of FDP (informative) ... 240

H.2 Encapsulation and signalling .. 240

H.2.1 DVB signalling ... 240

H.2.2 Encapsulation of FDP in Data Pipes .. 240

H.2.3 File identification ... 241

H.2.4 Referring to files using URLs... 241

H.3 File segmentation and broadcasting ... 241

H.3.1 File segmentation ... 241

ETSI

ETSI TS 102 796 V1.3.1 (2015-10)11

H.3.2 Message sequence .. 242

H.3.3 Repeated broadcasts of file segments ... 243

H.3.4 File segment recovery .. 243

H.4 Syntax and semantics of FDP messages ... 243

H.4.1 Message types .. 243

H.4.2 Initialization Message ... 244

H.4.3 Data Message ... 246

H.4.4 Termination Message ... 246

Annex I (informative): Push-VoD services.. 248

I.1 Introduction .. 248

I.2 Level of trust .. 248

I.3 Protocols ... 248

I.3.1 Broadcast protocol .. 248

I.3.2 Download protocol ... 248

I.3.3 Sources ... 248

I.4 Application features ... 248

I.4.1 Overview on application features ... 248

I.4.2 Hard disk space reservation .. 249

I.4.3 Hard disk deallocation .. 249

I.5 Content management .. 249

I.5.1 Content schedule .. 249

I.5.2 Play-out .. 250

I.6 Playback ... 250

Annex J (informative): Advert insertion guidance for content providers 251

History .. 253

ETSI

ETSI TS 102 796 V1.3.1 (2015-10)12

Intellectual Property Rights
IPRs essential or potentially essential to the present document may have been declared to ETSI. The information
pertaining to these essential IPRs, if any, is publicly available for ETSI members and non-members, and can be found
in ETSI SR 000 314: "Intellectual Property Rights (IPRs); Essential, or potentially Essential, IPRs notified to ETSI in
respect of ETSI standards", which is available from the ETSI Secretariat. Latest updates are available on the ETSI Web
server (http://ipr.etsi.org).

Pursuant to the ETSI IPR Policy, no investigation, including IPR searches, has been carried out by ETSI. No guarantee
can be given as to the existence of other IPRs not referenced in ETSI SR 000 314 (or the updates on the ETSI Web
server) which are, or may be, or may become, essential to the present document.

Foreword
This Technical Specification (TS) has been produced by Joint Technical Committee (JTC) Broadcast of the European
Broadcasting Union (EBU), Comité Européen de Normalisation ELECtrotechnique (CENELEC) and the European
Telecommunications Standards Institute (ETSI).

NOTE: The EBU/ETSI JTC Broadcast was established in 1990 to co-ordinate the drafting of standards in the
specific field of broadcasting and related fields. Since 1995 the JTC Broadcast became a tripartite body
by including in the Memorandum of Understanding also CENELEC, which is responsible for the
standardization of radio and television receivers. The EBU is a professional association of broadcasting
organizations whose work includes the co-ordination of its members' activities in the technical, legal,
programme-making and programme-exchange domains. The EBU has active members in about
60 countries in the European broadcasting area; its headquarters is in Geneva.

European Broadcasting Union
CH-1218 GRAND SACONNEX (Geneva)
Switzerland
Tel: +41 22 717 21 11
Fax: +41 22 717 24 81

Modal verbs terminology
In the present document "shall", "shall not", "should", "should not", "may", "need not", "will", "will not", "can" and
"cannot" are to be interpreted as described in clause 3.2 of the ETSI Drafting Rules (Verbal forms for the expression of
provisions).

"must" and "must not" are NOT allowed in ETSI deliverables except when used in direct citation.

http://webapp.etsi.org/IPR/home.asp
http://portal.etsi.org/Help/editHelp!/Howtostart/ETSIDraftingRules.aspx

ETSI

ETSI TS 102 796 V1.3.1 (2015-10)13

Introduction
The present document is the third revision of ETSI TS 102 796. It is based on the second revision but with some
technologies updated and some new features. Technologies updated include the following:

• The basic web standards have been updated from the HTML4, CSS2, DOM2 generation to the HTML5, CSS3,
DOM3 generation.

• The profile of MPEG DASH has been updated to be based on the 2nd edition of ISO/IEC 23009-1 [29] and
includes additional features including ones added in that edition.

• An updated version of CI Plus including the possibility of a hybrid terminal using a DRM system in a CICAM
instead of or in addition to one integrated into the terminal; the possibility to use the CICAM Auxiliary File
System (ETSI TS 103 205 [37], clause 9) allowing the Host to retrieve data/resources from the CICAM.

New features include support for the following:

• Video encoded in HEVC delivered via broadband.

• Delivering and presenting subtitles associated with ISOBMFF content.

• An application on the hybrid terminal launching an application on a Companion Screen Device and vice-versa.

• Communication between applications on a hybrid terminal and applications on a Companion Screen Device or
a second hybrid terminal.

• Insertion of adverts into on-demand content.

• Delivering A/V content via the broadcast (not in real-time) for later presentation.

• Synchronization within a hybrid terminal between content delivered via broadband and other content delivered
either via broadcast or broadband.

• Synchronization between content presented on a hybrid terminal and applications or content presented on a
Companion Screen Device or a second hybrid terminal.

• Caching of DSM-CC object carousels.

• Launching of an application resident on the CICAM.

ETSI

ETSI TS 102 796 V1.3.1 (2015-10)14

1 Scope
The present document defines a platform for signalling, transport and presentation of enhanced and interactive
applications designed for running on hybrid terminals that include both a DVB compliant broadcast connection and a
broadband connection to the internet.

The main uses of the broadcast connection are the following:

• Transmission of standard TV, radio and data services.

• Signalling of broadcast-related applications.

• Transport of broadcast-related applications and associated data.

• Transport of On Demand content for Push-services.

• Synchronization of applications and TV/radio/data services.

The main uses of the broadband connection are the following:

• Carriage of both On Demand and Live content.

• Transport of broadcast-related and broadcast-independent applications and associated data.

• Exchange of information between applications and application servers.

• Starting applications on a Companion Screen Device.

• Communicating with applications on a Companion Screen Device or a second hybrid terminal.

• Synchronizing media and applications between a hybrid terminal and a Companion Screen Device or a second
hybrid terminal.

Applications are presented by an HTML/JavaScript browser.

The platform has the following characteristics:

• It is open and is not based on a single controlling authority or aggregator.

• Services and content from many different and independent providers are accessible by the same terminal.

• Standard functions of the terminal are available to all applications. Sensitive functions of the terminal are only
available to trusted applications.

• Services and content may be protected.

• Broadcasted applications can be presented on terminals which are not connected to broadband. This includes
both terminals which could be connected but have not yet been connected and terminals located where no
broadband connectivity is available.

• Applications or services provided by a device manufacturer are outside the scope of the present document even
if they use the same browser and features as described by the present document.

• Video, audio and system formats for the broadcast channel are outside the scope of the present document.
Protocols for the broadcast channel are also outside the scope of the present document except for those relating
to interactive applications and to synchronization.

• Applications can run on different types of terminals such as IDTVs, set-top boxes, and PVRs.

• Both broadcast-related and broadcast-independent applications are supported.

The platform combines a profile of the Open IPTV Forum specifications with a profile of the DVB specification for
signalling and carriage of interactive applications and services in Hybrid Broadcast/Broadband environments. In
addition, the present document defines supported media formats, minimum terminal capabilities, and the application life
cycle.

ETSI

ETSI TS 102 796 V1.3.1 (2015-10)15

The present document requires terminals to run applications signalled as conforming to the two previous revisions. This
allows for smooth transitions where the previous revisions have been deployed.

The present document is intended to be usable without additional country/market-specific specifications. It is however
also possible to combine it with country/market-specific specifications.

2 References

2.1 Normative references
References are either specific (identified by date of publication and/or edition number or version number) or
non-specific. For specific references, only the cited version applies. For non-specific references, the latest version of the
reference document (including any amendments) applies.

Referenced documents which are not found to be publicly available in the expected location might be found at
http://docbox.etsi.org/Reference.

NOTE: While any hyperlinks included in this clause were valid at the time of publication, ETSI cannot guarantee
their long term validity.

The following referenced documents are necessary for the application of the present document.

[1] Open IPTV Forum Release 2 specification, volume 5 (V2.3): "Declarative Application
Environment".

NOTE: Available at http://www.oipf.tv/specifications.

[2] Open IPTV Forum Release 2 specification, volume 2 (V2.3): "Media Formats".

NOTE: Available at http://www.oipf.tv/specifications.

[3] ETSI TS 102 809 (V1.2.1): "Digital Video Broadcasting (DVB); Signalling and carriage of
interactive applications and services in Hybrid Broadcast/Broadband environments".

[4] Open IPTV Forum Release 2 specification, volume 4 (V2.3): "Protocols".

NOTE: Available at http://www.oipf.tv/specifications.

[5] Open IPTV Forum Release 2 specification, volume 7 (V2.3): "Authentication, Content Protection
and Service Protection".

NOTE: Available at http://www.oipf.tv/specifications.

[6] IETF RFC 2616: "Hypertext transport protocol - HTTP 1.1".

[7] IETF RFC 2818: "HTTP Over TLS".

[8] IETF RFC 5246: "The Transport Layer Security (TLS) Protocol Version 1.2".

[9] IETF RFC 5280: "Internet X.509 Public Key Infrastructure Certificate and Certificate Revocation
List (CRL) Profile".

[10] ETSI TS 102 851: "Digital Video Broadcasting (DVB); Uniform Resource Identifiers (URI) for
DVB Systems".

[11] Void.

[12] CI Plus Forum, CI Plus Specification (V1.3.1) (2011-09): "Content Security Extensions to the
Common Interface".

NOTE: Available at http://www.ci-plus.com/data/ci-plus_specification_v1.3.1.pdf.

[13] Void.

http://docbox.etsi.org/Reference
http://www.oipf.tv/specifications
http://www.oipf.tv/specifications
http://www.oipf.tv/specifications
http://www.oipf.tv/specifications
http://www.ci-plus.com/data/ci-plus_specification_v1.3.1.pdf

ETSI

ETSI TS 102 796 V1.3.1 (2015-10)16

[14] ETSI TS 101 154: "Digital Video Broadcasting (DVB); Specification for the use of Video and
Audio Coding in Broadcasting Applications based on the MPEG-2 Transport Stream".

[15] ETSI TS 102 366 (V1.2.1): "Digital Audio Compression (AC-3, Enhanced AC-3) Standard".

[16] ETSI EN 300 468: "Digital Video Broadcasting (DVB); Specification for Service Information (SI)
in DVB systems".

[17] Void.

[18] Open IPTV Forum Release 2 specification, volume 3 (V2.3): "Content Metadata".

NOTE: Available at http://www.oipf.tv/specifications.

[19] ETSI TS 101 162: "Digital Video Broadcasting (DVB); Allocation of identifiers and codes for
Digital Video Broadcasting (DVB) systems".

[20] Void.

[21] Void.

[22] Void.

[23] W3C Recommendation (October 2004): XML Schema Part 2: "Datatypes Second Edition".

NOTE: Available at http://www.w3.org/TR/xmlschema-2/.

[24] IETF RFC 6265: "HTTP State Management Mechanism".

[25] Void.

[26] IEC 62481-2 (2007-08): "Digital living network alliance (DLNA) home networked device
interoperability guidelines - Part 2: Media Formats, ed1.0".

[27] IETF RFC 3986: "Uniform Resource Identifier (URI): Generic Syntax".

[28] W3C Recommendation (July 2002): "Exclusive XML Canonicalization - Version 1.0".

NOTE: Available at http://www.w3.org/TR/xml-exc-c14n/.

[29] ISO/IEC 23009-1 (2014): "Information technology -- Dynamic adaptive streaming over HTTP
(DASH) -- Part 1: Media presentation description and segment formats".

[30] ISO/IEC 23001-7 (2012): "Information technology -- MPEG systems technologies -- Part 7:
Common encryption in ISO base media file format files".

[31] Void.

[32] Void.

[33] Void.

[34] Void.

[35] Void.

[36] ETSI ES 202 184 (V2.3.1): "MHEG-5 Broadcast Profile".

[37] ETSI TS 103 205 (V1.1.1): "Digital Video Broadcasting (DVB); Extensions to the CI Plus
Specification".

[38] ETSI EN 301 192 (V1.5.1): "Digital Video Broadcasting (DVB); DVB specification for data
broadcasting".

[39] IETF RFC 2234: "Augmented BNF for Syntax Specifications: ABNF".

[40] IETF RFC 6455: "The WebSocket protocol".

http://www.oipf.tv/specifications
http://www.w3.org/TR/xmlschema-2/
http://www.w3.org/TR/xml-exc-c14n/

ETSI

ETSI TS 102 796 V1.3.1 (2015-10)17

[41] W3C Candidate Recommendation (20 September 2012): "The WebSocket API".

NOTE: Available at http://www.w3.org/TR/2012/CR-websockets-20120920/.

[42] W3C Recommendation (16 January 2014): "Cross-Origin Resource Sharing".

NOTE: Available at http://www.w3.org/TR/2014/REC-cors-20140116/.

[43] EBU - TECH 3380: "EBU TT-D Subtitling distribution format", version 1.0, January 2014.

[44] EBU - TECH 3381: "Carriage of EBU TT-D in ISOBMFF", version 1.0, October 2014.

[45] ETSI TS 103 285 (V1.1.1): "Digital Video Broadcasting (DVB); MPEG-DASH Profile for
Transport of ISO BMFF Based DVB Services over IP Based Networks".

[46] ISO/IEC 13818-1 (2013): "Generic coding of moving pictures and associated audio information --
Part 1: Systems".

[47] ETSI TS 103 286-2 (V1.1.1): "Digital Video Broadcasting (DVB); Companion Screens and
Streams; Part 2: Content Identification and Media Synchronization".

[48] Void.

[49] NIST Special Publication 800-57 Part 1-Rev 3: "Recommendation for Key Management: Part 1:
General (Revision 3)".

[50] DIAL 2nd Screen protocol specification v1.7 - 19 November 2014.

NOTE: Available from http://www.dial-multiscreen.org/dial-protocol-specification.

[51] W3C Working Draft (17 June 2014): "HTML5.1 - A vocabulary and associated APIs for HTML
and XHTML".

[52] ISO/IEC 14496-30 (2014): "Information technology - Coding of audio-visual objects - Part 30:
Timed text and other visual overlays in ISO base media file format".

[53] Open IPTV Forum Release 1 specification, volume 5 (V1.2): "Declarative Application
Environment".

NOTE: Available at http://www.oipf.tv/specifications.

[54] W3C Recommendation (28 October 2014): "HTML5 - A vocabulary and associated APIs for
HTML and XHTML".

NOTE: Available at http://www.w3.org/TR/2014/REC-html5-20141028/.

[55] IETF RFC 4492: "Elliptic Curve Cryptography (ECC) Cipher Suites for Transport Layer Security
(TLS)".

[56] IETF RFC 5077: "Transport Layer Security (TLS) Session Resumption without Server-Side
State".

[57] IETF RFC 5289: "TLS Elliptic Curve Cipher Suites with SHA-256/384 and AES Galois Counter
Mode (GCM)".

[58] IETF RFC 5746: "Transport Layer Security (TLS) Renegotiation Indication Extension".

[59] IETF RFC 6066: "Transport Layer Security (TLS) Extensions: Extension Definitions".

[60] ISO 639-1 (2002): "Codes for the representation of names of languages -- Part 1: Alpha-2 code".

[61] ISO 639-2 (1998): "Codes for the representation of names of languages -- Part 2: Alpha-3 code".

http://www.w3.org/TR/2012/CR-websockets-20120920/
http://www.w3.org/TR/2014/REC-cors-20140116/
http://www.dial-multiscreen.org/dial-protocol-specification
http://www.oipf.tv/specifications
http://www.w3.org/TR/2014/REC-html5-20141028/

ETSI

ETSI TS 102 796 V1.3.1 (2015-10)18

2.2 Informative references
References are either specific (identified by date of publication and/or edition number or version number) or
non-specific. For specific references, only the cited version applies. For non-specific references, the latest version of the
reference document (including any amendments) applies.

NOTE: While any hyperlinks included in this clause were valid at the time of publication, ETSI cannot guarantee
their long term validity.

The following referenced documents are not necessary for the application of the present document but they assist the
user with regard to a particular subject area.

[i.1] Void.

[i.2] ETSI ES 202 130 (V2.1.2): "Human Factors (HF); User Interfaces; Character repertoires,
orderings and assignments to the 12-key telephone keypad (for European languages and other
languages used in Europe)".

[i.3] ETSI TS 101 231 (V1.3.1): "Television systems; Register of Country and Network Identification
(CNI), Video Programming System (VPS) codes and Application codes for Teletext based
systems".

[i.4] W3C draft in development: "How to Add a Favicon to your Site".

NOTE: Available at http://www.w3.org/2005/10/howto-favicon.

[i.5] Void.

[i.6] Open IPTV Forum Release 2.3 specification volume 5a (V2.3): "Web Standards TV Profile".

[i.7] HDMI 2.0 specification.

NOTE: An introduction to the HDMI 2.0 specification is provided at
http://www.hdmi.org/manufacturer/hdmi_2_0/. The specification itself is not publicly available.

[i.8] The DIAL Application Name Registry.

NOTE: Available at http://www.dial-multiscreen.org/dial-registry/namespace-database.

[i.9] W3C Last Call Working Draft 24 April 2014: "Tracking Preference Expression (DNT)".

NOTE: Available from http://www.w3.org/TR/2014/WD-tracking-dnt-20140424/.

[i.10] IETF draft-zyp-json-schema-04 (January 2013): "JSON Schema: core definitions and
terminology", F.Galiegue, K. Zyp and G. Court.

NOTE: Available from http://tools.ietf.org/id/draft-zyp-json-schema-04.txt.

[i.11] Void.

[i.12] ISO/IEC 13818-6: "Information technology -- Generic coding of moving pictures and associated
audio information -- Part 6: Extensions for DSM-CC".

3 Definitions and abbreviations

3.1 Definitions
For the purposes of the present document, the following terms and definitions apply:

application data: set of files comprising an application, including HTML, JavaScript, CSS and non-streamed
multimedia files

broadband: always-on bi-directional IP connection with sufficient bandwidth for streaming or downloading A/V
content

http://www.w3.org/2005/10/howto-favicon
http://www.hdmi.org/manufacturer/hdmi_2_0/
http://www.dial-multiscreen.org/dial-registry/namespace-database
http://www.w3.org/TR/2014/WD-tracking-dnt-20140424/
http://tools.ietf.org/id/draft-zyp-json-schema-04.txt

ETSI

ETSI TS 102 796 V1.3.1 (2015-10)19

broadcast: classical uni-directional MPEG-2 transport stream based broadcast such as DVB-T, DVB-S or DVB-C

broadcast-independent application: interactive application not related to any broadcast channel or other broadcast
data

broadcast-related application: interactive application associated with a broadcast television, radio or data channel, or
content within such a channel

broadcast-related autostart application: broadcast-related application intended to be offered to the end user
immediately after changing to the channel or after it is newly signalled on the current channel

NOTE: These applications are often referred to as "red button" applications in the industry, regardless of how
they are actually started by the end user.

companion screen: device (not another HbbTV® terminal) that can run applications that in turn link to and work with

an HbbTV® terminal or HbbTV® application. For example, a mobile phone or tablet

companion screen application: application running on a Companion Screen and either provided by a terminal

manufacturer for linking to and work with the terminal (possibly including non-HbbTV® features) or provided by a

service provider that can work in conjunction with an HbbTV® application running on the terminal

companion screen device: companion screen

digital teletext application: broadcast-related application which is intended to replace classical analogue teletext
services

Hybrid broadcast broadband TV application: application conformant to ETSI TS 102 796 that is intended to be
presented on a terminal conformant with ETSI TS 102 796. Such an application can be either a broadcast-related
application or a broadcast-independent application and can transition between these application models

hybrid terminal: terminal supporting delivery of A/V content both via broadband and via broadcast

launcher application: role taken by an application that executes on a Companion Screen and provides services to
support the functioning of Companion Screen applications

linear A/V content: broadcast A/V content intended to be viewed in real time by the user

non-linear A/V content: A/V content that which does not have to be consumed linearly from beginning to end for
example, A/V content streaming on demand

persistent download: non-real time downloading of an entire content item to the terminal for later playback

NOTE: Persistent download and streaming are different even where both use the same protocol - HTTP. See
clause 10.2.3.2.

progressive download: variant of persistent download where playback of the content item can start before the
download of the content item has completed

NOTE: Progressive download is referred to as playable download in the OIPF DAE specification [1].

synchronization timeline: timeline used in communication between a Synchronization Client and the MSAS to give
the Synchronization Client an understanding of the progress of time along that timeline

terminal specific applications: applications provided by the terminal manufacturer, for example device navigation,
set-up or an internet TV portal

3.2 Abbreviations
For the purposes of the present document, the following abbreviations apply:

A/V Audio Video
AD Audio Description
AIT Application Information Table
API Application Programming Interface
AVC Advanced Video Coding

ETSI

ETSI TS 102 796 V1.3.1 (2015-10)20

CAM Conditional Access Module
CAS Conditional Access System
CDN Content Delivery Network
CEA Consumer Electronics Association
CE-HTML Consumer Electronics - Hypertext Markup Language
CENC Common Encryption
CI Common Interface
CICAM Common Interface Conditional Access Module
CIS Correlation Information Server
CRC Cyclic Redundancy Check
CS Companion Screen
CSP Content and Service Protection
CSS Cascading Style Sheets
CSS-CII Interface for Content Identification and other Information
CSS-TS Interface for Timeline Synchronization
CSS-WC Interface for Wall Clock
CTR Counter
DAE Declarative Application Environment
DASH Dynamic Adaptive Streaming over HTTP
DLNA Digital Living Network Alliance
DOM Document Object Model
DRM Digital Rights Management
DSM-CC Digital Storage Media - Command and Control
DTD Document Type Definition
DVB Digital Video Broadcasting
DVB-C Digital Video Broadcasting - Cable
DVB-S Digital Video Broadcasting - Satellite
DVB-SI DVB Service Information
DVB-T Digital Video Broadcasting - Terrestrial
EIT p/f EIT present/following
EIT Event Information Table
EPG Electronic Program Guide
FDP File Delivery Protocol
FEC Forward Error Correction
FQDN Fully Qualified Domain Name
FSA File System Acceleration
GIF Graphics Interchange Format

HbbTV® Hybrid broadcast broadband TV
HEAAC High Efficiency AAC
HTML Hypertext Markup Language
HTTP Hypertext Transfer Protocol
HTTPS Hypertext Transfer Protocol - Secure
IP Internet Protocol
ISO International Organization for Standardization
ISOBMFF ISO Base Media File Format
JPEG Joint Photographic Experts Group
KID Key Identifier
LCN Logical Channel Number
MMI Man Machine Interface
MPD Media Presentation Description
MPEG Motion Picture Experts Group
MRS Material Resolution Server
MSAS Media Synchronization Application Server
OIPF Open IPTV Forum
OITF Open IPTV Terminal Function
PID Packet IDentifier
PMT Program Map Table
PNG Portable Network Graphics
PSI Program Specific Information
PVR Personal Video Recorder
REST Representational State Transfer

ETSI

ETSI TS 102 796 V1.3.1 (2015-10)21

RCU Remote Control Unit
SC Synchronization Client
SD&S Service Discovery and Selection
SDT Service Description Table
SSL Secure Sockets Layer
STC System Time Clock
SVG Scalable Vector Graphics
TLS Transport Layer Security
TV Television
UI User Interface
UPnP Universal Plug and Play
URL Uniform Resource Locator
UTF-8 UCS Transformation Format—8-bit
XHTML Extensible HyperText Markup Language
XML eXtensible Markup Language

4 Overview

4.1 Applications
The web-based Hybrid Broadcast Broadband terminal as defined in the present document provides download and
execution of applications which are defined as a collection of documents constituting a self-contained enhanced or
interactive service. The documents of an application are HTML, JavaScript, CSS, XML and multimedia files.

The system architecture which allows for the provision of applications comprises a browser, application signalling via
broadcast, broadband and from a Companion Screen Device, application transport via broadcast, broadband and from a
CICAM, and synchronization of applications and broadcast services (see clause 4.2 for details).

The present document addresses the following types of application:

• Broadcast-independent application (i.e. not associated with any broadcast service). This type of application is
downloaded via broadband and accesses all of its associated data via broadband.

- Examples of this type of service are catch-up services and games where the application does not need
access to any broadcast resources.

• Broadcast-related application (i.e. associated with one or more broadcast services or one or more broadcast
events within a service) that may be launched automatically ("autostart") or explicitly upon user request. This
type of application may be downloaded via broadband, broadcast or CICAM and may access its data via any
method.

- Examples of this type of service are electronic program guides and teletext-like services where the
application may wish to present the broadcast video in a window and access other broadcast resources
(e.g. EIT metadata).

The following possible uses of the browser environment are outside the scope of the present document:

• Service provider related applications as defined in the OIPF DAE specification [1].

• Using the browser environment to provide terminal specific applications such as a channel navigator or a
device setup menu.

• Using the browser environment to display open Internet websites.

• Using the browser environment to support other specifications such as DLNA Remote UI or the full set of
Open IPTV Forum specifications.

ETSI

ETSI TS 102 796 V1.3.1 (2015-10)22

4.2 Architecture (informative)

4.2.1 Introduction

This clause gives an overview of the system architecture and explains the necessary functional components inside a
hybrid terminal. The level of detail of this explanation is general and abstract. Details about the internal structure of the
components (e.g. whether the DSM-CC client has an integrated cache or not) or about their practical implementation
(e.g. whether a specific component is solved in hardware or software) are omitted. Also in practice several components
could be combined in one component (e.g. a browser with an integrated application manager). The primary intention of
this clause is to provide an introduction and an understanding of the overall concept and the needed components. The
communication between these components is outside the scope of the present document.

4.2.2 System overview

A hybrid terminal has the capability to be connected to two networks in parallel. On the one side it can be connected to
a broadcast DVB network (e.g. DVB-T, DVB-S or DVB-C). Via this broadcast connection the hybrid terminal can
receive standard broadcast A/V (i.e. linear A/V content), non-realtime A/V content, application data and application
signalling information. Even if the terminal is not connected to broadband, its connection to the broadcast network
allows it to receive broadcast-related applications. In addition, signalling of stream events to an application is possible
via the broadcast network.

In addition the hybrid terminal can be connected to the Internet via a broadband interface. This allows bi-directional
communication with the application provider. Over this interface the terminal can receive application data and non-
linear A/V content (e.g. A/V content streaming on demand). The hybrid terminal may also support non-real time
download of A/V content over this interface. The broadband interface may also connect to Companion Screen Devices

or other HbbTV® terminals on the same local network as the hybrid terminal.

Figure 1 depicts the system overview with a hybrid terminal with DVB-S as the example of the broadcast connection.

Internet

Broadcast

(e.g. DVB-S)

Broadband

Application Data and Signaling

Linear A/V Content

Non-linear A/V Content delivered via broadband

Application Hosting /

Web-Playout

Broadcaster and

Application Provider

Uplink

Application Data

Hybrid Terminal

Back Channel

Non-linear A/V Content delivered via broadcast

Companion

Screen

Device

Control

Figure 1: System Overview

ETSI

ETSI TS 102 796 V1.3.1 (2015-10)23

4.2.3 Functional terminal components

Figure 2 depicts an overview of the relevant functional components inside of a hybrid terminal. These components are
described below the figure.

Figure 2: Functional components of a hybrid terminal

Via the Broadcast Interface the terminal receives AIT data, linear A/V content, non-realtime A/V content, application
data and stream events. The last two data streams are transferred by using a DSM-CC object carousel. Non-realtime
content is transferred by using the FDP protocol. Therefore both a DSM-CC Client and a File Download Protocol
Decoder are needed to recover the data from the object carousel and FDP data stream, respectively. The recovered data
is provided to the Runtime Environment. The Runtime Environment can be seen as a very abstract component where
the interactive application is presented and executed. The Browser, an Application Manager and the Companion Screen
Interface form this Runtime Environment. The Application Manager evaluates the AIT to control the lifecycle for an
interactive application. The Browser is responsible for presenting and executing an interactive application.

Linear A/V content is processed in the same way as on a standard non-hybrid DVB terminal. This is included in the
functional component named Broadcast Processing which includes all DVB functionalities provided on a common
non-hybrid DVB terminal. Additionally some information and functions from the Broadcast Processing component can
be accessed by the Runtime Environment (e.g. channel list information, EIT p/f, functions for tuning). These are
included in the "other data" in figure 2. Moreover an application can scale and embed linear A/V content in the user
interface provided by an application. These functionalities are provided by the Media Player. In figure 2 this includes
all functionalities related to processing A/V content.

Via the Broadband Interface the hybrid terminal has a connection to the Internet. This connection provides a second
way to request application data from the servers of an application provider. Also this connection is used to receive A/V
content (e.g. for Content on Demand applications). The component Internet Protocol Processing comprises all the
functionalities provided by the terminal to handle data coming from the Internet. Through this component application
data is provided to the Runtime Environment. A/V content is forwarded to the Media Player which in turn can be
controlled by the Runtime Environment and hence can be embedded into the user interface provided by an application.
In combination with the Media Player, the Synchronization Manager can synchronize content delivered to the hybrid
terminal via the Broadband Interface and content delivered to the hybrid terminal via either the Broadband Interface
or the Broadcast Interface.

ETSI

ETSI TS 102 796 V1.3.1 (2015-10)24

The Companion Screen Interface enables the hybrid terminal to discover Companion Screen Devices and other
hybrid terminals and to be discovered by Companion Screen Devices. Through it, interactive applications running in
the Browser can request an application be installed or started on a Companion Screen Device and an application
running on a Companion Screen Device a can request the Browser to start an interactive application. It provides a
WebSocket server to enable an interactive application in the hybrid terminal and an interactive application on either a
Companion Screen Device or a different hybrid terminal to communicate. In combination, the Companion Screen
Interface and the Media Player together enable synchronization of content delivered to the hybrid terminal via either
interface with content delivered to a Companion Screen Device or another hybrid terminal.

Via the CI plus interface, the hybrid terminal requests application data from the Auxiliary File System offered by the
CICAM.

4.3 Terminal capabilities and extensions
The present document defines a base level (or set of capabilities for terminals) which shall be supported in all terminals.
This base level supports interactive applications:

• Which do not use video as part of their UI.

• Which use broadcast video as part of their UI.

• Which use unicast streaming content on demand as part of their UI.

In addition to this base level, the present document includes four other features which may optionally be supported by
terminals:

• Support for downloading A/V content from the broadcast and broadband channels into persistent memory
available locally to the terminal (both persistent download and progressive download) - this is referred to as
the "download feature".

• Support for scheduling and playback of recordings and time shifting of broadcast content using mass storage
available locally to the terminal - this is referred to as the "PVR feature".

• Support for protected content via broadband as defined in annex B.

• Launching applications on a Companion Screen Device.

Additionally the present document defines some aspects that are mandatory for terminals supporting CI Plus [12] in
whole or in part.

4.4 Specification overview
The present document specifies the technical requirements for the system described in the previous clauses. It largely
references parts of already available standards and specifications and adapts these parts where necessary. The most
significant referenced documents are the following:

• W3C HTML5 [54], as profiled by the OIPF Web Standards TV Profile [i.8].

• OIPF DAE specification - formally known as Open IPTV Forum Release 2 Volume 5 [1].

• DVB hybrid application signalling specification - formally known as ETSI TS 102 809 [3].

• MPEG DASH - formally known as ISO/IEC 23009-1 [29].

• MPEG CENC - formally known as ISO/IEC 23001-7 [30].

ETSI

ETSI TS 102 796 V1.3.1 (2015-10)25

Figure 3 shows a graphical overview of the relationship between the profile defined here and the above mentioned
specifications.

Figure 3: Specification overview

Important components provided by HTML5 [54] include:

• The HTML markup language itself.

• The <video> element for presenting broadband delivered video in an HTML page.

• The APIs for manipulating the contents of an HTML page from JavaScript.

Important components provided by the OIPF DAE specification [1] include:

• JavaScript APIs for applications running in a TV environment (e.g. broadcast video presentation, channel
change).

• Definition of embedding linear A/V content in an application.

• Integration with content protection / DRM technologies

ETSI TS 102 809 [3] provides the following components:

• Application signalling.

• Application transport via broadcast or HTTP.

The audio and video formats are defined in the OIPF Media Formats specification [2].

In some rare cases none of the referenced standards provide an appropriate solution. In these cases the requirements are
directly defined in the present document (e.g. the application lifecycle definition). Additionally the present document
provides recommendations on the user experience and a description of the system overview.

ETSI

ETSI TS 102 796 V1.3.1 (2015-10)26

The requirements in the OIPF and DVB specifications are only included if explicitly referenced in the present document
or a dependency of those explicitly referenced parts. Other parts of those specifications are not required by the present
document and should not be implemented unless required by another specification.

4.5 Referenced W3C Specifications
The present document requires support for the OIPF DAE Web Standards TV Profile (see clause A.1). Some normative
references in that document are to W3C specifications which have not yet been fully approved or which might still be
under development. In these cases, the reference is to a specific dated version of the specification. Terminals shall either
implement the indicated parts of the referenced W3C specification version or the equivalent parts of a later published
version of the specification which is either a Working Draft, a Candidate Recommendation, a Proposed
Recommendation or a W3C Recommendation. These versions may be found by using the "This version", "Latest
version" and "Previous version" links on the referenced web page for the W3C specification.

5 User experience (informative)

5.0 Introduction
This clause describes the behaviour of the terminal as seen by the end-user. It should be considered as usability
guidelines for implementing interactivity. However, the described behaviour usually results from the functionality
coded into the broadcast application, rather than the terminal.

A homogenous user experience is important to enable a successful interactive platform. To ensure this, both the
manufacturer and the application developer should respect the following framework and guidelines.

5.1 Visual appearance of interactive applications

5.1.1 Balance of video and application

Table 1 illustrates the range of different visual appearances the end user might experience. Each "screen" shows a
different balance between "conventional TV" content and information delivered by an interactive application.

ETSI

ETSI TS 102 796 V1.3.1 (2015-10)27

Table 1: Typical range of programme types perceived by end users

1. Conventional TV

2. TV with visual prompt of available information
("Red Button")

3. TV with information overlaid (still picture only in the
overlaid information, no A/V in overlay)

4. Information with video, audio or picture inset

5. Just information (without A/V)

5.1.2 Service selection and event change

The end-user may see a change in appearance either when she/he changes channel or when a service changes through
time.

ETSI

ETSI TS 102 796 V1.3.1 (2015-10)28

TV Service 1 TV Service 2 Radio Service

Figure 4: What might be seen across channels and through time

5.2 User input
The user controls interactive applications using a user input device typically supplied with the terminal. This may be a
conventional remote control or an alternative input device such as a game controller, touch screen, wand or drastically
reduced remote control.

NOTE: While the alternative input devices do not have buttons in the same way as a remote control, it is expected
that implementations using these alternative input devices will include means to generate input to the
application (called key events) logically equivalent to pressing buttons on a conventional remote control.

Table 2 lists the buttons or key events which are relevant for the end user when using interactive applications.
Requirements on implementations are found in table 12 in clause 10.2.2.

Service
T

im
e

ETSI

ETSI TS 102 796 V1.3.1 (2015-10)29

Table 2: Relevant remote control buttons or key events for the end user
when using interactive applications

Button or Key Event Usage
TEXT or TXT or comparable button Launches the digital teletext application and/or the standard

teletext as described in clause 5.3.4.
red colour button Usually displays or hides a broadcast-related autostart

application.
3 additional colour buttons (green, yellow,
blue)

Variable usage as defined by the application (typically short-cuts
or colour-related functions).

4 arrow buttons (up, down, left, right) Variable usage as defined by the application (typically focus
movement or navigation through lists).

ENTER or OK button Variable usage as defined by the application (typically selection of
focused interaction elements or confirmation of requested
actions).

BACK button Variable usage as defined by the application (typically going back
one step in the application flow).

2 program selection buttons (e.g. P+ and P-) If available: selects the next or previous broadcast service in the
internal channel list which may lead to the termination of the
running application as described in clause 6.

WEBTV or comparable button If available: opens a menu providing access to
broadcast-independent applications as described in clause 5.3.5.

EXIT or comparable button Terminates a running broadcast-related application and returns to
last selected broadcast service (see clause 6.2.2.3). A running
broadcast-independent application is still terminated but what
happens next is implementation dependent. For example, it may
vary depending on how the terminated application was originally
started.

Additionally, users may interact with an HbbTV® application via a Companion Screen application in place, or in
addition to, the standard user input device supplied with the terminal. The Companion Screen application does not need
to replicate the functions of, and may support features not available on, the standard user input device.

5.3 Access to interactive applications

5.3.1 Overview of ways of access

The end user can access interactive applications via the following ways:

• Accessing a typical broadcast-related autostart application by pressing the visually indicated "Red Button" (see
clause 5.3.3.2).

• Starting a digital teletext application by pressing the TEXT button (see clause 5.3.4).

• Starting a broadcast-independent application through the Internet TV portal of the manufacturer if one is
offered (see clause 5.3.5).

• Starting an HbbTV® application on the terminal from an already running Companion Screen application.

• Starting an application via a link in the currently running application.

• Selecting a broadcast channel which has a broadcast-related autostart application which starts in full-screen
mode (usually only used on radio or data services).

5.3.2 Inaccessibility of applications

If a non-autostart application (e.g. a digital teletext application) is not available via the broadcast channel but only via
broadband and the terminal is not connected to a broadband network, the terminal should display a suitable error
message encouraging the end user to connect the device to one. Technical error messages (e.g. HTML status code 404)
or a black screen should be avoided.

ETSI

ETSI TS 102 796 V1.3.1 (2015-10)30

Despite the device having an active broadband connection, failure to access the initial page of an autostart broadband
service should not cause any message (error or otherwise) to be displayed on the screen and disturb the TV watching
experience.

5.3.3 Starting broadcast-related autostart applications

5.3.3.1 Possible states of an autostart application

Broadcast-related autostart applications are usually associated with a broadcast channel or an event (or part of an event)
on that channel. In the first case, they start as soon as the channel is selected. In the second case, they start through an
AIT update (usually co-incident with the start of the event).

Broadcast-related autostart applications may be in one of the following states when they start:

1) Displaying a "Red Button" notification to inform the user that the application is available.

2) Displaying no user interface.

3) Displaying their full user interface (usually only used on radio and data services).

In general, autostart applications on TV services should not display their full user interface (i.e. state 3) automatically.
Instead, the user is informed of their availability by the "Red Button" icon (i.e. state 1). Further parts of the application
should not be started unless the end-user presses the "Red Button".

Applications will start with a window covering the entire display in order that they can position the "Red Button"
notification where they wish. Since the browser rendering canvas default colour is device-dependent, applications
should explicitly set the background of their <body> element to transparent using (for example) the following CSS rule:

body {
 background-color: transparent;
}

This ensures that the video for the current service is visible in those areas of the screen where the "Red Button"
notification is not displayed.

On some services (e.g. radio), a broadcast-related autostart application may start by displaying its full user interface
(i.e. state 3) immediately without displaying a "Red Button" icon beforehand.

When an application changes from state 1 or 3 to state 2, it should:

• Remove all graphics on screen.

• Stop presenting any kind of streaming audio or video.

• Restart the broadcast service (if it is a broadcast-related application and the broadcast service has been
stopped).

• Rescale/reposition video to "full screen mode" (if video has been scaled/positioned).

• Unmute audio (if audio has been muted).

• Stop consuming any key events apart from the "Red button" (which should be used to change back to state 3).

When an application changes from state 2 to state 1 or 3, it should:

• Show new application graphics as appropriate.

• Inform the terminal which key events it wishes to consume in its new state.

For some use cases e.g. interactive radio applications, some of these may not apply.

ETSI

ETSI TS 102 796 V1.3.1 (2015-10)31

5.3.3.2 "Red Button" applications

This type of broadcast-related autostart application indicates its availability by displaying a "Red Button" icon on the
screen. This icon is displayed for a time period and then it may disappear. Pressing the "Red Button" on the RCU
always displays the full user interface of the application (see figure 5), whether the "Red Button" icon currently being
displayed or not. If there is no broadcast-related autostart application, pressing the "Red Button" has no effect (see
figure 6).

NOTE: The "Red Button" icon is generated by the broadcast-related autostart application and therefore it is also
designed by the owner of the application.

Figure 5: Service with associated broadcast-related autostart application

Figure 6: Service without associated broadcast-related autostart application

The end user may be able to control a setting to disable the initial drawing of the "Red Button" indication. If the end
user selects this setting then this broadcast autostart application will display its full user interface when it starts, without
drawing a "Red Button" indication. Support for this setting is provided entirely by the application. If such a setting is
available, it should be easy for the end user to find and its purpose should be clear to the end user.

5.3.4 Starting digital teletext applications

A digital teletext application is a special broadcast-related application which is started by pressing the TEXT button on
the RCU. Depending on the provision of a digital teletext application and of standard teletext the reaction on pressing
the TEXT button differs.

Case A: If only the standard teletext is available on the current service, the standard teletext is displayed.

Figure 7: Service with standard teletext only

Case B: If only a digital teletext application is available on the current service, this application is started. Pressing the
TEXT button a second time terminates the application and causes the AIT to be re-parsed and any autostart application
to be restarted.

ETSI

ETSI TS 102 796 V1.3.1 (2015-10)32

Figure 8: Service with digital teletext application only

Case C: If both a digital teletext application and standard teletext are available on the current service, an easy to use
mechanism should be implemented to toggle between the different teletext modes.

EXAMPLE: Pressing the TEXT button for the first time could start the digital teletext application, pressing it
for the second time would close the digital teletext application and start the standard teletext, and
pressing it for the third time would close the standard teletext and rerun AIT parsing and start the
autostart application if provided.

Figure 9: Example of service with digital teletext application & standard teletext

Case D: If a digital teletext application is signalled but not available (because the digital teletext application is only
reachable via broadband and the terminal is not connected appropriately) but standard teletext is available, the standard
teletext would be displayed (see also figure 7).

Case E: If no digital teletext application is signalled and standard teletext is not available, nothing should happen.

Figure 10: Service without associated teletext

Case F: If a digital teletext application is signalled but not available (because the digital teletext application is only
reachable via broadband and the terminal is not connected appropriately) and standard teletext is not available, the
terminal would display an informative message encouraging the end user to connect the terminal to the internet.

5.3.5 Starting broadcast-independent applications

Broadcast-independent applications are started via a running application or an Internet TV Portal. An Internet TV Portal
is an application which provides a type of start page where broadcast-independent applications are sorted and offered in
an appropriate and useful way to the end user. The Internet TV Portal may be opened by pressing a dedicated Internet
TV Button on the RCU. The type of interactive applications that are listed in the Internet TV Portal is the responsibility
of the manufacturer. There may be an option for the user to add broadcast independent applications via manual URL
entry or similar means like apps on mobile phones. The structure and the design of the start page is the responsibility of
the manufacturer and out of the scope of the present document. Broadcast-independent applications are described in
more detail in clause 6.2.2.6.

ETSI

ETSI TS 102 796 V1.3.1 (2015-10)33

Figure 11: Internet TV Portal

Broadcast-independent applications may also be started from a Companion Screen application running on a Companion

Screen. Companion Screen applications and their interaction with HbbTV® terminals and HbbTV® applications are
described in more detail in clause 14.

5.4 Exiting and hiding broadcast-related applications
According to the technical definitions of the application lifecycle in clause 6, applications may be stopped when they
launch other applications or a channel change is performed. Applications may also kill themselves, either as a result of a
request by the end-user or as a consequence of some internal logic.

Pressing the EXIT (or comparable) button terminates the application.

Applications may disappear from view automatically on some actions of the end-user which cause the application to
move to state 2 (as defined in clause 5.3.3.1). "Red Button" applications should always provide this function and should
use the "Red Button" to toggle between state 2 and state 3 (as defined in clause 5.3.3.1). Applications should use the
Application.hide() method to hide their user interface, or may use an alternative approach.

Figure 12: Application selects TV channel

If an action occurs that would terminate an HbbTV® application on the terminal, it is recommended that, where
possible, any associated Companion Screen applications are informed of this. This could be achieved using application
specific messages via the application to application communication path (see clause 14.5), before the application is
terminated.

5.5 Companion Screens

HbbTV® applications may launch, or be launched by Companion Screen applications. Once launched, they may
communicate using application specific messages either directly (application to application communication - see
clause 14.5) or indirectly (e.g. through the cloud). There may be a multiplicity of Companion Screen applications

associated with an HbbTV® application. As a result, there are many application and user interaction models possible

and applications should be designed carefully. It can not be assumed by an HbbTV® application that a Companion

Screen will be available. It is recommended that the standard user input controls are also be handled by the HbbTV®
application (perhaps with reduced application functionality) even when the Companion Screen it intended as the
primary input device.

It is also recommended that applications contain assistance and guidance information to help the user to get started with

applications or suites of applications that are running on both HbbTV® terminals and Companion Screens.

ETSI

ETSI TS 102 796 V1.3.1 (2015-10)34

5.6 User interface issues

5.6.1 Advertising broadcast applications

The user interface displayed on channel change (and when the "Info" button is pressed) is the responsibility of the
terminal manufacturer but typically includes the title and synopsis of the current event. It is recommended that the

presence of HbbTV® applications signalled in the broadcast is indicated to the user in this UI.

5.6.2 Co-existence with CI and CI Plus MMI

A CICAM may request the terminal to display an MMI screen or dialogue at any time. The terminal has to respect the
mandatory requirements of the CI and CI Plus specifications (see clauses 12.3.3 and 12.6.1.1 of CI Plus [12]) and
clause 12.4 of the DVB CI Plus Extensions ETSI TS 103 205 [37]. Working within those constraints, the terminal
should endeavour to present a consistent and uncomplicated user interface at all times. On occasion, this may result in

the HbbTV® application at least losing focus and possibly being terminated.

If any interaction between the CICAM and the user is required, application authors are strongly recommended to use the

oipfDrmAgent APIs to allow communication between the CICAM and the HbbTV® application, which can then act as
a proxy for any interaction with the user.

5.6.3 Encrypted channels

Terminals may wish to display a message to the user that the channel is encrypted and cannot be displayed (see
clause 6.2.2.8). If they do so, they should be aware that applications may wish to present some relevant information for
this scenario. Hence any native UI should not remain on screen permanently or should give the user a way to remove it.

6 Service and application model

6.1 Application model

The present document defines a model which supports one HbbTV® application visible at one time.

Two types of applications are supported:

• Broadcast-related applications. These are signalled as part of a broadcast channel as defined in clause 7.2.3.1
and follow the lifecycle rules defined in clauses 6.2.2.2 and 6.2.2.3.

• Broadcast-independent applications. These are either not signalled at all or are signalled as in clause 7.2.3.2.
They follow the lifecycle rules defined in clause 6.2.2.6.

Applications may transition between these two types as described later in the present document.

Terminal specific applications like navigators, channel list management, terminal specific EPGs or PVR control
applications are out of scope of the present document.

It is optional for a terminal to support background preloading and rendering of applications other than the visible one.

No mechanism is defined to allow the visible application to interact with other running applications.

Terminal specific applications may be temporarily displayed on top of HbbTV® applications. This shall not affect the

state of the HbbTV® application but during this time, if the terminal specific application takes focus, the HbbTV®
application shall not receive any key event. Calls to application.show() while a terminal specific application is visible
shall either:

• cause the HbbTV® application to be visible behind the terminal specific application; or

• cause the HbbTV® application to become visible once the terminal specific application stops being visible

assuming that the HbbTV® application is still running and that application.hide() has not been called.

ETSI

ETSI TS 102 796 V1.3.1 (2015-10)35

6.2 Application lifecycle

6.2.1 Introduction

The application lifecycle is determined by the following four factors:

1) The application model.

2) The currently selected broadcast service (if any) and changes to it.

3) The applications signalled as part of the currently selected broadcast service.

4) The signalled application control code (as defined in clause 7.2.3.1 of the present document and clause 5.2.4 of
ETSI TS 102 809 [3]).

6.2.2 Starting and stopping applications

6.2.2.1 Summary

Starting an application may be initiated in the following ways:

• Directly by the end-user (e.g. by using dedicated buttons on the remote control or an equivalent menu provided
by the terminal).

• In response to signalling in a broadcast service (e.g. automatically starting a broadcast-related autostart
application).

• By an already running application (via the JavaScript method createApplication()).

• By a Companion Screen as described in clause 14.6.

Starting applications in response to the playback of recorded or downloaded content is not supported.

An application may be stopped in the following ways:

• As defined in the flowcharts in clauses 6.2.2.2 and 6.2.2.3.

• By calling Application.destroyApplication().

• By the terminal, under error conditions.

• Directly by the end-user.

The launch of an application may be blocked by the terminal if a parental rating value is signalled in the broadcast AIT
or XML AIT. However, once launched, a change in the parental rating in a broadcast AIT does not cause the running
application to be killed.

ETSI

ETSI TS 102 796 V1.3.1 (2015-10)36

6.2.2.2 Behaviour when selecting a broadcast service

Figure 13 shows the rules that shall apply when the selected broadcast service changes.

Figure 13: Behaviour when selecting a broadcast service

ETSI

ETSI TS 102 796 V1.3.1 (2015-10)37

NOTE 1: It is strongly recommended that broadcasters only signal one autostart application per broadcast service.

NOTE 2: The selection of application can be optimized as follows:

 If the terminal does not have an operational broadband connection then applications signalled as
broadband-only and broadband-specific signalling for applications signalled as both broadcast and
broadband can be discarded.

 If the terminal does not have an operational CI Plus connection then applications signalled as CICAM-
only and CICAM-specific signalling for applications signalled as both broadcast and CICAM-based can
be discarded.

For the purposes of deciding whether an application is already running or is signalled, only the organisation_id and
application_id fields from the AIT shall be used. Other information (e.g. the URL of the first page, the parental rating
of the application) shall not be used.

No application shall be launched by the terminal if it would be blocked by parental access controls, as defined in
clause 6.2.2.10.

Figure 13 shall not apply when selecting an MPEG program which is not a broadcast DVB service. If a transport stream
does not include an SDT actual then none of the MPEG programs in that stream are broadcast DVB services. If the SDT
actual in a transport stream does not include an entry corresponding to a PMT in that transport stream then the MPEG
program described by that PMT is not a broadcast DVB service. There is no requirement for a terminal to check again
either for an SDT or that a service is listed in the SDT if it has already done so, e.g. in order to acquire the service name
when creating the channel list.

NOTE 3: If broadcasters or operators change programs in a multiplex from being a broadcast service to a
non-broadcast service or vice-versa, they should use new program numbers/service_ids and should not
re-use the old program numbers/service_ids.

As a consequence of selecting such an MPEG program:

• No applications shall be started.

• No applications shall be stopped except for broadcast-related applications with service_bound_flag set to '1'
which are stopped when leaving the current broadcast service.

• The value of the currentChannel property on the video/broadcast object and the
ApplicationPrivateData.currentChannel property shall reflect the MPEG program selected.

• Figure 13 shall not apply when selecting an MPEG program that is not a broadcast DVB service.

6.2.2.3 Behaviour while a broadcast service is selected

Figure 14 shows the rules that shall apply if the AIT changes or a broadcast-related application exits while a broadcast
service is selected.

ETSI

ETSI TS 102 796 V1.3.1 (2015-10)38

Figure 14: Behaviour while a broadcast service is selected

ETSI

ETSI TS 102 796 V1.3.1 (2015-10)39

NOTE 1: By "operational broadband connection", it is meant that at the time of the operation, the connection to the
Internet is functional.

No application shall be launched by the terminal if it would be blocked by parental access controls, as defined in
clause 6.2.2.10.

In figure 14, the following clarifications shall apply:

• For the purposes of deciding whether an application is already running or is still signalled, only the
organisation_id and application_id fields from the AIT shall be used. Other information (e.g. the URL of
the first page, the parental rating of the application) shall not be used.

• Other than organisation_id and application_id, the only other field in the AIT which is relevant when the
AIT is updated is the application control code. Changes in other fields shall be ignored for already running
applications.

NOTE 2: As a result of the above, changes to fields in the AIT other than organisation_id, application_id and
application control code will only take effect for newly started applications. In order for those changes to
affect an already running application, the application needs to exit and re-start. It is up to the broadcaster
and/or application provider to arrange for this to happen.

NOTE 3: A change in the version number of an AIT subtable is an indication to the terminal to retrieve a new
version of the AIT. It does not imply or require any changes in the content of the AIT itself. For example,
adding an application to the AIT would be an update to the AIT without changing the AIT entries for any
existing applications.

NOTE 4: The selection of application can be optimized as follows:

 If the terminal does not have an operational broadband connection then applications signalled as
broadband-only and broadband-specific signalling for applications signalled as both broadcast and
broadband can be discarded.

 If the terminal does not have an operational CI Plus connection then applications signalled as CICAM-
only and CICAM-specific signalling for applications signalled as both broadcast and CICAM-based can
be discarded.

The PID on which an AIT component is carried may change. Terminals shall treat this in the same manner defined in
clause 5.3.4.2 of ETSI TS 102 809 [3] for the case where an AIT is removed from the PMT and then reinstated. This
means that the subtable shall be considered to have changed, regardless of whether the AIT version number changes,
and the normal "AIT updated" sequence defined in figure 14 shall be followed.

If the only running broadcast-related application exits without starting a broadcast-independent application or without
the terminal changing channel, the AIT shall be re-parsed and any autostart application shall be re-started following the
rules defined in the previous clause. It may be that the restarted application is the same one as the one that just exited. If
an application exits when an MPEG program that is not a broadcast DVB service is selected and that MPEG program
does not include an AIT then the behaviour is implementation specific.

This flowchart shall not apply while MPEG programs are selected which are not a broadcast service, (i.e. not listed in
the SDT of the transport stream carrying them or are carried in a transport stream that does not include an SDT) and
which do not include an AIT.

Terminals shall include a mechanism to start and stop digital teletext applications, for example, the TEXT key on an
RCU could be used to start the digital teletext application (which would require any other running application to be
killed); pressing the TEXT key again causes the running application to be stopped as long as it is signalled as a digital
teletext application. Digital teletext applications are identified with an application_usage_descriptor in the AIT with
usage_type equal to 1.

NOTE 5: The digital teletext application is intended to be distinct from the autostart application(s) in the AIT. Care
is needed if a teletext application is started by means other than the TEXT key.

ETSI

ETSI TS 102 796 V1.3.1 (2015-10)40

6.2.2.4 Time-shifting behaviour

If the terminal initiates time-shifting of the currently selected broadcast service, an application may get out of sync with

the presentation of the audio-video components of this service. An HbbTV® application shall be terminated if it is not
safe to run it on a time-shifted broadcast service. An application is safe to run in time shift mode, if it is signalled in the
AIT with an applicaton_recording_descriptor and both the trick_mode_aware_flag and the time_shift_flag set
to '1' as described in clause 7.2.3.1. If an application is killed due to a broadcast service being time-shifted, the
procedure defined in clause 6.2.2.2 for selecting an autostart application to run shall be followed except that only
applications that are time-shift safe shall be considered.

After starting time-shift a terminal shall:

• Dispatch a RecordingEvent to signal a state change to state 11 "time-shift mode has started" of the PVR state
machine.

• Update the recordingState, playPosition and playSpeed properties of the video/broadcast object.

After stopping time-shift a terminal shall dispatch a RecordingEvent to signal a state change to state 0 "unrealized" of
the PVR state machine.

The present document defines two implementation options for support of applications when video is time-shifted -
depending on whether the terminal can or cannot maintain synchronization between applications and the A/V
components of a service. Which of these two options is implemented by a terminal is indicated by the
timeShiftSynchronized property.

When a terminal can maintain synchronization between applications and the A/V components of a service, all of the
following shall apply:

• DSMCC stream event descriptors shall be recorded with the A/V components keeping the timing relation and
shall be delivered during playback of the time-shift.

• The AIT shall be monitored, any changes shall take effect preserving the correct timing with respect to the
A/V components.

• The service information shall be recorded with the A/V components keeping the timing relation and the
properties of the video broadcast object (e.g. programmes, AVComponent as defined in clause 7.16.5 of the
OIPF DAE specification [1]) changes at the proper time of the playback of the time-shift.

• The timeShiftSynchronized property of the configuration property of the Configuration class shall be set
to true (see clause A.2.20.2).

If a terminal is not able to maintain synchronization between applications and the A/V components of a service:

• The application may receive some (or all) broadcast resources from the live broadcast signal instead of the
time shift playback.

• It shall set the timeShiftSynchronized property to false.

NOTE: When an application accesses service information or receives stream events, it may check if it is
synchronized with the A/V component of the service by reading the values of the properties
recordingState and timeShiftSynchronized.

6.2.2.5 Simultaneous broadcast/broadband/CI Plus application signalling

6.2.2.5.1 Priority

Broadcast, broadband and CI Plus transport protocols may be specified simultaneously for a given application. The
priority by which the transport protocols shall be used is determined by the order in which the
transport_protocol_labels are listed in the application_descriptor, with the first being the highest priority.

ETSI

ETSI TS 102 796 V1.3.1 (2015-10)41

6.2.2.5.2 Not currently operational broadband connection

Where a terminal does not have a currently operational broadband connection and an application to be launched is
signalled to be:

• Available through broadband and one or more other protocols (either broadcast or CI plus): the terminal shall
disregard the signalling for the broadband transport protocol.

• Available only through broadband: the terminal shall ignore the request to launch the application (and return
an error if the application was launched by a call to createApplication()).

6.2.2.5.3 Currently operational broadband connection and error accessing initial page

Where a terminal has a currently operational broadband connection but there is an error (asynchronous due to the nature
of the HTTP protocol) accessing the initial page of a broadband application and an application to be launched is
signalled as:

• Available through broadband as top priority and then through another protocol (either broadcast or CI plus):
the terminal shall disregard the signalling for the broadband transport protocol.

• Available only through broadband: the terminal shall not display an error message for applications which were
either launched as autostart (e.g. following a channel selection or AIT update) or which were launched by
another application.

6.2.2.5.4 Not currently operational CI Plus protocol

Where a terminal does not have a currently operational CI Plus File System and an application to be launched is
signalled to be:

• Available through CI Plus protocol and one or more other protocols (either broadcast or broadband): the
terminal shall disregard the signalling for the CI Plus transport protocol.

• Available only through CI Plus protocol: the terminal shall ignore the request to launch the application (and
return an error if the application was launched by a call to createApplication()).

6.2.2.5.5 Currently operational CI Plus connection and error accessing file system

Where a terminal has a currently operational CI Plus File System with HbbTV® Application Domain but there is an
error accessing the initial page of a CI plus application and an application to be launched is signalled as:

• Available through CI Plus protocol and one or more other protocols (either broadcast or broadband): the
terminal shall disregard the signalling for the CI Plus transport protocol.

• Available only through CI Plus protocol: the terminal shall ignore the request to launch the application (and
return an error if the application was launched by a call to createApplication()).

6.2.2.5.6 Application launch failure

If the application cannot ultimately be loaded from either broadcast or broadband or CI Plus and the application was
launched by a call to createApplication(), an ApplicationLoadError shall be dispatched. Once the initial page of an
application has been successfully loaded, the present document does not specify how terminals should behave if a page
from that application subsequently fails to load.

6.2.2.6 Broadcast-independent applications

6.2.2.6.1 Lifecycle issues

A broadcast-independent application can be created in one of the following ways:

• By calling the Application.createApplication() method with either an HTTP or an HTTPS URL. The
URL shall refer to either an HTML page or an XML AIT (see clause 7.2.3.2).

• Optionally from a terminal specific application like an Internet TV Portal or following manual URL input as
described in clause 5.3.5.

ETSI

ETSI TS 102 796 V1.3.1 (2015-10)42

• By a Companion Screen sending an XML AIT to the terminal as described in clause 14.6.

Where the URL refers to an HTML page directly, the broadcast-independent application shall be created without an
organisation_id or application_id.

Where the URL refers to an XML AIT, the broadcast-independent application shall be created with the
organisation_id and application_id specified in the XML AIT. In both cases, the application shall be associated
with an application boundary as defined in clause 6.3.

When a broadcast-related application starts a broadcast-independent application, the application is started but the
broadcast service shall cease to be selected - logically equivalent to selecting a "null service" as described above.
Access to broadcast resources shall be lost and the object shall transition to the unrealized state.

A broadcast-related application can transition to a broadcast-independent application by calling the setChannel()
method on the video/broadcast object with a value of null for its channel argument. Access to broadcast resources
shall be lost and the object shall transition to the unrealized state. A ChannelChangeSucceededEvent shall be
dispatched to the video/broadcast object that caused the transition with a value of null for the channel property.

NOTE 1: Applications that wish to become broadcast-independent and later transition back to broadcast-related
should remember the current channel before transitioning to broadcast-independent.

NOTE 2: Broadcast-related applications should ensure that the current HTML page is loaded from broadband
before making such a transition. As defined in clause 6.3.3 of the present document, broadcast-related
applications loaded from carousel can have their application boundary extended to include HTTP or
HTTPS domains in order to enable loading of pages from broadband as part of the application. The
results of attempting to make a transition to broadcast-independent when the current HTML page is
loaded from carousel are not defined by the present document but may include the application being
unable to load any data or it being terminated.

Stopping and resuming playback of broadcast video using the stop() and bindToCurrentChannel() methods on a
video/broadcast object shall not affect the broadcast-related status of an application.

When a broadcast-independent application successfully selects a broadcast service using a video/broadcast object, that
application shall be killed unless all the following conditions are met:

• The broadcast-independent application has an organisation_id and application_id (whether obtained
through a broadcast AIT or an XML AIT).

• An application of the same organisation_id and application_id is signalled in the broadcast channel to be
selected with control code AUTOSTART or PRESENT.

• The application signalled in the broadcast channel with the same organisation_id and application_id
includes a transport_protocol_descriptor with protocol_id equal to 3.

• The URL of the entry point document of the broadcast-independent application has the same origin as at least
one of the URLs signalled in the broadcast for that organisation_id and application_id.

• The URL of the page currently loaded in the broadcast-independent application is inside the application
boundary of the application as defined in clause 6.3.

If these conditions are met, the application shall transition to be a broadcast-related application as defined in
clause 6.2.2.2. The application should be authored to follow the behaviour defined in clause 5.3.3. These conditions
shall apply regardless of whether an application was originally launched as broadcast-related or as broadcast-
independent and regardless of how many times an application may have previously transitioned from broadcast-related
to broadcast-independent or vice-versa.

6.2.2.7 Suspension of access to broadcast resources

This clause shall apply to terminals which do not have the hardware capability to present broadband delivered video at
the same time as demultiplexing MPEG-2 sections from the broadcast.

ETSI

ETSI TS 102 796 V1.3.1 (2015-10)43

Attempting to present broadband delivered video using the AV Control object or the HTML5 media element may result
in suspension of access to broadcast resources, including but not limited to:

• AIT monitoring being paused.

• Files in a carousel no longer being accessible.

• DSM-CC stream event monitoring being paused.

• Broadcast video presentation being stopped.

• Not dispatching ProgrammesChanged events.

Suspension of access to broadcast resources shall be treated as a transient error as defined in table 8 of the OIPF DAE
specification [1]. The PlayStateChange event that is dispatched shall have the error code 11.

When playback of broadband delivered video terminates for any reason (i.e. an AV Control object enters the stopped or
error states or an HTML5 video element has "ended playback" or is "stopped due to errors" (where both these
conditions are defined in the HTML5 specification)) and no broadband-delivered media item is queued and access to
broadcast resources was previously suspended due to the presentation of broadband-delivered video, the following
actions shall be taken by the terminal:

• AIT monitoring shall resume.

• Access to files in a broadcast carousel shall be automatically restored.

• DSM-CC stream event monitoring shall resume.

• Broadcast video presentation shall resume.

• Dispatching ProgrammesChanged events shall resume.

When access to broadcast resources is restored following earlier suspension of access, this shall be treated as recovery
from a transient error as defined in table 8 of the OIPF DAE specification [1].

For consistent behaviour, broadcast-related applications which wish to present long items of broadband delivered video
should either:

a) make themselves broadcast-independent as defined in clause 6.2.2.6; or

b) be permanently signalled in the AIT by the broadcaster.

Access to broadcast resources shall be automatically restored if a channel change is made either by the application or by
the user (e.g. by pressing P+ or P-). This may result in the presentation of broadband delivered video being halted. If
presentation is halted then this shall be reported using error 3 in the case of the AV Control object or MEDIA_ERR_DECODE
in the case of an HTML5 media element.

6.2.2.8 Behaviour on encrypted broadcast services

Some channels may have the broadcast content encrypted, preventing those terminals without the appropriate CAS and
rights from decoding and presenting the content. In these cases, clauses 6.2.2.2 and 6.2.2.3 remain applicable even when
the terminal fails to decode some or all of the components.

In particular, terminals shall behave as follows:

• Failure to decrypt the AIT is identical to having no AIT present on that channel.

• Failure to decrypt the carrousel containing the application is identical to failing to load the application from
broadcast protocol.

NOTE: The present document is intentionally silent about requirements for terminals to support decryption of
encrypted AITs, object carousels and other data components.

ETSI

ETSI TS 102 796 V1.3.1 (2015-10)44

Applications associated with channels which may be encrypted are advised to check whether the content is being
presented (using the error parameter provided in the onPlayStateChange method of the video/broadcast object) and to
modify their behaviour accordingly. For instance, if the content is not being presented, the application may wish to
display some advertising message indicating how the user may gain access to this channel. Applications should not
remain hidden or show a mainly transparent screen.

6.2.2.9 Applications launched from non-HbbTV® application environments

Terminals may support broadcast application types other than HbbTV® applications and may provide a mechanism for

an HbbTV® application to be launched from those application types. The following clauses apply where an HbbTV®
application is launched using an XML AIT from a broadcast application of another type.

Where a broadcast AIT that includes the HbbTV® application_type is present in the service from which the

launching (non-HbbTV®) application was running, the HbbTV® application shall be started as a broadcast related, non
service-bound application if all of the conditions for an application to survive a transition from broadcast-independent
to broadcast-related in clause 6.2.2.6 apply. Otherwise, the application shall be started as broadcast independent.

Where either no AIT is present in the service from which the launching (non-HbbTV®) application was running, or a

broadcast AIT is present in that service but does not include the HbbTV® application_type, the HbbTV® application
shall be started as a broadcast related, non service-bound application. In this case,

ApplicationPrivateData.currentChannel shall be set to reflect the current channel at the time of the HbbTV®
application launch.

In all cases, the HbbTV® application is subject to the normal application lifecycle behaviour on any subsequent channel
changes and updates to the broadcast AIT (including its appearance or disappearance).

6.2.2.10 Parental ratings

When an attempt is made to launch an application using any of the mechanisms defined in clause 6.2.2, the terminal
shall enforce parental access control on the application being launched using any parental rating information carried in
the AIT. The decision making process and any UI should be the same as that which the terminal would use to enforce
parental access control when attempting to play a media content item.

NOTE: Whether the terminal enforces parental access control when launching applications may depend on the
configuration of the terminal and in particular parental control settings that have been configured by the
user.

If playback of a media content item with the same parental rating would be blocked (e.g. because the user does not enter
the correct parental control PIN, or because the terminal is configured to automatically block consumption of content
above a given parental rating or if none of the parental ratings provided in the broadcast AIT or XML AIT are supported
by the terminal), the request to launch the application shall fail.

6.2.2.11 Other general behaviour

Any application shall be stopped under the following circumstances:

• The application itself exits using the Application.destroyApplication() method (as defined in clause 7.2.2
of the OIPF DAE specification [1]).

• In response to changes in the application signalling as defined in clauses 6.2.2.2 and 6.2.2.3 for
broadcast-related applications.

• The terminal has run out of resources for executing the application (except as described below) and therefore
has to terminate it in order to keep operating correctly.

An application shall not be stopped due to a failure to load an asset (e.g. an image file) or a CSS file due to a lack of
memory, although this may result in visual artefacts (e.g. images not being displayed). Failure to load an HTML or
JavaScript file due to a lack of memory may cause the application to be terminated.

By default, newly started broadcast-related applications shall not be visible to the end user. These applications shall call
the Application.show() method in order to display their user interface and accept user input. Newly started broadcast-
independent applications shall be visible and active without needing to call this method.

ETSI

ETSI TS 102 796 V1.3.1 (2015-10)45

Terminals may be configurable (either by the user or by the manufacturer) to not load or not start applications in spite of
other requirements in the present document.

The requirements in the present document on starting and stopping HbbTV® applications may be modified for markets
where other application formats are already deployed. For example, a static priority (one format always having priority
over another where both are present) or a dynamic priority based on broadcast signalling may be used.

When one application requests a second application be started, the first application shall continue to run until the initial
HTML document of the second application has been loaded - i.e. until after an ApplicationLoadError event would be
generated (if any listener was registered). Only then shall the first application be stopped by the terminal.

Failing to parse the initial page of an application shall be regarded as a loading failure when evaluating if the
application successfully loads in figures 13 and 14.

When an application selects a new broadcast channel, there is a period of time between the channel change having been
completed (when the onChannelChangeSucceeded event is triggered) and the AIT having been received and parsed.
During this period, the application shall retain its type (broadcast-related or broadcast-independent) and trust level
(trusted or untrusted). Hence, while a broadcast-independent application is transitioning to become broadcast-related,
access to features limited to broadcast-related applications will continue to fail as they did before the transition started
until the AIT has been received and parsed.

6.2.3 Application lifecycle example (informative)

Figure 15 and table 3 illustrate the application model defined above.

Figure 15: Application model examples

ETSI

ETSI TS 102 796 V1.3.1 (2015-10)46

Table 3: Descriptions of actions and resulting state changes

Starting state Action Resulting state
Initial State: Application 1 is
running

2: User presses "TEXT" key State 2: Application 2 will be started due to
TELETEXT signalling.

Initial State: Application 1 is
running

3: User selects service 2 State 3: Application 1 keeps running
assuming it is not service-bound.

Initial State: Application 1 is
running

4: User selects service 3 State 4: Application 1 will be killed and
Application 4 will be started due to
AUTOSTART signalling.

Initial State: Application 1 is
running

5: Application call to
createApplication() with an
XML AIT to start a broadcast-
independent application

State 5: Broadcast-independent application 6
is running. Any former presentation of service
components will be stopped. The application
has an application identifier as it was started
from an XML AIT. See also action #7.

State 5: Application 6 is running 6: User selects Service 1 State 1: Application 6 will be stopped and
Application 1 will be started due to
AUTOSTART signalling.

State 5: Application 6 is running 7: Application 6 selects service 4 State 6: Presentation of service 4 starts.
Application 6 is signalled on service 4. It
transitions to broadcast-related and keeps
running.

 8: User enters URL of XML AIT or
initial page to start application and
to store it in his bookmarks.
Terminal takes application title and
logo for bookmark entry as
signalled in HTML header.

State 5: same as for action 5.

 9: Companion Screen sends an
XML AIT to the terminal.

State 5: same as for action 5.

6.3 Application boundary

6.3.1 Introduction

Every application is associated with an application boundary. The application boundary is based on origins of the
application resources like HTML documents.

6.3.2 Origin

• For resources loaded via HTTP and HTTPS, the origin shall be as defined in clause 5.3 of the HTML5
Recommendation [54].

• For resources loaded via DSM-CC object carousel, the origin shall be the DVB URI in the form (as defined in
ETSI TS 102 851 [10] clause 6.3.1):

- "dvb" ":" "//" original_network_id "." transport_stream_id "." service_id "." component_tag.

NOTE: In this case, the "host" is the DVB triplet plus the component_tag.

Hexadecimal digits in the DVB triplet and the component_tag shall be encoded using lower case characters.

This origin shall be used in all cases where a document or resource origin is used in web specifications including but not
limited to Cross-Origin Resource Sharing 42 and with Web Storage.

6.3.3 Application boundary definition

The application boundary is defined as follows:

• An application boundary is a set of origins where each origin is as defined above.

• If the origin of a URL is the same as one of the origins in the application boundary, that URL is said to be
inside the application boundary.

ETSI

ETSI TS 102 796 V1.3.1 (2015-10)47

• For applications loaded via DSMCC, the default application boundary shall include the origin, as defined in
clause 6.3.1, of the initial HTML document used to launch the application.

• If an object carousel is identical to one of the carousels in the application boundary, that carousel is said to be
inside the application boundary:

- The requirements for two object carousels to be identical shall be as defined in clause B.2.10 of ETSI
TS 102 809 [3].

NOTE 1: For carousels delivered by different transport streams, the terminal compares the two carousel_ids. The
use of the broadcaster's organisation_id in the 24 MSBs of the two carousel_ids is a means to obtain
unique carousel_ids and is not visible to the terminal.

• For applications loaded via HTTP or HTTPS, the default application boundary shall include the origin of the
URL used to launch the application e.g. as signalled in the AIT or XML AIT or passed as argument of
createApplication().

NOTE 2: This means that the default boundary is the tuple (scheme, host, port) of the application URL before any
redirect, where the port component is the default port if not otherwise specified.

• A simple_application_boundary_descriptor may be present in the AIT or an <applicationBoundary>
element may be present in the XML AIT. As described in clauses 7.2.3.1 and 7.2.3.2 of the present document,
these may include:

- one or more http: or https: URLs prefixes. The application boundary shall be extended to include also
the origins of such prefix if this will not result in having origins from more than one host in the
boundary. Otherwise the additional origin shall be ignored.

NOTE 3: This means that the boundary cannot be extended to cover more than one FQDN.

- one or more dvb: URL prefixes. The application boundary shall be extended to include also object
carousels referenced by such prefixes.

• For applications loaded from the CICAM Auxiliary File System, the application boundary shall include the
origin of the URL used to launch the application e.g. as signalled in the AIT or XML AIT or passed as
argument of createApplication().

• Extensions to the application boundary shall have no effect on the origin that is used for the enforcement of the
same-origin security policy.

Launching a new application by using the method createApplication() (with an arbitrary new start page) or killing
the current application and starting a new one via application signalling shall result in losing the association with the
current application boundary (i.e. the new application will have a new boundary as defined in this clause).

Documents loaded from outside the application boundary shall be untrusted (in the sense of the word "trusted" as
defined in clause 11), for example documents loaded in an <iframe> element or documents loaded as a result of
following a link or an HTTP redirect. Following a link or an HTTP redirect from outside the application boundary back
inside the application boundary shall restore the trust level to the original trust level of the application.

NOTE 4: An application being broadcast-related or broadcast-independent is not impacted by this change in trust
level.

ETSI

ETSI TS 102 796 V1.3.1 (2015-10)48

7 Formats and protocols

7.1 General formats and protocols

7.1.1 Graphic formats

The graphics formats used shall comply with clause 9.1 of the OIPF media formats specification [2].

Table 4 lists the graphics formats that shall be supported.

Table 4: Graphics formats

Image Format MIME Type
JPEG image/jpeg
GIF image/gif
PNG image/png

7.1.2 Audio description

For the broadcast connection, signalling of audio description is defined by the appropriate specifications for each
market where the terminals are to be deployed. Signalling of audio description for MPEG-2 transport streams delivered
by the broadband connection shall follow the specification for the broadcast connection (if any).

NOTE: Typically most countries will use one of the 3 mechanisms from clause 8.4.2 of the OIPF DAE
specification [1] but the present document does not require that.

For ISO format files, signalling is only defined to identify audio description streams when these are delivered using
DASH. In this case, the signalling is defined in clause 6.1.2 of the DVB DASH profile ETSI TS 103 285 [45], "Role
Related Requirements".

Presenting a broadcast-mix audio description stream is supported since this is no different from presenting any other
alternative audio stream.

Presenting receiver-mix audio description streams is not required by the present document.

To the extent that audio description is supported, it shall be exposed to applications as defined in clause 8.4.5 of the
OIPF DAE specification [1].

7.2 Broadcast-specific format and protocols

7.2.1 System, video, audio and subtitle formats

The present document does not contain any requirements for system, video, audio and subtitle formats for the broadcast
channel. These requirements are defined by the appropriate specifications for each market where the terminals are to be
deployed.

7.2.2 Protocol for application transport

DSM-CC object carousel as defined in clause 7 of ETSI TS 102 809 [3] shall be supported.

Broadcasters shall ensure that the DSM-CC sections for a carousel are distributed over 3 or fewer elementary streams.
StreamEvent sections may be carried in additional elementary stream(s).

Support for the caching_priority_descriptor as defined in clause B.2.2.4.2 of ETSI TS 102 809 [3] is not included.

The use of the deferred_association_tags_descriptor for the purpose of referencing an elementary stream (ETSI
TS 102 809 [3], clauses B.3.1.1 and B.3.2) is not required by the present document. However this signalling may be
present in a broadcast transport stream and acted upon by receivers that support this. Consequently,
authors/broadcasters/operators should not expect this signalling to be ignored if it is present in the broadcast transport
stream.

ETSI

ETSI TS 102 796 V1.3.1 (2015-10)49

If elementary streams present in other services are to be referenced, then that elementary stream will also be required to
be present in the current services PMT.

The use of the deferred_association_tags_descriptor to support the BIOP_PROGRAM_USE tap (ETSI TS 102 809 [3],
clause B.3.1.2) is required by the present document.

The elementary streams used to carry DSM-CC object carousel sections may additionally carry information using other
table_ids. When acquiring and monitoring for DSM-CC object carousel sections, terminals shall silently ignore
table_ids not supported for carriage of DSM-CC object carousel information.

NOTE: The present document only requires support for table_id 0x3b, 0x3c or 0x3d as defined in
ISO/IEC 13818-6 [i.12].

When the CICAM Auxiliary File System is implemented as specified in the DVB Extensions to CI Plus ETSI

TS 103 205 [37] and the HbbTV® Application Domain is offered by the CICAM, the terminal shall be able to request
an application from this file system, as specified in annex F of ETSI TS 103 205 [37]. In this method the URL for the
application is retrieved from the simple_application_location_descriptor.

7.2.3 Signalling of applications

7.2.3.1 Broadcast signalling

Table 5 identifies the descriptors and other signalling entities whose MPEG-2 encoding shall be supported. Clause
numbers and page numbers refer to ETSI TS 102 809 [3].

Terminals shall support AIT subtables for HbbTV® applications, i.e. that have an application type 0x10, with at least
8 sections.

Elementary streams that are used to carry an application information table may additionally carry information using
other table_ids. When acquiring and monitoring for AIT elementary streams, terminals shall silently ignore table_ids
not supported for carriage of AIT information.

NOTE: The present document only requires support for table_id 0x74 as defined in ETSI TS 102 809 [3].

Table 5: Supported application signalling features

Clause Page Status Notes
5.2.2 Application types 14 M The application type shall be 0x0010.
5.2.3 Application
identification

15 M application_ids for trusted applications (as defined in the present
document) shall be in the range for signed applications (as defined in
ETSI TS 102 809 [3]). Applications signalled with an application_id in
the range of unsigned application shall be started as untrusted.
Applications signalled with an application_id in ranges other than
signed and unsigned are outside the scope of the present document. If
not otherwise required by other specifications, these applications shall
not be started and discarded by the platform.

5.2.4 Application control
codes

16 M The following control codes shall be supported:
0x01 AUTOSTART
0x02 PRESENT
0x04 KILL
0x07 DISABLED

The application life cycle shall follow the rules defined in ETSI
TS 102 809 [3] and in the present document.

ETSI

ETSI TS 102 796 V1.3.1 (2015-10)50

Clause Page Status Notes
5.2.5 Platform profiles 17 M For applications that only require the basic profile, the

application_profile shall take the value 0x0000.The following bits
can be combined to express profiles corresponding to additional
features that applications may require:
0x0001 A/V content download feature
0x0002 PVR feature
The 3 most significant bits of the application_profile are reserved
for future use.
As defined in clause 5.2.5.1 of ETSI TS 102 809 [3], terminals shall be
able to run all applications where the signalled application profile is one
of the profiles supported by the terminal. All terminals shall support the
basic profile (0x0000) in addition to profiles corresponding to the other
features supported by the terminal.
The version fields shall be set as follows:
version.major = 1
version.minor = 3
version.micro = 1

Additionally terminals shall launch applications signalled with the
following values for major, minor and micro - 1,1,1 and 1,2,1 and run
them as defined by the requirements in the present document.

5.2.6 Application
visibility

18 See the
Notes

column

VISIBLE_ALL shall be signalled. Values other than VISIBLE_ALL are not
included in the present document.

5.2.7 Application priority 18 M
5.2.8 Application icons 19 O The icon locator information shall be relative to the base part

(constructed from the URL_base_bytes) of the URL as signalled in the
transport_protocol_descriptor.

5.2.9 Graphics
constraints

21 NI

5.2.10 Application
usage

22 M Usage type 0x01 shall be supported as described in clauses 5.3.4 and
6.

5.2.11 Stored
applications

23 NI

5.2.12 Application
Description File

26 NI

5.3.2 Program specific
information

28 M

5.3.4 Application
Information Table

29 M A maximum of one PID per service shall be used to carry the AIT

subtable defined by the HbbTV® application type.

All sections of the HbbTV® AIT subtable shall be transmitted at least
once every second.
Terminals shall ignore AIT subtables within the selected service which
have an application_type that the terminal cannot decode.

5.3.5.1 Application
signalling descriptor

33 M If more than one stream is signalled in the PMT for a service with an
application_signalling_descriptor, then the
application_signalling_descriptor for the stream containing the

AIT for the HbbTV® application shall include the HbbTV®

application_type (0x0010).
5.3.5.2 Data broadcast
id descriptor

33 O The value to be used for the data_broadcast_id field of the

data_broadcast_id_descriptor for HbbTV® carousels shall be
0x0123. The id_specific_data are not defined. By supporting this
optional feature, terminals can reduce the time needed to mount a
carousel.

5.3.5.3 Application
descriptor

34 M

5.3.5.4 Application
recording descriptor

35 M/NI Support of the application_recording_descriptor is mandatory
when the terminal has support for time-shift. Otherwise it is not included.
The semantics of the application_recording_descriptor for

HbbTV® is clarified below this table.
5.3.5.5 Application
usage descriptor

37 M Usage type 0x01 shall be supported as described in clauses 5.3.4 and
6.

5.3.5.6 User information
descriptors

38 M

ETSI

ETSI TS 102 796 V1.3.1 (2015-10)51

Clause Page Status Notes
5.3.5.7 External
application authorization
descriptor

39 NI

5.3.5.8 Graphics
constraints descriptor

39 NI

5.3.6 Transport protocol
descriptors

40 M The following protocol_ids shall be supported:
0x0001 object carousel over broadcast channel
0x0003 HTTP over back channel (i.e. broadband
 connection).
The protocol ID
0x0004 CICAM Auxiliary File System shall be supported when the
CICAM Auxiliary File System is implemented as specified in the DVB
Extensions to CI Plus ETSI TS 103 205 [37].

5.3.7 Simple application
location descriptor

43 M When the protocol_id is 0x0004, the application location descriptor
shall reference an initial object provided by the CICAM. The domain
identifier shall not be included, but shall be derived from the application
type field.

5.3.8 Simple application
boundary descriptor

43 M Only strict prefixes starting with "dvb://", "http://", "https://", or
"ci://" shall be supported.
Only prefixes forming at least a second-level domain shall be supported.
Path elements shall be ignored.

5.3.9 Service
information

44 M As modified by clause 7.2.6.

5.3.10 Stored
applications

46 NI

Table 6: Key to status column

Status Description
M MANDATORY

The terminal shall support the referenced signalling.
The signalling may be restricted to a subset specified in the "Notes" column. In that
case all additional signalling is optional.

O OPTIONAL
It is the manufacturer's decision to support the referenced signalling.

NI NOT INCLUDED
The referenced signalling is not included in the present document. It should not be
implemented unless required by another specification.

The semantics of the application_recording_descriptor are as follows:

• Applications that are safe to run in time-shift including trick mode shall set the trick_mode_aware flag and the
time_shift_flag to '1'.

• The scheduled_recording_flag is not included.

• If applications are signalled with trick_mode_aware set to '0' the time_shift_flag shall be ignored.

• The dynamic_flag and av_synced_flag shall be used as defined by ETSI TS 102 809 [3].

• initiating_replay_flag is not included.

• label_count, label_length, label_char and storage_properties are not included.

• Applications shall list broadcasted data components in the component tag list. The elementary stream carrying
the AIT does not need to be listed.

In addition, the broadcast AIT may contain a parental_rating_descriptor, as defined in ETSI EN 300 468 [16],
carried in the "application" (inner) descriptor loop of the AIT. Terminals shall support this descriptor, as defined in
clause 6.2.2.10.

When the CICAM Auxiliary File System is implemented, a CICAM application can be signalled as specified in annex F
of the DVB Extensions to CI Plus ETSI TS 103 205 [37].

ETSI

ETSI TS 102 796 V1.3.1 (2015-10)52

7.2.3.2 Broadcast-independent application signalling

The present document does not define any signalling, announcement or discovery of broadcast-independent
applications. Clause 5.3.5 of the present document defines how they can be started. Broadcast-independent applications
shall be identified either by the URL of the first page of the application or by the URL of a XML AIT as defined in
clause 5.4 of ETSI TS 102 809 [3] and profiled in this clause. The XML file shall contain an application discovery
record containing one or more <application> elements, all with the same orgId and appId values but with different
application types. The XML file shall be delivered with HTTP or HTTPS using the "application/vnd.dvb.ait+xml"
MIME type as defined in clause 5.4 of ETSI TS 102 809 [3].

The semantics of the fields and elements in the XML AIT file shall be as defined in table 7.

Table 7: Contents of XML AIT for Broadcast-independent applications

Field or element Requirement on XML AIT file Requirement on terminal
appName Optional. Optional for terminal to use.
applicationIdentifier Mandatory. Mandatory.
applicationDescriptor/
type/OtherApp

Shall be
"application/vnd.hbbtv.xhtml

+xml" for HbbTV® applications.

See note.

Mandatory.
MIME types other than
"application/vnd.hbbtv.xhtml+xml" are
outside the scope of the present document.

applicationDescriptor/
controlCode

Shall be AUTOSTART. Values other than AUTOSTART are outside
the scope of the present document.

applicationDescriptor/
visibility

Shall be VISIBLE_ALL. Values other than VISIBLE_ALL are outside
the scope of the present document.

applicationDescriptor/
serviceBound

Shall be false. Values other than false are outside the
scope of the present document.

applicationDescriptor/
priority

Shall be present. No defined semantics in the present
document.

applicationDescriptor/
version

Outside the scope of the present
document.

Outside the scope of the present
document.

applicationDescriptor/
mhpVersion

Shall be the same values as
defined for the MPEG-2
encoding of the AIT under
"platform profiles" in table 5.

Values higher than those defined in table 5
shall result in the application failing to start.

applicationDescriptor/
icon

Optional. Optional for terminal to use.

applicationDescriptor/
storageCapabilities

Outside the scope of the present
document.

Outside the scope of the present
document.

applicationTransport/ Mandatory. Shall be
HTTPTransportType.

Mandatory.

applicationLocation/ Mandatory. Mandatory.
applicationBoundary/ Optional. Mandatory.

Only strict prefixes starting with "dvb://",
"http://","https:// " or "ci://" shall be
supported.Only prefixes forming at least a
second-level domain shall be supported.
Path elements shall be ignored.

applicationSpecificDescriptor Optional Outside the scope of the present document
applicationUsageDescriptor Outside the scope of the present

document.
Outside the scope of the present
document.

NOTE: This value shall be used in the XML AIT regardless of whether the application uses HTML or XHTML
serialization, or whether it was authored for a previous revision of the present document. See also
clause A.2.6.

Where a value, element or attribute is indicated as being outside the scope of the present document, the presence of this
value, element or attribute in an XML AIT is not prohibited but the present document does not require any behaviour
from terminals other than not suffering from a fatal error and continuing to parse the remainder of the XML AIT.

ETSI

ETSI TS 102 796 V1.3.1 (2015-10)53

When parental ratings are required, the XML AIT format described in clause 5.4 of ETSI TS 102 809 [3] is extended to
provide parental rating information for broadcast-independent applications. The inclusion of a <ParentalRating>
element as defined below in the extended format of the application's <ApplicationDescriptor> element indicates the
parental rating for that application. The interpretation of <ParentalRating> is defined in the OIPF DAE
specification [1] section E.3, as clarified in clause A.1.

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"
 xmlns:hbbtv="urn:hbbtv:application_descriptor:2014" xmlns:ait="urn:dvb:mhp:2009"
 xmlns:oipf="urn:oipf:iptv:ContentAccessDownloadDescriptor:2008-1"
 targetNamespace="urn:hbbtv:application_descriptor:2014"
 elementFormDefault="qualified" attributeFormDefault="unqualified" >
 <xs:import namespace="urn:dvb:mhp:2009" schemaLocation="oipf/imports/mis_xmlait.xsd"/>
<xs:import namespace="urn:oipf:iptv:ContentAccessDownloadDescriptor:2008-1"
 schemaLocation= "oipf/iptv-ContentAccessDownloadDescriptor.xsd"/>
 <xs:complexType name="HbbTVApplicationDescriptor">
 <xs:complexContent>
 <xs:extension base="ait:ApplicationDescriptor">
 <xs:sequence>
 <xs:element name="ParentalRating" type="oipf:ParentalRatingType"
 minOccurs="0" maxOccurs="unbounded" />
 </xs:sequence>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>
</xs:schema>

An example of an XML AIT using this schema (informative):

<?xml version="1.0" encoding="UTF-8"?>
<mhp:ServiceDiscovery
 xmlns:mhp="urn:dvb:mhp:2009"
 xmlns:hbb="urn:hbbtv:application_descriptor:2014">

 <mhp:ApplicationDiscovery DomainName="example.com">
 <mhp:ApplicationList>
 <mhp:Application>
 <mhp:appName Language="eng">Whizzo Play Along Quiz</mhp:appName>
 <mhp:applicationIdentifier>
 <mhp:orgId>123</mhp:orgId>
 <mhp:appId>456</mhp:appId>
 </mhp:applicationIdentifier>
 <mhp:applicationDescriptor xsi:type="hbb:HbbTVApplicationDescriptor">
 <mhp:type>
 <mhp:OtherApp>application/vnd.hbbtv.xhtml+xml</mhp:OtherApp>
 </mhp:type>
 <mhp:controlCode>AUTOSTART</mhp:controlCode>
 <mhp:visibility>VISIBLE_ALL</mhp:visibility>
 <mhp:serviceBound>false</mhp:serviceBound>
 <mhp:priority>1</mhp:priority>
 <mhp:version>01</mhp:version>
 <mhp:mhpVersion>
 <mhp:profile>0</mhp:profile>
 <mhp:versionMajor>1</mhp:versionMajor>
 <mhp:versionMinor>3</mhp:versionMinor>
 <mhp:versionMicro>1</mhp:versionMicro>
 </mhp:mhpVersion>
 <hbb:ParentalRating Scheme="dvb-si" Region="GB">8</hbb:ParentalRating>
 </mhp:applicationDescriptor>
 <mhp:applicationTransport xsi:type="mhp:HTTPTransportType">
 <mhp:URLBase>https://www.example.com/</mhp:URLBase>
 </mhp:applicationTransport>
 <mhp:applicationLocation>whizzo-app.html?a=1</mhp:applicationLocation>
 </mhp:Application>
 </mhp:ApplicationList>
 </mhp:ApplicationDiscovery>
</mhp:ServiceDiscovery>

7.2.4 Synchronization

The terminal shall support "do-it-now" events as defined in clause 8 of ETSI TS 102 809 [3]. Support of events
synchronized to a DVB timeline as referred to in that document is not included.

ETSI

ETSI TS 102 796 V1.3.1 (2015-10)54

Broadcasters shall place all "do-it-now" stream descriptors to be monitored simultaneously by an application on a single
PID. This may be the same PID as is used for other DSM-CC sections.

7.2.5 DSM-CC carousel

7.2.5.1 Mounting related constraints

A terminal shall mount a maximum of one carousel at a time for use by the running application. Mounting means that
the terminal makes the latest version of the files of the carousel available to the application. Additionally a terminal may
read, cache and monitor several carousels in parallel in order to decrease the loading time as experienced by the user.

Terminals shall support carousels split across up to and including three elementary streams simultaneously as defined in
clause 10.2.1.

NOTE: Typically, mounting a carousel may involve reading data from the carousel into a cache and monitoring
for updates to the carousel.

7.2.5.2 Initial carousel mounting

A broadcast-related application whose initial page is broadcast will cause its carousel to be mounted by the terminal (in
order to be loaded and launched) unless mounting the carousel would require tuning to a transport stream other than the
one carrying the current channel. If tuning would be required, the attempt to load the page shall fail as if the file did not
exist.

A broadcast-related application whose initial page is not broadcast may mount a carousel on the same service using the
component_tag, e.g. through an XMLHttpRequest request or a reference (e.g. from an element). If the elementary
stream pointed to by the component_tag does not contain a service gateway, the mounting will fail.

The terminal shall not allow broadcast-independent applications to mount carousels. In order to mount a carousel or
access any other broadcast resources, a broadcast-independent application will have to first become a broadcast-related
application (see clause 6.2.2.6).

7.2.5.3 Subsequent carousel mountings (during the lifecycle of an application)

For a broadcast-related application, once a carousel has been mounted, a request that would require another carousel to
be mounted shall succeed and cause the previous carousel to be un-mounted and all of its pending requests to be
cancelled, unless mounting the carousel would require tuning to a transport stream other than the one carrying the
current channel.

7.2.5.4 Constraints

A resolved DSM-CC object reference shall be at most 64 bytes.

7.2.6 Data services

HbbTV® services may exist that do not have any broadcast audio or video components (i.e. pure data services). Their
broadcast signalling shall be as follows.

The SDT entry for the pure data service shall use a service_descriptor with a service_type of 0x0C. It shall also
contain a data_broadcast_descriptor as defined in ETSI TS 102 809 [3] clause 5.3.9.1 with the following
restrictions:

• The data_broadcast_id shall be 0x0123.

• The selector_bytes shall be present, and shall carry information about all HbbTV® AUTOSTART
applications that the service may carry.

• The application name and text and other private data may be present.

The signalling of the AIT and any HbbTV® carousel remains the same as normal audio and video services.

Terminals shall process the data_broadcast_descriptor in the SDT and include, in the terminals service list, data
services that signal applications that are supported. If the selector_bytes are not present, the service shall not be
included in the terminals service list.

ETSI

ETSI TS 102 796 V1.3.1 (2015-10)55

NOTE: The present document does not contain any requirements how broadcast channel lists are updated and
managed. These requirements may be defined by the appropriate specifications for each market where the
terminals are to be deployed.

Where an instance of the Channel class represents a data service, the value of the channelType property shall be 256.

7.2.7 File system acceleration

7.2.7.1 Introduction

Terminals shall support File System Acceleration (FSA) as defined by ETSI ES 202 184 [36] and further profiled in this
clause.

7.2.7.2 HbbTV® stored groups descriptor

HbbTV® profile of File System Acceleration replaces the stored_groups_descriptor defined by ETSI

ES 202 184 [36], clause 11.17.3 with the HbbTV® stored group descriptor as defined in table 8.

Table 8:Syntax of the HbbTV® stored group descriptor

Syntax Bits Type
hbbtv_stored_groups_descriptor {
 descriptor_tag 8 uimsbf
 descriptor_length 8 uimsbf
 for (j=0;j<N;j++) {
 organisation_id 32 uimsbf
 group_id 16 uimsbf
 group_priority 8 uimsbf
 use_from_carousel 1 bslbf
 reserved 7 bslbf
 application_profile 16 uimsbf
 version_major 8 uimsbf
 version_minor 8 uimsbf
 version_micro 8 uimsbf
 group_version 8 uimsbf
 private_data_length 8 uimsbf
 for (k=0;k<M;k++) {
 private_data_bytes 8 uimsbf
 }
 }
}

The semantics are as defined in ETSI ES 202 184 [36] with the following exceptions:

• descriptor_tag: 0x81.

• organisation_id: equivalent to the organisation_id as defined in ETSI TS 102 809 [3].

• application_profile: equivalent to the application_profile as defined in ETSI TS 102 809 [3].

• version_major: equivalent to the version.major as defined in ETSI TS 102 809 [3].

• version_minor: equivalent to the version.minor as defined in ETSI TS 102 809 [3].

• version_micro: equivalent to the version.micro as defined in ETSI TS 102 809 [3].

A terminal shall only cache a group if it supports the profile identified by the application_profile, version_major,
version_minor and version_micro fields.

ETSI

ETSI TS 102 796 V1.3.1 (2015-10)56

7.2.7.3 Group location descriptor

The group_location_descriptor defined in table 11.73 of ETSI ES 202 184 [36] may be included in the private data
bytes of the hbbtv_stored_groups_descriptor to define a Group Location other than the default of "DSM:/".
Terminals are not required to support Group Locations not in the current object carousel. File Groups with Group
Locations that do not begin with "DSM:/" should not be supported unless required by another specification.

7.2.7.4 Group Manifest file name

HbbTV® profile of File System Acceleration redefines the Group Manifest file name as follows:

/<organisation_id>-<group_id>.man

Where <organisation_id> and <group_id> are the values from the hbbtv_stored_groups_descriptor. The
organisation_id is a 32 bit value and represented as 8 hexadecimal chars with lower case characters. The group_id is
a 16 bit value and represented as 4 hexadecimal chars with lower case characters. For example, a group with
organisation_id = 1 and group_id = 12 shall have a group manifest file name of:

/00000001-000c.man

7.2.8 Protocol for download

Where content download is supported, the FDP protocol, defined in annex H, shall be supported.

A/V content downloaded via FDP shall satisfy the same requirements as A/V content downloaded via broadband, as
specified in clause 7.3.1.

7.3 Broadband-specific format and protocols

7.3.1 System, video and audio formats

7.3.1.1 General requirements

The system formats and their labels are specified in the OIPF Media Formats specification [2] with the restrictions in
clause 7.3.1.2.

The video formats and their labels are specified in the OIPF Media Formats specification [2] with the restrictions and
extensions in clause 7.3.1.3.

The audio formats are specified in the OIPF Media Formats specification [2] with the restrictions in clause 7.3.1.4.

The subtitle formats are specified in clause 7.3.1.5.

The subtitle format EBU-TT-D is specified in the EBU-TT-D specification [43] with the restrictions in clause 7.3.1.5.
For content based on DVB transport stream the terminal shall support the same subtitle formats (referred to as BCSUB)
for content received by the broadband connection as are supported for the broadcast connection. The terminal shall
support out-of-band EBU-TT-D subtitles regardless of the underlying system format.

Table 9 defines the subset of the combinations of system, video, audio and subtitle formats specified in the OIPF Media
Formats specification [2] and the present document that shall be supported for non-adaptive HTTP streaming and with
the download option.

ETSI

ETSI TS 102 796 V1.3.1 (2015-10)57

Table 9: System, video and audio formats for non-adaptive HTTP Streaming and content download

System Format Video Format Audio Format Subtitle format
(see note 4)

MIME Type

TS AVC_SD_25
AVC_HD_25

HEAAC
E-AC3 (see note 1)

(see note 2) video/mpeg

MP4 AVC_SD_25
AVC_HD_25
HEVC_HD_25_8
(see note 3)
HEVC_HD_25_10
(see note 3)
HEVC_UHD_25 (see
note 3)

HEAAC
E-AC3 (see note 1)

EBU-TT-D (see
note 7)

video/mp4

- - MPEG1 L3 - audio/mpeg

MP4 - HEAAC (see note 5)
E-AC3 (see note 1)

- audio/mp4

TS - HEAAC
E-AC3 (see note 1)

- audio/mpeg

TS - - (see notes 2 and 6) image/vnd.dvb.subtitle

NOTE 1: Terminals shall support E-AC3 for content received by the broadband connection when it is supported for
the broadcast connection. Otherwise it is not mandated.

NOTE 2: Terminals shall support the same subtitle formats for content received by the broadband connection as are
supported for the broadcast connection. See clause 7.3.1.5.2.

NOTE 3: Only applicable to terminals that support HEVC as described in clause 7.3.1.3.
NOTE 4: Terminals shall support out-of-band subtitles regardless of the underlying system format.
NOTE 5: This is carriage of HE-AAC audio inside the MP4 system format container. This format shall comply with

the requirements specified in clause 8.6.35 of the DLNA media formats specification IEC 62481-2 [26],
except for clause 8.6.35.11.

NOTE 6: This format definition is intended for the use of multi-stream synchronization as defined in clause 10.2.8.
Terminals are not required to support this format for any other use case.

NOTE 7: Support for video, audio and inband subtitles multiplexed into a single ISOBMFF file is only required for
downloaded content. It is not required for non-adaptive HTTP streaming.

For MPEG DASH, the following shall apply;

• AVC_SD_25 and AVC_HD_25 shall be supported. The conditions on support for HEVC_HD_25_8,
HEVC_HD_25_10, and HEVC_UHD_25 in clause 7.3.1.3 shall apply.

• HE-AAC shall be supported. The conditions on support for E-AC3 in table 9 shall apply.

The only system format required for MPEG DASH in the present document is ISOBMFF. The only subtitle format
required for MPEG DASH in the present document is EBU-TT-D. MIME types are addressed in the DVB DASH
profile ETSI TS 103 285 [45].

Playing WAVE audio from memory is not included in the present document. It should not be implemented unless
required by another specification.

Examples of media which comply with the above supported codecs list:

• "http://myserver/myvideo.mp4", mimetype "video/mp4", container "mp4", 2.5 MBit/s, resolution 720 × 576
@ 25 frames per second, together with AAC LC sound @ 64 kBit/s.

• "http://myserver/myaudio.mp3", mimetype "audio/mpeg", container "mp3", 256 kBit/s.

7.3.1.2 Systems layers

The usage of the systems layer format MPEG-2 Transport Stream shall comply with clause 4 of the OIPF Media
Formats specification [2]. Support for the DLNA extension "time stamped MPEG-2 transport stream" is not required.
Support for EIT, object carousel and 3D is not required. Support for AIT signalling is not required and it shall not be
processed if it is present. See clause 13.4.2 for requirements to support the TEMI timeline for this system layer format.

ETSI

ETSI TS 102 796 V1.3.1 (2015-10)58

The MP4 File Format shall comply with clause 4 of the OIPF Media Formats specification [2] and the following
additions:

• The size of the moov box should not exceed 2.5 MByte. The requirement in OIPF that "The size of the moov
box shall be equal to or less than 2Mbytes" does not apply in the present document.

NOTE 1: Large moov boxes will slow down start up times especially for broadband connections with asmall
bandwidth.

• The size of a box should not exceed 4 GByte.

Support for media zone information is not required in any system layer.

For non-adaptive unicast streaming, terminals shall support content whose average total bitrate when measured over a
10 second window does not exceed 12 Mbit/s, inclusive of multiplexing and packaging overheads but excluding
network protocol overheads.

For adaptive bitrate streaming, terminals shall support combinations of one video, one audio and one subtitle
representation for which the combined channel bandwidth requirement for continuous playback does not exceed:

• 12 Mbit/s if the terminal does not support UHD video.

• 26 Mbit/s if the terminal does support UHD video.

NOTE 2: For MPEG DASH content, the channel bandwidth requirement for continuous presentation of a
Representation is indicated in the Representation@bandwidth attribute in the MPD. It covers packaging
overheads but does not include protocol overheads.

Adaptive bitrate presentations may include representations which exceed these rates, subject to the maximum bitrate
limitations of the codecs being used. Terminals may ignore representations with bitrate requirements greater than the
above limits and shall ignore representations with bitrate requirements that exceed the terminal's capabilities.

7.3.1.3 Video

The video format AVC_SD_25 shall comply with clauses 5.1.2.1 and 5.1.6 of the OIPF Media Formats
specification [2].

The video format AVC_HD_25 shall comply with clauses 5.1.1.1 and 5.1.6 of the OIPF Media Formats
specification [2].

NOTE 1: Terminals do not have to support non-adaptive HTTP streaming content where the following video
parameters change: frame rate, interlaced / progressive, resolution, codec profile or level, colour space.

In addition:

• Terminals that support 8-bit HEVC HD video on the broadcast connection defined by DVB as "50 Hz HEVC
HDTV 8-bit IRD" in ETSI TS 101 154 [14] shall also support 8-bit HEVC HD for content received by the
broadband connection.

Such content corresponds to the video format label HEVC_HD_25_8.

NOTE 2: Since terminals that support 10-bit HEVC also support 8-bit HEVC, applications should search for
HEVC_HD_25, not HEVC_HD_25_8.

Terminals that support 10-bit HEVC HD video on the broadcast connection defined by DVB as "50 Hz HEVC
HDTV 10-bit IRD" in ETSI TS 101 154 [14] shall also support 10-bit HEVC HD for content received by the
broadband connection.

Such content corresponds to the video format label HEVC_HD_25_10.

Terminals shall include at most one of the format labels HEVC_HD_25_8 or HEVC_HD_25_10 in the XML
capabilities.

• Terminals that support HEVC UHD video on the broadcast connection defined by DVB as "HEVC UHDTV
IRD" in clause 5.14.3 of ETSI TS 101 154 [14] shall also support HEVC UHD for content received by the
broadband connection. Such content corresponds to the video format label HEVC_UHD_25.

ETSI

ETSI TS 102 796 V1.3.1 (2015-10)59

NOTE 3: There is no requirement to support the frame rates required by the 60 Hz HEVC HDTV IRDs as required
by clause 5.14.1.7 of ETSI TS 101 154 [14].

Different requirements on video resolutions and decoder capabilities apply to content delivered using MPEG DASH as
defined in annex E.

7.3.1.4 Audio

Audio formats shall comply with clause 8.1 of the OIPF Media Formats specification [2] with the following additional
requirements for multichannel audio:

• If the terminal supports a stereo output, it shall be capable of providing a down-mix of multichannel audio to
stereo.

• If the terminal is equipped with a digital audio output then it shall be capable of providing the bitstream at this
output (pass-through) and should be capable of transcoding multi-channel audio from HEAAC to AC3 format.

• The terminal shall use metadata, where provided, to control the stereo down-mix from multichannel audio, and
shall use it, or pass it through, when providing bitstream output. Such metadata may be provided as described
in the OIPF Media Formats specification [2] and clause 6.8 of ETSI TS 102 366 [15].

7.3.1.5 Subtitles

7.3.1.5.1 TTML based subtitles

Terminals shall be able to correctly render TTML based subtitles with the following constraints:

• The subtitle document shall be compliant with the EBU-TT-D specification [43] (referred to as "EBU-TT-D"
format).

• The subtitle document shall have no more than 8 concurrently visible regions.

• The subtitle document shall use UTF-8 character encoding.

Terminals shall support the ebutts:multiRowAlign and ebutts:linePadding extensions to TTML defined in the EBU-
TT-D specification [43].

Reception of EBU-TT-D subtitles shall be supported in-band in the following ways:

• with MPEG DASH content as defined in annex E and the DVB DASH profile ETSI TS 103 285 [45];

• (if the download option is supported) with ISOBMFF content as defined by the EBU specification for carrying
EBU-TT-D in ISOBMFF [44] that has been downloaded by the terminal regardless of whether the content was
downloaded via broadband or via broadcast (using FDP as defined in annex H of the present document).

NOTE 1: The present document does not require support for non-adaptive HTTP streaming of a single ISOBMFF
file with video, audio and subtitles all interleaved.

Support for in-band EBU-TT-D subtitles shall be indicated in the XML capabilities (see clause 10.2.4) using "EBUTTD"
as the subtitle format name.

Out of band delivered EBU-TT-D subtitles shall be supported irrespective of how the A/V content is being or has been
delivered. In this case terminals shall support EBU-TT-D subtitles contained in a single XML document delivered via
HTTP, with a document size of up to and including 512kByte.

NOTE 2: If applications need larger subtitle documents they should use MPEG DASH format.

NOTE 3: When used with audio-only content, the subtitle plane still follows the size of the video plane even though
there is no video.

Terminals shall support EBU-TT-D subtitle content that has associated downloadable fonts. Terminals shall be able to
download and use at least one downloadable font, in addition to any resident fonts, when rendering a subtitle stream.
The font formats required by the DVB DASH specification ETSI TS 103 285 [45] shall be supported.

ETSI

ETSI TS 102 796 V1.3.1 (2015-10)60

When resolving tts:fontFamily references from EBU-TT-D subtitles, terminals shall search for a match in fonts that
have been successfully downloaded before considering the embedded fonts listed in clause 10.2.1. When matching
embedded fonts, the following mappings for TTML genericFamilyName shall apply:

• "default", "sansSerif " and "proportionalSansSerif" shall match the Tiresias™ embedded font;

• "monospace" and "monospaceSansSerif" shall match the Letter Gothic embedded font.

Other genericFamilyNames may match an appropriate embedded font if one is available; otherwise they shall be treated
as "default".

NOTE 4: Tiresias™ is the trade name of a product supplied by Monotype. This information is given for the
convenience of users of the present document and does not constitute an endorsement by ETSI of the
product named. Equivalent products may be used if they can be shown to lead to the same results.

In the case of MPEG DASH content, terminals shall observe the signalling of downloadable fonts defined in the DVB
DASH specification ETSI TS 103 285 [45]. Fonts shall be downloaded when referenced using either an
EssentialProperty or a SupplementalProperty. Error handling shall be as defined in the DVB DASH specification
ETSI TS 103 285 [45].

Terminals shall support downloadable fonts signalled in the Content Access Streaming Descriptor for streaming content
as defined in clause 7.3.2.1 and if the download option is supported signalled in the Content Access Download
Descriptor for download content as defined in clause 7.3.2.2. Terminals shall support the extensions of the descriptors
for downloadable fonts as defined below.

Extension of the Content Access Download Descriptor and Content Access Streaming Descriptor for downloadable
fonts.

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"
 targetNamespace="urn:hbbtv:CAD:2014"
 xmlns:hbbtv="urn:hbbtv:CAD:2014"
 xmlns:oipf1="urn:oipf:iptv:ContentAccessDownloadDescriptor:2008-1"
 xmlns:oipf2="urn:oipf:iptv:ContentAccessStreamingDescriptor:2008-1"

 elementFormDefault="qualified"
 attributeFormDefault="unqualified">
 <xs:import namespace="urn:oipf:iptv:ContentAccessDownloadDescriptor:2008-1"
 schemaLocation="oipf\iptv-ContentAccessDownloadDescriptor.xsd"/>
 <xs:import namespace="urn:oipf:iptv:ContentAccessStreamingDescriptor:2008-1"
 schemaLocation="oipf\iptv-ContentAccessStreamingDescriptor.xsd"/>
 <xs:complexType name="DownloadContItemType">
 <xs:complexContent>
 <xs:extension base="oipf1:ContItemType">
 <xs:sequence>
 <xs:element name="DownloadableFont" type="hbbtv:DownloadableFontType"
 minOccurs="0" maxOccurs="unbounded"/>
 </xs:sequence>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>
 <xs:complexType name="StreamingContItemType">
 <xs:complexContent>
 <xs:extension base="oipf2:ContItemType">
 <xs:sequence>
 <xs:element name="DownloadableFont" type="hbbtv:DownloadableFontType"
 minOccurs="0" maxOccurs="unbounded"/>
 </xs:sequence>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>
 <xs:complexType name="DownloadableFontType">
 <xs:simpleContent>
 <xs:extension base="xs:anyURI">
 <xs:attribute name="font-family" use="required" type="xs:string"/>
 <xs:attribute name="mime-type" use="required" type="xs:string"/>
 <xs:attribute name="essential" use="optional" type="xs:boolean" default="false"/>
 </xs:extension>
 </xs:simpleContent>
 </xs:complexType>
</xs:schema>

ETSI

ETSI TS 102 796 V1.3.1 (2015-10)61

The DownloadableFontType attributes are defined as follows:

• font-family: the terminal shall use the downloadable font if the font used in an EBU-TT-D document matches
this font-family.

• mime-type: font formats are identified by a mime-type as listed in the DVB DASH specification ETSI
TS 103 285 [45].

• essential: defines whether the downloadable font is essential to render the subtitles.

The text content of the DownloadableFontType signals the HTTP download location of the font file. Multiple
<DownloadableFont> elements may be present to signal different formats of the same font family using the @font-
family attribute. The terminal shall use the @mime-type attribute to choose a supported format.

If a terminal is unable to download a font for any reason or having downloaded a font is unable to use it, then:

• If the font download has the @essential attribute set to true, the terminal shall not present subtitles for the
stream referenced by the descriptor.

• If the font download does not have the @essential attribute set to true, the terminal shall present the subtitles
as if this <DownloadableFont> element were not included.

7.3.1.5.2 Broadcast subtitles

As defined in clause 7.3.1.1 above, terminals shall support the same subtitle formats for MPEG-2 transport stream
content received by the broadband connection as are supported for the broadcast connection. Specifically:

• DVB subtitles

• EBU teletext subtitles

Basic specification references and labels for both are specified in the OIPF Media Formats specification [2] although
the base specifications may be subject to modification, clarification and profiling in broadcast channel specifications for
particular markets.

If supported in general as defined above terminals shall support broadcast subtitles received via broadband as part of a
SPTS, including:

• TV services.

• Radio services.

• Subtitle-only streams with DVB subitles synchronized with a broadcast service as defined in clause 10.2.8.
The API for broadband delivered streams only carrying broadcast subtitle only streams is defined in
clause A.2.5.4.

• Optionally, subtitle-only streams with EBU teletext subtitles synchronized with a broadcast service as defined
in clause 10.2.8.

NOTE: Other encapsulations or pure elementary streams are not required to be supported for broadcast subtitles.

ETSI

ETSI TS 102 796 V1.3.1 (2015-10)62

7.3.2 Protocols

7.3.2.1 Protocols for streaming

Unicast streaming using HTTP 1.1 shall be supported as defined in clause 5.3.2.2 of the OIPF protocols
specification [4] with the addition that the Content-Range header shall be supported in seek operations thus allowing
the application to seek to any arbitrary position within the streaming video without the need of downloading the
complete video first. The terminal should only buffer data equivalent to approximately 10 seconds of normal play in
advance of the current play position unless the download rate is consistently lower than the consumption rate. If the
Content-Length header is not provided terminals shall not make any assumptions on the size of the buffer on the
server. Hence terminals which need to obtain some data from the stream, e.g. for initialization, cannot assume that this
data is still buffered on the server once they have completed their initialization.

The accuracy of seeking to a particular point in time within an MPEG-2 transport stream is implementation dependent.
Applications should avoid this except for small seeks relative to the current position in a stream that is already being
played which are likely to be the least inaccurate. Seeking is likely to be more accurate in a constant bit-rate stream than
a variable bit-rate one.

HTTP chunked transfer coding shall be supported as defined by clause 3.6.1 of IETF RFC 2616 [6].

NOTE: Live content delivered using HTTP chunked transfer encoding is presented using the A/V Control object.
There are no requirements for the video/broadcast object to present content delivered using HTTP.

HTTP adaptive streaming shall be supported using MPEG DASH as defined in annex E.

7.3.2.2 Protocols for download

Where content download is supported, HTTP shall be supported as defined in clause 5.3.4 of the OIPF protocols
specification [4].

7.3.2.3 Void

Void

7.3.2.4 HTTP User-Agent header

All outgoing HTTP requests made on behalf of an HbbTV® application shall include a User-Agent header using the
syntax described in this clause.

NOTE: This does not apply to HTTP requests made by the MPEG DASH player or the DRM agent.

The User-Agent header shall include:

HbbTV/1.3.1 (<capabilities>; [<vendorName>]; [<modelName>]; [<softwareVersion>];
[<hardwareVersion>]; <reserved>)

Where:

• The <capabilities> field consists of zero or more concatenated HbbTV® option strings as defined in
clause 10.2.4.

• The <vendorName>, <modelName>, <softwareVersion> and <hardwareVersion> fields are the same as the one
defined in the application/oipfRemoteManagement object in the OIPF DAE specification [1] and are
optional.

• The <reserved> field is reserved for future extensions.

This User-Agent header may be extended with other implementation-specific information including other user agent
information. In particular, it is recommended to include the browser user agent information.

ETSI

ETSI TS 102 796 V1.3.1 (2015-10)63

Valid examples of this syntax are:

User-Agent: HbbTV/1.3.1 (+PVR+DL; Sonic; TV44; 1.32.455; 2.002;)

User-Agent: HbbTV/1.3.1 (;;;;;)

7.3.2.5 HTTP Redirects

HTTP redirects as defined in IETF RFC 2616 [6] in response to an HTTP request shall be supported as described in this
clause.

• The terminal shall support responses with a status code of "302 Found" and "307 Temporary Redirect" by
using the temporary URL given in the Location field.

• The terminal shall support at least one redirection.

8 Browser application environment

8.1 DAE specification usage
The OIPF DAE specification [1] shall be supported as defined in annex A of the present document.

8.2 Defined JavaScript APIs

8.2.1 Acquisition of DSM-CC stream events

8.2.1.1 Adding and removing stream event listeners

The following additional methods on the video/broadcast object (as defined in the OIPF DAE specification [1]) shall be
supported for synchronization to broadcast events as defined in clause 7.2.4.

void addStreamEventListener(String targetURL, String eventName,
 EventListener listener)

Description Add a listener for the specified DSM-CC stream event.

When a broadcaster transmits an identical instance of the MPEG private data section
carrying a stream event descriptor (including the version number), only one StreamEvent
event shall be dispatched.

When a broadcaster transmits different events using the same event name id (i.e. with
different version numbers), one StreamEvent event shall be dispatched for each different
stream event descriptor received.

An event shall also be dispatched in case of error.

Listeners can only be added while the video/broadcast object is in the Presenting or
Stopped states. Calls to this function when the video/broadcast object is in other states
shall have no effect.

The terminal shall automatically unregister all listeners on the video/broadcast object in
the following cases:

• A transition to the Unrealized state (e.g. when becoming broadcast-
independent).

• A transition to the Connecting state that is due to a channel change.
Listeners are not unregistered when transitioning to the Connecting state due to a
transient error that does not result in a change of channel.

Arguments targetURL The URL of the DSM-CC StreamEvent object or an HTTP or HTTPS
URL referring to an XML event description file (as defined in clause 8.2
of ETSI TS 102 809 [3]) describing the event.

eventName The name of the event (of the DSM-CC StreamEvent object) that shall
be subscribed to.

listener The listener for the event.

ETSI

ETSI TS 102 796 V1.3.1 (2015-10)64

void removeStreamEventListener(String targetURL, String eventName,
 EventListener listener)

Description Remove a stream event listener for the specified stream event name.
Arguments targetURL The URL of the DSM-CC StreamEvent object or an HTTP or

HTTPS URL referring to an event description file describing the
event.

eventName The name of the event (of the DSM-CC StreamEvent object)
whose subscription shall be removed.

listener The listener for the event.

8.2.1.2 DSM-CC StreamEvent event

interface StreamEvent : Event {
 readonly attribute String name;
 readonly attribute String data;
 readonly attribute String text;
 readonly attribute DOMString status;

}

Properties name The name of the DSM-CC StreamEvent's event.

data Data of the DSM-CC StreamEvent's event encoded in hexadecimal.
EXAMPLE: "0A10B81033" (for a payload 5 bytes long).

text Text data of the DSM-CC StreamEvent's event as a string assuming UTF-8
as the encoding for the DSM-CC StreamEvent's event. Characters that
cannot be transcoded are skipped.

status Equal to "trigger" when the event is dispatched in response to a trigger in
the stream or "error" when an error occurred (e.g. attempting to add a
listener for an event that does not exist, or when a StreamEvent object with
registered listeners is removed from the carousel).

Circumstances under which an event shall be dispatched with an error status
include:

• the StreamEvent object pointed to by targetURL is not found in the
carousel or via broadband;

• the StreamEvent object pointed to by targetURL does not contain
the event specified by the eventName parameter;

• the carousel cannot be mounted;
• the elementary stream which contains the StreamEvent event

descriptor is no longer being monitored (e.g. due to another
monitoring request or because it disappears from the PMT).

Once an error is dispatched, the listener is automatically unregistered by the
terminal.

8.2.2 Carousel objects access with XMLHttpRequest

In order to access to the content of a carousel file, the XMLHttpRequest object can be used with the following
constraints:

• Parameters passed to the open() method:

- method: Shall be set to "GET".

- url: Can be relative (to the location of the current page in the carousel's file system) or an absolute dvb:
URL.

- async: shall be set to true.

- user and password: Ignored.

• status: Set to 200 when the DSM-CC object is found and to 404 if it is not present in the carousel or if the
carousel has been unmounted (due to another request).

• statusText: implementation dependent.

ETSI

ETSI TS 102 796 V1.3.1 (2015-10)65

• Headers are not relevant for carousel access:

- Calls to setRequestHeader() are ignored.

- getResponseHeader() shall return null and getAllResponseHeaders() shall return an empty string.

• Values of the responseText and responseXML properties are shown in table 10.

Table 10: Values of the responseText and responseXML properties

DSM-CC object URL example responseText responseXML
File /weather/data.xml Returns the "text response

entity body" as defined in
XMLHTTPRequest.

If the file has the extension ".xml",
returns the "XML response entity body"
as defined in XMLHTTPRequest.
Otherwise, returns null.

Directory /weather Comma-separated list of
names (File name, Stream
Event name or Directory
name) of all objects in the
directory. These names
shall not include path
information.

null

Stream Event /weather/main/streamEvt1 Comma-separated list of
names of all events in the
Stream Event object.

null

Examples of dvb: URLs that may be used with the XMLHttpRequest object are:

/weather/data.xml(absolute path from the root of the carousel of the current page)
../weather/data.xml (relative path to the current page)
dvb://1..1.B8/weather/data.xml (0xB8 is the component tag)

8.2.3 APIs for media synchronization

8.2.3.1 Introduction (Informative)

This clause defines the API for multi-stream synchronization as defined in clause 10.2.8 and the API for the inter-
device synchronization with a media presentation on a second terminal or companion screens.

As the architecture for multi-stream and inter-device synchronization is basically the same, the MediaSynchroniser
embedded object defined in clause 8.2.3.2 is the main object for both synchronization features. The sequence diagrams
in clause 13.8 provide further indication how the API interacts with the architecture entities.

Example usage for multi-stream synchronization:

// this example shows the API usage for synchronising a broadcast channel with a DASH stream
// delivered over broadband using MPEG TEMI as an additional content timeline in the
// broadcast

var vba1; // holds a video/broadcast object
// timeline is MPEG TEMI on elementary stream with component tag 8 and timeline id 1
timeline_spec_vba1 = 'urn:dvb:css:timeline:temi:8:1';

var dasha1; // holds a DASH media object
timeline_spec_dasha1 = 'urn:dvb:css:timeline:mpd:period:rel:1000:0b71a';

// create the MediaSynchroniser using the broadcast service. Its timeline is used as
// the timeline for the MediaSynchroniser API
ms = oipfObjectFactory.createMediaSynchroniser();

ms.initMediaSynchroniser(vba1, timeline_spec_vba1);

// ... some xmlHTTPRequest to get correlation timestamps (e.g. from MRS) for the DASH stream related
// to the timeline for the MediaSynchroniser API

timestamp_vba1_dasha1 = {'tlvMaster' : 12345, 'tlvOther' : 12445};

ms.addMediaObject(dasha1, timeline_spec_dasha1, timestamp_vba1_dasha1);

ETSI

ETSI TS 102 796 V1.3.1 (2015-10)66

// the terminal now synchronizes the DASH media object to the broadcast service

// ... repeat with correlation timestamps to adjust for drift etc.
timestamp_vba1_dasha1 = {'tlvMaster' : 15345, 'tlvOther' : 16448};
ms.updateCorrelationTimestamp(dasha1, timestamp_vba1_dasha1);

// synchronisation can be stopped by removing the DASH object from the MediaSynchroniser
ms.removeMediaObject(dasha1);

Example usage for inter-device synchronization:

// this example shows inter-device synchronisation between two HbbTV terminals
// one terminal is acting as the master terminal, the second one is acting as the slave
// the slave role could be taken by a companion device. For 10.2.8.1

JavaScript snippets on master terminal:

// open app2app communication and wait for slave terminals or companion devices to connect

// application on a slave terminal connects through app2app comm
// applications agree to start inter device synchronisation

var vba1; // holds a video/broadcast object
timeline_spec_vba1 = 'urn:dvb:css:timeline:temi:8:1';

// create the MediaSynchroniser using the broadcast service whose timeline is used as
// the timeline of the MediaSynchroniser API, this step is the same as for intermedia sync
ms = oipfObjectFactory.createMediaSynchroniser();

ms.initMediaSynchroniser(vba1, timeline_spec_vba1);

// enable slave terminals to synchronise with media objects attached to the MediaSynchroniser
ms.enableInterDeviceSync();

// tell the slave application that we are ready via app 2 app

// causes any sync with other devices to stopped gracefully and prevents other devices to start sync
ms.disableInterDeviceSync();

JavaScript snippets on slave terminal:

// discovering terminals available
app.discoverTerminals(callback);

function callback (discoveredTerminals) {

 if (discoveredTerminals.length > 0) {
 // pick a terminal from the array of discovered ones
 // usually ask the user, but here we choose the first in the array
 var discoveredTerminal = discoveredTerminals[0];
 // get app2app endpoint and connect to the application running on the master
 var app2appBaseUrl = discoveredTerminal.X_HbbTV_App2AppURL;

 // do app 2 app comm and agree to start with inter-device sync.
 }
}

// the master tells us that it is ready for sync via app2app

// discovering the CSS-CII endpoint on the master
var css_ci_service_url = app.getServiceEndpoint(master_terminal_id, 'X_HbbTV_InterDevSyncURL');

// the CSS-CII endpoint of the master is connected to the MediaSynchroniser that started
// the inter-device synchronisation and hence also the media object that is used to create
// the MediaSynchroniser
ms = oipfObjectFactory.createMediaSynchroniser();
ms.initSlaveMediaSynchroniser(css_ci_service_url);

var dashb1; // holds a DASH media object
timeline_spec_dashb1 = 'urn:dvb:css:timeline:mpd:period:rel:1000:0b71a';

// ... some xmlHTTPRequest to get correlation timestamps (e.g. to MRS) of the DASH media object
// to the timeline used by the MediaSynchroniser API on the master terminal
ms.addMediaObject(dashb1, timeline_spec_dashb1, timestamp_vba1_dashb1);

// begin synchronisation of media added to this slave MediaSynchroniser with the master terminal
ms.enableInterDeviceSync(callback2);

ETSI

ETSI TS 102 796 V1.3.1 (2015-10)67

function callback2() {
 // inter-device sync is now enabled successfully

}

// later (once inter-device sync is enabled successfully)

// ... adjust correlation timestamps to keep in sync
ms.updateCorrelationTimestamp(dashb1, timestamp_vba1_dashb1);

// ... cause any sync with the master to stop gracefully
ms.disableInterDeviceSync();

8.2.3.2 The MediaSynchroniser embedded object

8.2.3.2.0 General

The terminal shall support a non-visual embedded object of type "application/hbbtvMediaSynchroniser" with the
following JavaScript API. The terminal shall support one operable MediaSynchroniser embedded object. If an
application creates multiple instances only the last one created needs to be operable. A MediaSynchroniser can be
used for multi-stream synchronization and for inter-device synchronization. Depending on the initialization method
used, inter-device synchronization will be performed in either the role of a master terminal or a slave terminal.

8.2.3.2.1 Properties

function onError (Number lastError, Object lastErrorSource)

Description The function that gets called when an error occurs for this MediaSynchroniser object.
The terminal shall pass two arguments in the call.

The first argument shall be the error code as defined in clause 8.2.3.2.4.

The second argument shall be the media object that was the cause of the error or a
string equalling the URL passed to initSlaveMediaSynchroniser() if the cause of the
error is the master terminal or interaction with the master terminal.

function onSyncNowAchievable (Object mediaObject)

Description The function shall be called by the terminal if it was previously not possible for the
terminal to time presentation of this media to synchronize it to the master media but now
it has become possible and the terminal has started to do so.

The argument shall be the media object for which synchronized presentation timing can
now be achieved.

This function is only called (with a given media object passed as argument) after an
earlier transient error of the MediaSynchroniser with error code 1 or 11 as appropriate
(relating to the same media object).

readonly Number lastError

Description Shall be the code of the last error that occurred for this MediaSynchroniser object as
defined in clause 8.2.3.2.4.

readonly Object lastErrorSource

Description Shall be the media object that was the cause of the last error; or a string equalling the
URL passed to initSlaveMediaSynchroniser() if the cause of the last error is the
master terminal or interaction with the master terminal.

readonly Number nrOfSlaves

Description If this MediaSynchroniser is being used as the master for inter-device synchronization,
it shall be the number of current web socket connections on the CSS-CII service
endpoint provided by the terminal. Otherwise it shall be null.

ETSI

ETSI TS 102 796 V1.3.1 (2015-10)68

readonly Boolean interDeviceSyncEnabled

Description Shall be true if and only if the terminal is currently a master terminal or a slave terminal.

readonly Number interDeviceSyncDispersion

Description The dispersion of clock synchronization between the slave terminal and the master
terminal in milliseconds. This value quantifies the limit on the accuracy of
synchronization currently achievable.

If the terminal has the capability to act as a slave terminal but the MediaSynchroniser
object is not a slave MediaSynchroniser then this shall be zero.

If the terminal does not have the capability to act as a slave terminal then the value of
this property shall be undefined.

If the MediaSynchroniser object is a slave MediaSynchroniser then the initial value
shall be Number.POSITIVE_INFINITY and shall then be updated at between 250 ms and
1 000 ms intervals with the limit on synchronization accuracy achievable, measured in
milliseconds, as estimated by the WC-Client function of the terminal (see clause 13.7.4)
in the period since the last time this property was updated.

When this property is updated, an InterDeviceSyncDispersionUpdate event shall be
triggered.

function onInterDeviceSyncDispersionUpdate()

Description The function that is called when the interDeviceSyncDispersion property of a
MediaSynchroniser object of a slave terminal has been updated.

readonly Number minSyncBufferSize

Description The size in bytes of the buffer for synchronization as described by the buffer model in
clause 13.5 if implemented, else zero. This value is the minimum guaranteed size of

buffer available and is not expected to change during the lifecycle of an HbbTV®
application.

readonly Number maxBroadbandStreamsWithBroadcast

Description The number of broadband streams the terminal supports for multi-stream
synchronization if one stream in the multi-stream synchronization is a broadcast.

readonly Number maxBroadbandStreamsNoBroadcast

Description The number of broadband streams the terminal supports for multi-stream
synchronization if there is no broadcast stream in the multi-stream synchronization.

readonly Number currentTime

Description The value of this property shall be the current playback position of the master media, as
defined in clause 13.11.3, if

• the MediaSynchroniser was initialized using the initMediaSynchroniser()
method or

• if the MediaSynchroniser was initialized using the
initSlaveMediaSynchroniser() method and

− the terminal is currently acting as a slave terminal and
− at least one Control Timestamp has been received from the master

terminal where the most recent had a contentTime that was not null
and

− the value of the interDeviceSyncDispersion property of the
MediaSynchroniser is less than positive infinity.

In all other situations, the value of this property shall be NaN.

When the value is not NaN, it shall be expressed in units of seconds and fractions of a
second and shall meet the precision requirements defined in clause 13.11.3.

ETSI

ETSI TS 102 796 V1.3.1 (2015-10)69

8.2.3.2.2 Methods

void initMediaSynchroniser() (Object mediaObject, String timelineSelector)

Description Initializes a MediaSynchroniser for multi-stream synchronization and for inter-device
synchronization as a master terminal.

After this method has been called, it is only possible to use this MediaSynchroniser
object as a master for multi-stream synchronization and/or inter-device synchronization.

The media object becomes the master media (see clause 13.2.4) and the timeline selected
for it defines the timeline used for the MediaSynchroniser API when performing multi-
stream synchronization and when acting as a master terminal for inter-device
synchronization as explained in clause 13.4.3.

The media object specified as the parameter to this method shall be automatically added to
this MediaSynchroniser and therefore cannot subsequently be explicitly added using the
addMediaObject() method.

If the MediaSynchroniser has already been initialized (including if it is in a permanent
error state) then this call shall fail and an error event shall be triggered.

If the media stream for the media object is determined to be not available or if the selected
timeline is determined to be not available then this shall result in a permanent error of the
MediaSynchroniser and an error event shall be triggered.

If this method completes without error then the MediaSynchroniser shall be considered
initialized.

When this MediaSynchroniser is initialized, if there is an existing MediaSynchroniser
that has already been initialized then this shall result in a permanent error of the existing
MediaSynchroniser and it shall trigger an error event.

Arguments mediaObject The media object (video/broadcast object, AV Control object, or
an HTML5 media object) that carries the timeline that will be
used by the MediaSynchroniser API.

timelineSelector Type and location of the timeline to be used by the
MediaSynchroniser API. Please refer to clause 13.4.

NOTE: The availability of a timeline can sometimes only be determined some time after the terminal has
begun presentation of the stream. This error can therefore occur some time after the
MediaSynchoniser is initialized. See clause 9.7.3.

ETSI

ETSI TS 102 796 V1.3.1 (2015-10)70

void initSlaveMediaSynchroniser (String css_ci_service_url)

Description Initializes a slave MediaSynchroniser for inter-device synchronization of the presentation
of media objects on this terminal (referred to as the slave terminal) and the media
presentation on another terminal (referred to as the master terminal).

After this method has been called, it is only possible to use this MediaSynchroniser
object as a slave for multi-stream synchronization and/or inter-device synchronization.

The timeline used for the MediaSynchroniser API will be the timeline used for the
MediaSynchroniser API at the master terminal (see clause 13.4.3).

The terminal does not become a slave terminal until the enableInterDeviceSync()
method is called.

If the service endpoint at the specified URL is not available then this shall result in a
permanent error of the MediaSynchroniser and an error event shall be triggered (see
clause 13.3.8).

If the MediaSynchroniser has already been initialized (including if it is in a permanent
error state) then this call shall fail and an error event shall be triggered.

If the terminal does not support the capability to act as a slave terminal, then this method
shall be undefined.

If this method completes without error then the MediaSynchroniser shall be considered
initialized.

When this MediaSynchroniser is initialized, if there is an existing MediaSynchroniser
that has already been initialized then this shall result in a permanent error of the existing
MediaSynchroniser and it shall trigger an error event.

Arguments css_ci_service_url The URL of a DVB CSS CI endpoint at the master terminal.
The URL can be retrieved by the discovery API defined in
clause 8.2.6.

ETSI

ETSI TS 102 796 V1.3.1 (2015-10)71

void addMediaObject (Object mediaObject,
 String timelineSelector,
 CorrelationTimestamp correlationTimestamp,
 Number tolerance,
 Boolean multiDecoderMode)

Description Adds a media object, i.e. video/broadcast object, AV Control object or HTML5 media object,
to the MediaSynchroniser. If the MediaSynchroniser was initialized with the
initMediaSynchroniser() method, or if inter-device synchronization has been enabled,
then the terminal shall start to synchronize the media object to other media objects
associated to this MediaSynchroniser as a result of this method call. The behaviour of the
media objects when this method is called is defined in clause 9.7.1.

If the MediaSynchroniser is not initialized, or is in a permanent error state, then this call
shall be ignored and an error event dispatched.

If the media object has already been added to the MediaSynchroniser, then this call shall
be ignored and an error event dispatched.

The actual presentation of the content might be delayed while the terminal aligns the
master media object and the other media object(s) to achieve synchronized presentation in
accordance with the correlation timestamps.

The terminal may be required to buffer one or more of the media objects. If the terminal has
insufficient buffer space or cannot present the media sufficiently early then the media object
shall be added to the MediaSynchroniser but a transient error of the MediaSynchroniser
shall be generated with error code 1 or 11.

The terminal shall select the components from the media object to be presented in
accordance with the value of the multiDecoderMode parameter and the definitions in
clause 10.2.7.

If the terminal fails to access a media item or its timeline, e.g. the resource is not available,
then adding the media object shall fail and the MediaSynchroniser shall dispatch an error
event.

If the correlation timestamp correlationTimestamp is undefined a correlation timestamp
where the value of both properties is 0 shall be assumed. If the correlation timestamp is null
or has an invalid format, adding the media object shall fail and the terminal dispatch an
error event.

If both of the following conditions apply:

• The correlation timestamp correlationTimestamp was passed as undefined to
this method; and

• the type of the timeline used for the master media is PTS and the type of the
timeline for this media object is also PTS;

then the rules stated in clause 10.2.8.2 shall apply. In all other cases the rules stated in
clause 10.2.8.3 shall apply.

Arguments mediaObject video/broadcast object, AV Control object, or an HTML5 media
object

timelineSelector Type and location of the timeline used for the media object's
timeline. Please refer to clause 13.4.

correlationTimestamp An optional initial correlation timestamp that relates the media
objects timeline to the synchronization timeline.

tolerance An optional synchronization tolerance in milliseconds. The
tolerance, if provided, is expressed as a positive value including
0. If the application passes a negative value or does not
provide this argument then the terminal shall assume a
tolerance of 0.

See clause 9.7.2 for details on how a terminal uses this value.

This argument does not define the accuracy of synchronization
to be achieved by the terminal, such as frame accuracy or lip-
sync accurate.

ETSI

ETSI TS 102 796 V1.3.1 (2015-10)72

 multiDecoderMode An optional parameter that defines whether component
selection for this media object is performed separately (as
defined in clause 10.2.7.3) or collectively with other media
objects on this MediaSynchroniser (as defined in
clause 10.2.7.4).

If the value does not equal true, the terminal shall follow the
rules for component selection in clause 10.2.7.3.

If the value is true and the terminal does not support multiple
decoders or currently does not have sufficient resources it shall
ignore the call and dispatch an error event with the error
code 2. Otherwise the terminal shall follow the rules in
clause 10.2.7.4.

Applications should check the extraSDVideoDecodes and
extraHDVideoDecodes properties before using this parameter
set to true.

void removeMediaObject (Object mediaObject)

Description Removes an object from this MediaSynchroniser.

The terminal shall not stop the presentation of media objects purely as a result of this
method call. However, if there are insufficient decoders available to continue to present this
media object, the presentation of the media object may cease due to insufficient resources.

If the media object has not already been added to the MediaSynchroniser or is the master
media object then this call shall be ignored and an error event dispatched.

If the MediaSynchroniser is not initialized, or is in a permanent error state, then this call
shall be ignored and an error event dispatched.

Arguments mediaObject The media object to be removed.

ETSI

ETSI TS 102 796 V1.3.1 (2015-10)73

void updateCorrelationTimestamp (Object mediaObject,
 CorrelationTimestamp correlationTimestamp)

Description Updates the correlation timestamp for the media object, which relates the media object's
timeline to the timeline used by the MediaSynchroniser API.

A correlation timestamp should be updated as often as necessary if the correlation of the
timelines changes, e.g. due to drift or discontinuity event of one timeline.

If the correlation timestamp is null or has an invalid format then this call shall be ignored
and an error shall be dispatched with error code 5.

When an updated correlation timestamp is set for a media object which would change the
temporal relative presentation of the media objects, the terminal shall adapt to this.
Example mechanisms for achieving this gracefully can be found in clause C.3 of ETSI
TS 103 286-2 [47].

If the change to the correlation timestamp would cause the terminal to run out of buffer
space or be unable to present the media sufficiently early then an error shall be dispatched
with error code 1 or 11 as appropriate.

If the change to the correlation timestamp would cause the terminal to be able to achieve
synchronized presentation of this media object when previously it could not, then an
onSyncNowAchievable event shall be generated for the MediaSynchroniser object (see
clause 8.2.3.2.3).

If the media object is not already added to the MediaSynchroniser then this call shall be
ignored and an error event dispatched.

If the MediaSynchroniser is not initialized, or is in a permanent error state, then this call
shall be ignored and an error event dispatched.

Arguments mediaObject The media object for which the correlation timestamp shall be
set.

correlationTimestamp The correlation timestamp to be used with this media object.

void enableInterDeviceSync (function callback)

Description Enables inter device synchronization of a master terminal or slave terminal. If it is already
enabled then this call shall be ignored.

If the MediaSynchroniser was initialized using the initMediaSynchroniser() method
then the terminal become a master terminal as defined in clause 13.3.3.

If the MediaSynchroniser was initialized using the initSlaveMediaSynchroniser()
method then the terminal become a slave terminal as defined in clause 13.3.5.

The callback method shall be called when the endpoints are operable.

The nrOfSlaves property can be used to poll for the number of connected slave terminals
or companion applications.

If the MediaSynchroniser is not initialized, or is in a permanent error state, then this call
shall be ignored and an error event dispatched.

Arguments callback Optional callback function.

ETSI

ETSI TS 102 796 V1.3.1 (2015-10)74

void disableInterDeviceSync (function callback)

Description Disables the inter device synchronization of a master or slave terminal.

If the terminal is a master terminal it shall cease to be a master terminal as defined in
clause 13.3.4. Once the terminal is no longer a master terminal then the callback function
shall be called.

If the terminal is a slave terminal it shall cease to be a slave terminal as defined in
clause 13.3.6. Once the terminal is no longer a slave terminal then the callback function
shall be called.

If the MediaSynchroniser is initialized but the terminal is currently neither a master nor a
slave terminal then the callback function shall be immediately called.

If the MediaSynchroniser is not initialized, or is in a permanent error state, then this call
shall be ignored and an error event dispatched (see clause 13.3.8).

Arguments callback Optional callback function.

8.2.3.2.3 DOM2 events

When an error occurs for the MediaSynchroniser object then the intrinsic event onError shall be generated and a
corresponding DOM level 2 event shall be generated in the following manner:

Intrinsic event Corresponding DOM 2 event DOM 2 Event properties
onError Error Bubbles: No

Cancelable: No
Context Info: lastError,
lastErrorSource

For the intrinsic event onSyncNowAchievable , a corresponding DOM level 2 event shall be generated, in the following
manner:

Intrinsic event Corresponding DOM 2 event DOM 2 Event properties
onSyncNowAchievable SyncNowAchievable Bubbles: No

Cancelable: No
Context Info: mediaObject

For terminals with the capability to act as a slave terminal, then for the intrinsic event
"onInterDeviceSyncDispersionUpdate", a corresponding DOM level 2 event shall be generated, in the following
manner:

Intrinsic event Corresponding DOM 2 event DOM 2 Event properties
onInterDeviceSyncDispersionUpdate InterDeviceSyncDispersionUpdate Bubbles: No

Cancelable: No
Context Info: None

NOTE: These DOM 2 events are directly dispatched to the event target, and will not bubble nor capture.
Applications SHOULD NOT rely on receiving these events during the bubbling or the capturing phase.
Applications that use DOM 2 event handlers have to call the addEventListener() method on the
MediaSynchroniser embedded object. The third parameter of addEventListener(), i.e. "useCapture",
will be ignored.

8.2.3.2.4 Error codes

The values of the error property are defined in this clause.

ETSI

ETSI TS 102 796 V1.3.1 (2015-10)75

Value Description Permanent or
Transient

1 Synchronization is unachievable because the terminal could not delay presentation of
content (represented by a media object added using the addMediaObject() method)
sufficiently to synchronize it with the master media. For example: the buffer size for
media synchronization is not sufficient.

Transient

2 The presentation of media object(that was added using the addMediaObject() method)
failed. The specific reason is given by the error handler of that media object.

Transient

3 The media or the selected timeline for the media could not be found or the media
timeline is no longer present (for media represented by a media object that was added
using the addMediaObject() method).

Transient

4 Media object is already associated with the MediaSynchroniser. Transient
5 The correlation timestamp set for a media object is null or has an invalid format. Transient
6 Inter-device synchronization with a master terminal failed because of unavailability, e.g.

an endpoint is not available or disappeared. Applications should rediscover available
terminals as defined in clause 14.7.2 before continuing with inter-device synchronization.

Permanent

7 The call failed because the MediaSynchroniser is not yet initialized. Transient
8 The media object referenced as an argument in the call needed to have already been

added to the MediaSynchroniser using the addMediaObject() method, but it has not
been.

Transient

9 The media object (that was passed using the addMediaObject() method) is not in a
suitable state to participate in synchronization. See clause 9.7.1.

Transient

10 Inter-device synchronization with a master terminal failed because of a fault in protocol
interaction, e.g. the master terminal did not provide required messages or data.
Applications can consider trying again.

Permanent

11 Synchronization is unachievable because the terminal could not present the content
(represented by a media object added using the addMediaObject() method)
sufficiently early to synchronize it with the master media.

Transient

13 The method call failed because the MediaSynchroniser is in a permanent error state or
because it has been replaced by a newer initialized MediaSynchroniser.

Transient (see
note 1)

14 The presentation of the master media (that was specified as an argument when the
initMediaSynchroniser() method was called) failed. The specific reason is given by
the error handler of that media object.

Permanent

15 The master media object or the selected timeline for a media object could not be found
or the media timeline is no longer present.

Permanent

16 The master media object is not in a suitable state to participate in synchronization. See
clause 9.7.1.

Permanent

17 The method call failed because the MediaSynchroniser is already initialized. Transient
18 The MediaSynchroniser has been replaced by a new MediaSynchroniser being

initialized.
Permanent

19 The master terminal has reported that the presentationStatus of the master media has
changed to "transitioning" (see clause 13.6.3).

Transient

NOTE: The MediaSynchroniser will already be in a permanent error state. If this error occurs, the
MediaSynchroniser remains in the permanent error state.

Behaviour of the MediaSynchroniser object depending on whether the error is transient or permanent is defined in
clauses 13.3.7 and 13.3.8.

8.2.3.3 The CorrelationTimestamp class

8.2.3.3.1 General

Applications shall construct objects that conform to this class definition to deliver correlation timestamps to the
terminal.

8.2.3.3.2 Properties

Number tlvMaster

Description A value on the timeline used by the MediaSynchroniser API.

Number tlvOther

Description A value on the timeline of a media object that correlates to the value on the timeline used
by the MediaSynchroniser API.

ETSI

ETSI TS 102 796 V1.3.1 (2015-10)76

The significance of the properties of this class for both multi-stream and inter-device synchronization are discussed in
more detail in clause 13.4.

8.2.4 APIs for automatic deletion of downloaded content

The following additional property on the Download object (as defined in the OIPF DAE specification [1]) shall be
supported.

Boolean flaggedForDeletion

Description Boolean property set by the application indicating whether the content item has been
flagged as suitable for automatic deletion. When additional storage space is needed to
complete a download that has been registered, if deleting content items flagged for
automatic deletion would provide the additional storage space needed then enough of
these content items shall be deleted by the terminal to provide the space needed.

When a download is removed automatically as a result of this flag being set, the effect
shall be the same as the effect of the remove() method: the download and any data and
media content associated with it shall be removed, and all properties on the Download
object shall be set to undefined.

The storage space corresponding to the downloads which are flagged for deletion shall
be deemed as free by the checkDownloadPossible() method.

The order in which items flagged for deletion are actually removed by the terminal, and
the time at which they are removed, is implementation-dependent, and may take into
account factors such as the time at which the item was flagged for deletion, the size of
the item compared to the amount of space needed. Items flagged for deletion shall not
be removed automatically if they are currently being referred to by an AV Control object
or a <video> element.

8.2.5 APIs for obtaining the LCN of a service

The following additional property on the Channel class (as defined in OIPF DAE specification [1]) shall be supported.

readonly Number terminalChannel

Description An integer property which shall be set to the value of the terminal's Logical Channel
Number as used by the terminal's native UI. This allows for terminals to have different
channel values (for example by way of user sorting) from the LCN values provided in SI
by the broadcast network.

The property majorChannel (as defined in OIPF DAE specification [1]) from the Channel class shall be supported with
the following definition.

readonly Number majorChannel

Description An integer property that shall be set to the value of the Logical Channel Number as
defined by the logical channel information provided by the SI from the broadcast
network.

The values shall be equal to the final LCN assignments after any sorting performed by
the terminal as part of the channel scan only, taking into account other SI descriptors
relating to network sorting (such as logical_channel_descriptor,
HD_Simulcast_Logical_Channel_descriptor, target_region_descriptor, etc., as
defined by the country profile).

It shall also be unaffected by any re-assignment of the LCN due to the terminal retaining
and re-numbering duplicate services.

ETSI

ETSI TS 102 796 V1.3.1 (2015-10)77

8.2.6 Companion Screen discovery APIs

8.2.6.1 HbbTVCSManager embedded object

This embedded object shall have the MIME type "application/hbbtvCSManager". It enables applications to:

• discover companion screens with a running Launcher application and for launching / installing CS
applications;

• discover the base URLs of the local and remote endpoints for application to application communication;

• discover other HbbTV® terminals on the home network;

• discover the URLs of service endpoints provided by other HbbTV® terminals on the home network;

• launch or install a CS application on a Companion Screen.

In this clause, the definitions of connected and disconnected are as defined in clause 14.3.

Before a CS application can be launched / installed via the Launcher application, connected Launcher applications have

to be discovered by the HbbTV® application. This can be achieved by using the discoverCSLaunchers() API:

Boolean discoverCSLaunchers(function onCSDiscovery)

Description Triggers a callback reporting CS launcher applications on the home
network, along with their enumeration ID, a friendly name and their CS OS
information.

This returns with either the value true to indicate that the function has
completed with no errors (and that a callback is expected), false otherwise.

When true is returned, the onCSDiscovery() callback shall be scheduled
to fire within 1 second. There shall be no callback scheduled if false is
returned.

The details of what is done during this function call or after this function call

dependes on the protocol between the HbbTV® terminal and the CS
launcher application and is implementation specific.

Arguments onCSDiscovery A callback function. See below for the details.

The onCSDiscovery callback shall be supported and called once for each call to discoverCSLaunchers() that returns
true:

function onCSDiscovery(Array csLaunchers)

Properties csLaunchers A JavaScript Array object containing zero or more
DiscoveredCSLauncher objects (see clause 8.2.6.3) where
each object in the array represents a CS Launcher application
that was either:

• currently connected at the time of the call to
discoverCSLaunchers() that triggered this callback;

• or subsequently connected after the time of the call to
discoverCSLaunchers() that triggered this callback.

The protocol for determining the CS Launchers to be included in
this array is out of scope, and not defined by the present
document.

NOTE: There is no mechanism for an HbbTV® application to determine if a CS Launcher

application has disconnected from the HbbTV® terminal. The application should make
further calls to discoverCSLaunchers() as required to keep up to date.

ETSI

ETSI TS 102 796 V1.3.1 (2015-10)78

Boolean discoverTerminals(function onTerminalDiscovery)

Description Triggers a callback reporting other HbbTV® terminals on the home network, along
with an enumeration ID, a friendly name, and service endpoint URLs.

This returns with either the value true to indicate that the function has completed

with no errors (and that a callback is expected), or false otherwise. On HbbTV®

terminals that do not support discovering other HbbTV® terminals, false shall be
returned.

When true is returned, the onTerminalDiscovery() callback shall be scheduled
to fire within 1 second. There shall be no callback scheduled if false is returned.

Arguments onTerminalDiscovery A callback function. See below for the details.

The onTerminalDiscovery callback shall be supported and called once for each call to discoverTerminals() that
returns true:

function onTerminalDiscovery (Array terminals)

Arguments terminals A JavaScript Array object containing zero or more
DiscoveredLauncher objects (see clause 8.2.6.2) where

each object in the array represents an HbbTV® terminal
that was either:

• available for connecting to the HbbTV® terminal
(at the time of the call to discoverTerminals());

• or subsequently became available for connecting

to the HbbTV® terminal (i.e. after the call to
discoverTerminals().

Terminals shall use the protocol defined in clause 14.7
to discover other terminals for inclusion in this array.

NOTE: There is no mechanism for an HbbTV® application to determine if another HbbTV® terminal
is no longer available. The application should make further calls to discoverTerminals()
as required to keep up to date.

To launch or install a CS application on a Companion Screen the launchCSApp() method needs to be called for the
Companion Screen identified by the Companion Screen enumeration ID (enum_id). The action that the CS Launcher
application on the Companion Screen will undertake is described by the payload string. The semantics of the instruction
and the payload format are described in clause 14.4.2.

Boolean launchCSApp(Integer enum_id, String payload, function onCSLaunch)

Description Sends a payload string to the CS Launcher application which contains an
instruction set for the CS Launcher application to execute. The result of the Launch

operation is communicated to the HbbTV® application via the onCSLaunch
callback.

The protocol for achieving this is out of scope, and not defined by the present
document.

The function returns false if the enum_id does not refer to a launcher application,
otherwise it returns true.

Arguments enum_id The unique ID of an instance of a CS Launcher application.
Payload See clause 14.4.2 for the definition of format of the payload

parameter string.
onCSLaunch A callback function. See below for the details.

When the result of the launch operation is known, the HbbTV® browser calls the onCSLaunch callback:

callback onCSLaunch(int enum_id, int error_code)

Properties enum_id A unique ID for a CS Launcher application
error_code See below for the error codes

ETSI

ETSI TS 102 796 V1.3.1 (2015-10)79

The following error codes may be carried in the onCSLaunch callback:

Error Code Numeric value Error Description
op_rejected 0 The CS Launcher application has automatically rejected

the operation with no interaction with the user of the
Companion Screen.

op_denied 1 The CS Launcher application has blocked the operation,
but it was blocked by the explicit interaction of the user of
the Companion Screen.

op_not_guaranteed 2 The CS Launcher application has initiated the instruction
(launch or install) without a problem. It is assumed (to the
best knowledge of the Launcher application) that the
launch or installation operation has completed
successfully.

invalid_id 3 The CS Launcher application that is identified by enum_id
is no longer available. (i.e. it has become unavailable
since discovery occurred).

general_error 4 A general error has occurred. The CS Launcher
application knows with certainty that it has failed in its
attempt to initiate the instruction (launch or install)

received from the HbbTV® application.
NOTE: The above error codes names are not available as pre-defined properties anywhere. A

HbbTV® application has to either use the integer values or define the error names itself.

Since there are certain actions that the Launcher application may undertake before responding (and thus the terminal
invoking the onCSLaunch callback), there may be a long delay. Applications will therefore be responsible for timing out.

If a CS application needs to use one of the service endpoints defined in clause 14.7.2 (excluding the application Launch
service endpoint), then it needs to either:

• be passed these parameters upon launch (as a URL query parameters on the application launch URL); or

• to use the discovery methods defined in clause 14.7.

For the first method to be possible, the calling HbbTV® application needs to be able to determine the locations of the
service endpoints so it can construct the launch URL before initiating the launch.

The methods below enable an HbbTV® application to determine the locations of these service endpoints.

String getInterDevSyncURL()

Description Returns the URL of the CSS-CII service endpoint for the terminal that the calling

HbbTV® application is running on.

The URL retrieved by this method shall be the same as the URL carried in the
<X_HbbTV_InterDevSyncURL> element as described in clause 14.7.2.

String getAppLaunchURL()

Description Returns the URL of the application launch service endpoint for the terminal that

the calling HbbTV® application is running on.

The URL retrieved by this method shall be the DIAL application Resource URL for

HbbTV® (for this terminal) as defined in clause 14.7.2.

String getApp2AppLocalBaseURL()

Description Returns the base URL of the application to application communication service
local endpoint, as defined in clause 14.5.2. The use of this endpoint to

communicate between the HbbTV® application and the remote client is described
in clause 14.5.1. The URL retrieved by this method shall end with a slash ('/')
character.

ETSI

ETSI TS 102 796 V1.3.1 (2015-10)80

String getApp2AppRemoteBaseURL()

Description Returns the base URL of the application to application communication service
remote endpoint.

The URL retrieved by this method shall be the same as the URL carried in the
<X_HbbTV_App2AppURL> element as described in clause 14.7.2 and shall end with
a slash ('/') character.

8.2.6.2 DiscoveredTerminal class

Instances of this class provide details of endpoints of a Terminal that has been discovered using the
discoverTerminals() method of the HbbTVCSManager object (see clause 8.2.6.1).

A DiscoveredTerminal object shall have the following properties:

readonly Number enum_id

Description A unique ID for a discovered HbbTV® terminal.

The enum_id is expected to be quasi-static, and that repeated calls to
discoverTerminals() will respond with the same enum_id unless either this
terminal or the other terminal have been restarted or the other terminal has been
re-connected.

Newly started and connected terminals shall generate new enum_ids.

readonly String friendly_name

Description A discovered terminal may provide a friendly name, e.g. "Muttleys TV", for an

HbbTV® application to make use of.

It is optional that this parameter is returned. If it is not returned, it shall be set to
the empty string "".

If set the value shall be carried in the friendlyName field of the UPnP device
description as required by clause 14.7, and as per the implementation note in
clause 5.4 of DIAL [50].

readonly String X_HbbTV_App2AppURL

Description The remote service endpoint on the discovered HbbTV® terminal for application
to application communication, equal to the value of the element with the same
name as defined in clause 14.7.2.

readonly String X_HbbTV_InterDevSyncURL

Description The remote service endpoint on the discovered HbbTV® terminal for inter-device
synchronization, equal to the value of the element with the same name as defined
in clause 14.7.2.

readonly String X_HbbTV_UserAgent

Description The User Agent string of the discovered HbbTV® terminal, equal to the value of
the element with the same name as defined in clause 14.7.2.

8.2.6.3 DiscoveredCSLauncher class

Instances of this class provide details of a discovered CS Launcher that was discovered using the
discoverCSLaunchers() method of the HbbTVCSManager object (see clause 8.2.6.1).

ETSI

ETSI TS 102 796 V1.3.1 (2015-10)81

A DiscoveredCSLauncher object shall have the following properties:

readonly Number enum_id

Description The unique ID of an instance of a CS Launcher application.
The enum_id is expected to be quasi-static. Repeated calls to
discoverCSLaunchers() shall respond with the same enum_id unless any of the

HbbTV® terminal, the Companion Screen, or the CS Launcher application have
been restarted or re-connected.

Newly started and connected Launcher applications on Companion Screens shall
generate new enum_ids.

readonly String friendly_name

Description A CS Launcher application may provide a friendly name, e.g. "Muttleys Tablet",

for an HbbTV® application to make use of.

It is optional that this parameter is returned. If it is not returned, it shall be set to
the empty string "".

readonly String CS_OS_id

Description The CS OS identifier string, as described in clause 14.4.1.

9 System integration

9.1 Mapping from APIs to protocols

9.1.1 Unicast streaming

9.1.1.1 General streaming requirements

In Unicast streaming:

• Pausing playback shall cause the video to freeze and the audio to suspend.

• Stopping playback shall cause the video and audio to stop.

• When not presenting video, the AV Control object shall be rendered as an opaque black rectangle.

NOTE: An AV Control object that is not presenting video can obscure other parts of the application UI, including
video being presented by other elements in the application or in the background.

9.1.1.2 HTTP streaming

The mapping from the APIs for unicast streaming to the protocols shall be as defined in clause 8.2.5.1 of the OIPF DAE
specification [1] for HTTP streaming.

9.1.2 Unicast content download

Where unicast content download is supported, the mapping from the APIs for unicast content download to the protocols
shall be as defined in clause 8.2.1 of the OIPF DAE specification [1].

ETSI

ETSI TS 102 796 V1.3.1 (2015-10)82

9.2 URLs
The http: and https: URL schemes shall be supported as defined in clause 8.3 of the OIPF DAE specification [1],
except that support for https: is not required for unicast streaming.

It shall be possible to use FDP URLs to refer to files broadcast via FDP, as defined in clause H.2.4.

The dvb: URL scheme as defined in ETSI TS 102 851 [10] shall be supported and extended as follows:

• It shall be possible to use dvb: URLs including path references to refer to DSM-CC file objects and to
DSM-CC stream event objects signalled in the current service. It shall be possible to append to URLs referring
to DSM-CC file objects an optional query component or fragment component, e.g. to pass parameters to an
application. Since '?' and '#' are reserved characters as defined in IETF RFC 3986 [27], if the name of a

DSM-CC file object that is part of an HbbTV® application contains such characters, they shall be percent-
encoded (as defined in IETF RFC 3986 [27]) when used in URLs.

• It shall be possible to use dvb: URLs referring to applications signalled in the current service as defined in
table 4 of ETSI TS 102 851 [10] and optionally appended fragment component with the
Application.createApplication() method. Use of dvb: URLs referring to applications from another service
will cause createApplication() to fail as if the initial page could not be loaded. Any query component and
fragment component assigned to this dvb:URL shall be attached to the application location URL signalled
inside the corresponding AIT as follows:

- If only one URL contains a query component then the resulting URL shall use that query component.

- If both URLs contain a query component then the query component of the DVB application URL is
appended to the application location URL using an ampersand sign '&'. The terminal shall not parse or
process the query components.

- If only one URL contains a fragment component then the resulting URL shall use that fragment
component.

- If both URLs contain a fragment component, the fragment component of the DVB application URL takes
precedence and overwrites the one in the application location URL.

- The window.location.href property shall take the value of the resulting URL, including any query
component. Any fragment component shall be available in the window.location.hash property and the
query component in the window.location.search property.

- Examples for a resulting URL include:

� URL signaled in the AIT: http://www.example.com/app1?param1=value1
createApplication URL: dvb://current.ait/1.1?param2=value2#foo
Resulting URL: http://www.example.com/app1?param1=value1¶m2=value2#foo

� URL signaled in the AIT: http://www.example.com/app1?param1=value1#test
createApplication URL: dvb://current.ait/1.1#foo
Resulting URL: http://www.example.com/app1?param1=value1#foo

� The application is signaled in a DSMCC Carousel with a Component Tag of 4 and a Base URL of
/index.html?param1=value1 and the current service location is dvb://1.2.3
createApplication URL: dvb://current.ait/1.1?param2=value2#foo
Resulting URL: dvb://1.2.3.4/index.html?param1=value1¶m2=value2#foo

• Use of dvb: URLs referring to files in a carousel carried in a different transport stream shall not cause the
terminal to perform a tuning operation, and shall fail as if the file did not exist.

• Use of dvb: URLs referring to files in a different carousel carried in the same transport stream shall cause the
terminal to unmount the currently mounted carousel and mount the new carousel, as specified in
clause 7.2.5.3.

• Support for dvb: URLs including the textual service identifier is not required in the present document.

http://www.example.com/app1?param1=value1
http://www.example.com/app1?param1=value1

ETSI

ETSI TS 102 796 V1.3.1 (2015-10)83

NOTE 1: Some browsers may use the filename suffix as a means for detecting the content type for files not served
via HTTP. Application authors should be careful about filename suffixes used, as incorrect suffixes may
result in unexpected behaviour.

NOTE 2: The present document inherits requirements to support W3C media fragment URLs from clause 8.3.1 of
the OIPF DAE specification [1].

The DVB DASH profile ETSI TS 103 285 [45] refers to extensions to the W3C media fragment URLs that are called
"MPD Anchors" and that are defined in annex C.4 of the MPEG DASH specification ISO/IEC 23009-1 [29]. The
present document does not require support for the extensions defined in that annex, only the requirements inherited
from OIPF apply.

If the HbbTV® terminal supports the CICAM Auxiliary File System resource, it shall support the ci:// URL scheme:

• An HbbTV® application wishing to access a specific file on a CICAM file system shall use the following
URL format to identify the target file:

- "ci://<domain identifier>/<file path and name>"

NOTE 3: Domain identifiers except for 'HbbTVEngineProfile1' are outside the scope of the present document. The
<file path and name> is private to the application and not defined in the present document.

NOTE 4: CICAMs that want to authenticate the application before enabling access to the CICAM file system may
rely on private messaging via oipfDrmAgent to only enable the file system to authenticated applications.

NOTE 5: An application that was launched from the CICAM might use the 'HbbTVEngineProfile1' domain
identifier, as specified in clause 11.4.3 of the present document, to access further resources from the
CICAM, in addition to any proprietary domain identifiers.

• An XMLHttpRequest to a URL with the ci:// URL scheme shall be processed by the HbbTV® Browser
environment as if it was CORS 42 permitted.

9.3 Other file formats

9.3.1 Stream event

Both mechanisms for referencing sources of stream events defined in clause 8.2 of ETSI TS 102 809 [3] shall be
supported.

For the XML schema defined in clause 8.2 of ETSI TS 102 809 [3] the following restrictions shall apply:

• The stream_event_id attribute of the type StreamEventType shall represent a positive/unsigned integer with a
maximum value of 65535. The lexical representation of the value shall be as defined by clause 3.3.23
"unsignedShort" of the W3C XML Schema Recommendation [23].

• The value of the component_tag attribute of the type DsmccObjectType shall represent a positive/unsigned
integer with a maximum value of 255. The lexical representation of the value shall be as defined by
clause 3.3.24 "unsignedByte" of the W3C XML Schema Recommendation [23].

• Stream event XML files shall be served with a MIME type of "application/vnd.dvb.streamevent+xml".

9.3.2 MPEG DASH event integration

9.3.2.1 General

The DVB DASH specification, ETSI TS 103 285 [45] requires support for the event mechanism defined in clause 5.10
of the MPEG DASH specification ISO/IEC 23009-1 [29]. This clause defines how those events will be exposed to
applications.

ETSI

ETSI TS 102 796 V1.3.1 (2015-10)84

9.3.2.2 HTML5 media element

Specifically the TextTrackList shall include TextTracks corresponding to DASH event streams as follows:

• A TextTrack shall be provided for each event stream signalled in the MPD as defined in clause 5.10.2 of
MPEG DASH ISO/IEC 23009-1 [29] excluding DASH-specific events as defined in clause 5.10.4 of MPEG
DASH ISO/IEC 23009-1 [29] and excluding events streams defined by the DVB DASH specification ETSI
TS 103 285 [45] to be consumed by the terminal.

• A TextTrack shall be provided for each event stream included in currently selected Representations as defined
in clause 5.10.3 of MPEG DASH ISO/IEC 23009-1 [29] excluding DASH-specific events as defined in
clause 5.10.4 of MPEG DASH ISO/IEC 23009-1 [29] and excluding events streams defined by the DVB
DASH specification ETSI TS 103 285 [45] to be consumed by the terminal.

Changes in the set of event streams, either by updating the MPD or by changing the selected Representation, shall be
reported using the onaddtrack/addtrack and onremovetrack/removetrack events.

The mapping between DASH event streams and TextTrack objects shall be as follows:

TextTrack property MPD Events Inband Events
Kind Metadata Metadata
Label Empty string Empty string
Language Empty string Empty string
Id Empty String Empty String
inBandMetadataTrackDispatchType @schemeIdUri + "U+0020" (SPACE

character) + @value
@schemeIdUri + "U+0020" (SPACE
character) + @value

Mode Hidden Hidden

DASH events shall be reported to applications as DataCues according to the following mapping:

DataCue(TextTrackCue) property MPD Events Inband Events
Id @id Id
startTime @presentationTime (scaled according

to the EventStream @timescale
attribute) + the time offset of the start of
the period from the start of the
presentation.

presentation_time_delta (scaled
according to the timescale value) + the
time offset of the start of the segment
from the start of the presentation.

endTime The startTime + @duration, subject to
the minimum duration requirements
below. If the @duration attribute is not
specified, endTime shall be set to
Number.MAX_VALUE.

The startTime + the event_duration,
subject to the minimum duration
requirements below. If event_duration
is 0xFFFF, endTime shall be set to
Number.MAX_VALUE.

pauseOnExit False False
Onenter As defined in the HTML5

Recommendation [54].
As defined in the HTML5
Recommendation [54].

Onexit As defined in the HTML5
Recommendation [54].

As defined in the HTML5
Recommendation [54].

data The string value of the <Event>
element.

message_data

The cuechange event of the TextTrack object shall be fired according to the "time marches on" algorithm defined in
clause 4.7.10.8 of the HTML5 Recommendation [54]. This allows the possibility of "missed cues" (cues that start and
end between successive iterations of the algorithm). For these cues a cuechange event will be fired but the cue will not
be available in the activeCues TextTrackCueList when the handler is called.

To ensure that it is possible to deliver event data to an application using the DASH event mechanism in a way that does
not lead to "missed cues", the following requirements shall be observed:

• For any DASH event with a duration of 250 ms or less, the terminal shall set the endTime property of the
corresponding DataCue object to the startTime + 250 ms.

• For any DataCue with a duration of at least 250 ms, the Terminal shall ensure that a cuechange event is raised
with the cue listed in the activeCues list.

ETSI

ETSI TS 102 796 V1.3.1 (2015-10)85

NOTE: The figure of 250 ms is consistent with the minimum repetition rate required by the HTML5
Recommendation [54] for the timeupdate event.

Terminals should attempt to minimize the delay from a DASH event occurring and the cuechange event being fired. In
circumstances under which no user events or application controlled XHR requests are being processed, and where
DASH events occur no more frequently than four times a second, terminals should fire the cuechange event within
80 ms of the time a video frame with the event's presentationTime would be composed on screen and combined with
the application's graphics. Lower levels of accuracy can be expected to degrade the viewer experience where application
behaviour is synchronized with A/V media.

Some events may be intended for consumption by the DASH client itself. These are described in clause 10.1.4 of the
DVB DASH specification ETSI TS 103 285 [45]. With the exception of these events the cues attribute of the
TextTrack shall be populated as follows:

• For an MPD EventStream, the cues attribute shall contain cues representing the complete list of DASH Events
currently defined for that EventStream. If the MPD is dynamic, the list shall be updated if the list of Events
changes following an MPD update.

• For an InbandEventStream, the cues attribute shall contain cues representing at least the DASH Events whose
start times are less than or equal to the current playback position and whose end times are greater than the
current playback position. In addition, past cues shall be retained in the cue list at least until the completion of
the next iteration of "time marches on" that occurs after the end time of the cue. The cue list may also contain
additional past or future Events which the terminal has acquired.

9.4 Presentation of adaptive bitrate content

9.4.1 General

Terminals shall support the <ContentURL> element of the content access streaming descriptor referencing an MPD as
defined in DASH ISO/IEC 23009-1 [29].

It is optional for a terminal to support play speeds other than 0 or 1 for adaptive bitrate content.

If paused, terminals shall not auto-resume if DASH live media no longer exposes the current play position via its time
shift buffer (as determined by the MPD@timeShiftBufferDepth). The current playback position shall be maintained
unless the application requests a change, or there is an error.

9.4.2 Behaviour for HTML5 media objects

Media timeline

The origin of the media timeline used by HTML5 media elements (i.e. the <audio> and <video> elements) shall be the
start time of the first Period that was defined in the MPD when the MPD was first loaded. The origin of the media
timeline shall not change unless the HTML5 media element source is changed or the load() method is called.

NOTE 1: Implementations are expected to be able to handle past periods being removed from a dynamic MPD
without changing the origin of the HTML5 media element's timeline.

For a dynamic MPD, getStartDate() shall return a Date object representing the value of MPD@availabilityStartTime
plus the PeriodStart time (see clause 5.3.2.1 of MPEG DASH ISO/IEC 23009-1 [29]) of the first regular Period when
the MPD was first loaded.

NOTE 2: This provides an absolute time reference for the start of the media timeline used by the HTML5 media
element.

For a static MPD or a dynamic MPD containing no regular Period, getStartDate() shall return a Date object that
represents the time value NaN, in the same manner as required by HTML5 when no explicit date and time is available.

Duration

For a static MPD, the duration attribute shall be the value of MPD@mediaPresentationDuration if present or the
PeriodStart time of the last Period determined according to clause 5.3.2.1 of MPEG DASH ISO/IEC 23009-1 [29]
plus the value of Period@duration for the last Period. The duration shall be calculated after resolution of any xlink
references with @xlink:actuate set to "onLoad".

ETSI

ETSI TS 102 796 V1.3.1 (2015-10)86

For a dynamic MPD, the duration attribute shall be the value of MPD@mediaPresentationDuration if present,
otherwise it shall be reported as positive infinity (indicating an indeterminate duration).

Seekable range

When a dynamic MPD contains an MPD@timeShiftBufferDepth attribute, the media element's seekable attribute shall
take values that map to the full range of media available in the server-side time shift buffer that the terminal could
present, taking into account any safety margins (see ETSI TS 103 285 [45], clause 4.7). The range shall be calculated
based on segment availablility times as defined in clause 5.3.9.5.3 of ISO/IEC 23009-1 [29]. The range shall be the
intersection of the ranges derived from all selected AdaptationSets.

NOTE 3: The duration of the seekable range will be at most the value of MPD@timeShiftBufferDepth. If the
terminal has a time uncertainty of +/- T seconds, this would typically have the effect of increasing the
start and decreasing the end of the range by T seconds. If the terminal has a minimum time behind the live
edge for presentation of a live stream, this will further reduce the end of the seekable range.

For a static MPD, or where no MPD@timeShiftBufferDepth attribute is present in a dynamic MPD, the seekable
attribute shall reflect the full extent of the media timeline currently defined by the MPD.

NOTE 4: For a dynamic MPD, this range may not begin at time zero if Periods have been removed since the MPD
was first retrieved.

Pause and Resume behaviour

After a live DASH stream is paused, if the current play position (the currentTime attribute) is no longer in the time
shift buffer (as determined by the MPD@timeShiftBufferDepth) when the video playback is attempted to be resumed,
then an error Event with code MEDIA_ERR_NETWORK shall be raised. The application can then determine the new seekable
range and act accordingly.

Seeking

If the current play position is modified (by changing the currentTime attribute), and that new position is outside the
seekable range defined above, the terminal shall follow the seek behaviour defined by HTML5.

Change in size of the time shift buffer

If playing, and the current play position (the currentTime attribute) is no longer within the time shift buffer (for
example if there was a dynamic MPD update that shortens the MPD@timeShiftBufferDepth), then an error Event with
code MEDIA_ERR_NETWORK shall be raised.

Start Position

The start position shall be determined according to the requirements laid out in ETSI TS 103 285 [45], clause 10.9.2.
For some content, playback will start at the 'live edge'. This is consistent with the requirements of HTML5 [54] which
includes the following step when processing media data:

"If either the media resource or the address of the current media resource indicate a particular start time, then
set the initial playback position to that time"

9.4.3 Behaviour for the AV Control object

Terminals shall support applications setting the data attribute of an AV Control object to a URL referencing an MPD as
defined in DASH ISO/IEC 23009-1 [29] and identified by the MIME type in annex C of [29]. The type attribute of the
AV Control object shall be set to "application/dash+xml".

In order to play the content, the terminal shall fetch the MPD from the URL, interpret the MPD and select an initial set
of representations. If at any time the MPD is found to be not valid according to the XML schema or semantics defined
in DASH ISO/IEC 23009-1 [29], the AV Control object shall go to play state 6 ('error') with error value 4 ('content
corrupt or invalid').

When an instance of the AVComponent class refers to a DASH audio media content component:

• If the audio media component is identified as being audio description (as defined in clause E.2.4), the
audioDescription property of the AVComponent shall be set to true.

ETSI

ETSI TS 102 796 V1.3.1 (2015-10)87

The origin of the media timeline used for the playPosition property shall be the start time of the first Period that was
defined in the MPD when the MPD was first loaded. The origin of the media timeline shall not change unless the AV
Control object returns to the stopped state.

NOTE: Implementations are expected to be able to handle past periods being removed from a dynamic MPD
without changing the origin of the timeline used for the playPosition property.

For a static MPD, the playTime property shall be the value of MPD@mediaPresentationDuration if present or the
PeriodStart time of the last Period determined according to clause 5.3.2.1 of MPEG DASH ISO/IEC 23009-1 [29] plus
the value of Period@duration for the last Period. The duration shall be calculated after resolution of any xlink
references with @xlink:actuate set to "onLoad".

For a dynamic MPD, the playTime property shall be the value of MPD@mediaPresentationDuration if present,
otherwise it shall be reported as positive infinity (indicating an indeterminate duration).

Seekable range

Since the AV Control object does not provide an API or attribute to determine the seekable range, an application is
responsible for determining the seekable range by other means if it required.

Pause and Resume

After a live DASH stream is paused, if the current play position (the playPosition property) is no longer in the DASH
sliding window when the video playback is attempted to be resumed, then a playback error has occurred and the AV
Control object transitions to the play state 6 ('error') with a detailed error code of 6 ('content not available at given
position').

Since the AV Control object does not provide an API to determine the seekable range, an application could recover
playback by stopping the media and then restarting the media.

Seeking

If the application attempts to seek a live DASH stream outside the range of the time shift buffer (as determined by the
MPD@timeShiftBufferDepth), then the seek request is rejected and the current playout is maintained as per
clause 7.14.1.1, clarification 7, of the OIPF DAE specification [1].

Change in size of the time shift buffer

If playing, and the current play position (the playPosition property) is no longer within the time shift buffer (for
example if there was a dynamic MPD update that shortens the MPD@timeShiftBufferDepth), then a playback error has
occurred and the AV Control object transitions to the play state 6 ('error') with a detailed error code of 6 ('content not
available at given position').

9.5 Downloading content via FDP

9.5.1 Download registration

Download of content delivered via FDP can be registered by using the registerDownload() or
registerDownloadURL() methods, as defined in the OIPF DAE specification [1].

To do so, these methods are called with a Content Access Download Descriptor (or a URL of a Content Access
Download Descriptor) including the content items to be downloaded via FDP. Since the FDP mechanism relies on the
signaling of availability windows indicating when the content is being transmitted (as specified in clause H.3.2), these
methods shall fail (as defined in the OIPF DAE specification [1] and amended in clause A.2.19 of the present
document) if no availability window is specified for a content item to be downloaded using FDP, i.e. under any of the
following circumstances:

• The URL argument passed to registerDownloadURL() is an FDP URL, as defined in clause H.2.4.

• At least one of the <ContentURL> elements in a <contentItem> element included in the Content Access
Download Descriptor is an FDP URL, while this <contentItem> element does not include at least one
<availabilityWindow> element.

ETSI

ETSI TS 102 796 V1.3.1 (2015-10)88

Moreover, when a <ContentURL> element in the Content Access Download Descriptor is an FDP URL, the
transferType element shall be assumed to have the value full_download, regardless of its signalled value.

9.5.2 Single file with multiple URLs

When one Content Access Download Descriptor includes multiple <ContentItem> elements containing FDP URLs
pointing to the same file (according to the criteria defined in clause H.2.3), the terminal shall consider that all these
<ContentItem> elements correspond to one single content item, i.e. that the corresponding file shall be downloaded
only once. In such a case, the terminal may assume that these <ContentItem> elements only differ by their
<ContentURL> and <availabilityWindow> elements.

NOTE: This occurs in cases where one single file is broadcast several times at different times, resulting in
different availability windows, and possibly at different locations (e.g. on different transport streams),
resulting in different FDP URLs (see clause H.3.3 for details).

9.5.3 Properties of the Download object

In the case of a download via FDP, the following properties of the Download object shall be constrained in the following
manner:

1) timeElapsed: this element shall have the value undefined.

2) timeRemaining: this element shall have the value undefined.

3) currentBitRate: this element shall have the value undefined.

4) startTime: this element shall have the value undefined.

5) totalSize:

a. Before an availability window has started and a first FDP Initialization Message has
been received, the totalSize property shall correspond to the value of the size
attribute of the selected <ContentURL> element in the Content Access Download
Descriptor that was used to register the download.

b. Once an availability window has started and a first FDP Initialization Message has
been received, the totalSize property shall be updated to the actual file size as
indicated in the file_size field of the FDP Initialization Message.

c. If the download reaches the state failed, its totalSize property shall be set to 0.

6) state and suspendedByTerminal:

a. The state property shall change from "queued" to "in progress" at the receipt of the first Initialization
Message.

b. If a download has not yet completed, and there are availability windows in the future, but there is no
active availability window at present, then state shall be "paused", and suspendedByTerminal shall
be true.

c. When the last availability window of a download has ended, state shall be either "failed" or
"completed".

9.5.4 Download state diagram

In the case of a download via FDP, the state diagram of section 7.4.3.1. of the OIPF DAE specification [1] does not
apply, and the diagram shown in figure 16 below shall prevail.

ETSI

ETSI TS 102 796 V1.3.1 (2015-10)89

Figure 16: State diagram for embedded application/oipfDownloadManager objects
for FDP downloads (normative)

ETSI

ETSI TS 102 796 V1.3.1 (2015-10)90

9.6 Media element integration

9.6.1 General

The media elements from HTML5 [54] are included in the present document through the reference to the OIPF DAE
specification [1]. Terminals shall support presenting content using the media elements as follows:

• Non-adaptively streamed video and/or audio as defined in clause 7.3.2.1 of the present document shall be
supported with the content identified by an HTTP URL either directly referring to the content or referring to a
content access streaming descriptor that in turn refers to the content.

• Adaptively streamed video and/or audio as defined in annex E of the present document shall be supported
identified by an HTTP URL either directly referring to an MPD or referring to a content access streaming
descriptor that in turn refers to the MPD.

• If the download option is supported then presenting downloaded content shall be supported with that content
identified by a URL returned by the uri property of the Download class.

• If the PVR option is supported then presenting recorded content shall be supported with that content identified
by a URL returned by the uri property of the Recording class.

9.6.2 Resource management

The terminal shall support the existence within the same DOM of at least one HTML5 media element that is playing
together with at least two HTML5 media elements in a paused state, where each HTML5 media element may be in a
readyState of HAVE_CURRENT_DATA or higher.

The terminal may use hardware audio and video decoders to decode and render <video> and <audio> HTML5 media
elements. These hardware resources shall not be allocated to an HTML5 media element before it changes from being
paused to 'potentially playing' (as defined in the HTML5 specification). When subsequently paused, an HTML5 media
element shall retain its hardware resources, but shall be able to release these resources if required to start playing
another HTML5 media element. When resources are released, the terminal may discard any decoded frames that have
not been displayed.

The visual appearance of a <video> element that has no decoder resource currently allocated is undefined. It is
recommended that the terminal render such an element using the same behaviour as if the "visibility" CSS property
was equal to "hidden".

If a terminal supports only one HTML5 media element that is 'potentially playing', and multiple media elements exist
within the DOM, the request to transition to 'potentially playing' of one HTML5 media element (e.g. calling the play()
method) shall cause all other media elements to pause and release their allocated hardware resources. The transition to
'potentially playing' shall be deferred until all other HTML5 media elements have paused and released their hardware
resources. HTML5 media elements that are forced to pause shall emit a "pause" event and set the "paused" attribute to
true.

NOTE: The policy for managing hardware resources between instances of the HTML5 media element defined
here (automatically releasing allocated hardware resources when a new request occurs) is intentionally the
exact opposite of the policy defined for the A/V control and video/broadcast objects by the OIPF DAE
specification [1] and refined by clause A.2.1 of the present document.

See clause A.2.1 of the present document for the policy for managing hardware resources between instances of the
HTML5 media element and instances of the A/V control or video/broadcast objects.

9.6.3 Transition behaviour

The delay between the end of presentation of an HTML5 media element and starting presentation of another HTML5
media element shall be less than 250 ms if all of the following conditions are met:

• the pause() function on the first HTML5 media element and the play() function on the second HTML5
media element are called within the same spin of the event loop;

• the second media element has not been played;

ETSI

ETSI TS 102 796 V1.3.1 (2015-10)91

• the readyState of the second HTML5 media element has reached HAVE_FUTURE_DATA or greater (as indicated
by the "canplay" event);

• the start position in the media stream of the second video element is a random access point. In the case of
H.264 video, a random access point is an instantaneous decoding refresh (IDR) access unit; for AAC audio
only streams, a random access point is the start of any access unit.

If the readyState is less than HAVE_FUTURE_DATA, there may be additional unbounded delay as audio/video data is
downloaded.

If the start position does not coincide with an IDR, there may be additional delay as the hardware decoder decodes the
frames between the IDR and the start position.

When resuming the playback of an HTML5 media element that has previously been paused, the terminal shall start
playback at or before the IDR following the pause position. When resuming the playback, the terminal should start
playback as close as possible to the pause position, preferably from the next frame following the pause position.

9.6.4 Reporting and control of buffering

The terminal shall provide information on the amount of data that is buffered for each HTML5 media element by
providing a TimeRanges object via the buffered attribute of the HTML5 media element. The accuracy of the range (or
ranges) in the TimeRanges object shall be within ±T seconds of the actual amount of media that has been buffered by
the terminal, where T is:

• the segment duration, when playing fragmented content (such as DASH);

• 5 seconds, otherwise.

The terminal should support control of the media buffering by implementing the preload attribute of the HTML5 media
element. When the preload attribute is set to "none", the terminal should not download audio/video content for this
media element. When rendering a media format that uses manifest or playlist files (such as DASH, MSS and HLS) the
terminal may continue to download these files when the preload attribute is set to "none". When the preload attribute
is set to "metadata" the terminal should download audio/video content for this media element at a reduced rate, for
example by downloading slower than real-time. When the preload attribute is set to "auto" the terminal may choose
any downloading strategy, including using as much bandwidth as is available.

9.6.5 Distinguishing multiple media tracks (informative)

When content items include multiple video tracks and/or audio tracks, applications may wish to use a wide range of
properties to decide which track should be presented at a particular time or under particular conditions. The HTML5
VideoTrack and AudioTrack interfaces permit video tracks and audio tracks to be distinguished by 3 properties - id,
language and kind (e.g. subtitles, translation, commentary, description, captions, etc.). They have no explicit support
for distinguishing video tracks and audio tracks based on other properties such as codec, DRM, video aspect ratio and
number of audio channels (stereo or 5.1 or 7.1). Some examples of tracks that cannot be explicitly distinguished
include:

• Stereo and multi-channel (5.1/7.1) versions of the same audio.

• HE-AAC and Dolby versions of the same audio.

• AVC and HEVC versions of the same video.

The above is equally true for multiple video and/or audio Adaptation Sets in an MPEG DASH MPD.

If a content item contains tracks that cannot be explicitly distinguished based on language and kind and if applications
wish to control which audio track or which video track is presented under these circumstances then some possible
approaches an application may use include the following:

• provide some mechanism to determine the relevant properties from the id of the VideoTrack or AudioTrack
(e.g. making an XMLHttpRequest to a server providing that information); or

• if the system format permits track ids to be assigned by the content provider then it may be practical for the
content provider to use a convention when assigning the ids that permits additional track properties to be
determined by an application;

ETSI

ETSI TS 102 796 V1.3.1 (2015-10)92

• present the content item using the AV Control object instead of the HTML5 <video> element. With the AV
Control object, the AVComponent class and its sub-classes provide properties exposing this information.

9.6.6 Controls attribute

Applications should not set the controls attribute on the video media elements. Terminal behaviour if this is set is
implementation dependent.

NOTE: In clause 4.7.10.13 "User interface", the HTML5 specification as referenced by [i.6] states that "Even
when the attribute is absent, however, user agents may provide controls to affect playback of the media
resource (e.g. play, pause, seeking, and volume controls), but such features should not interfere with the
page's normal rendering." clause 10.2.7 of the present document requires terminals to provide some
controls.

9.6.7 DRM

If an application attempts to present DRM protected content using the HTML5 <video> element and this is denied by
the DRM system then this failure shall be reported to the application by a MediaError whose code property is set to
MEDIA_ERR_DECODE. The application is then responsible for checking if the reason for this error was related to DRM and
if so, obtaining more details about the error from the DRM system. For DRM systems that an application can access
through the oipfDrmAgent object, these two steps would be done using the sendDrmMessage method.

9.6.8 Parental Rating Errors

If an application attempts to present content using an HTML5 media element and this is blocked due to parental access
control, the application shall receive a MediaError with the code property set to MEDIA_ERR_DECODE.

NOTE: The present document does not provide a way for an application to distinguish failure due to parental
access control from failure due to other reasons. If this is important to an application then it may choose
to present the content using an AV Control object instead and listen for a ParentalRatingChange event.

9.6.9 Downloaded Content

Clause 7.14.1.3 of the OIPF DAE specification [1] shall apply as follows when an application uses the HTML5 media
element to present downloaded content:

• If the download was triggered using registerDownloadURL() with a contentType other than
"application/vnd.oipf.ContentAccessDownload+xml" or the download was triggered using a Content
Access Download Descriptor with <TransferType> value "playable_download" as defined in annex E.1 of
the OIPF DAE specification [1] and if the play() method is called before sufficient data has been download to
initiate playback then the HTML5 Recommendation [54] shall be followed as written with the readyState set
and updated as required in that specification.

• If the downloaded content was triggered using a Content Access Download Descriptor with <TransferType>
value "full_download" as defined in annex E.1 of the OIPF DAE specification [1], and if the play() method
is called whilst the content is still downloading and has not yet successfully completed, then the method shall
fail and a MediaError sent with the code set to MEDIA_ERR_NETWORK.

9.6.10 Video presentation

Video presented by an HTML5 <video> element shall always be presented according to the requirements for full screen
mode being false as defined in clause H.2 of the OIPF DAE specification [1] and modified by clause A.2.14 of the
present document.

9.6.11 getStartDate method

As defined in clauses A.3.2 and 9.4.2, the getStartDate() method shall be supported for MPEG DASH content.

The behaviour of getStartDate() for other types of content is not defined by the present document.

ETSI

ETSI TS 102 796 V1.3.1 (2015-10)93

9.7 Synchronization

9.7.1 Synchronization and video objects

9.7.1.1 video/broadcast object

A video/broadcast object that is passed to the initMediaSynchroniser() or addMediaObject() methods shall always
be in the connecting or presenting states. Passing a video/broadcast object in any other state to these methods shall
result in an error being triggered with error number '9' or '16'. Like timeshift, synchronization shall not impact the state
machine of the video/broadcast object. If the video/broadcast object has a permanent error (and hence transitions to the
Unrealised state), then:

• If it represents master media (it was passed to a MediaSynchroniser via the initMediaSynchroniser()
method) then this shall result in a permanent error of the MediaSynchroniser (see clause 13.3.8) with an
error being triggered with error number 14.

• If it represents other media (it was added to a MediaSynchroniser via the addMediaObject() method) then
this shall result in a transient error of the MediaSynchroniser (see clause 13.3.7) and the object shall be
removed as if an application had called the removeMediaObject() method and an error event triggered with
error number 2.

If the video/broadcast object transitions to the stopped or unrealised states for any other reason, then:

• If it represents the master media then this shall result in a permanent error of the MediaSynchroniser with
error code 16.

• If it represents other media then this shall result in a transient error of the MediaSynchroniser with error
code 9 and the object shall be removed as if an application had called the removeMediaObject() method.

The terminal is not required to maintain synchronization of all media objects attached to the MediaSynchroniser
(including media on other terminals if inter-device synchronization is being performed) to a video/broadcast object that
represents the master media (it was passed to a MediaSynchroniser via the initMediaSynchroniser() method) while
one or more of the following conditions are true for that video/broadcast object:

• It has a transient error (that it has not yet recovered from).

• It is in the connecting state.

• It is playing at a speed that is not 0 (paused) or 1 (normal play speed) for reasons other than adjusting its
presentation timing to enable media objects representing other media to synchronize to it.

Synchronization of all media objects shall resume automatically when the video/broadcast object representing the
master media returns to a state where all the conditions listed above are no longer true (and it has recovered from any
transient error).

The terminal is not required to maintain synchronization of a video/broadcast object (that was added to the
MediaSynchroniser using the addMediaObject() method) to the media object representing the master media while that
video/broadcast object has a transient error (that it has not yet recovered from) or is in the connecting state.

Synchronization of the video/broadcast object to the media object representing the master media shall resume
automatically when the video/broadcast object returns to the presenting state (and hence recovers from any transient
error). If the video/broadcast object leaves the connecting state for any other reason than the requirements concerning
permanent errors above shall apply. If the setChannel(), prevChannel(), nextChannel(), pause(), resume(),
setSpeed(), seek() or stopTimeshift() methods are called then the method call shall proceed for the video/broadcast
object.

Additionally:

• If it represents the master media then the terminal shall adjust the presentation timing of the other media to try
to synchronize it with the new presentation timing of the master media.

• If it represents other media then a transient error of the MediaSynchroniser with error code 9 shall be
generated and the object shall be removed as if an application had called the removeMediaObject() method.

ETSI

ETSI TS 102 796 V1.3.1 (2015-10)94

9.7.1.2 HTML5 media element

An HTML5 media element that is passed to the initMediaSynchroniser() or addMediaObject() methods shall have
the readyState property set to HAVE_CURRENT_DATA, HAVE_FUTURE_DATA or HAVE_ENOUGH_DATA. The media element
shall be playing or paused. The controller property of the media element shall be null or undefined. Passing in a
media element in any other state to these methods shall result in an error being dispatched with error number 9 or 16.
Synchronization may result in the media element being paused, resuming from paused or the currentTime jumping.
These shall be reflected in the API as if the application had called the pause() method, the play() method or written to
the currentTime property respectively.

NOTE: In the single decoder model (see clause 10.2.7.3), in order to prepare a media object to be passed to the
addMediaObject() method, an application should use the load() method to get the media element into
HAVE_CURRENT_DATA. Calling the play() method will likely fail if another media object that was
previously passed to the initMediaSynchroniser() method has the hardware video and audio decoders.
Even if it does not fail, it may result in a poor user experience if component selection by the terminal is in
effect (see clause 10.2.7.2).

If an error occurs while fetching the media data (and hence an error event is triggered), then:

• If it represents master media (it was passed to a MediaSynchroniser via the initMediaSynchroniser()
method) then this shall result in a permanent error of the MediaSynchroniser (see clause 13.3.8) with an
error being dispatched with error number 14.

• If it represents other media (it was added to a MediaSynchroniser via the addMediaObject() method) then
this shall result in a transient error of the MediaSynchroniser (see clause 13.3.7) and the object shall be
removed as if an application had called the removeMediaObject() method and an error event dispatched with
error 2.

If the HTML5 media element source is reloaded (by the application calling the load() method), or the application sets
an HTML5 MediaController for this media element, then:

• If it represents the master media then this shall result in a permanent error of the MediaSynchroniser with
error code 16.

• If it represents the other media then this shall result in a transient error of the MediaSynchroniser with error
code 9 and the object shall be removed as if an application had called the removeMediaObject() method.

The terminal is not required to maintain synchronization of all media objects attached to the MediaSynchroniser
(including media on other terminals if inter-device synchronization is being performed) to an HTML5 media element
representing the master media (it was passed to a MediaSynchroniser via the initMediaSynchroniser() method)
while one or more of the following conditions are true for that HTML5 media element:

• It is stalled while trying to fetch media data.

• It is playing (not paused) at an "effective playback rate" (as defined in the HTML5 specification) that is not 0
or 1 for reasons other than adjusting its presentation timing to enable media objects representing other media
to synchronize to it.

Synchronization of all media objects shall resume automatically when the HTML5 media element representing the
master media returns to a state where all the conditions listed above are no longer true.

The terminal is not required to maintain synchronization of an HTML5 media element (that was added to the
MediaSynchroniser using the addMediaObject() method) to the media object representing the master media while that
HTML5 media element is stalled while trying to fetch media data.

Synchronization of the HTML5 media element to the media object representing the master media shall resume
automatically when sufficient data becomes available.

ETSI

ETSI TS 102 796 V1.3.1 (2015-10)95

If the currentTime or playbackRate properties are set or the play() or pause() methods are called then the property
setting or method call shall proceed for the HTML5 media element. Additionally:

• If it represents the master media then the terminal shall adjust the presentation timing of the other media to try
to synchronize it with the new presentation timing of the master media.

• If it represents other media then a transient error of the MediaSynchroniser with error code 9 shall be
generated and the object shall be removed as if an application had called the removeMediaObject() method.

9.7.1.3 AV Control object

An AV Control object that is passed to the initMediaSynchroniser() or addMediaObject() methods shall be in the
connecting, buffering, paused or playing states. Passing an AV Control object in any other state to these methods shall
result in an error being dispatched with error number 9 or 16.

NOTE: In the single decoder model (see clause 10.2.7.3), in order to prepare an AV control object to be passed to
the addMediaObject() method, an application should call play(0) to get the AV control object into the
paused state. Calling the play() method with a speed other than 0 will likely fail if another media object
that was previously passed to the initMediaSynchroniser() method has the hardware video and audio
decoders. Even if it does not fail, it may result in a poor user experience if component selection by the
terminal is in effect (see clause 10.2.7.2).

Synchronization may result in the object transitioning to either the paused or the buffering states and back to the playing
states. Such state transitions shall be reported to any application that has registered to receive play state change events
for the object concerned. It may result in changes in playPosition which shall be reported to any application that has
registered to receive playPositionChange events. If the AV Control object transitions to the error state, or loses the
connection and transitions to the connecting state, then:

• If it represents master media (it was passed to a MediaSynchroniser via the initMediaSynchroniser()
method) then this shall result in a permanent error of the MediaSynchroniser (see clause 13.3.8) with an
error being dispatched with error number 14.

• If it represents other media (it was added to a MediaSynchroniser via the addMediaObject() method) then
this shall result in a transient error of the MediaSynchroniser (see clause 13.3.7) and the object shall be
removed as if an application had called the removeMediaObject() method and an error event dispatched with
error 2.

If the AV Control object transitions to the finished or stopped states, then:

• If it represents the master media then this shall result in a permanent error of the MediaSynchroniser with
error code 16.

• If it represents other media then this shall results in a transient error of the MediaSynchroniser with error
code 9 and the object shall be removed as if an application had called the removeMediaObject() method.

The terminal is not required to maintain synchronization of all media objects attached to the MediaSynchroniser
(including media on other terminals if inter-device synchronization is being performed) to an AV Control object
representing the master media (it was passed to a MediaSynchroniser via the initMediaSynchroniser() method)
while one or more of the following conditions are true for that AV Control object:

• It is in the connecting state.

• It is in the buffering state (because insufficient data is available).

• It is in the paused or playing state with a playback speed that is not 0 or 1 for reasons other than adjusting its
presentation timing to enable media objects representing other media to synchronize to it.

Synchronization of all media objects shall resume automatically when the AV Control object representing the master
media enters a state where all the conditions listed above are no longer true.

The terminal is not required to maintain synchronization of an AV Control object (that was added to the
MediaSynchroniser using the addMediaObject() method) to the media object representing the master media while that
AV Control object is in the connecting or buffering states.

ETSI

ETSI TS 102 796 V1.3.1 (2015-10)96

Synchronization of the AV Control object to the media object representing the master media shall resume automatically
if the AV Control object returns to the playing state. If the AV Control object leaves the connecting or buffering states
for any other reason than the object shall be removed from the MediaSynchroniser as defined for transitions to the
error state above.

If the data attribute is set or the setSource(), play(), seek() or stop() methods are called then the property setting or
method call shall proceed for the AV Control object. Additionally:

• If it represents the master media then the terminal shall adjust the presentation timing of the other media to try
to synchronize it with the new presentation timing of the master media.

• If it represents other media then a transient error of the MediaSynchroniser with error code 9 shall be
generated and the object shall be removed as if an application had called the removeMediaObject() method.

9.7.2 Tolerance

The synchronization tolerance defines the maximum time by which the presentation of two media streams can be out of
sync but still considered synchronized. While a video and a corresponding audio stream usually require tight
synchronization, an application may choose to loosen this requirement for certain combinations of media streams to
allow a terminal to start the synchronized presentation as fast as possible.

The terminal shall interpret the tolerance parameter on the addMediaObject() method (see clause 8.2.3.2.2) for a
media stream as follows. The master media carries the synchronization timeline. The other media is the media stream
for which the tolerance value is defined. The synchronization of the other media and master media is deemed within
tolerance if the difference in the play position of both streams is not greater than the given tolerance value at any time.

If the media object for the master media is in the playing state (regardless of play speed) when the media object for the
other media has been added to a MediaSynchroniser:

• If the synchronization of the other media and the master media can be achieved within tolerance without
adjusting the timing of the master media stream then the terminal shall not adjust the timing of the master
media, but shall instead adjust the timing of the other media such that components of the other media that are
to be presented are presented as soon as possible.

• Otherwise if the terminal is a slave terminal and synchronization cannot be achieved then a transient error of
the MediaSynchroniser object shall be triggered with error code 1 or 11 as appropriate (see clause 8.2.3.2.4).

• Otherwise if synchronization of the other media and the master media can be achieved within tolerance only if
the timing of the master media is adjusted and the terminal is able to do so then it shall adjust the timing of the
master media such that the components of the other media that are to be presented are presented as soon as
possible.

• Otherwise synchronization cannot be achieved and a transient error of the MediaSynchroniser shall be
triggered with error code 1 or 11 (see clause 8.2.3.2.4).

NOTE: Whether the terminal is able to sufficiently adjust the timing of the master media depends on the type of
media stream and whether the terminal supports buffering of the master media and has sufficient buffer
space. See clause 13.5.

The terminal shall continue to play the other media and the master media in sync within the synchronization tolerance.
The techniques used to do this are implementation dependent but may include changing the playout speed of the other
media or the master media to slightly more or slightly less than real time.

If synchronization within tolerance of a media object becomes achievable again after being previously unachievable,
then the MediaSynchroniser shall generate an onSyncNowAchievable event.

For inter-device synchronization, the other media is presented by a slave terminal and the master media is presented by
a separate master terminal. The slave terminal shall not take into account inter-device synchronization accuracy as
determined by the WC-Client function of the terminal and which is quantified as a measure of dispersion (see
clause 13.7.4) when performing the calculations and comparisons described above.

ETSI

ETSI TS 102 796 V1.3.1 (2015-10)97

9.7.3 Timeline availability

If at any time the timeline selected by the application for that media stream is determined to be unavailable while the
terminal is attempting to synchronize the presentation of a media stream, then:

• If the stream is the master media (it was passed to the MediaSynchroniser via the
initMediaSynchroniser() method) then this shall result in a permanent error of the MediaSynchroniser
(see clause 13.3.8) and an error shall be dispatched with error number 15.

• If the stream is other media (it was added to the MediaSynchroniser via the addMediaObject() method)
then this shall result in a transient error of the MediaSynchroniser (see clause 13.3.7) and an error shall be
dispatched with error code 3.

If the requested timeline is an MPEG TEMI timeline (see clause 13.4) then the terminal shall look for the
temi_timeline_descriptor in the media for 2.5 seconds while the media is in the playing state before determining that
the timeline is unavailable and dispatching an error as described above.

NOTE: Broadcasters are recommended to adopt a minimum repetition rate for a temi_timeline_descriptor of 1
repetition per second.

If the requested timeline is an MPEG DASH Period Relative timeline (see clause 13.4) then the terminal shall have
determined the availability of the timeline once the MPD has been loaded when starting presentation (or updated during
presentation) and the id attribute of all Periods in the presentation are known.

ISOBMFF Composition Time timelines and MPEG Transport Stream PTS timelines and EBU-TT-D milliseconds
timelines are always available while the respective type of media is being presented.

9.7.4 Minimum synchronization accuracy

The minimum accuracy for multi-stream and inter-device synchronization for a given terminal is the largest of:

• 10 ms (being the duration of 1/2 a frame of video at 50fps);

• the duration of 1/2 tick of any timeline selected (during the corresponding initMediaSynchroniser() or

addMediaObject() method call) by the HbbTV® application for any of the streams under the control of the
MediaSynchroniser object;

• the duration of 1/2 tick of the Synchronization timeline (see clause 13.4.3.2) if inter-device synchronization is
being performed.

How this minimum accuracy applies to terminals performing multi-stream synchornisation is defined in clause 10.2.8.1.

How this minimum accuracy applies to terminals while performing inter-device synchronization in the role of a master
terminal is defined in clause 13.8.2.4.

How this minimum accuracy applies to terminals while performing inter-device synchronization in the role of a slave
terminal is defined in clauses 13.8.3.4 and 13.8.3.5.

10 Capabilities

10.1 Display model
This clause is replaced by annex H, "Display Model" of the OIPF DAE specification [1].

10.2 Terminal capabilities and functions

10.2.1 Minimum terminal capabilities

Minimum terminal capabilities which shall be available to applications are listed in table 11 for general capabilities.
Additional capabilities shall be signalled as defined in clause 10.2.4.

ETSI

ETSI TS 102 796 V1.3.1 (2015-10)98

Table 11: Minimum terminal capabilities

 Value Additional information

HbbTV® application
graphic plane
resolution

1 280 pixels horizontally by 720 pixels vertically with
a 16:9 aspect ratio.

The terminal shall have at least this
graphics resolution. If it is physically
higher than this then the resolution
shall appear to the applications to be
exactly 1 280 x 720 pixels.

Colour format RGBA32 should be supported. If an implementation
uses lower colour resolutions (e.g. RGBA16) then it
shall support at least RGBA4444.

Video overlays supported.
Content providers can be expected to
author applications with a 32bpp
graphics plane in mind. Applications
are likely to have a poor visual
appearance on terminals that only
support a 16bpp graphics plane.

Supported proportional
font

"Tiresias™ Screenfont" v8.03 (or equivalent) with the
support for the Unicode character range "Generic
Western European character set" as defined in
annex C of ETSI TS 102 809 [3] but excluding the
unicode character codes 0149 and 066B.
The font shall be the default font to be used when
none is explicitly specified.
This font (even if it is an equivalent of "Tiresias™
Screenfont" v8.03) shall be accessible with the
following CSS rule:
font-family: Tiresias;

It shall also possible to use the "sans-serif" generic
family name to point to the "Tiresias™ Screenfont"
v8.03 font (even if other sans-serif fonts are available
in the terminal), i.e. "sans-serif" shall default to the
"Tiresias™ Screenfont" v8.03 font:
font-family: sans-serif;

Sans-serif, scalable and anti-aliased
font.

Supported
non-proportional font

"Letter Gothic 12 Pitch" (or equivalent) with the
support for the Unicode character range "Generic
Western European character set" as defined in
annex C of ETSI TS 102 809 [3] but excluding the
unicode character codes 0149 and 066B.
This font (even if it is an equivalent of "Letter Gothic
12 Pitch") shall be accessible with the following CSS
rule:
font-family: "Letter Gothic 12 Pitch";

It shall also possible to use the "monospace" generic
family name to point to the "Letter Gothic 12 Pitch"
font (even if other monospace fonts are available in
the terminal), i.e. "monospace" shall default to the
"Letter Gothic 12 Pitch" font:
font-family: monospace;

Monospace, scalable and anti-aliased
font.

Text entry method Either multi-tap (e.g. as defined in ETSI
ES 202 130 [i.2]) or an equivalent (e.g. software
keyboard) where characters are input character by
character in the text field.

For multi-tap or other methods which use multiple
supported key events to generate a single character,
these intermediate key events shall not be reported
to applications. Only the final character result shall be
reported to applications.

The input-format CSS property may
be used by terminals to determine
which text entry method to use.

Multi-tap also known as SMS-tap is not
to be confused with T9 text entry which
is not required.

Minimum number of
DSM-CC related
section filters

The terminal shall allocate sufficient resources to
acquire DSM-CC sections from at least 3 elementary
streams simultaneously for a given DSM-CC
carousel.
In addition, a terminal shall reserve at least one
section filter for monitoring DSM-CC StreamEvent's
events.

Minimum DSM-CC
cache size

The terminal shall reserve 3 MByte for caching
objects carried in DSM-CC object carousels.

ETSI

ETSI TS 102 796 V1.3.1 (2015-10)99

 Value Additional information
Minimum File System
Acceleration cache
capabilities

The terminal shall reserve at least 8 MByte for the
FSA cache. Terminals where a hard disc is

accessible by HbbTV® shall reserve at least 64
MByte for the FSA cache.
The terminal shall support at least 1024 files carried
across 64 stored groups (i.e. average 16 files per
group) in the FSA cache. Where a hard disc is
available the terminal shall support at least 4096 files
carried across 256 stored groups (i.e. average 16
files per group) in the FSA cache.
The terminal should perform FSA caching of a
carousel over one cycle of this carousel (assuming
that there are no transport errors
The terminal shall support persistence of FSA cache

as long as the terminal is operating HbbTV®
normally.

Assuming that the HbbTV® environment terminates
in a controlled manner then the FSA cache contents

shall be available to HbbTV® when it next executes.
For example:

• If the terminal transitions in a controlled

manner from operating HbbTV® to another
interactive environment (e.g. MHEG or TV
portal application) or other content source
than broadcast (e.g. DLNA, HDMI etc.) then
the FSA contents will be available to

HbbTV® next time it runs.
• If power to the terminal is unexpectedly lost

then the FSA cache contents may not be

available to HbbTV® next time it runs.

These cache sizes refer to non-
compressed data. The size information
in manifest file also applies to file data
in non-compressed form. The FSA
cache addressed here is independent
of the Mininum DSM-CC cache size
specified in this table.

System layer for
unicast streaming using
HTTP and file
download

Both MPEG-2 TS and MP4 file format (as defined in
clause 7.3.1.2) shall be supported.

Video formats for
unicast streaming using
HTTP and file
download

Both AVC_SD_25 and AVC_HD_25 shall be
supported (as defined in clause 7.3.1.3).

Audio format for
unicast streaming using
HTTP and file
download

HEAAC, E-AC3 and MPEG1_L3 as defined in
clauses 7.3.1.1 and 7.3.1.4.

Audio format for audio
from memory

HEAAC shall be supported (as defined in
clause 6.3.2 of the OIPF DAE specification [1]).

PVR management If the PVR feature is supported, the
manageRecordings attribute of the recording
capability shall have the value "samedomain".

See clause 9.3.3 of the OIPF DAE
specification [1].

Download
management

If content download is supported, the
manageDownloads attribute of the download capability
shall have the value "samedomain".

See clause 9.3.4 of the OIPF DAE
specification [1].

Simultaneous
demultiplexing of
broadcast and
broadband content

Not required (see clause 6.2.2.7).

Parental rating scheme Terminal shall at least support the scheme of a
minimum recommended age encoded as per
ETSI EN 300 468 [16].

ETSI

ETSI TS 102 796 V1.3.1 (2015-10)100

 Value Additional information
Video scaling Terminals shall be able to present video at sizes

down to 1/8 by 1/8 of the width and height of the
logical video plane - equivalent to 160 x 90 pixels in

the HbbTV® application graphics plane.
Terminals shall be able to scale video down to 1/4 by
1/4 and should be able to scale video down to 1/8 by
1/8. For sizes between 1/4 by 1/4 and 1/8 by 1/8,
terminals which cannot scale video shall crop the
video instead and display it centered in the according

video object of the HbbTV® application graphics
plane.
Terminals shall be able to scale video up to 2 x 2 of
the width and height of the logical video plane.
Within these limits, any arbitrary scaling factor shall
be allowed. The aspect ratio of decoded video shall
be preserved at all scaling factors.
See OIPF DAE annex H.2 [1] for more information.

Cookie support

Cookies with an expiry date shall be stored in
persistent memory. Terminals shall respect the expiry
date of the cookie.
Terminal shall follow IETF RFC 6265 [24] when
implementing cookies support.
Since clause 6.1 of IETF RFC 6265 [24] does not fix
strict limits, the present document fix the following
minimum capabilities that terminals shall
simultaneously support:

• At least 4 096 bytes per cookie (as
measured by the sum of the length of the
cookie's name, value, and attributes).

• At least 20 cookies per domain.
• At least 100 cookies total.
• At least 5 120 bytes for the "Set-Cookie"

header.

As implied by IETF RFC 6265 [24], if a
cookie or a "Set-Cookie" header is
bigger than the maximum size
supported by the terminal, it will be
discarded, not truncated.

Simultaneous
WebSocket
connections initiated
from the terminal

The number of WebSocket connections from the
browser or user agent that can be open
simultaneously.

Greater than or equal to 20.

FDP download
performance

Terminals shall be capable of downloading a
minimum of two files simultaneously via FDP, and
shall support a cumulated download bit rate of at
least 5 Mbit/s, measured over any 100 millisecond
time period.

An equivalent font is one for which all the following are true:

• The line height of both fonts is the same.

• The widths of the glyphs for corresponding character points are the same in both fonts (where the character
point is defined in both fonts).

• The kerning tables contain the same values for both fonts where both of the character points in the pair are
present in both fonts.

• Either the appearance of the glyphs is visually similar or they are valid glyph variants as defined by unicode.

ETSI

ETSI TS 102 796 V1.3.1 (2015-10)101

10.2.2 User input

10.2.2.1 Key events

Implementations shall provide a mechanism for the end user to generate key events as defined in table 12.

Table 12: Key events and their status

Button (for
conventional remote

controls)

DOM-2 Key event Status Availability

4 colour buttons (red,
green, yellow, blue)

VK_RED, VK_GREEN,
VK_YELLOW, VK_BLUE

Mandatory Always available to
applications

4 arrow buttons (up,
down, left, right)

VK_UP, VK_DOWN,
VK_LEFT, VK_RIGHT

Mandatory Always available to
applications

ENTER or OK button VK_ENTER Mandatory Always available to
applications

BACK button VK_BACK Mandatory Always available to
applications

Number keys VK_0 to VK_9 inclusive Mandatory Only available to
applications once
activated

Play, stop, pause VK_STOP and either
VK_PLAY and
VK_PAUSE or
VK_PLAY_PAUSE

Mandatory Only available to
applications once
activated

Fast forward and fast
rewind

VK_FAST_FWD
VK_REWIND

Mandatory Only available to
applications once
activated

Record VK_RECORD Mandatory if the PVR
feature is supported,
otherwise optional.

Only available to
applications once
activated

TEXT or TXT or
comparable button

Not available to
applications

mandatory

2 program selection
buttons (e.g. P+ and
P-)

Not available to
applications

Optional

WEBTV or
comparable button

Not available to
applications

Optional

EXIT or comparable
button

Not available to
applications

Mandatory

Key events which have a key code listed in table 12 shall be available to all applications when requested through the
Keyset object. Key events which do not have a key code listed in table 12 shall be handled by the implementation and
not delivered to applications.

The availability column indicates if the key events are always available to applications or only once the application has
been activated. Key events listed as "Only available to applications once activated" shall be available to applications
only once the user has activated the application. Applications AUTOSTARTed by the terminal shall be activated when
they have received a key event. Other applications (e.g. broadcast-independent applications or ones signalled as
PRESENT) shall be activated when launched. The key set of an application shall only contain keys that are available to
the application at that time. If a key set is requested that includes keys not available to an application then that part of
the request shall be discarded and only any remaining part of the request relating to available keys shall be processed.
When an application becomes activated, the key set shall not automatically change, the application needs to call
Keyset.setValue() in order to receive key events that were not previously available to it but now are. In all cases,
applications shall only receive key events when they have focus as defined below.

Applications shall not rely on receiving any key events not requested through a Keyset object, for example when the
end user is inputting text into an input field. However, the set of key events requested via a Keyset object only identifies
the minimum set of keys that may be sent to an application, and so applications should not rely on receiving only those
key events.

ETSI

ETSI TS 102 796 V1.3.1 (2015-10)102

On up, down, left, right keydown events, terminals shall choose one of the following navigation mechanisms in the
priority order listed below:

• Allow applications to capture the events and prevent the default action (known as "JavaScript navigation").

• Handle CSS3 directional focus navigation when the nav-up, nav-right, nav-down and nav-left CSS
properties are used by the application.

• A default navigation mechanism provided by the terminal which shall allow focus to be moved between
navigable elements and allow all navigable elements to gain focus.

Applications shall set the NAVIGATION bit of the keyset object even if the navigation keys are only used for focus based
navigation (including the CSS nav-* properties) and not used in JavaScript event handlers.

The context in which an HbbTV® application runs has more than one type of input focus.

• Focus within a document or page as defined in clause 7.4.3 of the HTML5 Recommendation [54].

• Whether the browser or user agent has input focus or whether something else in the terminal has input focus.
This is referred to as "system focus" in the HTML5 Recommendation [54].

• If the browser or user agent supports running multiple documents at the same time then only one of these can
have input focus at one time. This may be separate from whether the browser or user agent itself has input
focus.

When the browser has "system focus" and the document corresponding to the HbbTV® application has input focus

within the browser then the HbbTV® application shall have input focus. If either or both of these cease to apply then

the HbbTV® application shall lose input focus until either the application terminates or both apply again. If an

HbbTV® application loses input focus then a blur event shall be sent to the application's Window object. If an HbbTV®
application that has lost input focus regains it then a focus event shall be sent to the application's Window object.

While an HbbTV® application has input focus, it shall receive all of the key events shown as "mandatory" in table 12
above that it has requested in its keyset. If any other feature of the terminal needs to use any of those key events then

diverting any of those key events to that feature shall result in loss of input focus for the HbbTV® application. The

HbbTV® application shall lose focus even if the other feature of the terminal concerned only uses, for example, left,
right and enter or green.

If the other feature of the terminal only uses those key events temporarily and all the "mandatory" key events in table 12

become available to the HbbTV® application then this shall result in the HbbTV® application regaining focus. Some

examples of such a temporary loss of focus by the HbbTV® application could include conditional access UI dialogues,
parental access control UI dialogues and trailer booking UI dialogues.

10.2.2.2 Mouse and wheel events

If a terminal indicates that it has pointer support in the capability profile as defined in clause 9 of the OIPF DAE
specification [1], implementations shall provide a mechanism for the end user to generate mouse events and may
provide a mechanism for the end user to generate wheel events as defined in clause 9.3.24 of the OIPF DAE
specification [1]. Any mouse or wheel events generated shall be dispatched to applications only once the application has
been activated (see clause 10.2.2.1).

In all cases, applications shall only receive mouse and wheel events when they have focus as defined in clause 10.2.2.1.

Applications shall not rely on receiving any mouse or wheel events they have not requested by using the
Keyset.supportsPointer property in clause 7.2.5.2 of the OIPF DAE specification [1]. However, the set of mouse and
wheel events defined by OIPF only identifies the minimum set of mouse and wheel events that may be sent to an
application, and so applications should not rely on receiving only those mouse and wheel events.

ETSI

ETSI TS 102 796 V1.3.1 (2015-10)103

10.2.3 Terminal functions

10.2.3.1 Favourites and bookmarks

The terminal should provide a feature to organize frequently used broadcast-independent interactive applications as
bookmarks or favourites.

For the presentation of applications on manufacturer portals or in favourite lists the terminal may use a title and an icon
specified in the HTML head section and the URL of the initial page of the application:

• The application name shall be defined by the HTML title element.

• The server delivering the application may use the HTTP Accept-Language header to adapt any textual
information to the preferred language of the user.

• The linking to an application icon shall be done by an HTML <link> element with the following attributes.
See also the W3C note on adding a Favicon to a site [i.4]:

- rel - shall have the value 'icon';

- type - shall contain the mime type of the image format;

- href - shall be the URL of the image.

• The image format and mime types of the icon shall be as defined in clause 7.1.1.

• An application may have multiple icons for different aspect ratios, e.g. 4 by 3 and square. It is recommended
that an application provides at least one icon with a square aspect ratio.

10.2.3.2 Streaming and Download

Terminals shall not permit persistent storage of broadband delivered content whose delivery was initiated using the
streaming APIs (the AV Control object or an HTML5 media element) whether streamed adaptively using MPEG DASH
as defined in annex E or non-adaptively. Service providers who want to offer content for persistent download should
use the download API.

Terminals may use persistent storage media to transiently buffer broadband delivered content for the purposes of multi-
stream synchronization between the broadband delivered content and broadcast content as described in clause 13.5.

Terminals that use persistent storage media for the purposes of timeshifting or recording broadcasts may use the same
persistent storage media for timeshifting or recording broadband delivered content to be played back in synchronization
with broadcast delivered content. Broadband delivered content that is stored in this way shall not be permitted to be
presented separately from the broadcast content that it was synchronized with.

10.2.3.3 PVR

It is up to the terminal to decide whether PVR feature related calls are executed directly or if additional means to
determine whether to allow the call for the application are employed, such as opening a dialog to query the user.

10.2.3.4 Download via broadcast using FDP

When the resources of the terminal (e.g. tuners) are concurrently required for performing a download via FDP and for
TV viewing, priority shall always be granted to TV Viewing.

However, the present document is intentionally silent about priorities between download via FDP and PVR recording.

The terminal shall be able to wake up automatically from standby states when an availability window starts for a
download via FDP which has been registered and is not completed, in order to perform/complete the corresponding
download operation.

NOTE: Power management in general and in particular the definition of a standby state are outside the scope of
the present document.

Performance requirements for file download via FDP are given in clause 10.2.1 of the present document.

ETSI

ETSI TS 102 796 V1.3.1 (2015-10)104

10.2.4 HbbTV® reported capabilities and option strings

The xmlCapabilities property of the application/oipfCapabilities embedded object shall describe an XML
document that conforms to the schema defined in clause A.2.15.

For a terminal supporting only the base level of features, the XML Document object provided by the xmlCapabilities
property of the application/oipfCapabilities embedded object shall describe an XML document that when
canonicalized according to the W3C XML Canonicalization specification [28] shall be equal to the canonicalized form
of the following XML:

<profilelist xmlns="urn:hbbtv:config:oitf:oitfCapabilities:2014-1"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="urn:hbbtv:config:oitf:oitfCapabilities:2014-1 config-hbbtv-
oitfCapabilities.xsd">
 <ui_profile name="OITF_HD_UIPROF+DVB_S+TRICKMODE">
 <ext>
 <parentalcontrol schemes="dvb-si">true</parentalcontrol>
 <clientMetadata type="dvb-si">true</clientMetadata>
 <temporalClipping />
 </ext>
 </ui_profile>
 <audio_profile name="MPEG1_L3" type="audio/mpeg"/>
 <audio_profile name="HEAAC" type="audio/mp4"/>
 <audio_profile name="MP4_HEAAC" type="audio/mp4" transport="dash" sync_tl="dash_pr"/>
 <video_profile name="MP4_AVC_SD_25_HEAAC" type="video/mp4" transport="dash"
 sync_tl="dash_pr" />
 <video_profile name="MP4_AVC_HD_25_HEAAC" type="video/mp4" transport="dash"
 sync_tl="dash_pr" />
 <video_profile name="MP4_AVC_SD_25_HEAAC_EBUTTD" type="video/mp4" transport="dash"
 sync_tl="dash_pr" />
 <video_profile name="MP4_AVC_HD_25_HEAAC_EBUTTD" type="video/mp4" transport="dash"
 sync_tl="dash_pr" />
 <video_profile name="TS_AVC_SD_25_HEAAC" type="video/mpeg" sync_tl="temi" />
 <video_profile name="TS_AVC_HD_25_HEAAC" type="video/mpeg" sync_tl="temi" />
 <video_profile name="MP4_AVC_SD_25_HEAAC" type="video/mp4" />
 <video_profile name="MP4_AVC_HD_25_HEAAC" type="video/mp4" />
 <html5_media>true</html5_media>
</profilelist>

"DVB_S" shall be replaced by the appropriate string(s) for the supported broadcast delivery system(s).

Other parental control schemes in addition to "dvb-si" may be listed in the <parentalcontrol> element.

Only the video format profiles supported for broadband shall be listed.

As mentioned in table 9, the terminal may also support E-AC3 audio, in which case the following elements shall be
added after the elements listed in the <profilelist> element in the above XML:

<audio_profile name="MP4_E-AC3" type="audio/mp4" />
<audio_profile name="MP4_E-AC3" type="audio/mp4" transport="dash" sync_tl="dash_pr" />
<video_profile name="TS_AVC_SD_25_E-AC3" type="video/mpeg" sync_tl="temi" />
<video_profile name="TS_AVC_HD_25_E-AC3" type="video/mpeg" sync_tl="temi" />
<video_profile name="MP4_AVC_SD_25_E-AC3" type="video/mp4" />
<video_profile name="MP4_AVC_HD_25_E-AC3" type="video/mp4" />
<video_profile name="MP4_AVC_SD_25_E-AC3" type="video/mp4" transport="dash" sync_tl="dash_pr" />
<video_profile name="MP4_AVC_HD_25_E-AC3" type="video/mp4" transport="dash" sync_tl="dash_pr" />
<video_profile name="MP4_AVC_SD_25_E-AC3_EBUTTD" type="video/mp4" transport="dash"
 sync_tl="dash_pr" />
<video_profile name="MP4_AVC_HD_25_E-AC3_EBUTTD" type="video/mp4" transport="dash"
 sync_tl="dash_pr" />

Terminals that support HEVC UHD video as defined in clause 7.3.1.3 shall include the following video profiles:

<video_profile name="MP4_HEVC_UHD_25_HEAAC_EBUTTD" type="video/mp4" transport="dash"
 sync_tl="dash_pr"/>
<video_profile name="MP4_HEVC_UHD_25_HEAAC_EBUTTD" type="video/mp4" />

and, if E-AC3 audio is supported in the broadcast channel, shall additionally include the following video profiles:

<video_profile name="MP4_HEVC_UHD_25_E-AC3 EBUTTD" type="video/mp4" transport="dash"
 sync_tl="dash_pr"/>
<video_profile name="MP4_HEVC_UHD_25_E-AC3 EBUTTD" type="video/mp4" />

ETSI

ETSI TS 102 796 V1.3.1 (2015-10)105

Terminals that support 8-bit HEVC HD video and not 10-bit HEVC HD video as defined in clause 7.3.1.3 shall include
the following video profiles:

<video_profile name="MP4_HEVC_HD_25_8_HEAAC_EBUTTD" type="video/mp4" transport="dash"
 sync_tl="dash_pr"/>
<video_profile name="MP4_HEVC_HD_25_8_HEAAC_EBUTTD" type="video/mp4" />

and, if E-AC3 audio is supported in the broadcast channel, shall additionally include the following video profiles:

<video_profile name="MP4_HEVC_HD_25_8_E-AC3_EBUTTD" type="video/mp4" transport="dash"
 sync_tl="dash_pr"/>
<video_profile name="MP4_HEVC_HD_25_8_E-AC3_EBUTTD" type="video/mp4" />

Terminals that support 10-bit HEVC HD video as defined in clause 7.3.1.3 shall include the following video profiles:

<video_profile name="MP4_HEVC_HD_25_10_HEAAC_EBUTTD" type="video/mp4" transport="dash"
 sync_tl="dash_pr"/>
<video_profile name="MP4_HEVC_HD_25_10_HEAAC_EBUTTD" type="video/mp4" />

and, if E-AC3 audio is supported in the broadcast channel, shall additionally include the following video profiles:

<video_profile name="MP4_HEVC_HD_25_10_E-AC3_EBUTTD" type="video/mp4"
 transport="dash" sync_tl="dash_pr"/>
<video_profile name="MP4_HEVC_HD_25_10_E-AC3_EBUTTD" type="video/mp4" />

The strings defined in table 13 shall be used to indicate which options are supported by a terminal. They shall be used:

• In the HTTP User-Agent header for applications data retrieval through HTTP.

• In the ui_profile element's name property of the xmlCapabilities property of the
application/oipfCapabilities embedded object.

• As parameters of the hasCapability() method of the application/oipfCapabilities embedded object to
dynamically query the options supported by the terminal.

NOTE: Some of the strings defined in the clause intentionally match with the "UI Profile Name Fragment" strings
defined in the OIPF DAE specification [1].

Table 13: HbbTV® Option Strings

Option string Meaning
"+DL" Support for file download feature.
"+PVR" Support for PVR feature.
"+DRM" Support for the DRM feature - specifically that the XML capabilities

include a <drm> element as defined below (see note).
"+SYNC_SLAVE" Support for the terminal behaving as a slave terminal for inter-device

synchronization (see clause 10.2.9).
"+IPH" Support for the "IP delivery Host player mode" as defined in the DVB

Extensions to CI Plus ETSI TS 103 205 [37].
"+AFS" Support for the CICAM Auxiliary File System as defined in the DVB

Extensions to CI Plus ETSI TS 103 205 [37].
NOTE: "+DRM" has a specific meaning in OIPF which it does not have in the present document.

The support of the DRM feature shall be indicated by the addition of one or more <drm> elements in the OIPF extension
to the <profilelist> element as defined in annex F of the OIPF DAE specification [1] to the end of the
<profilelist> element in the above XML. For example:

<drm DRMSystemID="urn:dvb:casystemid:12345">TS_PF</drm>

The support of one or more CA systems on a CICAM shall be indicated using the <drm> element defined in annex F of
the OIPF DAE specification [1] and providing the protectionGateways attribute with "ci+" string. All of the CA
systems exposed by the CICAM using the ca_info APDU shall be listed in this way. For example:

<drm DRMSystemID="urn:dvb:casystemid:12345" protectionGateways="ci+">TS_PF</drm>

ETSI

ETSI TS 102 796 V1.3.1 (2015-10)106

Terminals that support the "IP delivery Host player mode", as defined in the DVB Extensions to CI Plus ETSI
TS 103 205 [37], shall expose the DRMs supported by any compliant CICAMs inserted in the terminal by using the
<drm> element as described above. In this case, the protection format shall be "MP4_CENC" although others may also be
listed where appropriate. All of the DRM systems exposed by the CICAM using the sd_info_reply APDU shall be
listed in this way. This implies that the CICAM shall identify a supported DRM by filling in the drm_system_id field in
the sd_info_reply APDU. The URN string describing the DRMs shall be suffixed by ":cicam". For example:

<drm DRMSystemID="urn:dvb:casystemid:12345:cicam">MP4_CENC</drm>

10.2.5 Void

10.2.6 Parental access control

10.2.6.1 Broadcast channel

Terminals shall support parental access control for the broadcast TV content and application as required for the markets
in which the products are to be sold or deployed. The details of this are outside the scope of the present document.
Typically the end user may have to enter the appropriate PIN in order to obtain access to TV content above the parental
rating threshold. The following shall apply if access to broadcast TV content and/or application is blocked as a result:

• If access to broadcast TV content is blocked when changing to a channel, this shall be reported to any running

HbbTV® application which survives the channel change and has registered a listener for a
ChannelChangeError event as an error with error state 3 ("parental lock on channel").

• If access to broadcast TV content becomes blocked while a channel is selected, this shall be reported to any

running HbbTV® application which has registered a listener for a ParentalRatingChange event.

The following shall apply if access to broadcast applications is blocked as a result:

• If access to an application in the broadcast AIT is blocked and the launch of this application is due to the
behaviour defined in clauses 6.2.2.2 and 6.2.2.3, then the rules defined in those clauses apply.

• If access to an application in the broadcast AIT is blocked and the launch of this application is being requested
by another application, then this launch request shall fail and the application shall not be loaded or run.

In terminals where CI or CI Plus [12] is supported, the CICAM may also enforce parental access control for the
broadcast channel.

10.2.6.2 Broadband delivered content

Applications offering access to streaming on-demand content shall obtain the parental rating system threshold set on the
terminal and only stream appropriate content to the terminal.

In spite of the above, the present document requires the terminal to react to signaled parental rating information in some
circumstances. Some combinations of system formats and media APIs permit parental rating information to be
associated with broadband streamed content. Where the present document requires support for the location where that
parental rating information may be carried and where parental rating information is provided in a parental rating scheme
that the terminal supports then this shall be checked. Terminals shall not just ignore such information assuming that
applications comply with the above requirement.

The content access descriptor has an optional <ParentalRating> element which can be used to carry parental rating
information associated with the content that it references.

Particularly for live content, clause 9.1.2.3 of the DVB DASH profile ETSI TS 103 285 [45] defines how parental rating
information can be carried using the DASH event mechanism. In markets where the DVB-SI parental rating descriptor
is used in the broadcast, terminals shall react to these DASH events in the same way as they react to the DVB-SI
parental rating descriptor in the broadcast channel. In markets where the DVB-SI parental rating descriptor is not used
in the broadcast, terminals may enforce the parental rating information carried in these DASH events.

NOTE: It is implementation dependent whether presentation of content is paused while any parental access
authorization is obtained (in which case presentation would start or resume behind the live edge) or if
content is discarded (so that presentation starts or resumes at the live edge).

ETSI

ETSI TS 102 796 V1.3.1 (2015-10)107

In terminals where CI or CI Plus [12] is supported, the CICAM may also enforce parental access control for streamed
content.

10.2.6.3 Downloaded content

Broadcasters and service providers offering content for download shall populate the otherwise optional
<parentalRating> element in the content access descriptor with the correct value for each content item downloaded.
When playing back a downloaded content item, terminals shall compare the value in the <parentalRating> element in
the content access descriptor used to download the content item with the current parental rating system threshold and
only play appropriate content. In markets where the DVB-SI parental rating descriptor is used in the broadcast,
terminals shall support the use of that parental rating scheme for downloaded content. In markets where the DVB-SI
parental rating descriptor is not used in the broadcast, terminals should support an appropriate parental rating scheme
for downloaded content.

NOTE: The definition of what content is appropriate is outside the scope of the present document. Typically this
could be any content under the threshold or content above the threshold where the end-user has entered a
PIN.

If playback which was initiated by an HbbTV® application is blocked following such a comparison:

• If the playback was initiated using an AV Control object then the object shall enter play state 6 (error) with the
error property set to 7 ("content blocked due to parental control") and an onParentalRatingChange event
posted.

• If the playback was initiated using an HTML5 video element then the error property of the video element
shall be set to a MediaError with the code set to MEDIA_ERR_DECODE and fire an error event at the media
element.

In terminals where CI or CI Plus [12] is supported, the CICAM may also enforce parental access control for
downloaded content.

10.2.6.4 PVR

Broadcasters and service providers whose applications create Programme objects and pass them to the
record(Programme programme) method of the application/oipfRecordingScheduler object shall populate the
parentalRating property of the Programme object. Terminals shall obtain the parental rating information from DVB-SI
(or an alternative source if one is supported and in use) at the time of recording and store this with the scheduled
recording in the system and copy it to the in-progress recording once the recording process starts. This shall override
any parental rating information provided earlier in the recording process. Where a recording is scheduled using the
recordAt() method or started using the recordNow() method, the parental rating assigned to the recording shall be the
most restrictive value encountered during the recording process.

Before playing back a recording, terminals shall compare the parental rating stored with the recording with the current
parental rating system threshold and shall only play appropriate content.

NOTE: The definition of what content is appropriate is outside the scope of the present document. Typically this
could be any content under the threshold or content above the threshold where the end-user has entered a
PIN.

If playback which was initiated by an HbbTV® application is blocked following such a comparison:

• If the playback was initiated using an AV Control object then the object shall enter play state 6 (error) with the
error property set to 7 ("content blocked due to parental control") and an onParentalRatingChange event
posted.

• If the playback was initiated using an HTML5 video element then the error property of the video element
shall be set to a MediaError with the code set to MEDIA_ERR_DECODE and fire an error event at the media
element.

ETSI

ETSI TS 102 796 V1.3.1 (2015-10)108

When playing back an in-progress recording, if the parental rating value of the recording changes, the terminal shall:

• Dispatch a ParentalRatingChange event.

• Compare the new parental rating value with the current parental rating threshold and, if the content has
become inappropriate, the AV Control object shall enter play state 6 (error) with the error property set
to 7 ("content blocked due to parental control").

In terminals where CI or CI Plus [12] is supported, the CICAM may also enforce parental access control for recorded
content.

10.2.6.5 Synchronization and parental access control

If access to media content presented by a video/broadcast object, an HTML5 media element or an AV control object is
blocked by the terminal due to parental access control then:

• If it represents master media (it was passed to a MediaSynchroniser via the initMediaSynchroniser()
method) then this shall result in a permanent error of the MediaSynchroniser (see clause 13.3.8) with an error
being triggered with error number 14.

• If it represents other media (it was added to a MediaSynchroniser via the addMediaObject() method) then
this shall result in a transient error of the MediaSynchroniser (see clause 13.3.7) and the object shall be
removed as if an application had called the removeMediaObject() method and an error event triggered with
error number 2.

10.2.7 Component selection

10.2.7.1 General

Where more than one component of a media type (i.e. video, audio, subtitles) is available, selection of which one or

ones should be presented may be done either by the HbbTV® terminal or by the HbbTV® application or by both.

The terminal shall always perform a default selection of components to present from all of the available components.

This is described in clause 10.2.7.2 below. A running HbbTV® application may override the default selection as
described in clause 10.2.7.3 below. There is no linkage between how selection of different media types is done; an
application may override the default selection for any one media type, any two media types or all or none to modify the
presentation of the media to the user.

The set of components that are available for this selection depends on how media is being presented. Four scenarios are
defined:

• A single presentation is in progress using a single media object. In this case, the components that are available
are those found in the input or source to that media object. For an HTML5 media element, these are the
VideoTracks, AudioTracks and TextTracks. For an A/V Control object or a video/broadcast object, these are
the AVComponents.

• A single presentation is in progress using more than one media object synchronized using multi-stream
synchronization as defined in clause 10.2.8 of the present document. In this case, the components that are
available are the union of those in the master media object and all the other media objects attached to the
MediaSynchroniser that were not added with the multiDecoderMode argument set to true.

• Multiple presentations are in progress using more than one media object synchronized using multi-stream
synchronization as defined in clause 10.2.8 of the present document. The application can choose this type of
presentation by adding media objects to the MediaSynchroniser with the multiDecoderMode argument set to
true. In this case, the terminal treats each such media objects as single presentations.

• Multiple presentations are in progress using more than one media object without synchronization.

NOTE: Support for multiple presentations is optional in the present document and depends on the support for
multiple decoders.

ETSI

ETSI TS 102 796 V1.3.1 (2015-10)109

10.2.7.2 Component selection by the terminal

It is the responsibility of the terminal to choose for presentation to the user the most appropriate default components
from those available in the media object(s), based on the user's preferences (e.g. audio language). The terminal shall
present to the user the default components of those component types which are selected; this selection shall also be
based on user preferences (e.g. subtitles on/off). The terminal shall take into account all components whether available
on broadcast or broadband.

If the components available within a presentation change and selection of one or more media type is being done by the
terminal, then the terminal may choose a component, previously not selected, for presentation to the user, for example if
that component fits better with the user's preferences.

In particular, when a new media object is added to a MediaSynchroniser, the terminal shall re-evaluate the default
selection of presented components and component types including all of the components that make up that media object
(as well as the existing media objects added to the MediaSynchroniser). Likewise, the removal of a media object from
a MediaSynchroniser shall cause the terminal to re-evaluate which components to be presented by default.

Terminals shall support a method for the user to enable and disable subtitles and to select at least one preferred subtitle
language. Terminals shall use this information when playing content to determine whether to present subtitles and to
select between multiple subtitles when they are available.

If display of subtitles is disabled using this method, use of the component selection API to select a subtitle component
will not result in those subtitles being displayed.

NOTE 1: Applications may use the property subtitlesEnabled as defined in clause A.2.20 to check whether
selecting subtitle components is currently possible or the user has to enable this through a terminal UI.

Terminals shall support a method for the user to enable and disable audio description streams as defined in clause 7.1.2
of the present document. Terminals shall use this information when playing content to determine whether to present
audio description streams instead of the normal audio (or in addition to the normal audio where receiver mix audio
description is supported).

This method may also be used to select other audio streams for example clean audio or alternative audio languages.

If either or both of the subtitle components or the audio description components available in the content change and a
previously selected component is no longer available, then the terminal should re-evaluate the subtitle or audio
description component selection as applicable based on the user preferences.

NOTE 2: Use of the terminal's audio description selection mechanism by the user may change the selected audio
track. Applications using an HTML5 media element should register a listener for 'change' events on the
AudioTrackList object if they need to be aware of such changes.

The terminal shall present to the user the default selection of components unless the application overrides it (see
clause 10.2.7.3).

10.2.7.3 Component selection by the application

Applications may change the terminal-derived component selection and discover the presentation status using the
methods defined in clause 7.16.5 of OIPF DAE [1] and in clauses 4.7.10.10.1 and 4.7.10.12.5 of HTML5 [54].

If selection of one or more media type has been done by the application on a media object and that media object is
subsequently added to a MediaSynchroniser with the multiDecoderMode argument set to true, then the selected
components shall continue to be selected as described in this clause.

If an application selects a new component for a media element that was added to a MediaSynchroniser using the single
decoder model (multiDecoderMode=false), then the terminal shall unselect any component of the same type (audio,
video or subtitles) previously presented by any media object that is part of the same single presentation of the
MediaSynchroniser as defined in clause 10.2.7.1.

ETSI

ETSI TS 102 796 V1.3.1 (2015-10)110

The terminal shall maintain such changes made by an application until one of the following occurs:

• the application terminates:

- in which case component selection shall revert to the control of the terminal;

• the application makes a further change:

- in which case the behaviour shall be as defined by the API where that change was made;

• a component, selected by the application, is being presented and is part of a video/broadcast object or an AV
Control object or an HTML5 media element or a MediaSynchroniser object (as appropriate) which is
destroyed:

- in which case component selection for that component type shall revert to the control of the terminal;

• the user makes a change using the terminal's subtitle/audio description (or other) selection mechanism:

- in which case component selection for that component type shall revert to the control of the terminal;

• in the case of a video/broadcast object, a component, selected by the application from that video/broadcast
object, is being presented and the broadcast channel is changed either by an application as defined in the
present document or by a mechanism outside the scope of the present document (e.g. the end-user pressing P+
or P- on a remote control):

- in which case component selection for that component type shall revert to the control of the terminal;

• the media object is added to a MediaSynchroniser with the multiDecoderMode argument set to false:

- in which case all component selections on the media object shall be unselected and the component
selection rules for the MediaSynchroniser shall apply.

NOTE: For on-demand content, the application may override the default selection before any content has been
presented.

If both (a) a presentation involving multi-stream synchronization is either in progress or starting or stopping and (b)
selection of one or more media type has been done by the application, then the selected component shall continue to be
selected as long as it remains in the set of components available for selection.

EXAMPLE: If an application has selected a component in a media object which is made the master media
object for multi-stream synchronization and one more other media objects are added to the
synchronization then the original selection shall be retained as long as the selected component
remains available. If the selected component ceases to be available then the behaviour shall be as
defined by the API where that selection had originally been made.

10.2.7.4 Single decoder model

The rules defined in clauses 10.2.7.2 and 10.2.7.3 shall apply when the terminal has sufficient decoder resources to be
able to independently present only one media object, where that media object could be an HTML5 media element, an
AV Control object, a video/broadcast object or a MediaSynchroniser object.

EXAMPLE: If an application uses the MediaSynchroniser to present a broadcast service with one video, one
audio and one subtitle component and a broadband stream with one audio and one subtitle
component, the terminal may choose for the presentation the video and subtitle components from
broadcast and the audio component from broadband. This may be based on user preferences set in
the terminal. The application may then select also the subtitle component from broadband. As the
presentation for both media objects follows the single decoder model, the subtitle component from
broadcast will be unselected before the broadband subtitles are presented to the user.

10.2.7.5 Multi-decoder model

When the terminal has sufficient decoder resources to be able to independently present more than one media object
(where that media object could be an HTML5 media element, an AV Control object or a video/broadcast object), the
rules defined in clauses 10.2.7.2 and 10.2.7.3 shall apply to each media object separately.

ETSI

ETSI TS 102 796 V1.3.1 (2015-10)111

In the case of a MediaSynchroniser object, any media object that is added to the MediaSynchroniser with the
multiDecoderMode argument set to true shall be treated as being an independent media object as far as this clause is
concerned.

In the case of a MediaSynchroniser object, any media object that is added to the MediaSynchroniser with the
multiDecoderMode argument set to false shall be treated in combination with all other media objects added in the same
way and with the master media object as being an independent media object as far as this clause is concerned.

EXAMPLE: If an application uses the MediaSynchroniser to present a broadcast service with one video, one
audio and one subtitle component and a broadband stream with one video, one audio, one subtitle
component that was added with the multiDecoderMode set to true, the terminal will choose the
components for each media object independently. If subtitles are enabled, the terminal will choose
the video, audio and subtitles components from both media objects and present all of them. The
application may then unselect the subtitle component from broadband. As the presentation for both
media objects follows the multi decoder model, the subtitle component from broadcast will not be
unselected.

10.2.8 Multi-stream media synchronization

10.2.8.1 General

The HbbTV® terminal shall support decoding and rendering of A/V content delivered as multiple streams over
broadband and broadcast networks as defined in this clause. This capability is known as multi-stream synchronization
and clause 13.2 describes an architecture for it.

The HbbTV® terminal shall support the combination of at least one broadcast service and at least one broadband

stream. A broadcast service can be any DVB service supported by the HbbTV® terminal. Formats for supported
broadband streams are defined below in clause 10.2.8.2 and clause 10.2.8.3, with constraints defined in clause 10.2.8.4.
An EBU-TT-D file downloaded out of band does not count as a broadband stream for the purposes of this clause.

NOTE 1: One use-case for multi-stream sync is broadband delivery of additional audio languages or accessible
audio streams to be synchronized with broadcast video. When making a scheduled recording, PVRs will
not have the information to record this broadband delivered audio along with the broadcast video and
audio. Broadcasters should consider this when deciding whether to send additional audio in the broadcast
as normal or whether to send it via broadband and use multi-stream sync to combine it with the video.

Applications can use the maxBroadbandStreamsWithBroadcast and maxBroadbandStreamsNoBroadcast properties of
the MediaSynchroniser object to determine the maximum number of broadband streams that can be used in
combination for multi-stream synchronization.

EXAMPLE: If the terminal supports only the combinations of streams listed in table 14, then both
maxBroadbandStreamsNoBroadcast and maxBroadbandStreamsWithBroadcast properties will
have the value 1. If, however, the terminal supports combinations where 2 broadband streams can
be synchronized (such as video in an MPEG2-TS via broadband and audio in an MPEG DASH
presentation) then the maxBroadbandStreamsNoBroadcast property instead has the value 2. Also,
if the terminal supports combinations where broadcast can be synchronized with 2 broadband
streams (such as video via broadcast and audio in a DASH presentation and an additional video via
MPEG2-TS via broadband) then the maxBroadbandStreamsWithBroadcast property instead has
the value 2.

Broadcast services and broadband streams usually consist of multiple video, audio and subtitle components. The

HbbTV® terminal shall support simultaneous decoding and rendering of at least one video component, at least one

audio component, and one subtitle component. Each component may come from any of the input streams. The HbbTV®
application may use an API to select components from the input streams as defined by the APIs profiled in annex A.

The presentation of two or more components of the same type is optional. Applications can use the
extraHDVideoDecodes property as defined in clause 7.15.3.1 of the OIPF DAE specification [1] to check for
additionally available video and audio decoders.

The HbbTV® terminal shall support the synchronization methods as defined in clauses 10.2.8.2 and 10.2.8.3 to
synchronize the presentation of components from multiple streams.

ETSI

ETSI TS 102 796 V1.3.1 (2015-10)112

The terminal shall implement the buffer model as defined in clause 13.5 to handle the different transmission delays of
each stream.

The terminal shall implement the MediaSynchroniser API defined in clause 8.2.3.

NOTE 2: The broadcaster has to ensure that the delivery of the streams is in time for synchronized presentation, in
order to prevent synchronization buffer overflows. Clause G.2 gives guidance to broadcasters how to
minimize the delay.

When an application adds a new stream for synchronization to already presenting media object(s) (broadcast services or
broadband streams) the terminal shall adjust the presentation timing of some or all of the streams to attempt to
synchronize them according to a timing relationship expressed by the application. This timing relationship is expressed
by identifying a point X on the timeline of the existing master media stream (see clause 13.2.4) and a point Y on the
timeline of the new stream that are to be co-timed within a specified tolerance.

Any difference in timing of presentation for streams that are synchronized according to the timing relationship shall be
no greater than plus or minus the greater of: the application specified tolerance and the minimum synchronization
accuracy defined in clause 9.7.4.

When the terminal attempts to achieve synchronization between the streams using a specified timing relationship, the
new stream may be behind (in the past) or ahead (in the future) by N seconds compared to the master media stream. The
terminal can employ various strategies to achieve synchronization, including:

• pausing the presentation of the new or existing streams temporarily for up to N seconds until they can be
resumed in synchronization;

• or jumping backward or forward in the new or existing streams by up to N seconds and continuing their
presentation (using its own buffer or a network-based buffer, like a CDN, a RET server or an FCC server).

The terminal can employ strategies in combination, for example: jumping forward in the existing streams and pausing
the new stream temporarily to delay it.

The terminal shall also adjust the timing relationship of some or all of the streams if the application specifies a new
timing relationship for a stream. The terminal can employ strategies in the same way it would for a new stream, as
described above. Any differences in timing of presentation between the streams shall remain no greater than plus or
minus the greater of: the application specified tolerance and the minimum synchronization accuracy defined in
clause 9.7.4.

For a more detailed explanation of the above process, refer to clause C.3 of ETSI TS 103 286-2 [47].

When an application adds a stream for synchronization to an already presented broadcast service or broadband stream
the terminal may either pause the presented media object or rewind in that stream to get a faster start of the
synchronized presentation.

10.2.8.2 Synchronization using gen-locked STC

This clause applies to the synchronization of one broadcast service with at least one broadband stream, where the
broadband streams are MPEG transport stream based and share the STC with the broadcast service.

NOTE: Two streams sharing the same STC means that the encoder clocks of both are gen-locked and that the
PTS of all streams are derived from the same STC. The terminal can assume that there is no drift between
the clocks of the broadcast service and broadband stream. The PCR/PTS of the streams are not modified
in the delivery chain, e.g. by the network operators in case of transcoding.

If the terminal supports the buffer for media synchronization as defined in clause 13.5.3, the terminal shall support
multi-stream media synchronization of a broadcast service with broadband streams delivered as SPTS as defined in
clauses 7.3.1.2 and 7.3.2.1. In this case:

• the terminal shall use the PCR/PTS of the broadcast service as the timeline as defined in clause 13.4.2, referred
to as MPEG-2 TS Presentation Timestamps (PTS);

• the terminal shall support broadband streams that do not contain a PCR. The terminal shall use the PCR of the
broadcast service also as the timeline for the broadband stream.

ETSI

ETSI TS 102 796 V1.3.1 (2015-10)113

10.2.8.3 Other synchronization cases

This clause applies to the synchronization of one broadcast service with one or more broadband streams where the
streams may have different system formats or different types of timelines. In case the broadband stream is MPEG
transport stream based, its STC can be independent from the STC of the broadcast service.

Terminals should support multi-stream synchronization for all combinations of system formats and types of timelines as
defined in this clause. Terminals shall at least support the combinations listed as mandatory in clause 10.2.8.4.

Terminals shall support multi-stream synchronization for broadcast services with timelines defined for MPEG-TS in
clause 13.4.2 and the constraints defined in clause 10.2.8.4.

Terminals shall support multi-stream synchronization with the constraints defined in clause 10.2.8.4 for broadband
streams which are:

1) delivered as SPTS as defined in clauses 7.3.1.2 and 7.3.2.1 with the timelines defined for MPEG-TS in
clause 13.4.2; or

2) delivered with MPEG DASH as defined in annex E with the timeline defined for MPEG-DASH in
clause 13.4.2; or

3) delivered via HTTP as an EBU-TT-D compliant TTML document as defined in clause 7.3.1.5.1 with timeline
as defined in clause 13.4.2.

Terminals may support multi-stream synchronization for broadband streams which are:

1) encapsulated in the ISOBMFF format as defined in clause 7.3.1.1 (referred to as "MP4") with the timeline
defined for ISOBMFF in clause 13.4.2.

The relationship between the timelines will be provided by the application using the APIs defined in clause 8.2.3. The
terminal shall implement the MediaSynchroniser API defined in clause 8.2.3.

10.2.8.4 Supported combinations

HbbTV® terminals shall support the presentation of at least the combinations of media type, systems layer, timeline and
delivery protocol for multi-stream synchronization, as shown in table 14.

All combinations apply only to the codecs which are mandatory in the present document. If a combination has two
audio or two video streams the terminal is not required to support streams with different video or audio codecs.

Support for multi-stream synchronization with E-AC-3 is required where E-AC-3 is supported via the broadcast
connection, i.e. restrictions on codecs from clause 7.3.1.1 apply.

ETSI

ETSI TS 102 796 V1.3.1 (2015-10)114

Table 14: Mandatory combinations of media type, systems layer, timeline and delivery protocol

Delivery Broadcast Progressive Streaming MPEG
DASH

HTTP Out
of Band

Status

Systems
Layer

MPEG2-TS ISOBMFF MPEG2-TS ISOBMFF

Timeline for
m/s sync

PTS TEMI CTS PTS TEMI DASH-PR EBU-TT-D

1 Video Audio M
2 Video Audio Subtitles M
2a Video,

Audio
 Subtitles M

3 Video,
Audio

 Subtitles M

4 Video,
Subtitles

 Audio M

5 Video Audio,
Subtitles
(see
note 2)

 M

6 Video,
Audio

 Video M-2V

7 Video Video,
Audio (see
note 2)

 M-2V

8 Video (see
note 3)

 Audio (see
note 3)

 M-SB

9 Video (see
note 3)

 Audio,
Subtitles
(see notes
1 and 3)

 M-SB

10 Video,
Audio (see
note 3)

 Subtitles
(3)

 M-SB

11 Video,
Audio (see
note 3)

 Video (see
note 3)

 M-SB,
M-2V

12 Video (see
note 3)

 Video,
Audio (see
note 3)

 M-SB,
M-2V

NOTE 1: Delivered in the same MPEG2-TS.
NOTE 2: Delivered in the same MPEG-DASH session.
NOTE 3: Both with gen-locked STC (see clause 10.2.8.2) and without gen-locked STC (see clause 10.2.8.3).

Table 15: Key to status column

Status Meaning
M Mandatory.
M-SB Mandatory if the terminal implements the synchronization buffer as defined in clause 13.5.
M-2V Mandatory if the terminal supports the simultaneous use of two video decoders for HbbTV® services.
NOTE: If the status column lists more than one conditional feature the combination is only mandatory if the terminal

implements all the listed features.

HbbTV® terminals are not required to support receiver mix audio description when the main audio and the audio
description are delivered via different routes or in separate ISOBMFF files, MPEG2-TS streams or MPEG-DASH
sessions.

NOTE: Support for synchronization involving encrypted broadband-delivered content is outside the scope of the
present document and may be specific to the content protection technology involved.

ETSI

ETSI TS 102 796 V1.3.1 (2015-10)115

10.2.9 Inter-device media synchronization

10.2.9.1 General

The HbbTV® terminal shall support decoding and rendering of A/V content delivered by broadcast or broadband

networks in a manner where presentation is time synchronized with another HbbTV® terminal or a Companion Screen
application. This feature is known as inter-device synchronization.

Clause 13.2 describes an architecture for inter-device synchronization and describes the roles of a master terminal and a
slave terminal. A terminal shall be capable of being a master terminal and may optionally capable of being a slave
terminal.

NOTE: Slave terminals and Companion Screen applications connect to interface endpoints provided by the
master terminal and communicate with it via these interfaces using the protocols described in clause 13.
The master terminal decides the timing of presentation of the master terminal, the slave terminals and
Companion Screen applications. The slave terminals and Companion Screen applications adjust to follow
the presentation timing recommended by the master terminal.

Clause 13.10 provides sequence diagrams illustrating the relationship between the MediaSynchroniser APIs and the
inter-device synchronization protocols discussed in clauses 13.6, 13.7 and 13.8.

10.2.9.2 Master terminal

An HbbTV® terminal shall be able to act in the role of a master terminal. To implement this:

• The terminal shall implement the MediaSynchroniser API defined in clause 8.2.3.

• The terminal shall support generation of timestamps as defined in clause 13.4.1 and should support
interpretation of timestamps as defined in clause 13.4.1.

• The terminal shall derive timelines defined in clause 13.4.2 from media streams as directed by an HbbTV®

application via the MediaSynchroniser API.

• The terminal should implement the buffering model defined in clause 13.5 for inter-device synchronization.

NOTE: Some aspects of this buffer model are required for multi-stream synchronization. and these are defined in
more detail in clause 13.5.

• The terminal shall implement the functions and interfaces for a master terminal described in clauses 13.6.2,
13.7.2, 13.7.3 and 13.8.2.

10.2.9.3 Slave terminal

An HbbTV® terminal may have the capability to act as a slave terminal, and this shall be signalled by the inclusion of
the appropriate option string defined in table 13 in clause 10.2.4.

For a terminal with the capability to act as a slave terminal:

• The terminal shall implement the functionality and interfaces for a slave terminal described in clauses 13.6.3,
13.7.4 and 13.8.3.

• The terminal shall interpret Correlation Timestamps according to clause 13.4.3.

• The terminal shall support discovery of other HbbTV® terminals using the discoverTerminals() method.

NOTE: Some aspects of the Correlation Timestamp interpretation are required for multi-stream synchronization.

These requirements are in addition to the implementation requirements defined in clause 10.2.9.2.

10.2.10 Application to media synchronization

The terminal shall implement application to media synchronization as described in clause 13.11.

ETSI

ETSI TS 102 796 V1.3.1 (2015-10)116

11 Security

11.1 Application and service security
The present document defines two levels of trust for applications - trusted and not trusted. The features only available to
trusted applications are listed in table A.1.

By default, broadcast related applications shall be trusted and broadcast-independent applications shall not be trusted.
This may be modified as follows:

• Terminals may include a mechanism to allow the end-user to configure specific broadcast-independent
applications as trusted or to configure broadcast-related applications from a particular service or channel as not
being trusted.

• Terminals supporting reception of non-regulated channels should not automatically trust all applications from
those channels.

EXAMPLE 1: In terminals supporting reception of satellite channels, for example, HbbTV® applications from
adult channels on satellite should not be trusted except following explicit end-user approval and in
compliance with appropriate regulation.

EXAMPLE 2: In terminals supporting reception of cable or terrestrial channels, if the markets addressed have the

possibility of local or community access channels then HbbTV® applications from these channels
are not required to be trusted.

The details of how regulated and non-regulated channels are identified are outside the scope of the present
document.

• Terminals supporting cable or terrestrial reception of HbbTV® applications are not required to automatically
trust all applications from all channels if different regulatory requirements apply to different channels. For

example, HbbTV® applications from lightly or non-regulated local or community access channels which may
be found in some markets are not required to be trusted. The details of how this could be achieved are outside
the scope of the present document.

• Manufacturers may be able to configure specific broadcast-independent applications as being trusted and
specific broadcast-related applications as being not trusted.

• Local regulation may impose additional requirements.

The security and permission mechanisms defined in clause 10.1 of the OIPF DAE specification [1] are not included in
the present document. If they are included in a particular implementation then permissions should only be granted to an
application where all mandatory parts of the feature or API covered by the permission are available.

NOTE: The set of features defined as available to trusted applications in the present document cannot be perfectly
mapped onto the permissions defined in the OIPF DAE specification [1].

11.2 TLS and Root Certificates

11.2.1 TLS support

HTTP over TLS as defined in IETF RFC 2818 [7] shall be supported for transporting application files over broadband.

TLS version 1.2 as defined in IETF RFC 5246 [8] shall be supported. Terminals shall not set the client_version field
of the ClientHello message to less than { 3, 3 } (TLS 1.2).

Terminals shall not negotiate sessions using SSL 3.0 or earlier.

Terminals shall support the Renegotiation Indication extension defined in IETF RFC 5746 [58].

Terminals shall support the Server Name Indication extension defined in IETF RFC 6066 [59].

Terminals shall support the Supported Elliptic Curves extension defined in IETF RFC 4492 [55]. See also clause 11.2.2.

ETSI

ETSI TS 102 796 V1.3.1 (2015-10)117

In accordance with TLS 1.2, terminals shall indicate the supported signature algorithms using the Signature Algorithms
extension. See also clause 11.2.4.

For optimal performance, terminals should securely maintain a TLS session cache and attempt to resume previously-
established TLS sessions where possible. Terminals should support the Session Ticket extension defined in IETF
RFC 5077 [56].

NOTE 1: Session resumption can significantly reduce the overhead of establishing a new TLS session with a
recently-used server.

NOTE 2: Security considerations for caching and resuming sessions can be found in clause F.1.4 of IETF
RFC 5246 [8].

Terminals shall not use TLS-level compression.

Terminals shall deem a TLS connection to have failed if any of the following conditions apply:

• The certificate chain fails validation as per section 6 of IETF RFC 5280 [9].

• Any signature required for certificate chain validation uses an algorithm or key size that is forbidden by the
present document.

NOTE 3: This requirement relates only to signatures that are actually required to be verified and does not cover
signatures on root certificates or signatures on any additional certificates presented by the server for
compatibility with older clients.

• The host name or IP address contained in the server certificate does not match the host name or IP address
requested. When verifying the host name against the server-supplied certificate, the '*' wildcard and the
subjectAltName extension shall be supported as defined in IETF RFC 2818 [7].

Terminals shall not provide the user with an option to bypass these conditions.

11.2.2 Cipher suites

The cipher suite requirements are specified in table 15a. The cipher suites are defined in IETF RFC 5246 [8] and IETF
RFC 5289 [57]. Terminals should prioritize these cipher suites in the order shown. Terminals shall implement all cipher
suites marked mandatory and shall not implement any cipher suites marked forbidden.

Table 15a: Cipher suites and their status

Cipher suite Status
TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256 Mandatory
TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256 Mandatory
TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384 Recommended (see note)
TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384 Recommended (see note)
TLS_RSA_WITH_AES_128_CBC_SHA Mandatory
Cipher suites with anonymous key exchange Forbidden
Cipher suites with NULL encryption Forbidden
Cipher suites using RC4 encryption Forbidden
Cipher suites using encryption or signing algorithms offering
less than 112 bits of security

Forbidden

NOTE: Cipher suites with a 128-bit security level are considered adequate at the time of writing.
However, in the event of any significant advances in cryptanalysis of AES or SHA-256 within
the lifetime of a terminal conforming to the present document, a terminal also supporting the
AES_256 cipher suites may retain the ability to establish a secure connection when a terminal
supporting only the AES_128 suites may not.

Servers should use one of the above ECDHE cipher suites in preference as these provide forward secrecy and improved
security against certain attacks.

11.2.3 Root certificates

A list of root certificates is maintained at http://www.hbbtv.org/spec/certificates.html. The policy by which this list has
been derived is outlined in annex D.

http://www.hbbtv.org/spec/certificates.html

ETSI

ETSI TS 102 796 V1.3.1 (2015-10)118

Terminals shall trust all root certificates identified as mandatory and may support those certificates identified as
optional on that list, subject to the conditions in this clause.

Terminals should not trust any other root certificates.

NOTE 1: Including root certificates that are not on the list increases the risk of a man in the middle attack if those
root certificates have not been audited to a similar or greater level than those on the list.

Terminals shall not trust any root certificate with a public key where the number of bits of security provided by the
algorithm is less than 112 bits, as defined by clause 5.6.1 of [49].

NOTE 2: For RSA keys, this implies a minimum key size of 2 048 bits.

Terminals shall support a means by which the device manufacturer can remove or distrust root certificates after
manufacture. This may be handled either via a firmware upgrade mechanism or preferably via a specific root certificate
update mechanism that could allow more timely updates.

A manufacturer may choose to remove or distrust a mandatory root certificate in the terminal in response to a security
threat.

Terminals should support a means of securely adding new root certificates after manufacture in order to maintain
interoperability with servers over time.

11.2.4 Signature algorithms

The algorithm requirements for signature verification are specified in table 15b.

Terminals shall not trust any signature that uses an algorithm designated as forbidden.

Terminals shall cease to trust any signature that uses SHA-1 as the digest algorithm after 31st December 2016.

Table 15b: Signature algorithms and their status

Algorithm name TLS 1.2 identifier Status
md5WithRSAEncryption 0x0101 Forbidden
sha1WithRSAEncryption 0x0201 Mandatory until forbidden by SHA-1 sunset requirement

specified above.
sha256WithRSAEncryption 0x0401 Mandatory
sha384WithRSAEncryption 0x0501 Mandatory
sha512WithRSAEncryption 0x0601 Optional
ecdsa-with-SHA1 0x0203 Optional until forbidden by SHA-1 sunset requirement

specified above.
ecdsa-with-SHA256 0x0403 Mandatory
ecdsa-with-SHA384 0x0503 Mandatory
ecdsa-with-SHA512 0x0603 Optional

11.2.5 Key sizes and elliptic curves

Terminals shall support RSA keys with modulus size between 2 048 and 4 096 bits.

Terminals shall not trust RSA signatures that are less than 2 048 bits in size.

The requirements for elliptic curves are specified in table 15c. The curves are defined in IETF RFC 4492 [55]. Curves
marked mandatory shall be supported for signature verification and key exchange.

Table 15c: Elliptic curves and their status

Curve name TLS 1.2 identifier Status
secp256r1 (NIST P-256) 0x0017 Mandatory
secp384r1 (NIST P-384) 0x0018 Mandatory
secp521r1 (NIST P-521) 0x0019 Optional

ETSI

ETSI TS 102 796 V1.3.1 (2015-10)119

11.2.6 Backward compatibility

Service providers should be aware that earlier versions of the present document contained different mandatory TLS
versions, extensions and cipher suites.

Where TLS servers need to retain support for terminals conforming to earlier versions, they should:

• be able to negotiate a TLS session using TLS 1.0, 1.1 or 1.2;

• be aware that the Server Name Indication extension may not be present;

• be prepared to use the TLS_RSA_WITH_AES_128_CBC_SHA cipher suite if none of the ECDHE cipher
suites listed in clause 11.2.2 is offered by the terminal.

If necessary, service providers can also direct applications to use different endpoints when running on terminals
conforming to earlier versions of the present document.

11.3 TLS client certificates
In HTTP over TLS, the use of a client certificate authenticates the client to a service provider. Some business models

require that an HbbTV® application is delivered exclusively to trusted HbbTV® terminal implementations. To support
these, terminals may support use of client certificates.

Negotiation and delivery of client certificates to the server is defined by the TLS specification [8].

Client certificates shall comply with IETF RFC 5280 [9].

The provision of client certificates is outside the scope of the present document.

11.4 CI Plus

11.4.1 CI Plus communication

Terminals supporting CI Plus for protected content via broadcast shall support the following mapping from the
application/oipfDrmAgent embedded object to the CI Plus protocol as defined by clause 4.2.3 "CI+ based Gateway" of
the OIPF CSP specification [5]:

• 4.2.3.1 Mandatory.

• 4.2.3.2 Mandatory.

• 4.2.3.3 Mandatory.

• 4.2.3.4 Mandatory, except for clauses 4.2.3.4.1.2 and 4.2.3.4.3 which are Not Included.

• 4.2.3.5 N/A.

• 4.2.3.6 Not Included.

• 4.2.3.7 Mandatory using URI (Usage Rule Information) as defined in clause 5.7 of CI Plus [12] if the PVR
feature is supported otherwise Not Included.

• 4.2.3.8 Mandatory using URI (Usage Rule Information) as defined in clause 5.7 of CI Plus [12] if the PVR
feature is supported otherwise Not Included.

• 4.2.3.9 Not Included.

• 4.2.3.10 N/A.

Terminals supporting CI Plus shall accept CI Plus CICAMs that do not support the OIPF extensions defined by
clause 4.2.3 'CI+ based Gateway' of the OIPF CSP specification [5]. Specifically, the failure for any reason to set up the
SAS connection with the Open IPTV Forum private_host_application_ID shall not stop other CI Plus functionality,
that does not depend upon this connection, from working normally.

ETSI

ETSI TS 102 796 V1.3.1 (2015-10)120

Terminals supporting an embedded CA solution should support a mapping from the application/oipfDrmAgent to the
embedded CA system to provide the same functionality as defined above.

11.4.2 IP delivery Host player mode

11.4.2.1 Error handling in "IP delivery Host player mode"

Terminals supporting the "IP delivery Host player mode" as defined in the DVB Extensions to CI Plus ETSI
TS 103 205 [37] shall map the following values of drm_status in the sd_start_reply APDU to the errorState
argument of onDRMRightsError.

Table 16: onDRMRightsError errorState values

drm_status errorState
Decryption possible (0x00) valid license, consumption of the content is unblocked (2)
Error - no entitlement (0x02) no license, consumption of the content is blocked (0)

If the sd_start_reply APDU contains a non-zero value for transmission_status (indicating that an error has occurred),
then:

• if the content is being presented by an AV Control object then the object shall transition to the 'error' state;

• if the content is being presented by an HTML5 media element then this shall be reported as defined in
clause 9.6.7 of the present document.

11.4.2.2 DRM metadata source

Table 34 in clause 7.4.4 of the DVB Extensions to CI Plus ETSI TS 103 205 [37] identifies 7 sources for DRM
metadata. Of those 7 sources, the present document requires support for 0x03 "Common Encryption (CENC)" and 0x04
"Media Presentation Description (MPD)". The present document is intentionally silent about support for the other
sources listed in that table.

11.4.3 Auxiliary file system

When the CICAM Auxiliary File System is implemented as specified in the DVB Extensions to CI Plus ETSI
TS 103 205 [37], the Terminal shall declare the Auxiliary File System resource identifier in the list of the resources that

it provides. The HbbTV® Application Domain is defined as: "HbbTVEngineProfile1", i.e. the value of the
"AppDomainIdentifier" and "DomainIdentifier" is "HbbTVEngineProfile1".

When the HbbTV® terminal receives a FileSystemOffer APDU with the DomainIdentifier set to

"HbbTVEngineProfile1", the HbbTV® terminal shall acknowledge the FileSystemOffer by sending a FileSystemAck
APDU with the AckCode set to 0x01.

11.5 Protected content via broadband
Terminals that support the "IP delivery Host player mode" as defined in the DVB Extensions to CI Plus ETSI
TS 103 205 [37] shall support the decryption of protected content delivered via the broadband channel as defined in
clause 7 of the DVB Extensions to CI Plus ETSI TS 103 205 [37] where that content is provided in an ISO base media
file format, encrypted using MPEG common encryption as defined by CENC ISO/IEC 23001-7 [30] and constrained by
annex B of the present document, and delivered using MPEG DASH (as defined in clause 7.3.2.1).

Support for the other features specified in the DVB Extensions to CI Plus ETSI TS 103 205 [37] are not required by this
clause, unless there is a dependency from the referenced clause 7 of ETSI TS 103 205 [37].

Where a terminal supports the "IP delivery Host player mode", it shall be able to offer Representations to a CICAM
where the UUID urn in the @schemeIdUri in a ContentProtection descriptor in the AdaptationSet containing the
Representation matches a UUID in the sd_info_reply APDU returned by the CICAM to the terminal. This implies that
the CICAM shall identify a supported DRM by filling in the drm_uuid field in the sd_info_reply APDU.

ETSI

ETSI TS 102 796 V1.3.1 (2015-10)121

NOTE: Whether a terminal actually offers a Representation to a CICAM depends on which Adaptation Sets are in
the MPD, on the DASH player algorithm for selecting between Adaptation Sets and on any explicit

choice of Adaptation Sets by an HbbTV® application.

For terminals that do not support the "IP delivery Host player mode" as defined in the DVB Extensions to CI Plus ETSI
TS 103 205 [37], support for decrypting content delivered via the broadband channel is optional in the present

document. When decryption is supported via the integration of HbbTV® with one or more embedded content protection
technologies, the terminal shall support at least the ISO base media file format using MPEG common encryption as
defined by CENC ISO/IEC 23001-7 [30] and constrained by annex B of the present document as a format for encrypted
content.

11.6 Protected content via download
Terminals that support the "IP delivery Host player mode" as defined in the DVB Extensions to CI Plus ETSI
TS 103 205 [37] and also the download optional feature shall support the decryption of protected content as defined in
clause 7 of the DVB Extensions to CI Plus ETSI TS 103 205 [37] where that content is provided in an ISO base media
file format, encrypted using CENC (as defined CENC ISO/IEC 23001-7 [30] and constrained by annex B of the present
document). This requirement shall apply if the content has been downloaded as a file from broadcast (delivered using
FDP as defined in annex H) or from broadband.

Support for the other features specified in the DVB Extensions to CI Plus ETSI TS 103 205 [37] are not required by this
clause, unless there is a dependency from the referenced clause 7 of ETSI TS 103 205 [37].

For terminals that do not support the "IP delivery Host player mode" in CI Plus but do support the download feature,
support for decrypting protected content acquired using a download API is optional in the present document. When

decryption is supported via the integration of HbbTV® with one or more embedded content protection technologies the
terminal shall support at least the ISO base media file format used with MPEG common encryption as defined by
CENC ISO/IEC 23001-7 [30] and constrained by annex B of the present document as a format for encrypted content.

11.7 Terminal WebSocket service endpoints
All endpoint URLs for application to application communication and inter-device synchronization shall include a

randomly-generated part. The URLs shall be static for at least the lifetime of an HbbTV® application and shall be
regenerated every time the terminal starts. The URLs should have at least 128 bits of entropy.

NOTE 1: These requirements aim to make the endpoints hard to discover without using the specified discovery

mechanism or the relevant HbbTV® APIs.

NOTE 2: See clause 14.5.1 for requirements on when the WebSocket server is required to accept connections and
when it may reject them.

12 Privacy

12.0 Overview
This clause addresses privacy related terminal functions as well as privacy related measures on the application level.

12.1 Terminal privacy features

12.1.1 Tracking preference expression (DNT)

12.1.1.0 Background

The tracking preference expression mechanism defined in the present clause is a compatible subset of the W3C
Working Draft for Tracking Preference Expression (DNT) [i.9]. It is intended that the present clause will be updated to
reference that W3C specification, once it has been published as a W3C Technical Recommendation.

ETSI

ETSI TS 102 796 V1.3.1 (2015-10)122

12.1.1.1 Principles

Clause 12.1.1.2 defines the DNT (do not track) header field for HTTP requests as a mechanism for expressing the user's

preference regarding their behaviour being tracked (or not). The goal of this protocol is to allow HbbTV® terminals to
express the user's personal preference regarding tracking to each server and web application that they communicate with
via HTTP, allowing each service to either adjust their behaviour to meet the user's expectations, or to reach a separate
agreement with the user to satisfy all parties.

To achieve this, any signal sent shall exclusively reflect the user's preference, not the choice of the terminal
manufacturer, or any other mechanism outside the user's control. In the absence of user choice, legal, or regulatory
requirements, no tracking preference shall be expressed by the terminal (i.e. the DNT header shall not be included in the
HTTP request).

An HbbTV® terminal shall offer users a minimum of two alternative choices for a global Do Not Track preference:
unset or DNT:1. A terminal may offer a third alternative choice: DNT:0. If the user's choice is DNT:1 or DNT:0, the
tracking preference is enabled; otherwise, the tracking preference is not enabled. A terminal may offer users additional
Do Not Track preferences for finer grained control, for example to specify different behaviour for specific servers or
web applications.

12.1.1.2 Expressing a tracking preference

12.1.1.2.1 Expression format

When a user has enabled a tracking preference, that preference needs to be expressed to all mechanisms that might

perform or initiate tracking directly or by third parties, including sites that the HbbTV® terminal communicates with
via HTTP.

When enabled, a tracking preference shall be expressed according to table 17.

Table 17: Expression of tracking preference

DNT Description
1 This user prefers not to be tracked on the target site.
0 This user prefers to allow tracking on the target site.

12.1.1.2.2 DNT header field for HTTP requests

HbbTV® terminals shall insert the DNT field into all outgoing HTTP requests made on behalf of an HbbTV®
application as the means for expressing a user's tracking preference via HTTP.

NOTE 1: This does not apply to HTTP requests made by the media player or the DRM agent.

It shall be encoded as follows:

DNT-field-name = "DNT"
DNT-field-value = ("0" / "1") *DNT-extension
DNT-extension = %x21 / %x23-2B / %x2D-5B / %x5D-7E
 ; excludes CTL, SP, DQUOTE, comma, backslash

Terminals shall send the DNT header field if (and only if) a tracking preference is enabled. Terminals shall not send the
DNT header field if a tracking preference is not enabled. At most one DNT header can be present in a valid HTTP request.

EXAMPLE:

GET /something/here HTTP/1.1
Host: example.com
DNT: 1

The DNT-field-value sent by an HbbTV® terminal shall begin with the numeric character "1" (%x31) if all of the
following conditions are met:

a) a tracking preference is enabled;

b) the preference is for no tracking;

ETSI

ETSI TS 102 796 V1.3.1 (2015-10)123

c) there is not an exception for the origin server targeted by this request.

The DNT-field-value sent by an HbbTV® terminal shall begin with the numeric character "0" (%x30) if all of the
following conditions are met:

a) a tracking preference is enabled;

b) the preference is to allow tracking in general or by specific exception for the origin server targeted by this
request.

The remainder of the DNT-field-value after the initial character is reserved for future extensions. Terminals that do not
implement such extensions shall not send DNT-extension characters in the DNT-field-value. Servers that do not
implement such extensions may ignore any DNT-extension characters.

NOTE 2: The extension syntax is restricted to visible ASCII characters that can be parsed as a single word in HTTP
and safely embedded in a JSON string without further encoding.

12.1.2 Third party cookies

Third party cookies are generally considered problematic in a privacy context. According to clause 7.1 of IETF
RFC 6265 [24] the implementation of third party cookies is optional.

Manufacturers of HbbTV® terminals may block all third party cookies. If they do not, then they shall provide the user
the option of doing so.

12.1.3 Blocking tracking websites

Tracking scripts can be problematic in a privacy context, especially when used in autostart applications. To provide
additional protection to users, terminals may offer the possibility of blocking requests to tracking websites.

Manufacturers of HbbTV® terminals should consider providing the option of disallowing requests to tracking websites.
If such an option is provided, manufacturers shall allow the user to set this option in a similar way to the DNT setting in
clause 12.1.

The definition and maintenance of a corresponding list of sites to be allowed or disallowed remains the responsibility of
each terminal manufacturer. Terminal manufacturers should take care that any such mechanism does not introduce
privacy issues in its own right.

12.1.4 Persistent storage

Terminals may offer the user the option to disable persistent storage (cookies, Web Storage) on a per-application or
per-site basis. While this may improve user privacy, it will likely result in a worse user-experience, for example loss of
personalization and inability to remember a user's agreement to a site's terms and conditions. Persistent storage shall not
be disabled by default.

12.2 Respecting privacy in applications
Application developers are responsible to comply with all applicable legislation and regulation, particularly concerning
user privacy.

Actions taken by broadcast-related autostart applications before the user has pressed the red button (or equivalent) are
particularly sensitive since they occur unnoticed by the user, and hence without any possibility for him to intervene.
Tracking or logging user data without prior given consent from the user is likely to breach almost any national privacy
rules. Even where it would happen to be legal, such unnoticed and unexpected action is likely to be very controversial,

and often prompts calls to consumers to refrain from connecting HbbTV® terminals to the Internet.

The present document provides a number of effective tools to meet such privacy requirements:

• delivering application data exclusively via DSM-CC (see clause 7.2.5) allows launching of applications
without any data exchange via broadband, i.e. without sending any data to any server;

• use of TLShttps (see clause 11.2) to encrypt data exchanged via broadband;

ETSI

ETSI TS 102 796 V1.3.1 (2015-10)124

• use of cookies (see clause 10.2.1) to record a user's consent to a service tracking or otherwise using or storing
personal user data.

While these tools provide for a good, basic protection of user privacy, they cannot be guaranteed to meet all possible
legal and regulatory obligations, and the present document shall hence not be construed as to make any assertions to this
extent. Application developers are thus encouraged to perform a detailed analysis of any such legal and regulatory
privacy obligations for each application, before releasing it into the market.

Application developers should further be aware that some features may be subject to user preferences as defined in
clause 12.1.

13 Media synchronization

13.1 General (informative)
Clause 13 describes and defines how a terminal supports multi-stream and inter-device synchronization features and
also the application to media synchronization feature. Clauses 10.2.8, 10.2.9 and 10.2.10 define the terminal
requirements to implement these features.

Clause 13.2 describes a unified architectural model for both multi-stream synchronization and inter-device
synchronization.

Clause 8.2.3 defines a single common API for HbbTV® applications to control the use of both these features.

Clause 13.3 describes the different states of media synchronization and their relationship to the API behaviour.

Clause 13.4 describes how timelines are derived from media streams for both these features and defines the reference
point for measuring progress on the timeline for inter-device synchronization.

Clause 13.5 describes a buffering model for both these features.

Clauses 13.6 to 13.9 describe the functions and interfaces that enable inter-device synchronization.

Clause 13.10 shows sequence diagrams for APIs when used for inter-device synchronization.

Clause 13.11 describes application to media synchronization.

13.2 Architecture (informative)

13.2.1 General

The terminal performs multi-stream and/or inter-device synchronization functionality on behalf of the HbbTV®

application. Both multi-stream and inter-device synchronization functionality are controlled by the HbbTV®
application through the MediaSynchroniser object defined in clause 8.2.3.

The HbbTV® application directs the MediaSynchroniser object as to the streams to be rendered and the timing
relationship between them.

NOTE: An HbbTV® application is typically expected to obtain information on the timing relationship from a
Correlation Information Service (CIS), such as a Material Resolution Server (MRS) as described in ETSI
TS 103 286-2 [47]. However whether or not a slave terminal communicates with an MRS is an

implementation detail for the HbbTV® application and is outside the scope of the present document.

13.2.2 Multi-stream synchronization

Figure 17 illustrates the relationship between HbbTV® application and MediaSynchroniser object for multi-stream
synchronization.

ETSI

ETSI TS 102 796 V1.3.1 (2015-10)125

Figure 17: Relationship between MediaSynchroniser object and
HbbTV® application for multi-stream synchronization

A terminal is deemed to be performing multi-stream synchronization when a MediaSynchroniser object is initialized
and media objects are added to it using the addMediaObject() method. The terminal manages the decoding and
rendering of the media streams.

Clause 4 of ETSI TS 103 286-2 [47] describes an architecture for synchronization that applies to both inter-device
synchronization and multi-stream synchronization and defines the concepts of Media Synchronization Application
Server (MSAS), Synchronization Client (SC), Correlation Information Server (CIS) and Material Resolution Server
(MRS). Figure 18 illustrates the how these concepts apply to multi-stream synchronization.

Broadcast
or Broadband

Broadcaster / Content Provider

HbbTV Terminal

Media
Object(s)

Media
Object(s)

Media streams
with timeline

HbbTV App

Media
Synchroniser

Media
Objects

Relationship between
stream timelines

ETSI

ETSI TS 102 796 V1.3.1 (2015-10)126

Figure 18: Basic mapping of media synchronization architecture
for multi-stream synchronization

For multi-stream synchronization, the HbbTV® terminal and HbbTV® application running on it is equivalent to a
single device containing multiple Synchronization Client (SC) elementary functions and the MSAS elementary
function. Each SC elementary function manages the presentation of a single media stream such as broadcast (SCbr) or
broadband media stream (SCms). The MSAS function is implemented by the MediaSynchroniser in the terminal.

13.2.3 Inter-device synchronization

Figure 19 and figure 20 illustrate the relationship between MediaSynchroniser object and HbbTV® application for
inter-device synchronization. A terminal is acting in the role of a master that dictates the timing of the presentation for
all media streams. In figure 19 a Companion Screen application is a slave whose timing is being dictated by the master.
In figure 20 the slave is another terminal.

Inter-device synchronization can happen simultaneously between a master terminal and one or more slave terminals
and/or one or more Companion Screen applications on Companion Screens.

Broadcaster / Content Provider

MRS / CIS

Relationship between
stream timelines

Broadcast
or Broadband

HbbTV Terminal

Media
Object

Media streams
with timeline

HbbTV App

Media Synchroniser

Media
Object MSAS

SCbr

SCms

ETSI

ETSI TS 102 796 V1.3.1 (2015-10)127

Figure 19: Relationship between MediaSynchroniser object and
HbbTV® application for inter-device synchronization with a CSA

Figure 20: Relationship between MediaSynchroniser object and
HbbTV® application for inter-device synchronization with a slave terminal

The master terminal manages the decoding and rendering of the media streams and the master terminal also
communicates with the other slave terminal or CSA using the protocols for inter-device synchronization defined in
ETSI TS 103 286-2 [47].

BroadbandBroadcast
or Broadband

Broadcaster / Content Provider

HbbTV Terminal
(Master terminal)

Media stream
with timeline

Home Network

HbbTV App

Media
Synchroniser

(Master)

Companion Screen
Device

Web or native
Companion Screen App

(Slave)

Media
Object(s)

Media stream
with timeline

Relationship between
stream timelines

App 2 App

Comms

Inter-device sync
protocols

BroadbandBroadcast
or Broadband

Broadcaster / Content Provider

HbbTV Terminal
(Master terminal)

Media stream
with timeline

Home Network

HbbTV App

Media
Synchroniser

(Master)

HbbTV Terminal
(Slave terminal)

Inter-device sync
protocols Media

Synchroniser
(Slave)

HbbTV App

Media
Object(s)

Media stream
with timeline

Media
Object(s)

Relationship between
stream timelines

App 2 App

Comms

ETSI

ETSI TS 102 796 V1.3.1 (2015-10)128

A terminal becomes a master or slave terminal when inter-device synchronization is enabled on a MediaSynchroniser
that has been appropriately initialized. The terminal ceases to be a master or slave terminal when inter-device
synchronization is disabled, a permanent error occurs during playback or the master media (see clause 13.2.4) stops

playing. When an HbbTV® application on a master terminal decides to enable or disable inter-device synchronization is

HbbTV® application implementation dependent and outside the scope of the present document.

NOTE: An HbbTV® application can use application to application communication (as defined in clause 14.5) to
negotiate when to enable and disable this functionality.

A terminal cannot be a master terminal and a slave terminal simultaneously.

The HbbTV® terminal implements interfaces and protocols defined in ETSI TS 103 286-2 [47] under the control of an

HbbTV® application through the MediaSynchroniser object defined in clause 8.2.3.

Clause 4 of ETSI TS 103 286-2 [47] describes an architecture for synchronization that applies to both inter-device
synchronization and multi-stream synchronization and defines the concepts of Media Synchronization application
Server (MSAS), Synchronization Client (SC), Correlation Information Server (CIS) and Material Resolution Server
(MRS). Figure 21 illustrates the how these concepts apply to inter-device synchronization between a master terminal
and slave terminal or CSA.

Figure 21: Basic mapping of media synchronization architecture for inter-device synchronization

For an HbbTV® terminal, the MediaSynchroniser object performs the inter-device synchronization related elementary
functions defined in ETSI TS 103 286-2 [47]. This relationship is illustrated in figure 22 for master and slave terminals.

BroadbandBroadcast
or Broadband

Broadcaster / Content Provider

HbbTV Terminal
(Slave Terminal)
In role of CSA

MRS / CIS

Relationship between
stream timelines

HbbTV Terminal
(Master Terminal)

in role of TV Device

Media
Object

Media streams
with timeline

HbbTV App

Media Synchroniser

Media
Object MSAS

SCbr

SCms

Media
Object(s)

HbbTV App

Media
Synchroniser

SCsl

Media streams
with timeline

Companion Screen Device

Web or native
Companion Screen App

(Slave)
SCcos

ETSI

ETSI TS 102 796 V1.3.1 (2015-10)129

Figure 22: Relationship between the HbbTV® MediaSynchroniser and MSAS, SC, WC Server and
WC Client elementary functions and protocol service endpoints

For inter-device synchronization, a terminal and the HbbTV® application running on it is equivalent to either the TV
Device or the CSA.

Where a terminal and HbbTV® application acts in the role of a TV Device it is acting as a master terminal. The master
terminal contains the MSAS elementary function as well as an SC elementary function (or more than one SC
elementary function if simultaneously performing multi-stream synchronization).

A Companion Screen application is a slave. A terminal and HbbTV® application acting in the role of a CSA is also
acting as a slave. The slave terminal contains only an SC elementary function.

For each media object being managed by the MediaSynchroniser, the MediaSynchroniser performs the role of
Synchronization Client to control the timing of presentation of that media object and to communicate information about
the timing of presentation to the MSAS function. The MSAS function is implemented by the MediaSynchroniser in
the master terminal.

In a slave terminal, the MediaSynchroniser performs the role of Synchronization Client. If the slave terminal is also
performing multi-stream synchronization and is therefore presenting several media objects, then the slave terminal
communicates with the master terminal using the inter-device synchronization protocols (defined in ETSI
TS 103 286-2 [47]) via a single set of protocol connections. The slave terminal does not make a separate set of
connections for each media object it is presenting.

The MediaSynchroniser functions in the master and slave terminal communicate using the CSS-CII, CSS-WC and
CSS-TS protocols defined in ETSI TS 103 286-2 [47]. A terminal therefore implements Wall clock server and client
functions as well as MSAS and SC functions. The service endpoints for these protocols are provided by the functions of
the MediaSynchroniser in the master terminal.

13.2.4 Master media and other media

The media object passed as an argument to the initMediaSynchroniser() method is the master media being

presented by the HbbTV® terminal. Media objects passed as arguments to the addMediaObject() method are other
media.

From the perspective of a slave terminal, the master terminal is presenting the master media and media objects passed
as arguments to the addMediaObject() method are other media.

ETSI

ETSI TS 102 796 V1.3.1 (2015-10)130

As specified in clause 9.7.1:

• If applications control the presentation timing of the master media using the methods and properties of the
corresponding media object then the presentation timing of other media is then adjusted to maintain
synchronization with the master media.

• If applications try to control the presentation timing of other media using the methods and properties of the
corresponding media object then those actions succeed but the media object is removed and a transient error is
generated for the MediaSynchroniser.

13.3 Media synchronization states and transitions

13.3.1 States overview (informative)

Multi-stream and inter-device synchronization functionality is controlled via the MediaSynchroniser object. Figure 23
shows the states of the terminal and MediaSynchroniser object:

Figure 23: Media Synchronization states

When a MediaSynchroniser object is created, it is not yet initialized.

Once a method call to initialize the MediaSynchroniser object has completed, the MediaSynchroniser object is
considered initialized.

ETSI

ETSI TS 102 796 V1.3.1 (2015-10)131

While the MediaSynchroniser object is initialized, the HbbTV® application can instruct the terminal to add and
remove media objects from the MediaSynchroniser object and update correlation timestamps (synchronization timing
information) for the media objects.

Multi-stream synchronization is performed by the terminal while there are at least two media objects being used with
the MediaSynchroniser object. These media objects will have been either passed to the MediaSynchroniser object
during initialization or subsequently added to it.

While the MediaSynchroniser object is initialized, the HbbTV® application can enable inter-device synchronization
to instruct the terminal to become a master terminal or slave terminal. Whether it becomes a master or slave depends on
the method that was used to initialize the MediaSynchroniser object. While a terminal is a master terminal or slave
terminal it is performing inter-device synchronization.

NOTE: A terminal can only become a slave terminal if the terminal supports this capability (see clause 10.2.9.3).

While the terminal is a master terminal or slave terminal, the HbbTV® application can instruct the terminal to disable
inter-device synchronization, causing the terminal to cease to be a master terminal or slave terminal.

A terminal can perform both multi-stream synchronization and inter-device synchronization at the same time by both
adding media objects to the MediaSynchroniser object and enabling inter-device synchronization.

If a MediaSynchroniser object has been previously initialized, but is then replaced by another MediaSynchroniser
being initialized, then a permanent error occurs for the existing MediaSynchroniser.

Permanent errors of the master media stream media object (including the stopping - which is not considered the same as
pausing, or the unavailability of the stream's timeline) cause a permanent error of the MediaSynchroniser. Permanent
errors of other media streams cause those media streams to be removed from the MediaSynchroniser and the
MediaSynchroniser continues operation. Transient errors temporarily suspend synchronization for some or all media
objects. See clause 9.7.1.

In any state, if a permanent error occurs then the MediaSynchroniser object enters a permanent error state and is no
longer initialized and the terminal ceases both multi-stream synchronization and inter-device synchronization (as either
master terminal or slave terminal).

If the MediaSynchroniser object is destroyed then the terminal ceases both multi-stream synchronization and inter-
device synchronization (as either master terminal or slave terminal).

13.3.2 Multi-stream synchronization

While the MediaSynchroniser object is initialized, a terminal shall attempt to perform multi-stream synchronization
while:

if the MediaSynchroniser was initialized using initMediaSynchroniser() method, at least one media object has been
added using the addMediaObject() method; or if the MediaSynchroniser was initialized using the
initSlaveMediaSynchroniser() method, at least two media objects have been added using the addMediaObject()
method and the inter-device synchronization has been enabled (causing the terminal to have become a slave
terminal).The terminal shall cease to perform multi-stream synchronization if:

• the MediaSynchroniser was initialized with the initMediaSynchroniser() method and all media objects
have been removed except for the master media object; or

• the MediaSynchroniser was initialized with the initSlaveMediaSynchroniser() method and all but one
media object has been removed; or

• the MediaSynchroniser was initialized using the initSlaveMediaSynchroniser() method and inter-device
synchronization has been disabled (causing the terminal to cease to be a slave terminal); or

• a permanent error of the MediaSynchroniser object occurs (see clause 13.3.8); or

• the MediaSynchroniser object is destroyed; or

• another MediaSynchroniser object has been initialized after this one was initialized (meaning that the
existing MediaSynchroniser object has been replaced).

ETSI

ETSI TS 102 796 V1.3.1 (2015-10)132

The terminal shall not cease presentation of media objects currently added to the MediaSynchroniser object purely as
a result of ceasing to perform multi-stream synchronization. However, if there are insufficient decoders available to
support all of the media objects, the presentation of one or more media objects may cease due to insufficient resources.
In this case, the terminal shall continue to present what was the master media object, taking into account the
requirements in clause 10.2.7.

13.3.3 Becoming a master terminal

If inter-device synchronization is enabled for a MediaSynchroniser object that was initialized using the
initMediaSynchroniser() method then the terminal shall ensure that the following protocol endpoints are active:

• a DVB CSS-CII protocol endpoint as described in clause 13.6.2;

• a DVB CSS-WC protocol endpoint as described in clause 13.7.3; and

• a DVB CSS-TS protocol endpoint as described in clause 13.8.2.

Once the endpoints are being provided, the terminal is a master terminal.

NOTE: The application that requested that inter-device synchronization be enabled is notified that the terminal
has become a master terminal by callback (see clause 8.2.3.2.2).

13.3.4 Ceasing to be a master terminal

A terminal shall cease to be a master terminal if:

• the disableInterDeviceSync() method is called on the MediaSynchroniser object (see clause 8.2.3.2.2); or

• there is a permanent error of the MediaSynchroniser object (see clause 13.3.8); or

• the MediaSynchroniser object is destroyed; or

• another MediaSynchroniser object has been initialized after this one was initialized (meaning that the
existing MediaSynchroniser object has been replaced).

If any of the above is true, then the terminal shall disable inter-device synchronization by disabling the DVB CSS-TS
protocol endpoint as described in clause 13.8.2. The terminal may also disable the CSS-CII and CSS-WC protocol
endpoints as described in clauses 13.6.2 and 13.7.3.

If the permanent error is due to a state transition for the media object representing the master media that results in the
primary aspect of presentationStatus changing to "fault" (see clause 13.6.2) then a CII message communicating the
presentationStatus shall be sent to all slave terminals and CSAs connected to the CSS-CII endpoint. If any endpoints
are to be disabled, the CII message shall be sent before this happens.

If the permanent error is due to unavailability of the master media timeline then the terminal shall send a Control
Timestamp message to all slave terminals and CSAs connected to the CSS-TS endpoint to communicate that the
timeline is not available. If any endpoints are to be disabled, the Control Timestamp message shall be sent before this
happens.

When a protocol endpoint is disabled, the terminal shall cleanly close any connections to that endpoint.

Once this process has completed, the terminal is no longer a master terminal.

NOTE: If the application called disableInterDeviceSync() method then the application is notified that the
terminal is no longer a master terminal by callback (see clause 8.2.3.2.2).

13.3.5 Becoming a slave terminal

If inter-device synchronization is enabled for a MediaSynchroniser object that was initialized using the
initSlaveMediaSynchroniser() method then the terminal shall:

• connect to the master terminal CSS-CII protocol endpoint as described in clause 13.6.3 (if it has not already
done so); then

ETSI

ETSI TS 102 796 V1.3.1 (2015-10)133

• communicate with the master terminal CSS-WC endpoint as described in clause 13.7.4 (if it is not already
doing so); and

• connect to the master terminal CSS-TS protocol endpoint as described in clause 13.8.3.

Once the above steps have occurred then the terminal is a slave terminal and the terminal shall attempt to commence
synchronized presentation of any media objects currently added to the MediaSynchroniser with the media objects
being presented by the master terminal.

NOTE: The application that requested that inter-device synchronization be enabled is notified that the terminal
has become a master terminal by callback (see clause 8.2.3.2.2).

13.3.6 Ceasing to be a slave terminal

A terminal shall cease to be a slave terminal if:

• the disableInterDeviceSync() method is called on the MediaSynchroniser object (see clause 8.2.3.2.2); or

• there is a permanent error of the MediaSynchroniser object (e.g. because the master terminal ceases to be a
master terminal, or the timeline is no longer available, or there is some problem with communicating with the
protocol endpoints) (see clause 13.3.8); or

• the MediaSynchroniser object is destroyed; or

• another MediaSynchroniser object has been initialized after this one was initialized (meaning that the
existing MediaSynchroniser object has been replaced).

If any of the above is true, the terminal shall:

• disconnect any connections to the DVB CSS-CII and DVB CSS-TS protocol endpoints of the master terminal;
and

• cease synchronization of all media objects associated with the MediaSynchroniser.

The terminal may also cease to communicate with the DVB CSS-WC protocol endpoint of the master terminal.

Once this process has completed the terminal is no longer a slave terminal.

The terminal shall not cease presentation of media objects currently added to the MediaSynchroniser as a result of
ceasing to be a slave terminal.

13.3.7 Transient errors

When a transient error of the MediaSynchroniser occurs the MediaSynchroniser shall continue to attempt to
perform multi-stream and/or inter-device synchronization if it is already doing so.

The following situations shall cause a transient error of the MediaSynchroniser:

• errors of media objects representing other media streams (see clause 9.7.1);

• unavailability of the requested timeline for other media (see clause 9.7.3);

• inability to achieve or maintain synchronization between streams because the content data of the streams
cannot be obtained early enough or delayed sufficiently (see clauses 9.7.2 and 13.8.3.5);

• buffering, stalling or transient errors of the master media stream or other media streams (see clause 9.7.1);

• calling of methods of the MediaSynchroniser when the MediaSynchroniser is in an inappropriate state (see
clause 8.2.3.2.2);

• other media streams not being in a suitable state to participate in synchronization (see clause 9.7.1); or

• the presentationStatus received by a slave terminal from a master terminal in a CII message has changed to
"transitioning" (see clause 13.6.3).

ETSI

ETSI TS 102 796 V1.3.1 (2015-10)134

NOTE: These causes of transient errors can occur at any time while inter-device or multi-stream synchronization
is being performed. They do not just occur as a result of method calls by the application.

13.3.8 Permanent errors

When a permanent error of the MediaSynchroniser occurs, the MediaSynchroniser shall enter the permanent error
state. As specified in clauses 13.3.2, 13.3.4, and 13.3.6, this shall cause the terminal to cease to perform multi-stream
synchronization if it is currently performing it. If the terminal is a master terminal or slave terminal then the terminal
shall also cease to be a master terminal or slave terminal.

When in the permanent error state, all method calls on the MediaSynchroniser object shall fail.

NOTE 1: To perform further media synchronization, the existing MediaSynchroniser object needs to be destroyed
or discarded and a new one created and initialized.

A permanent error of the MediaSynchroniser can occur if any of the following occurs:

• errors during initialization of the MediaSynchroniser (see initMediaSynchroniser() and
initSlaveMediaSynchroniser() methods in clause 8.2.3.2.2);

• errors of media objects representing the master media (see clause 9.7.1);

• unavailability of the timeline for the master media (see clause 9.7.3);

• errors in communication with a master terminal using the protocols defined in ETSI TS 103 286-2 [47]. when
acting as a slave terminal (see clauses 13.6.3 and 13.8.3);

• the master media stream not being in a suitable state to participate in synchronization, including the media
stream transitioning to a stopped, unrealised or finished state or as a consequence of the media source being re-
loaded (see clause 9.7.1);

• the MediaSynchroniser being replaced after it has been initialized because another MediaSynchroniser has
subsequently been initialized (see initMediaSynchroniser() and initSlaveMediaSynchroniser() methods
in clause 8.2.3.2.2).

NOTE 2: With the exception of the first cause listed above, these causes of permanent errors can occur at any time
while inter-device of multi-stream synchronization is being performed. They do not only occur as an
immediate effect of method calls by the application.

13.4 Timelines and timestamping

13.4.1 Reference point for timestamping

The reference point for generation and interpretation of Timestamps by the HbbTV® terminal and Companion Screen
application used in inter-device synchronization is as defined in clause 5.7.2 of ETSI TS 103 286-2 [47].

The terminal is responsible for compensating for any extra travel time behind a technically implemented timestamp
measurement point due to output buffers, frame buffers, quality-enhancement technologies and other sources of delay
between the point of measurement and the emission of sound or light. Clause C.4 of ETSI TS 103 286-2 [47] provides
examples of such calculations. If no accurate values are known then the terminal shall make a best-effort estimate of the
extra travel time and compensate for it.

NOTE: HDMI 2.0 [i.7] provides functionality for dynamic synchronization of video and audio streams.
Information from the HDMI can be used to make a best-effort estimate of the extra travel time between a
set-top box and the light and sound output of the TV screen.

13.4.2 Supported timelines and their selection

A Timeline is the reference frame for measuring the progress of time for a given media stream. How a timeline is to be
derived for a given media stream is described by a Timeline Selector as defined in clause 5.3 of ETSI
TS 103 286-2 [47].

ETSI

ETSI TS 102 796 V1.3.1 (2015-10)135

For multi-stream and inter-device synchronization, the terminal shall support the use of the following types of timeline
(defined in this clause and clause 5.3 of ETSI TS 103 286-2 [47]) for the types of broadcast or broadband content
shown in table 18.

Table 18: Multi-stream and inter-device synchronization timeline support

Type of timeline Supported for
MPEG-TS Presentation Timestamps (PTS)
(see note)

MPEG Transport Stream delivered via broadcast.
Single program MPEG Transport Stream streamed via
broadband.

ISOBMFF Composition Time (CT)
(see note)

ISOBMFF streamed using HTTP via broadband (excluding
MPEG DASH).

MPEG-TS Timed External Media Information (TEMI)
(see note)

MPEG Transport Stream delivered via broadcast.
Single program MPEG Transport Stream streamed via
broadband.

MPEG DASH Period Relative
(see note)

MPEG DASH streamed via broadband.

EBU-TT-D milliseconds EBU-TT-D conformant document delivered via HTTP.
NOTE: This type of timeline is defined in clause 5.3 of ETSI TS 103 286-2 [47].

The terminal reports which timeline types are supported for different types of broadband streaming in the XML
capabilities document defined in clause 10.2.4 by listing supported timeline types in the value of the sync_tl attribute
of <video_profile> elements (see clause A.2.14). For a media stream that is a raw XML document containing EBU-
TT-D conformant TTML subtitles that is delivered out of band the terminal shall support the use of a timeline derived
from the timing information used within the EBU-TT-D conformant TTML subtitle document. The Timeline Selector
for this timeline shall be "urn:hbbtv:sync:timeline:ebu-tt-d". An EBU-TT-D conformant TTML subtitle timing is
expressed in terms of hours, minutes and seconds, where the seconds can include a decimal fractional part.
1 millisecond shall equal 1 tick and therefore the equivalent ticks time value on this Timeline shall be calculated as
follows, rounding to the nearest integer:

round (1 000 × (seconds + 60 × (minutes+60 × hours)))

NOTE 1: EBU-TT-D conformant TTML subtitles delivered out-of-band can also be synchronized with other media
streams using extensions to the AV Control object as defined in A.2.5.3 and HTML5 media objects as
defined in clause A.2.12.2.

The terminal shall derive the timeline described by a Timeline Selector for a media stream if the Timeline Selector and
media object representing that media stream are passed as arguments to the initMediaSynchroniser() or
addMediaObject() methods of a MediaSynchroniser object.

ETSI TS 103 286-2 [47] defines support in the terminal for the decoding of MPEG-TS Timed External Media
Information (TEMI) timeline descriptors in the adaptation field of Transport Stream packets carrying Packetized
Elementary Streams (PES). Terminals shall support at least the following components of a DVB service to carry MPEG
TEMI timeline descriptors:

• Any component that is supported by the terminal for use with media synchronization and MPEG TEMI, i.e.
audio, video and subtitles.

• Any component with stream_type 6 (private PES) and stream_id 1011 1101 ("private_stream_1") in the PES
packet header, including, but not limited to, components where the PES packet payloads are empty.

NOTE 2: Selection of the correct timeline descriptors by component tag and timeline id is done via the timeline
selector by using the media sync API as defined in clause 8.2.3. This also means that there can be
different timelines present if applications use either multiple components or timeline ids or a combination
of both.

When deriving a timeline from TEMI timeline descriptors, a wrap of PTS values shall not affect the TEMI timeline.

NOTE 3: A broadcaster can choose to not include a temi_timeline_descriptors for every access unit. Extrapolation
of the timeline position for access units without a temi_timeline_descriptor (following an earlier access
unit that did have a temi_timeline_descriptor) is involves calculating the difference between the PTS of
the two access units. This calculation needs to correctly handle a situation where PTS has wrapped
between the two access units.

ETSI

ETSI TS 102 796 V1.3.1 (2015-10)136

13.4.3 Synchronization timeline

13.4.3.1 Timelines for the MediaSynchroniser API

The Timeline to be used by the MediaSynchroniser API within a master terminal is the timeline selected for the
master media in the call to the initMediaSynchroniser() method of the MediaSynchroniser object.

For a slave terminal, the Timeline to be used by the MediaSynchroniser API is the same Timeline that is used by the
MediaSynchroniser API at the master terminal.

Correlation Timestamps provided by HbbTV® applications to the MediaSynchroniser (see clause 8.2.3.4) are
therefore interpreted by both master and slave terminals as follows:

• tlvMaster value represents a point on the Timeline used by the MediaSynchroniser API;

• tlvOther value represents a point on the timeline selected for the other media that this Correlation Timestamp
is associated with.

The timeline for the other media is specified when the media object representing it is added to a MediaSynchroniser
using the addMediaObject() method.

13.4.3.2 Synchronization timeline for Inter-device synchronization

For inter-device synchronization, the Synchronization Timeline is the reference frame for contentTime values in
timestamp messages exchanged between a master terminal and a slave terminal (or CSA) via the CSS-TS protocol (as
described in clauses 5.7 and 9 of ETSI TS 103 286-2 [47]).

Where timestamps are being exchanged between a master terminal and a slave terminal via the CSS-TS protocol, the
Synchronization Timeline is the same as the Timeline for the MediaSynchroniser API used by both the master and
slave terminal.

NOTE 1: In the context of the CSS-TS protocol (see clause 13.8.3.2), the slave terminal will select the timeline that
was passed to it by the master terminal via the CSS-CII protocol (see clause 13.6.3). The timeline that is
passed is the timeline used by the MediaSynchroniser API at the master terminal (see clause 13.6.2).

However, where timestamps are exchanged between a master terminal and a CSA, the Synchronization Timeline may
be a different timeline.

NOTE 2: In the context of the CSS-TS protocol, a CSA is not required to select the timeline that was passed to it by
the master terminal via the CSS-CII message.

To use a TEMI timeline, the terminal shall decode the temi_timeline_descriptor with timeline_id matching that
specified in the timeline selector (as specified in clause 11.3.3 of ETSI TS 103 286-2 [47]) when carried in an
af_descriptor within the adaptation header of MPEG transport stream packets corresponding to the component
specified in the timeline selector. The terminal is not required to decode other descriptors that can be carried in the
af_descriptor.

13.5 Buffer for media synchronization

13.5.1 General

Terminals have buffers for normal operation, for example input and output buffers for codecs. In the case of media
synchronization between two or more pieces of timed content, additional buffer capacity is needed, as one timed content
will be the most laggard and the other piece(s) of timed content need to be buffered to achieve time alignment. That
additional buffer capacity can be in the terminal and/or in the network.

• The buffer for media synchronization in the terminal is a reserved amount of memory dedicated to media

synchronization, which is additional to the existing buffering. An HbbTV® application can use this to buffer a
timed content in order to synchronize it with another timed content.

ETSI

ETSI TS 102 796 V1.3.1 (2015-10)137

• Buffering for media synchronization can also be performed in the network. A Content Delivery Network
(CDN) can cache live and on-demand content. The terminal instructs the retrieval of chunks of the timed
content from the network such that the terminal can play out the timed content with the correct timing for
media synchronization without running out of the buffer space that the terminal has for its normal operation.

Clause 13.5.2 defines the cases for the use of the different buffers, or the absence thereof.

Clause 13.5.3 defines the buffer model for the buffer for media synchronization in the terminal.

The clauses of 13.5 apply to both multi-stream and inter-device synchronization.

13.5.2 Media synchronization buffering cases

For any timed content one of the cases of table 19 applies.

Table 19: Buffering for media synchronization of timed content in the network

Case The timed content was
PVR-recorded

The timed content is buffered
in the network

The terminal has a buffer for media
synchronization

1 Yes N/A N/A
2 No Yes N/A
3 No No Yes
4 No No No

In case 1, the timed content was recorded on the PVR in the past. In this case, obviously no additional buffer capacity
for media synchronization (network or terminal) is needed for that timed content.

In case 2, the terminal shall use the media synchronization buffer in the network for the time alignment of the timed
content and it shall not reduce the available capacity of the buffer in the terminal for media synchronization
(clause 13.5.3) for other timed content. It is the broadcaster's responsibility to assure that the relevant chunks of timed
content are available from the network. An application can determine whether an item of timed content can be buffered
in the network by inspecting the source and type of the timed content. Table 20 defines whether timed content can be
buffered in the network or not.

Table 20: Media Synchronization buffering of timed content in the network

Source Type Is buffered in the network
Broadcast any No
Broadband HTTP Streaming No

MPEG DASH Yes

In case 3, the terminal shall use its buffer for media synchronization to time the playout of the timed content with the
correct timing for media synchronization. The media synchronization buffer model is provided in clause 13.5.3. It is the
broadcaster's responsibility to assure that the terminal will not need more than the available buffer size for media
synchronization.

In case 4, media synchronization is still possible. It is the broadcaster's responsibility to assure that there is not more
than one timed content of this type in a media synchronization session, and that it will always be the most laggard timed
content, so that it does not need to be buffered for media synchronization.

The broadcaster may need to employ delay management in its distribution networks to achieve coarse time alignment
between the received media streams, in order to prevent buffer overflow or underflow in the terminal, network or
Companion Screen Device.

NOTE: Informative clause G.2 provides implementation guidelines for media synchronization for managing
delay throughout distribution network. More implementation guidelines for broadcasters are provided in
annex B of ETSI TS 103 286-2 [47].

ETSI

ETSI TS 102 796 V1.3.1 (2015-10)138

13.5.3 Media synchronization buffer model

The media synchronization buffer is optional. The terminal exposes the presence of a buffer for media synchronization
through a non-zero value of the property minSyncBufferSize of the MediaSynchroniser embedded object (see
clause 8.2.3.2.1).

The following are requirements on media synchronization buffer model and size.

• The terminal shall conceptually have a single dedicated shared buffer for all types of media synchronization
together.

- Multi-stream synchronization: synchronising multiple media streams on a single HbbTV® terminal, both
broadcast streams and companion streams.

- Inter-device synchronization: synchronizing media streams between an HbbTV® terminal and a

companion device or other HbbTV® terminal.

- Synchronising application and content across devices.

• The media synchronization buffer in the terminal shall only be used for buffering content to be presented on

the HbbTV® terminal itself.

• The terminal shall, for media synchronization, buffer all service components that are used for the
synchronization, if the service is part of a multiplex.

• When a service is buffered for media synchronization, the timing of any events that are part of the service shall
be preserved. For example, do-it-now stream events included in an MPEG-2 transport stream shall be fired at
the same time as the presentation of the video and audio that they would have been fired with if the service had
not been buffered for media synchronization. Events that are part of the service shall not be fired when the part
of the stream carrying them is first buffered.

• The terminal may also buffer components from other services, when available media synchronization buffer
space permits. If components of other services are buffered then it does not count towards the usage of the
media synchronization buffer.

• The terminal shall manage the media synchronization buffer in way such that in case of a resource conflict,
data for components of the services that are currently used for synchronization on the terminal, ousts any other
data from the media synchronization buffer.

NOTE 1: This means that, if an implementation decides to store non-service-components like the multiplexing
overhead or the full multiplex, then the defined buffer space is not used for this overhead.

• The size of the media synchronization buffer shall be at least 30 Megabytes
(that is 30 × 1 024 × 1 024 = 31 457 280 bytes).

NOTE 2: As a consequence of the above requirement, the value of the property minSyncBufferSize
(clause 8.2.3.2.1) is either 0 (i.e. no minimum guaranteed buffer space for media synchronization), or a
number equal to or greater than 31 457 280.

NOTE 3: Calculation example. If the broadcast stream has a bit rate of 20 Mb/s and the media synchronization
buffer size is 30 MB, then the broadcaster can assume that the terminal is able to buffer up to
30 (Megabyte) × 8 (bit per byte) / 20 (Megabit per second) = 12,58 seconds of media- stream buffering. If
there are two media streams to be buffered (e.g. in a combination of multi-stream and inter-device
synchronization), then there would be at average 6 seconds of media synchronization buffering per media
stream.

Whereas specification of media synchronization buffer size of the Companion Device is out of scope of the present
document, it may be reasonably expected to be similarly big as for the terminal.

ETSI

ETSI TS 102 796 V1.3.1 (2015-10)139

13.6 Content Identification Information service endpoint

13.6.1 General

To facilitate inter-device synchronization of the presentation of media, a master terminal implements the CSS-CII
service endpoint (as defined in clause 6 of ETSI TS 103 286-2 [47]). A Companion Screen application or a slave
terminal subscribes to the CSS-CII service endpoint when performing inter-device synchronization.

13.6.2 CSS-CII service endpoint (master terminal)

A master terminal shall implement a CSS-CII service endpoint as defined in clause 6 of ETSI TS 103 286-2 [47] at the
terminal's broadband interface.

The master terminal shall provide an active CSS-CII protocol service endpoint when the HbbTV® application has
enabled inter-device synchronization functionality. The terminal may provide an active CSS-CII protocol service
endpoint at other times but this is implementation dependent and outside the scope of the present document. The master
terminal shall support a minimum of 5 concurrent connections to the CSS-CII service endpoint and shall allow slave
terminals and CSAs to connect to this service endpoint until the master terminal has reached the limit of the number of
simultaneous sessions it can support.

The master terminal shall ignore the Origin header if it is present in the client handshake of the connection request.

CII messages sent by the master terminal via a connection to the CSS-CII service endpoint shall convey the following:

• The contentId and contentIdStatus properties shall correspond to the Content Identifier of the master
media. For DVB broadcast services and MPEG DASH streams this shall be as defined in clause 5.2 of ETSI
TS 103 286-2 [47]. For ISOBMFF and MPEG2 TS delivered via broadband:

- the value of the contentId property shall be the absolute version of the URL provided by the HbbTV®
application to specify the location of the media stream, before any redirect that may occur, and

- the contentIdStatus shall be "final".

• The presentationStatus property shall describe the presentation status of the master media. The primary
aspect of presentation status shall be derived from the state of the media object presenting the master media.
For a video/broadcast object this shall be according to table 21. For an AV Control object this shall be
according to table 22. For an HTML5 media element that shall be according to table 23.

NOTE 1: While the master media is paused, buffering, tuning or presenting normally, the primary aspect of status is
expected to be "okay" or "transitioning" as appropriate (see clause 5.6.4 of ETSI TS 103 286-2 [47]). If
there are temporary disruptions to picture and sound (e.g. due to poor broadcast signal reception) but the
media continues to be presented without generating a permanent error condition, then the primary aspect
of presentationStatus remains "okay" because presentation is continuing.

• The mrsUrl property shall correspond to the URL of the MRS determined for the master media (see
clause 5.6.2 of ETSI TS 103 286-2 [47] for MPEG TS delivered via broadcast and for MPEG DASH).

NOTE 2: No mechanism is defined to determine the MRS URL if the master media is MPEG2 TS delivered via
broadband (not via broadcast or DVB IPTV) or if it is ISOBMFF (not DASH) delivered via broadband.
In these circumstances the value of the mrsUrl property is null because the terminal cannot provide an
MRS URL.

• The wcUrl property shall correspond to the CSS-WC service endpoint provided by the master terminal (see
clause 13.7).

• The tsUrl property shall correspond to the CSS-TS service endpoint provided by the master terminal (see
clause 13.8).

• While the MediaSynchroniser API timeline is available (see clause 9.7.3) the timelines property shall convey
a list where the first item in the list is a timeline options JSON object (as defined in clause 5.6 of ETSI
TS 103 286-2 [47]) that describes the MediaSynchroniser API Timeline (as defined in clause 13.4.3).

ETSI

ETSI TS 102 796 V1.3.1 (2015-10)140

Table 21: Primary aspect of presentationStatus when master media is a video/broadcast object

Transition to this state of the v/b
object

Current v/b object state Primary aspect of CSS-CII
presentationStatus

channel change or bind Connecting transitioning
transient error Connecting okay
any transition Presenting okay
any transition Unrealised or Stopped fault

see note
NOTE: After this is sent in a CII message, the terminal will also cease to be a master terminal for inter-device

synchronization because this scenario generates a permanent error (see clause 9.7.1).

Table 22: Primary aspect of presentationStatus when master media is an AV Control object

States of the AV Control object
since data attribute last changed

Current AV Control object state Primary aspect of CSS-CII
presentationStatus

Has not yet been in Playing state Connecting, Buffering or Paused transitioning
Has been in Playing state Buffering or Paused okay

 Playing okay
 Error, Stopped or Finished fault

see note
NOTE: After this is sent in a CII message, the terminal will also cease to be a master terminal for inter-device

synchronization because this scenario generates a permanent error (see clause 9.7.1).

Table 23: Primary aspect of presentationStatus when master media is an HTML5 media element

State of HTML5 media element Primary aspect of CSS-CII presentationStatus
readyState < HAVE_CURRENT_DATA transitioning
readyState ≥ HAVE_CURRENT_DATA okay

An error has occurred fault
see note

NOTE: After this is sent in a CII message, the terminal will also cease to be a master terminal for inter-device
synchronization because this scenario generates a permanent error (see clause 9.7.1) .

As described in clause 5.6 of ETSI TS 103 286-2 [47], a slave terminal (or CSA) assumes initial values for all
properties of null until a first CII message is received from the master terminal. An active CSS-CII service endpoint is
always accompanied by active CSS-WC and CSS-TS service endpoints and there is always a designated master media
object that will be connecting to or playing a source of media. The first CII message shall therefore define non-null
values for at least the following properties: protocolVersion, contentId, contentIdStatus, presentationStatus,
tsUrl and wcUrl.

As described in clause 5.6 of ETSI TS 103 286-2 [47], properties may be omitted from CII messages if the value of the
property has not changed since the last time a CII message was sent to the same slave.

NOTE 3: The contentId and other properties can change during inter-device synchronization even though the
master media is derived from the same media object. The master terminal pushes updates when any
property of the CII message changes.

The CSS-CII endpoint shall satisfy the security requirements of clause 11.7 of the present document.

13.6.3 Use of CSS-CII service endpoint (slave terminal)

When a terminal becomes a slave terminal, it shall connect to the CSS-CII service endpoint of the master terminal as
indicated by the URL of the service endpoint provided as an argument to the initSlaveMediaSynchroniser() method
if it has not already done so.

If any of the following situations occur, then the slave terminal shall deem that inter-device synchronization with the
master terminal has failed and generate a permanent error with the corresponding error code (defined in
clause 8.2.3.2.4) for the MediaSynchroniser object and cease to be a slave terminal:

• The master terminal refuses the request to connect to the CSS-CII service endpoint (error code 6).

• The CSS-CII service endpoint is, or becomes, unreachable or unresponsive (error code 6).

ETSI

ETSI TS 102 796 V1.3.1 (2015-10)141

• The master terminal closes the connection (error code 6).

• The wcUrl property of any CSS-CII message received is null or is not provided in the first CSS-CII message
received (error code 10).

• The tsUrl property of any CSS-CII message received is null or is not provided in the first CSS-CII message
received (error code 10).

• The presentationStatus property of any CSS-CII message received has a value where the primary status
aspect is not "okay" or "transitioning" (error code 6).

NOTE: A CSS-CII message sent to a slave terminal can omit properties if they have not changed since the
previous message sent.

If none of the above situations occurs, the slave terminal shall maintain the connection to the CSS-CII service endpoint
until the terminal ceases to be a slave terminal (see clause 13.6.5) or the MediaSynchroniser in the slave terminal
encounters a permanent error.

If the presentationStatus property changes to "transitioning" then the terminal shall generate a transient error for the
MediaSynchroniser object with error code 19.

13.7 Wall clock synchronization

13.7.1 General

To facilitate inter-device synchronization of the presentation of media, a terminal has an internal Wall Clock against
which the progress of the timeline of media being presented by the terminal can be measured. The master terminal

responds to Wall Clock Synchronization protocol requests from slave HbbTV® terminals or a Companion Screen
applications to synchronise their own internal Wall Clock with that of the master terminal.

13.7.2 Wall clock properties

The terminal shall have a Wall Clock as defined in clause 8.3 of ETSI TS 103 286-2 [47]. The Wall Clock of the master
terminal shall be monotonic and without discontinuities. The Wall Clock should not be directly derived from any real
time clock source in the master or slave terminal.

NOTE 1: It is possible to derive a Wall Clock from a real time clock source, but this requires care to be taken to
ensure that it is free from discontinuities and meets the measurement precision and maximum frequency
error requirements described below. A local NTP client process within the terminal can cause
discontinuities or contribute to frequency error when it is applying a frequency adjustment (slew) to
adjust the clock.

Measurements of the Wall Clock (or clock from which the Wall Clock is derived) by the terminal shall have a
measurement precision (as defined in clause 8.2.2 of ETSI TS 103 286-2 [47]) of 1ms or better (smaller) for the
purposes of:

• the master or slave terminal measuring the timeline of the broadcast or broadband media against the reference
point (defined in clause 13.2.5);

• the master terminal setting the value of the receive_timevalue in a Wall Clock Synchronization response
message with message_type 1, 2 or 3;

• the master terminal setting the value of the transmit_timevalue in a Wall Clock Synchronization response
message with message_type 1 or 3;

• the slave terminal setting the value of the originate_timevalue in a Wall Clock Synchronization request
message with message_type 0; and

• the slave terminal recording the time at which at which a Wall Clock Synchronization response message with
message_type 1, 2 or 3 is received.

ETSI

ETSI TS 102 796 V1.3.1 (2015-10)142

NOTE 2: A master terminal sets the precision field in Wall Clock Synchronization response messages that it
sends in order to indicate the measurement precision for receive_timevalue and transmit_timevalue
fields. The precision field is not used for this purpose in Wall Clock Synchronization request messages
sent by slave terminals.

The maximum frequency error of the Wall Clock (or clock from which the Wall Clock is derived), as defined in
clause 8.2.3 of ETSI TS 103 286-2 [47], shall be 500 ppm or better (smaller).

NOTE 3: A master terminal sets the max_freq_error field in Wall Clock Synchronization response messages that it
sends in order to indicate the maximum frequency error of the Wall Clock. The max_freq_error field is
not used for this purpose in Wall Clock Synchronization request messages sent by slave terminals.

13.7.3 WC-Server (master terminal)

When the terminal is a master terminal, it shall implement a WC-Server as defined in clause 8 of ETSI
TS 103 286-2 [47]. The WC-Server shall provide the CSS-WC service endpoint on the terminal's broadband interface.

The master terminal WC-Server function shall provide an active Wall Clock Synchronization service endpoint and
advertise the location through the wcUrl property of CSS-CII messages sent from the CSS-CII service endpoint. The
terminal shall not change the location of the WC-Server endpoint while one or more clients are connected to CSS-CII.

NOTE 1: A slave terminal or a CSA only communicates with CSS-WC service endpoint on a master terminal. A
terminal is not required to implement a WC-Server function while it is a slave terminal.

The WC-Server shall respond in a timely fashion to a minimum of 25 requests per second. Responding in a timely
fashion is defined as sending all responses within 200 ms or less of receiving any request, given uncongested network
conditions on the terminal's broadband interface.

NOTE 2: 25 requests per second is assumed to comprise 5 entities (some combination of CSAs or slave terminals)
simultaneously sending 5 requests per second. This is a peak rate that may be used only for a few seconds
at the beginning of a Wall Clock Synchronization procedure to rapidly synchronise their Wall Clocks.
Subsequent requests can be assumed to be much more infrequent (e.g. 1 every 2 seconds per entity).

If the WC-Server responds to a request by sending both a response and a follow-up response then the follow-up
response shall also be sent by the terminal within 200 ms of the request being received, given uncongested network
conditions on the terminal's broadband interface.

In Wall Clock response messages (where the message_type field has value 1, 2 or 3) sent by a master terminal the
precision field shall have a value equal to or less than -9 and the max_freq_error field shall have a value equal to or
less than 12 800.

NOTE 3: These constraints on values correspond to the requirements specified in clause 13.7.2 for measurement
precision (for setting the values of the receive_timevalue and transmit_timevalue fields) and
maximum frequency error of the Wall Clock.

13.7.4 WC-Client (slave terminal)

While a terminal is a slave terminal, or in the process of becoming a slave terminal, it shall implement a WC-Client
function (as defined in clause 8 of ETSI TS 103 286-2 [47]).

During the process of becoming a slave terminal, the WC-Client function of the slave terminal commences the process
of Wall Clock Synchronization if it has not already done so. The WC-Client function shall send a Wall Clock protocol
request message within 5 seconds of both becoming a slave terminal and having obtained the endpoint location for the
CSS-WC interface via the CSS-CII interface. When the terminal ceases to be a slave terminal, the WC-Client function
of the slave terminal may cease this process.

The WC-Client function of the slave terminal shall send Wall Clock protocol request messages to the service endpoint
of the WC-Server function that is located by the wcUrl property in CSS-CII messages received from the master
terminal.

The WC-Client function of the slave terminal shall wait at least 200 ms and no more than 5 000 ms between sending
request messages. A WC-Client function shall send no more than 30 requests over a 60 second period, ignoring the first
2 seconds after the Wall Clock Synchronization process is commenced.

ETSI

ETSI TS 102 796 V1.3.1 (2015-10)143

The WC-Client function of the slave terminal shall be able to synchronise its Wall Clock when response or follow-up
response messages arrive at the WC-Client up to at least 1 000 ms after the request message is sent by the WC-Client
function that caused the response or follow-up response message to be sent.

If the WC-Client function of the slave terminal does not receive an expected response or follow-up response message
within 1 000 ms, the WC-Client function shall continue to send request messages and use the received response and
follow-up response messages for synchronising its Wall Clock.The algorithm by which the WC-Client function of the
slave terminal estimates and adjusts the slave terminal Wall Clock to match the Wall Clock of the master terminal is
implementation dependent and outside the scope of the present document.

NOTE 1: Clause C.8.3 of ETSI TS 103 286-2 [47] provides guidance on how a WC-Client estimates the master
terminal Wall Clock.

Dispersion is the maximum amount by which the WC-Client estimate of the master WC-Server Wall Clock could differ
from the true value of the WC-Server Wall Clock. The peak value of dispersion over an interval of time quantifies the
limit on the accuracy of synchronization achieved by the slave terminal during that interval. The slave terminal reports
this as a positive number of milliseconds through the interDeviceSyncDispersion property of the
MediaSynchroniser object (see clause 8.2.3.2.1). The value of this property shall represent the peak value of dispersion
over the period since the last time the property was updated.

The algorithm by which dispersion is calculated is implementation dependent and outside the scope of the present
document.

NOTE 2: The main contribution to dispersion is the round trip time of the request and response messages on the
home network. Between receiving responses, dispersion increases, reflecting the potential for slight
frequency differences between the oscillators driving the Wall Clock in each device. Clause C.8.3 of
ETSI TS 103 286-2 [47] also provides guidance on how to calculate dispersion.

Before the WC-Client function of the slave terminal receives its first response from a WC-Server, the dispersion shall
be infinite.

NOTE 3: Any suitable algorithm for adjusting the slave terminal Wall Clock will lower dispersion whenever an
adjustment is made. Peak values for calculated dispersion therefore occur at the moments immediately
prior to the adjustment being made.

13.8 Timeline Synchronization service endpoint

13.8.1 General

To facilitate inter-device synchronization of the presentation of media, a master terminal implements the CSS-TS
service endpoint (as defined in clause 9 of ETSI TS 103 286-2 [47]). A slave terminal or Companion Screen application
connects to the CSS-TS service endpoint to establish a session of the Timeline Synchronization Protocol.

This protocol conveys messages containing setup-data and Control Timestamps and Actual, Earliest and Latest
Presentation Timestamps that relate Wall Clock time to the Synchronization Timeline.

13.8.2 CSS-TS service endpoint (master terminal)

13.8.2.1 General

When the terminal is a master terminal, it shall implement an MSAS function that implements a CSS-TS service
endpoint as defined in clause 9 of ETSI TS 103 286-2 [47]. The MSAS function of the master terminal shall provide the
CSS-TS service endpoint on the master terminal's broadband interface.

For each media object involved in synchronization at the master terminal, the master terminal implements an SC
function that interacts with the MSAS function of the master terminal to control the presentation timing and report the
achievable presentation timings for that media object.

The MSAS function of the master terminal shall support a minimum of 10 simultaneous sessions of the Timeline
Synchronization Protocol at the CSS-TS service endpoint and shall allow slave terminals and CSAs to connect to this
service endpoint until the MSAS function of the master terminal has reached the limit of the number of simultaneous
sessions it can support.

ETSI

ETSI TS 102 796 V1.3.1 (2015-10)144

The MSAS function of the master terminal shall ignore the Origin header if it is present in the client handshake of the
connection request.

When the terminal ceases to be a master terminal, it shall close any connections to the CSS-TS service endpoint from
slave terminals or CSAs, following the process described in clause 9 of ETSI TS 103 286-2 [47].

The CSS-TS endpoint shall satisfy the security requirements of clause 11.7 of the present document.

13.8.2.2 Synchronization timeline availability

As the first stage of the protocol session, the MSAS function of the master terminal awaits a setup-data message from
the slave terminal or CSA. This message requests the Synchronization Timeline to be used for the remainder of the
protocol session. The Synchronization Timeline defines the reference frame for contentTime property values in Control
Timestamps and Actual, Earliest and Latest Presentation Timestamps exchanged during the protocol session.

The requested Synchronization Timeline shall be available if the requirements for determining the availability defined
in clause 9.7.3 of the present document and clause 9.2 of ETSI TS 103 286-2 [47] are met and the requested Timeline is
supported by the master terminal (see clause 13.4.2).

NOTE 1: The availability of the Synchronization Timeline is dependent on whether the contentIdStem matches the
contentId for the master content and whether the requested timeline is currently derivable for the master
media.

NOTE 2: Availability can change during the session and this is reflected in the timestamp messages send by the
MSAS function. For example: a change of contentId may change whether it matches the contentIdStem
provided in the setup-data message.

13.8.2.3 Frequency of control timestamp messages

The MSAS function of the master terminal shall send its first Control Timestamp within 500 ms of receiving the setup-
data message.

The MSAS function of the master terminal shall send an updated Control Timestamp a minimum of 500 ms after a
previous Control Timestamp when the synchronization timeline availability changes, or if the timeline is available and
the timeline speed multiplier is non zero and the relationship between Wall Clock and Synchronization Timeline drifts
by an amount exceeding ±1 ms when compared to the previously sent Control Timestamp. If there is a change of
playback speed then the terminal shall send an additional Control Timestamp without waiting a minimum of 500 ms
since the previous Control Timestamp.

The MSAS function of the master terminal shall be able to handle receiving a minimum of 2 Actual, Earliest and Latest
Presentation timestamp messages per session per second.

13.8.2.4 Controlling timing of presentation

As described in clause 9 of ETSI TS 103 286-2 [47], the MSAS function of the master terminal exchanges timestamp
messages with SC functions of CSAs and slave terminals to coordinate the synchronised presentation of content
between the master terminal and the CSAs and slave terminals.

SC functions of slave terminals and CSAs send Actual, Earliest and Latest Presentation Timestamps that describe the
range of timings of presentation that they can achieve. The MSAS function of the master terminal sends Control
Timestamps to instruct the SC functions of slave terminals and CSAs as to the speed and timing of presentation that
they need to adjust to in order to achieve presentation that is synchronised with the master media at the master terminal.

NOTE 1: Clauses C.5.3 and C.6.3 of ETSI TS 103 286-2 [47] provide guidance on how to calculate an achievable
timing of presentation given Actual, Earliest and Latest Presentation Timestamps provided by SC
functions of CSAs and slave terminals.

Control Timestamps sent by the MSAS function of the master terminal to slave terminals and CSAs shall, when the
synchronization timeline is available, represent the timing of presentation of the master media by the master terminal.
Control Timestamps shall represent timing of presentation with respect to the reference point for timestamping defined
in clause 13.4.1 when the value of the timelineSpeedMultiplier property is 1 and may do so when the
timelineSpeedMultiplier property has any other value.

ETSI

ETSI TS 102 796 V1.3.1 (2015-10)145

NOTE 2: This relaxation of the requirement acknowledges that it is more challenging for a terminal to provide
timing information that accurately represents the relationship between the timeline and the wall clock
when playback is not at normal speed.

When a Control Timestamp is representing a timing of presentation with respect to the reference point for
timestamping, it shall do so to within plus or minus the minimum synchronization accuracy defined in clause 9.7.4.

The timelineSpeedMultiplier property in Control Timestamps shall represent the speed of presentation of the master
media at the master terminal. The property shall have the value 1 under normal playback conditions. When presentation
of the master content is paused (by the user or by the terminal when waiting for buffers to fill), the value shall be zero.
When presentation is moving at any other rate, the value shall be the approximate intended playback speed of the
presentation (e.g. a value of 2 corresponds to x2 fast-forward). The true presentation speed may marginally differ from
the intended playback speed reported in the property.

Adjustments to the timing of presentation of master media and any other media at the master terminal have the
following requirements:

1) The MSAS function of the master terminal shall only adjust to a new timing of presentation if it is achievable
for the master media and it is also achievable for other media being presented by the master terminal if it is
performing multi-stream synchronization.

NOTE 3: As described in clause 13.5, a timing of presentation is achievable if the terminal can obtain the media
sufficiently early or delay obtaining it or buffer it to present it sufficiently late.

2) The MSAS function of the master terminal should adjust the timing of presentation to be achievable by all
slave terminals and CSAs that have supplied Earliest and Latest Presentation Timestamps, if such a timing is
possible and it does not violate requirement 1).

NOTE 4: An achievable timing of presentation is any timing of presentation that falls within the interval described
by Earliest and Latest Presentation Timestamps reported by slave terminals and CSAs.

3) If there is no timing of presentation that is achievable for all slave terminals and CSAs, then the MSAS
function of the master terminal should adjust to a timing of presentation that is achievable by at least one slave
terminal or CSA if such a timing is possible and it does not violate requirement 1).

If the existing timing of presentation of the master media is a timing that is already achievable by all slave terminals and
CSAs then the MSAS function of the master terminal shall not adjust the timing of presentation.

NOTE 5: Slave terminals or CSAs can also supply an Actual Presentation Timestamp as part of Actual, Earliest and
Latest Presentation Timestamp messages. The MSAS function can also take this into account in deciding
on a timing of presentation. This will, in some situations, avoid a discontinuity in the presentation at the
slave device and therefore provide a smoother viewing experience for the user.

NOTE 6: Slave terminals or CSAs can join or leave the synchronization at any time, by starting or stopping
CSS-TS protocol sessions. Slave terminals or CSAs can also report new Actual, Earliest and Latest
Presentation Timestamps. A master terminal is recommended to avoid unnecessarily adjusting the timing
of presentation in response to these occurrences if possible. Every adjustment is a disruption that will be
noticeable to the user.

The specific algorithm used to adjust the presentation timing and subsequently calculate the Control Timestamp sent to
slave terminals and CSAs is implementation specific and outside the scope of the present document.

If the master terminal is also performing multi-stream synchronization and multi-stream synchronization fails and
ceases, then the terminal shall also cease to be a master terminal.

13.8.3 SC function (slave terminal)

13.8.3.1 General

When the terminal becomes a slave terminal, the SC function of the slave terminal shall wait until the CSS-CII
messages received from the master terminal have provided:

• a URL in the tsUrl property;

• an entry in the timelines property; and

ETSI

ETSI TS 102 796 V1.3.1 (2015-10)146

• a presentationStatus property of "okay".

The terminal shall then commence the process of Timeline Synchronization in the role of a CSA via the CSS-TS
interface (as defined in clause 9 of ETSI TS 103 286-2 [47]) if it has not already done so. When the terminal ceases to
be a slave terminal, the SC function of the slave terminal may cease this process.

The SC function of the slave terminal shall connect to the service endpoint of the MSAS function that is located by the
tsUrl property in CSS-CII messages received from the master terminal.

The SC function of the slave terminal shall establish this connection even if no media object has been added to the slave
terminal MediaSynchroniser.

If any of the following situations occur, then the slave terminal shall deem that inter-device synchronization with the
master terminal has failed and generate a permanent error with corresponding error code (defined in clause 8.2.3.2.4)
for the MediaSynchroniser object and cease to be a slave terminal:

• The MSAS function refuses the request to connect to the CSS-TS service endpoint (error code 10).

• The CSS-TS service endpoint is, or becomes, unreachable or unresponsive (error code 6).

• The master terminal closes the connection (error code 10).

• The SC function does not receive a Control Timestamp within 5 seconds of sending the setup-data message
to initialize the session (error code 10).

If none of the above situations occurs then the SC function of the slave terminal shall maintain the connection to the
CSS-TS service endpoint until the terminal ceases to be a slave terminal (see clause 13.2.3) or multi-stream
synchronization at the slave terminal fails (if the slave terminal is performing multi-stream synchronization).

13.8.3.2 Setup-data message

The SC function of the slave terminal shall use the following values for properties in the setup-data message that it
sends at the start of the protocol session:

• The value of the contentIdStem property shall be the empty string.

• The value of the timelineSelector property shall be the value of the timelineSelector property obtained
from the first JSON object listed in the timelines property of a CII message received from the master terminal.
The CII message used shall be the most recent one that contained a timelines property.

NOTE 1: This message selects the timeline to be used as the Synchronization Timeline for the remainder of the
protocol session. The value supplied by the master terminal in the CII message is the Timeline used for
contentTime properties in Correlation Timestamps at the master terminal (see clause 13.6.2). The slave
terminal is therefore setting the Synchronization Timeline to be the same as the Timeline used for the
MediaSynchroniser API at the master terminal. It is also used as the Timeline for the
MediaSynchroniser API at the slave terminal.

NOTE 2: The CII message also conveys the tick rate for the Synchronization Timeline in the same JSON object
from which the timelineSelector property is obtained.

13.8.3.3 Sending Actual, Earliest and Latest Presentation Timestamps

If the SC function of the slave terminal has sent at least one Actual, Earliest and Latest Presentation Timestamp, then
the SC function of the slave terminal shall send a new Actual, Earliest and Latest Presentation Timestamp if, and only
if, all of the following are true:

• 500 ms has passed since the previous Actual, Earliest and Latest Presentation Timestamp was sent.

• The timing of presentation relative to the Wall Clock that is represented by any of the Actual, Earliest or Latest
parts of the Timestamp message has changed by 1 ms or more.

• The most recent Control Timestamp received indicates that the presentation is playing at normal speed.

ETSI

ETSI TS 102 796 V1.3.1 (2015-10)147

The SC function of the slave terminal shall not send an Actual, Earliest and Latest Presentation Timestamp message if
the WC-Client function of the slave terminal calculates that the dispersion of the slave terminal Wall Clock is infinity
(see clause 13.7.4).

The presentation timing represented by the Earliest and Latest parts of the Timestamp can change due to the addition or
removal of a media object from the MediaSynchroniser or a change in the earliest and latest presentation timings
possible for any one of the media objects currently added to the MediaSynchroniser. The presentation timing
represented by the Actual Presentation Timestamp changes if the presentation timing of the media object it is derived
from changes. How the Actual, Earliest and Latest Presentation Timestamp is calculated is defined in clause 13.8.3.4.

13.8.3.4 Value of Actual, Earliest and Latest Presentation Timestamps

An Actual, Earliest and Latest Presentation Timestamp message contains an Earliest and a Latest Presentation
Timestamp and can contain an Actual Presentation Timestamp.

If an Actual Presentation Timestamp is included in the message then it shall consist of a point on the Synchronization
Timeline (called a contentTime) and a time value of the Wall Clock. This timestamp shall represent the presentation
timing of one of the media objects being presented by the slave terminal with respect to the reference point for
timestamping within plus or minus the minimum synchronization accuracy defined in clause 9.7.4.

NOTE 1: The contentTime is expressed in terms of the Synchronization Timeline and is therefore translated from

being in terms of the timeline selected by the HbbTV® application for that media object by using the

Correlation Timestamp most recently provided by the HbbTV® application for that media object.

If there are no media objects added to the slave terminal MediaSynchroniser then SC function of the slave terminal
shall use negative infinity for the wallClockTime property of an Earliest Presentation Timestamp and positive infinity
for the wallClockTime property of a Latest Presentation Timestamp.

An Earliest or a Latest Presentation Timestamp consists of a point on the Synchronization Timeline (called a
contentTime) and a time value of the Wall Clock. The contentTime is also expressed in terms of the Synchronization
Timeline.

A candidate Earliest Presentation Timestamp for a media object represents the earliest timing of presentation achievable
for that media object taking into account the synchronization tolerance specified for it (see the addMediaObject()
method) by subtracting the tolerance (converted to units of nanoseconds) from the Wall Clock time value part of the
Timestamp.

A candidate Latest Presentation Timestamp for a media object represents the latest timing of presentation achievable for
that media object also taking into account the synchronization tolerance specified for it (see the addMediaObject()
method) by adding the tolerance (converted to units of nanoseconds) to the Wall Clock time value part of the
Timestamp.

The SC function of the slave terminal shall use the Correlation Timestamp most recently provided by the HbbTV®

application for a media object to calculate the contentTime property of candidate Earliest and Latest Presentation
Timestamps in terms of the Synchronization Timeline.

NOTE 2: For a slave terminal MediaSynchroniser, the Timeline for the contentTime property in Correlation
Timestamps is the same as the Synchronization Timeline and is the Timeline used for the contentTime
property in Correlation Timestamps at the master terminal (see clause 13.4.3).

If there are media objects currently added to the slave terminal MediaSynchroniser then Earliest and Latest
Presentation Timestamp messages that are sent to the MSAS function shall contain:

• the candidate Earliest Presentation Timestamp that represents a timing of presentation of media that is latest
compared to the other candidate Earliest Presentation Timestamps; and

• the candidate Latest Presentation Timestamp that represents a timing of presentation of media that is earliest
compared to the other candidate Latest Presentation Timestamps.

NOTE 3: Whether a slave terminal also includes an Actual Presentation Timestamp as part of the message is an
implementation detail and is therefore outside the scope of the present document. As noted in
clause 13.8.3.4, the inclusion of an Actual Presentation timestamp can assist in avoiding discontinuities in
presentation at the slave terminal.

ETSI

ETSI TS 102 796 V1.3.1 (2015-10)148

The set of candidate Earliest and Latest Presentation Timestamps that are to be used in the above process shall be the
candidates corresponding to all media objects added to the slave terminal MediaSynchroniser if there exists some
timing of presentation that is achievable for all these media objects. Otherwise the set of candidates used shall be those
corresponding to any subset for which there exists some timing of presentation that is achievable for all media objects in
the subset. The choice of the subset is implementation dependent.

NOTE 4: There is no achievable timing of presentation for all media objects if any of the candidate Earliest
Presentation Timestamps represents a timing of presentation of media that is later than that represented by
any of the candidate Latest Presentation Timestamps.

NOTE 5: The process of examining the range of achievable presentation timings for all participants is also
performed by the MSAS function. Clauses C.5.3 and C.6.3 of ETSI TS 103 286-2 [47] provides examples
of the calculations an MSAS function performs to do this.

13.8.3.5 Adjusting timing of presentation in response to Control Timestamps

Before the SC function of the slave terminal receives a first Control Timestamp message from the MSAS (in response
to sending a setup data message), the SC function of the slave terminal has no knowledge of what time it should present
content. At this stage, it shall therefore not change the playback state or adjust the presentation timing of any media
objects that have been added to the slave terminal MediaSynchroniser.

The SC function of the slave terminal shall ignore Control Timestamps it receives and the requirements specified in the
remainder of this clause shall not apply if there are no media objects added to the slave MediaSynchroniser when a
Control Timestamp message is received, or if the dispersion calculated by the WC-Client function of the slave terminal
is infinity.

A Control Timestamp consists of a point on the Synchronization Timeline (called a contentTime) and a time value of
the Wall Clock. contentTime is expressed in terms of the Synchronization Timeline.

If the contentTime property of a Control Timestamp is a null value then the MediaSynchroniser of the slave terminal
shall generate a permanent error with error code 15 for the MediaSynchroniser object (see clause 8.2.3.2.4) and cease
to be a slave terminal.

For all media objects currently added to the slave terminal MediaSynchroniser, the SC function of the slave terminal
shall adjust the presentation timing of the media object to match the timing expressed by the Control Timestamp to
within plus or minus the greater of: the synchronization tolerance (specified for that media object) and the minimum
synchronization accuracy specified in clause 9.7.4.

The timing of presentation of the media object as observed at the reference point for timestamping shall differ from the
timing of presentation expressed in the Control Timestamp by no more than plus or minus the sum of:

• the value of the interDeviceSyncDispersion property of the MediaSynchroniser object (see clause 8.2.3.2.1)
when it is next updated; and

• the greater of the synchronization tolerance and the minimum synchronization accuracy.

The SC function of the slave terminal shall determine the presentation timing for a media object by translating the

contentTime property of the Control Timestamp to be in terms of the Timeline selected by the HbbTV® application for

the media object using the Correlation Timestamp most recently provided by the HbbTV® application for that media
object.

If it is not possible for presentation timing of a media object to be delayed or advanced sufficiently to achieve this then
the MediaSynchroniser of the slave terminal shall generate a transient error with error code 1 or 11 as appropriate for
the MediaSynchroniser object (as defined in clause 8.2.3.2.4).

If it becomes possible again for the timing of a media object to be delayed or advanced sufficiently (for example
because a new Control Timestamp has been received, or streamed data for a broadband stream has become available
sufficiently early) then the slave terminal shall adjust the timing of presentation of the media object to be synchronised
and the MediaSynchroniser of the slave terminal shall generate an onSyncNowAchievable event (as defined in
clause 8.2.3.2.3).

ETSI

ETSI TS 102 796 V1.3.1 (2015-10)149

13.9 Trigger Events
The terminal is not required to implement the Trigger Events service endpoint as defined in clause 10 of ETSI
TS 103 286-2 [47].

13.10 Sequence diagrams for timeline synchronization
(Informative)

13.10.1 General

This clause provides a set of informational sequence diagrams to aid the understanding of the APIs for Timeline
Synchronization between a master terminal and a Companion Screen application, or master terminal and a slave
terminal acting in the role of a Companion Screen application. The architecture and master and slave roles are explained

in clause 13.2. The API itself is specified in clause 8.2.3. Use of the API relate to the master and slave HbbTV®
terminal's use of the following interfaces and their respective protocols specified in ETSI TS 103 286-2 [47]:

• Content Identification and other Information interface and protocol (CSS-CII).

• Wall Clock synchronization interface and protocol (CSS-WC).

• Timeline Synchronization interface and protocol (CSS-TS).

The service endpoints for these protocols are implemented by the master terminal. The HbbTV® applications running
on both the master and slave terminals do not directly interact using these protocols, but instead direct the terminal to do
so through use of the API.

Clauses 13.10.2, 13.10.3 and 13.10.4 illustrate, at a high level, the sequence of interactions between master and slave
terminals and when the transition to and from being a master or slave terminal occurs.

Clauses 13.10.5, 130.10.6,13.10.7 and 13.10.8 illustrate, in greater detail, the inter-device synchronization protocol
interactions between master and slave terminals. These clauses focus on the CSS-CII and CSS-TS protocols and their
relationship to state changes of the various types of media objects (video/broadcast object, AV Control object and
HTML5 media element) when used as the master media at the master terminal and also on the use of multi-stream
synchronization at the slave terminal. More messages may be sent via the protocols than those shown here. For
example, these clauses do not detail the continuous exchange of Control Timestamps or Actual, Earliest and Latest
Presentation Timestamps that maintain synchronization.

13.10.2 Initiation of timeline synchronization

Figure 24 shows a sequence diagram for the initiation of inter-device timeline synchronization between two terminals.

Each terminal enters its respective role as a master and slave only from the point at which the HbbTV® applications
instruct the MediaSynchroniser objects to enable the inter-device synchronization processes.

ETSI

ETSI TS 102 796 V1.3.1 (2015-10)150

Figure 24: Initiation of inter-device timeline synchronization

1) The slave HbbTV® application is assumed to already be running and to have discovered the other terminal

running the master HbbTV® application and the locations of the service endpoints it provides (such as
CSS-CII and app to app communication).

2) Negotiation between master HbbTV® application and slave HbbTV® application to agree to perform
inter-device synchronization is out of scope of this API and could therefore take place via proprietary app to
app communication.

3) The master HbbTV® application creates a master MediaSynchroniser embedded object. The application
initializes it using the initMediaSynchroniser() method, passing it an existing media object
(video/broadcast, AV Control or HTML5 media object) and a timeline specification. The terminal on which

the master HbbTV® application is running is now a master terminal.

4) A MediaSynchroniser embedded object is returned to the master HbbTV® application.

5) The master HbbTV® application asks the MediaSynchroniser to enable inter-device synchronization
functionality by calling the enableInterDeviceSync() method.

6) The terminal enables inter-device synchronization functionality by ensuring the protocol endpoints defined in
ETSI TS 103 286-2 [47] (CSS-CII, CSS-WC and CSS-TS) are ready to accept connections. The terminal on

which the master HbbTV® application is running is now a master terminal.

7) The master MediaSynchroniser confirms, by callback, to the master HbbTV® application that inter-device
synchronization has been enabled.

8) The master HbbTV® application at this stage might choose to signal to the slave HbbTV® application that the
master terminal is now ready to perform inter-device synchronization. How this is done is out of scope of this
API and therefore could take place via proprietary app to app communication.

11: enableInterDeviceSync

13: callback

9: create and initSlaveMediaSynchroniser

10:Return value

14: addMediaObject

12: Communication using DVB CSS protocols
begins (CSS-CII, CSS-WC, CSS-TS)

Master Application Terminal

2: Initiate Timeline Synchronisation

Slave Application Terminal

3:create and initMediaSynchroniser

1

MediaSynchroniser

4: Return value

5: enableInterDeviceSync

8: OK

7: callback

6: Becomes
Master

Terminal

6 Becomes Master
MediaSynchroniser

& DVB protocol
endpoints enabled

Slave
MediaSynchroniser

12: Becomes Slave
Terminal

: Not specified in the present document

ETSI

ETSI TS 102 796 V1.3.1 (2015-10)151

9) The slave HbbTV® application creates a MediaSynchroniser embedded object. The application initializes it
using the initSlaveMediaSynchroniser() method, passing it the URL of the CSS-CII service endpoint on
the master terminal.

10) A slave MediaSynchroniser embedded object is returned to the slave HbbTV® application. From this point
the slave MediaSynchroniser begins to use the protocols to prepare for inter-device presentation (e.g.
synchronizing its wall clock using the Wall Clock Synchronization Protocol).

11) The slave HbbTV® application asks the slave MediaSynchroniser to enable inter-device synchronization by
calling the enableInterDeviceSync() method.

12) The terminal on which the slave HbbTV® application is running is now in the process of becoming a slave
terminal. From this point the slave MediaSynchroniser begins to use the protocols defined in ETSI
TS 103 286-2 [47] to prepare for inter-device presentation synchronization (e.g. communicating with the
CSS-WC endpoint to estimate the master terminal Wall Clock and connecting to the CSS-TS endpoint to start
exchanging timing information and synchronising its wall clock using the Wall Clock Synchronization

Protocol). The terminal on which the slave HbbTV® application is running is now a slave terminal.

13) The slave terminal MediaSynchroniser confirms, by callback, to the slave HbbTV® application that
inter-device synchronization has begun.

14) The slave HbbTV® application adds a media object to the slave MediaSynchroniser. The slave terminal now
starts to use the timing information being exchanged via the protocols defined in ETSI TS 103 286-2 [47] to
synchronise the presentation timing of the added media object to the presentation timing of media objects
associated with the master MediaSynchroniser.

13.10.3 Protocols interactions for beginning inter-device synchronization

Figure 25 shows a sequence diagram for the protocol interactions for inter-device timeline synchronization between a
master terminal and a slave terminal.

Figure 25: Protocol interactions for inter-device timeline synchronization

1) The application at the master terminal has already enabled inter-device synchronization and the servers
implementing the endpoints for the CSS-CII, CSS-WC and CSS-TS protocols are already active.

2) The application at the other terminal enables inter-device synchronization.

1. Master terminal
MediaSynchroniser

Other terminal
MediaSynchroniser

CII Server WC Server

WC Client

2
MSAS

SC

4

5: CSS-WC Protocol usage begins

6: CSS-TS Protocol connection established

� Timeline selector
� Control Timestamps

3: CSS-CII Protocol connection established

��CSS-WC and CSS-TS endpoint locations and timeline selector(s)

ETSI

ETSI TS 102 796 V1.3.1 (2015-10)152

3) The other terminal's MediaSynchroniser begins to interact with the endpoint for the master HbbTV®

terminal that was provided to it by the slave HbbTV® application, using the CSS-CII protocol. CII messages
sent by the master terminal via this protocol provide the locations of endpoints for the CSS-WC and CSS-TS
protocols and the timeline selector for a timeline that can be requested from the master terminal.

4) The other terminal's MediaSynchroniser initializes any internal elementary functions it needs to perform
Wall Clock synchronization using the CSS-WC protocol and Timeline Synchronization using the CSS-TS
protocol.

5) The Wall Clock Client elementary function of the other terminal begins using the Wall Clock Synchronization
Protocol to synchronise its Wall Clock to that of the master terminal.

6) The Synchronization Client elementary function of the other terminal connects to the CSS-TS endpoint and
uses it to obtain Control Timestamps for the timeline identified by the timeline selector obtained earlier via the
CSS-CII protocol.

The other terminal is a slave terminal once it has established the connections to CSS-CII and CSS-TS and begun to use
the Wall Clock protocol. The slave terminal can now notify the application running on it, via callback, that inter-device
synchronization is now enabled.

Once the slave terminal has approximated its Wall Clock to that of the master terminal, the slave HbbTV® terminal can
then begin using the Timeline Synchronization Protocol to coordinate the timing of presentation of media objects
associated with the slave terminal MediaSynchroniser with the timing of presentation of media objects associated with
the master terminal MediaSynchroniser.

The use of these inter-device synchronization protocols continues indefinitely while inter-device synchronization is
being performed in order to maintain synchronization.

ETSI TS 103 286-2 [47] describes the expected behaviour of a Synchronization Client elementary function of the slave
terminal in terms of the CSS-TS protocol when it is trying to synchronise the presentation timing of zero, one or more
media objects.

13.10.4 Termination of timeline synchronization

If a slave terminal disables inter-device synchronization, it stops using the protocols defined in ETSI TS 103 286-2 [47]
and ceases to be a slave terminal. The master terminal continues unaffected.

However, if a master terminal disables inter-device synchronization, then its termination of protocol connections will
cause slave terminals to also terminate inter-device synchronization and cease to be a slave terminal.

Figure 26 shows a sequence diagram for the termination of inter-device synchronization initiated by the master
terminal.

ETSI

ETSI TS 102 796 V1.3.1 (2015-10)153

Figure 26: Termination of inter-device timeline synchronization

1) A slave terminal MediaSynchroniser object is currently communicating with a master terminal
MediaSynchroniser object using the protocols to perform inter-device synchronization.

2) The master HbbTV® application decides to cease inter-device synchronization. How and when this decision is
made is application specific behaviour.

3) The master HbbTV® application requests that the master terminal MediaSynchroniser disable inter-device
synchronization.

4) The master terminal therefore closes down the protocol communication with any and all Companion Screen
applications or slave terminal MediaSynchronisers.

5) The master terminal MediaSynchroniser informs the master HbbTV® application that inter-device
synchronization has been disabled. The terminal is now no longer a master terminal.

6) The slave terminal MediaSynchroniser informs the slave HbbTV® application that inter-device
synchronization was terminated by the master terminal. The terminal is now no longer a slave terminal.

13.10.5 Detailed protocol interaction (HTML5 media element presenting
ISOBMFF as master media)

The following sequence of interactions is illustrated in figure 27 with examples of message values in table 24:

• Initially, the master terminal has already created an HTML5 media element to play an ISOBMFF media file
streamed via HTTP (that is not a DASH presentation):

- After the HTML5 element has buffered sufficient data and begins to play, the application initializes a
MediaSynchroniser object, passing it that media object.

- The master terminal begins to provide active endpoints for CSS-CII, CSS-WC and CSS-TS.

- The master terminal then invokes the callback to notify the application that it is now a master terminal.

Master HbbTV®
Application

Master Terminal
Slave HbbTV®

Application

Slave Terminal

2

Master
MediaSynchroniser

3: disableInterDevice Sync

6: Callback

Slave
MediaSynchroniser

1: DVB CSS protocols are running:
CSS-CII, CSS-WC, CSS-TS

4: DVB CSS protocols close down

5: Callback

ETSI

ETSI TS 102 796 V1.3.1 (2015-10)154

• Next, the application at the slave terminal initializes a slave MediaSynchroniser object and enables inter-
device synchronization:

- The slave terminal connects to the CSS-CII endpoint and the master terminal responds with a CII
message (msg 1).

- The slave terminal begins to use the CSS-WC protocol (not shown in the figure) by sending requests to
the endpoint location given by the master terminal in msg 1.

- The slave terminal also connects to the CSS-TS endpoint location given by the master terminal in msg 1.

- At this stage the terminal can also notify the application, by callback, that it is now a slave terminal.

- The slave terminal sends a setup-data message (msg 2) via the CSS-TS connection using the timeline
selector obtained from msg 1.

- The master terminal responds with a Control Timestamp message (msg 3) via the CSS-TS connection.

- The slave terminal now has enough information to begin synchronising the presentation timing of any
media objects it is presenting.

• Then at some later point, the application at the master terminal instructs the HTML5 media element to pause
for a brief period:

- The master terminal sends a Control Timestamp (msg 4) to notify the slave terminal.

- When the application unpauses the HTML5 media element, normal playback speed is resumed. The
master terminal sends an updated Control Timestamp (msg 5) to notify the slave terminal.

• When the HTML5 media element reaches the end of the media playback:

- The master terminal sends a Control Timestamp (msg 6) to inform the slave terminal that playback has
the appearance of having paused.

• Later, the application at the master terminal changes the src attribute of the HTML5 media element, or takes
some other action that causes the media element to generate an error:

- The MediaSynchroniser object at the master terminal enters into the permanent error state with error
code 16.

- The master terminal sends a CII message to the slave terminal informing it of the change in presentation
status to "fault".

- At the slave terminal, this results in a permanent error of the MediaSynchroniser with error code 6.

- The master terminal then disconnects the CSS-CII and CSS-TS protocol connections and stops providing
the endpoints.

ETSI

ETSI TS 102 796 V1.3.1 (2015-10)155

Figure 27: Inter-device synchronization sequence diagram where the master media is an HTML5 media element playing ISOBMFF media

ETSI

ETSI TS 102 796 V1.3.1 (2015-10)156

Table 24: Inter-device synchronization messages where master media is
an HTML5 media element playing ISOBMFF media

13.10.6 Detailed protocol interaction (AV Control object presenting DASH as
master media)

The following sequence of interactions is illustrated in figure 28 with examples of message values in table 25:

• Initially, the master terminal has already created an AV Control object to play an MPEG DASH presentation:

- The application calls the play() method of the AV Control object causing it to enter the "connecting"
state and, subsequently, the "buffering" state.

- While the AV Control object is undergoing these transitions, the application initializes a
MediaSynchroniser object, passing it that media object and a timeline selector of
"urn:dvb:css:timeline:mpd:period:rel:25:00d1".

- The master terminal begins to provide active endpoints for CSS-CII, CSS-WC and CSS-TS.

- The master terminal then invokes the callback to notify the application that it is now a master terminal.

Message as
referenced in

figure 27

Example JSON message contents

CSS-CII: msg 1

{
 "protocolVersion": "1.1",
 "contentId": "http://broadcaster.com/mystream.mp4",
 "contentIdStatus": "final",
 "presentationStatus": "okay",
 "mrsUrl" : null,
 "tsUrl" : "ws://192.168.1.5:7861/",
 "wcUrl" : "udp://192.168.1.5:6677",
 "teUrl" : null,
 "timelineOptions" : [
 {
 "timelineSelector" : "urn:dvb:css:timeline:ct",
 "timelineProperties" : {
 "unitsPerTick": 1,
 "unitsPerSecond": 1000
 }
 }
]
}

CSS-TS: msg 2 {
 "ciStem" : "",
 "timelineSelector" : "urn:dvb:css:timeline:ct"
}

CSS-TS: msg 3 {
 "contentTime" : "826",
 "wallClockTime" : "8576234985623",
 "timelineSpeedMultiplier" : 1
}

CSS-TS: msg 4 {
 "contentTime" : "1523",
 "wallClockTime" : "8595262157800",
 "timelineSpeedMultiplier" : 0
}

CSS-TS: msg 5 {
 "contentTime" : "1523",
 "wallClockTime" : "9485629346497",
 "timelineSpeedMultiplier" : 1
}

CSS-TS: msg 6 {
 "contentTime" : "8192",
 "wallClockTime" : "8692746287477",
 "timelineSpeedMultiplier" : 0
}

CSS-CII: msg 7 {
 "presentationStatus": "fault"
}

ETSI

ETSI TS 102 796 V1.3.1 (2015-10)157

• Next, the application at the slave terminal initializes a slave MediaSynchroniser object and enables inter-
device synchronization:

- The slave terminal connects to the CSS-CII endpoint and the master terminal responds with a CII
message (msg 1). The presentation status conveyed in this message is "transitioning".

- The slave terminal begins to use the CSS-WC protocol (not shown in the figure) by sending requests to
the endpoint location given by the master terminal in msg 1.

- The slave terminal also connects to the CSS-TS endpoint location given by the master terminal in msg 1.

- At this stage the terminal can also notify the application, by callback, that it is now a slave terminal.

- The slave terminal sends a setup-data message (msg 2) via the CSS-TS connection using the timeline
selector obtained from msg 1.

- The master terminal responds with a Control Timestamp message (msg 3) via the CSS-TS connection.
This indicates that the timeline is currently at content time 0, but is currently paused (because the media
is still buffering). The slave terminal now has enough information to begin synchronising the
presentation timing of any media objects it is presenting (by seeking to the right time and pausing).

- Shortly after, the AV Control Object transitions to the "playing" state. This causes the master terminal to
send an updated Control Timestamp (msg 4) and a CII message (msg 5) to inform the slave terminal that
playback is now proceeding at normal speed and that the presentation status is now "okay".

• Then at some later point, the application at the master terminal instructs the AV Control object to seek:

- Because the required data is not yet buffered, this causes the AV Control object to enter the "buffering"
state.

- The master terminal sends an updated Control Timestamp (msg 6) to notify the slave terminal.

- When the AV Control object has buffered sufficient media data and returns to the "playing" state, the
master terminal sends an updated Control Timestamp (msg 7) to notify the slave terminal.

- The seek operation has, in this instance, caused the AV Control object to now be playing from a different
period with id "00d2" of the DASH presentation. The master terminal sends a CII message (msg 8) to
inform the slave terminal of the change to the content id.

• Later, the manifest for the DASH presentation is updated. This removes the period with id "00d1".

- This results in a permanent error state of the MediaSynchroniser at the slave terminal with error
code 15.

- The timeline selector used by the slave terminal for the CSS-TS connection specified a timeline relative
to the start of the period with id "00d1". The master terminal sends a Control Timestamp (msg 9) to
inform the slave terminal that this timeline is no longer available.

- This also results in a permanent error state of the MediaSynchroniser at the master terminal with error
code 15.

- The master and slave terminals disconnect the CSS-CII and CSS-TS protocol connections and the master
terminal stops providing the endpoints.

ETSI

ETSI TS 102 796 V1.3.1 (2015-10)158

Figure 28: Inter-device synchronization sequence diagram where master media is an AV Control object playing an MPEG DASH presentation

ETSI

ETSI TS 102 796 V1.3.1 (2015-10)159

Table 25: Inter-device synchronization messages
where master media is an AV Control object playing an MPEG DASH presentation

Message as
referenced in

figure 28

Example JSON message contents

CSS-CII: msg 1 {
 "protocolVersion": "1.1",
 "contentId": "http://broadcaster.com/mystream.mpd#period=00d1",
 "contentIdStatus": "final",
 "presentationStatus": "transitioning",
 "mrsUrl" : null,
 "tsUrl" : "ws://192.168.1.5:7861/",
 "wcUrl" : "udp://192.168.1.5:6677",
 "teUrl" : null,
 "timelineOptions" : {
 "timelineSelector" : "urn:dvb:css:timeline:mpd:period:rel:25:00d1",
 "timelineProperties" : {
 "unitsPerTick": 1,
 "unitsPerSecond": 25
 }
 }
}

CSS-TS: msg 2 {
 "ciStem" : "",
 "timelineSelector" : "urn:dvb:css:timeline:mpd:period:rel:25:00d1"
}

CSS-TS: msg 3 {
 "contentTime" : "0",
 "wallClockTime" : "9000150284310",
 "timelineSpeedMultiplier" : 0
}

CSS-TS: msg 4 {
 "contentTime" : "0",
 "wallClockTime" : "9008150224670",
 "timelineSpeedMultiplier" : 1
}

CSS-CII: msg 5 {
 "presentationStatus": "okay"
}

CSS-TS: msg 6 {
 "contentTime" : "175",
 "wallClockTime" : "9015150859370",
 "timelineSpeedMultiplier" : 0
}

CSS-TS: msg 7 {
 "contentTime" : "15283",
 "wallClockTime" : "9016153926600",
 "timelineSpeedMultiplier" : 1
}

CSS-CII: msg 8 {
 "contentId": "http://broadcaster.com/mystream.mpd#period=00d2",
 "contentIdStatus": "final"
}

CSS-TS: msg 9 {
 "contentTime" : null,
 "wallClockTime" : "9017154281880",
 "timelineSpeedMultiplier" : null
}

13.10.7 Detailed protocol interaction (video/broadcast object as master
media)

The following sequence of interactions is illustrated in figure 29 with examples of message values in table 26:

• Initially, the master terminal has already created a video/broadcast object that is bound to the broadcast video
being currently presented. The video/broadcast object is in the presenting state:

- The application initializes a MediaSynchroniser object, passing it that media object and a timeline
selector of "urn:dvb:css:timeline:temi:1:1" specifying a TEMI timeline from component tag 1 with
timeline id 1.

ETSI

ETSI TS 102 796 V1.3.1 (2015-10)160

- The master terminal begins to provide active endpoints for CSS-CII, CSS-WC and CSS-TS.

- The master terminal then invokes the callback to notify the application that it is now a master terminal.

• Next, the application at the slave terminal initializes a slave MediaSynchroniser object and enables inter-
device synchronization:

- The slave terminal connects to the CSS-CII endpoint and the master terminal responds with a CII
message (msg 1). This presentation status conveyed in this message is "okay".

- The slave terminal begins to use the CSS-WC protocol (not shown in the figure) by sending requests to
the endpoint location given by the master terminal in msg 1.

- The slave terminal also connects to the CSS-TS endpoint location given by the master terminal in msg 1.

- At this stage the terminal can also notify the application, by callback, that it is now a slave terminal.

- The slave terminal sends a setup-data message (msg 2) via the CSS-TS connection using the timeline
selector obtained from msg 1.

- The master terminal responds with a Control Timestamp message (msg 3) via the CSS-TS connection.
The slave terminal now has enough information to begin synchronising the presentation timing of any
media objects it is presenting.

• Then at some later point, there is a change in the DVB EIT present/following signalling in the broadcast for
the DVB service currently being presented:

- The master terminal sends a new content id in a CII message (msg 4) via the CSS-CII connection.

• Later, the application on the master terminal initiates a channel change using the setChannel() method of the
video/broadcast object: (the application on the master terminal is assumed to remain running after the channel
change completes):

- The video/broadcast object transitions to the "connecting" state and the master terminal sends a CII
message (msg 5) via the CSS-CII connection to indicate that the presentation status is "transitioning" and
to provide a partial content id.

- The change in presentation status to "transitioning" causes a transient error of the MediaSynchroniser at
the slave terminal with error code 19.

- Shortly after, the video/broadcast object transitions back to the "presenting" state as the channel change
completes. The master terminal sends a CII message (msg 6) via the CSS-CII connection to indicate that
the presentation status has reverted to "okay".

- Within a second or two, the master terminal also determines that there is still a TEMI timeline available
for the new service on the same component id and with the same timeline id as was specified in the
timeline selector provided by the slave terminal in msg 2. The master terminal sends an updated Control
Timestamp (msg 7) with the content time adjusted to match the new TEMI timeline.

- The master terminal determines that it now has all information required to formulate a final version of
the content id. The master terminal sends this final version to the slave terminal in a CII message (msg 8)
via the CSS-CII connection.

• After some time, the terminal experiences a temporary signal loss.

- Because this is a temporary signal loss only, the master terminal does not need to send any messages to
the slave terminal.

• Finally, the application at the master terminal calls the release method of the video/broadcast object:

- The video/broadcast object transitions to the "unrealized" state.

- The MediaSynchroniser object at the master terminal enters into the permanent error state with error
code 16.

ETSI

ETSI TS 102 796 V1.3.1 (2015-10)161

- The master terminal sends a CII message (msg 9) to the slave terminal informing it of the change in
presentation status to "fault".

- At the slave terminal, this results in a permanent error of the MediaSynchroniser with error code 6.

- The master terminal then disconnects the CSS-CII and CSS-TS protocol connections and stops providing
the endpoints.

ETSI

ETSI TS 102 796 V1.3.1 (2015-10)162

Figure 29: Inter-device synchronization sequence diagram where master media is a video/broadcast object

ETSI

ETSI TS 102 796 V1.3.1 (2015-10)163

Table 26: Inter-device synchronization messages where master media is a video/broadcast object

Message as
referenced in

figure 29

Example JSON message contents

CSS-CII: msg 1

{
 "protocolVersion": "1.1",
 "contentId":
 "dvb://233a.1004.1044;35f7~20131004T0930Z--PT01H00M?nit_anc=495254",
 "contentIdStatus": "final",
 "presentationStatus": "okay",
 "mrsUrl" : null,
 "tsUrl" : "ws://192.168.1.5:7861/",
 "wcUrl" : "udp://192.168.1.5:6677",
 "teUrl" : null,
 "timelineOptions" : {
 "timelineSelector" : "urn:dvb:css:timeline:temi:1:1",
 "timelineProperties" : {
 "unitsPerTick": 1,
 "unitsPerSecond": 50
 }
 }
}

CSS-TS: msg 2 {
 "ciStem" : "",
 "timelineSelector" : "urn:dvb:css:timeline:temi:1:1"
}

CSS-TS: msg 3 {
 "contentTime" : "18442500",
 "wallClockTime" : "9000150284310",
 "timelineSpeedMultiplier" : 1
}

CSS-CII: msg 4 {
 "contentId":
 "dvb://233a.1004.1044;35f8~20131004T1030Z--PT00H30M?nit_anc=495254",
 "contentIdStatus": "final"
}

CSS-CII: msg 5 {
 "contentId": "dvb://233a.1004.1080",
 "contentIdStatus": "partial",
 "presentationStatus": "transitioning"
}

CSS-CII: msg 6 {
 "presentationStatus" : "okay"
}

CSS-TS: msg 7 {
 "contentTime" : "2900015",
 "wallClockTime" : "9000183280003",
 "timelineSpeedMultiplier": 1
}

CSS-CII: msg 8 {
 "contentId": "dvb://233a.1004.1080;21af~20131004T1015Z--PT01H00M",
 "contentIdStatus": "final"
}

CSS-CII: msg 9 {
 "presentationStatus": "fault"
}

13.10.8 Detailed protocol interaction (two media objects at the slave
terminal)

The following sequence of interactions is illustrated in figure 30 with examples of message values in table 27:

• Initially, the master terminal has already enabled inter-device synchronization and the application at the other
terminal has created a video/broadcast object that is bound to the broadcast video being currently presented
and also an AV Control Object for audio delivered via MPEG DASH but is currently in a paused state:

- The application at the other terminal initializes a MediaSynchroniser object, passing it the URL for the
CSS-CII service endpoint provided by the master terminal.

- The application also uses the addMediaObject() method to add the video/broadcast object to the
MediaSynchroniser.

ETSI

ETSI TS 102 796 V1.3.1 (2015-10)164

- At this stage, there is no synchronization taking place.

• Next, the application enables inter-device synchronization using the initSlaveMediaSynchroniser() method:

- The terminal connects to the CSS-CII endpoint and the master terminal responds with a CII message
(msg 1).

- The terminal begins to use the CSS-WC protocol (not shown in the figure) by sending requests to the
endpoint location given by the master terminal in msg 1.

- The terminal also connects to the CSS-TS endpoint location given by the master terminal in msg 1.

- At this stage the terminal can also notify the application, by callback, that it is now a slave terminal and
is performing inter-device synchronization.

- The slave terminal sends a setup-data message (msg 2) via the CSS-TS connection using the timeline
selector obtained from msg 1.

- The master terminal responds with a Control Timestamp message (msg 3) via the CSS-TS connection.
The slave terminal now has enough information to begin synchronising the presentation timing of the
video/broadcast object.

• At a later point, the application at the slave terminal adds the AV Control object to the MediaSynchroniser:

- The slave terminal observes that given the most recent Control Timestamp received from the master
terminal, it cannot obtain the media stream data early enough to achieve the required presentation timing
for the MPEG DASH presentation. This causes a transient error of the MediaSynchroniser with code 1,
listing the AV Control object as the media object with the error condition.

- The slave terminal chooses to send an Actual, Earliest and Latest Presentation timestamp message
(msg 4) via the CSS-TS connection to the master terminal. The timestamps within this message reflect
the limited range of presentation timings that are achievable for both the video/broadcast object and the
AV control object. In this situation the slave terminal has a buffer for media synchronization to allow it
to buffer broadcast video.

- The master terminal chooses to adjust its timing of presentation in response to receiving msg 4. The
master terminal then sends a new Control Timestamp message (msg 5) via the CSS-TS connection to the
slave terminal reflecting this new presentation timing.

- The slave terminal examines the new Control Timestamp and determines that it can now achieve
synchronization for the AV Control object and therefore an onSyncNowAchievable event of the
MediaSynchroniser is generated. The AV Control object is transitioned briefly through the "buffering"
state and onto the "playing" state.

- Because the slave terminal has a buffer for media synchronization, it is able to adjust the presentation
timing of the video/broadcast object to keep it synchronised.

• Finally, the application at the slave terminal disables inter-device synchronization:

- This causes the MediaSynchroniser at the slave terminal to cease synchronising the video/broadcast
object and AV Control objects.

- The callback is then used to notify the application that the terminal has ceased being a slave terminal.

- The application chooses to stop the AV Control object playing but to leave the video/broadcast object
playing.

ETSI

ETSI TS 102 796 V1.3.1 (2015-10)165

Figure 30: Inter-device synchronization sequence diagram where there are two media object synchronised at a slave terminal

ETSI

ETSI TS 102 796 V1.3.1 (2015-10)166

Table 27: Inter-device synchronization messages
where there are two media object synchronised at a slave terminal

Message as
referenced in

figure 30

Example JSON message contents

CSS-CII: msg 1

{
 "protocolVersion": "1.1",
 "contentId":
 "http://mybroadcaster.com/mystream.mp4",
 "contentIdStatus": "final",
 "presentationStatus": "okay",
 "mrsUrl" : null,
 "tsUrl" : "ws://192.168.1.5:7861/",
 "wcUrl" : "udp://192.168.1.5:6677",
 "teUrl" : null,
 "timelineOptions" : {
 "timelineSelector" : "urn:dvb:css:timeline:ct",
 "timelineProperties" : {
 "unitsPerTick": 1,
 "unitsPerSecond": 25
 }
 }
}

CSS-TS: msg 2 {
 "ciStem" : "",
 "timelineSelector" : "urn:dvb:css:timeline:ct"
}

CSS-TS: msg 3 {
 "contentTime" : "100580",
 "wallClockTime" : "9000150284310",
 "timelineSpeedMultiplier" : 1
}

CSS-TS: msg 4 {
 "earliest": {
 "contentTime" : "100674",
 "wallClockTime" : "9000150284310"
 },
 "latest": {
 "contentTime" : "100674",
 "wallClockTime" : "9008150284310"
 }
}

CSS-TS: msg 5 {
 "contentTime" : "100680",
 "wallClockTime" : "9000150284310",
 "timelineSpeedMultiplier" : 1
}

13.11 Application to media synchronization

13.11.1 General

The terminal shall support the following ways for an application to obtain the current media playback position for
media objects (HTML5 media elements, video/broadcast objects and the AV Control object):

1) The properties of the media objects that expose current media playback position as described in clause 13.11.2.

2) The currentTime property of a MediaSynchroniser object that exposes the current media timeline position
as described in clause 13.11.3.

NOTE: Using the MediaSynchroniser object enables an application to select the timeline used to report the
current playback position relative to a timeline even if no media synchronization is done.

ETSI

ETSI TS 102 796 V1.3.1 (2015-10)167

13.11.2 Reading the media playback position of media objects

Each object or element that enables an application to present media provides a property that enables an application to
read the current media playback position. These are as follows:

• For the HTML5 media elements, the currentTime property.

• For the AV Control object , the playPosition property.

NOTE 1: The video/broadcast object does not provide a playback position, but applications can use the
MediaSynchroniser object to retrieve the position on a timeline used for media synchronization as
defined in clause 13.11.3.

When an application reads one of these properties, the value returned shall be the time of the last video frame that was
composed with graphics before the method was called and shall be accurate to within 100ms. For the AV Control
object, the value returned shall be updated each time the property is read. The precision of the playback position shall at
least correlate with either:

• the frame rate of the video component presented by the media object, i.e. it is at least 40 ms for 25 fps video
and 20 ms for 50 fps; or

• the length of an access unit of the audio component presented by the media object, e.g. is at least 24 ms for
MPEG 1 Layer 2 at 48 kHz sample rate or 42,67 ms for HE-AAC at 48 kHz sample rate.

For the AV Control object:

• For on-demand content the value returned when the property is read shall be as defined in clause 8.2.5.1 of the
OIPF DAE specification [1].

• For MPEG-DASH the value returned when the property is read shall be as defined in clause 9.4.3 of the
present document.

For HTML5 media elements, the value returned when the property is repeatedly read is defined by that specification -
see the description of the 'official playback position' concept.

NOTE 2: The properties encode returned values in different ways - seconds for the currentTime property
(milliseconds can be expressed in the fraction part of the returned value) and integer milliseconds for the
playPosition property. This has no effect on the value that is returned.

13.11.3 Reading the media playback position of the MediaSynchroniser
object

Using the MediaSynchroniser API (defined in clause 8.2.3), an application can create a MediaSynchroniser object
using a given media object as the master media (see clause 13.2.4). In doing so it can specify a timeline to use that is
derived from that media object's media stream. The currentTime property of the MediaSynchroniser object reports
current playback position in terms of that timeline.

When an application reads the currentTime property of a MediaSynchroniser object (see clause 8.2.3.2.1) the
returned value shall correspond to the current position of the timeline used by the MediaSynchroniser object:

• For a MediaSynchroniser object that has been initialized by calling the initMediaSynchroniser() method,
the returned value shall correspond to the current playback position of the media object that was passed as an
argument to the initMediaSynchroniser() method (the master media). The value returned shall be the time
of the last video frame that was composed with graphics before the property was queried and shall be accurate
to within 100 ms. The precision of the playback position shall be at least correlate with either:

- the highest frame rate of any video being presented on the terminal where that video is a component of a
media object attached to the MediaSynchroniser, e.g. it is at least 40 ms for 25 fps video and 20 ms for
50 fps; or

- if there is no applicable video component, the shortest length of an access unit of any audio being
presented on the slave terminal where that audio is a component of a media object attached to the
MediaSynchroniser, e.g. is at least 24 ms for MPEG 1 Layer 2 at 48 kHz sample rate or 42,67 ms for
HE-AAC at 48 kHz sample rate.

ETSI

ETSI TS 102 796 V1.3.1 (2015-10)168

• For a MediaSynchroniser object that has been initialized by calling the initSlaveMediaSynchroniser()
method, the value returned shall correspond to the current playback position of the media object on the master
terminal that was passed as an argument to the initMediaSynchroniser() method on the master terminal
(the master media). The precision of the playback position shall be at least correlate with either:

- the highest frame rate of any video being presented on the slave terminal where that video is a
component of a media object attached to the MediaSynchroniser, e.g. it is at least 40 ms for 25 fps video
and 20 ms for 50 fps; or

- if there is no applicable video component, the shortest length of an access unit of any audio being
presented on the slave terminal where that audio is a component of a media object attached to the
MediaSynchroniser, e.g. is at least 24 ms for MPEG 1 Layer 2 at 48 kHz sample rate or 42,67 ms for
HE-AAC at 48 kHz sample rate; or

- if there are no applicable video or audio components then it shall be at least 100 ms.

14 Companion screens

14.1 Introduction

This clause introduces the methods to allow for interaction between HbbTV® and Companion Screens.

Whilst primarily targeted at iOS™ and Android™ devices, the framework described here should allow Companion
Screens of any type to be used.

The HbbTV® terminal and the Companion Screens have to be connected to the same local network, and the local
network should be connected to the Internet.

NOTE: Android™ and iOS™ are examples of suitable products available commercially. This information is
given for the convenience of users of the present document and does not constitute an endorsement by
ETSI of these products.

14.2 Description of framework (informative)

14.2.1 Supported features

This clause is written to allow for the following features:

• An HbbTV® application launching a Companion Screen application.

The Companion Screen application may be an HTML application running in a browser on the Companion

Screen, or may be a native Companion Screen application. There is also the facility for the HbbTV®

application to direct the user to the location of a native application in a Companion Screen's 'store' (so that
application can be downloaded) if it is not already installed on the user's Companion Screen device.

• A Companion Screen application launching a broadcast independent HbbTV® application on an HbbTV®
terminal.

• To allow an HbbTV® application and a Companion Screen application to communicate directly by
establishing a communication channel onto which text or binary messages can be exchanged, regardless of the

launch methods of either the HbbTV® application or the Companion Screen application.

• To enable a companion screen or another HbbTV® terminal to locate the services and User Agent String,

provided by the HbbTV® terminal, that can then be used via the methods described in clause 14.

14.2.2 Model

14.2.2.1 Launching a companion screen application

Figure 31 provides an architecture for launching a CS application.

ETSI

ETSI TS 102 796 V1.3.1 (2015-10)169

Figure 31: Architecture for launching a CS application

The following functions are distinguished in this architecture:

• Web Browser: running the web application consists of HTML5 and associated web technologies. The

application environment for the HbbTV® terminal is described in clause 8.

• HbbTVCSManager: resides in the HbbTV® terminal. HbbTVCSManager is responsible for discovering the
Companion Screens with a running Launcher and sending application launch/install information to the
Launcher. The HbbTVCSManager embedded object is defined in clause 8.2.6.1.

• Native application: runs on specific Companion Screen platforms (e.g Android™, iOS™, etc.). Usually the
native application is running as a binary code.

• Launcher: resides in the Companion Screens. The Launcher is responsible for communicating with
HbbTVCSManager and launching and/ or installing the CS application. The communication protocol is not
defined in the present document. The requirements on the Launcher are described in clause 14.3.

For an HbbTV® application to launch a CS application, the components defined above are used in the following way:

• The HbbTV® application, using the API defined here, discovers Companion Screens with a running Launcher

application that are associated with the terminal on which the HbbTV® application is running.

• The HbbTV® application obtains platform information, including the OS that the Companion Screen is

running. The HbbTV® application is then in a position to (in an application specific way) determine the
launch (or installation) URL of the CS application it wants to launch (or install) on each Companion Screen.

• The HbbTV® application can then, using another API defined here, send each Launcher application the launch
/ install information specific to that Companion Screen.

This can be repeated for each Companion Screen that the HbbTV® application wants to utilise.

The Launcher application will then attempt to launch or install the CS application given the information provided to it

by the HbbTV® application. However it may prevent the CS application from launching / installing for a variety of
reasons, for example:

• The Launcher application has automatically blocked the launch (perhaps from a historical user decision to
always block this application).

• The Launcher application has asked the user for permission to launch the application this time, but it was
explicitly denied by the user.

HbbTV® Terminal Companion Screen

Native App.
Web Browser
HTML App.

Web Browser

HbbTV® App.

HbbTV® CSManager

CS Application

Launcher
Discover CS Launcher

Install / Launch

Launch Install / Launch
Discovery / launch

ETSI

ETSI TS 102 796 V1.3.1 (2015-10)170

• The Launcher application has asked the user for permission to launch the application this time, but did not get
a response either way from the user, and has timed out.

14.2.2.2 Application to application communication

Figure 32 provides an architecture for application to application communication.

Figure 32: Architecture for application to application communication

The following functions are distinguished in this architecture.

• HbbTVCSManager: HbbTVCSManager is responsible for providing service endpoints for application to
application communications. The API is defined in clause 8.2.6.1.

• Web Socket Server: resides in the HbbTV® terminal. Web Socket Server is responsible for handling web

socket connections both from the HbbTV® application and the CS application. The communications between
the applications is described in clause 14.5.

For an HbbTV® application to directly communicate with a CS application, there are two aspects described in the
present document. The first is describing the methods used to discover the service endpoints. The second is to describe
how to attach and communicate over the service once this has been discovered.

For discovering the application to application communication service endpoint, there are three methods described:

• HbbTV® applications may use an API (defined within the present document) to discover the location of the
service endpoint.

• CS applications may use one of the following two methods:

- If the CS application has been launched by an HbbTV® application (as described in clauses 14.3 and
14.4), then the location of the service endpoint may have been provided to the CS application as one of
its launch parameters.

- If the CS application has been launched independently, then it has to discover the location of the service
endpoint using the mechanisms described in clause 14.7.

The application to application communication service is provided by a Web Socket Server located on the terminal and
so for attaching and communicating over the service a web socket client API may be used.

HbbTV® Terminal Companion Screen

Native App.
Web Browser

HTML App.

Web Browser

HbbTV® App.

HbbTV® CSManager

CS Application

WebSocket Server
WS connection

W
S

 c
o

n
n

ec
ti

o
n

Service end-points

ETSI

ETSI TS 102 796 V1.3.1 (2015-10)171

The Web Socket Server receives requests for connections from the HbbTV® application and from a Companion Screen

or another HbbTV® terminal. Pairing rules are defined to enable the server to establish a link between one connection

from the HbbTV® application and one connection from the Companion Screen or other HbbTV® terminal. The server
then acts as a relay passing the information from one connection to the other.

14.2.2.3 Remotely launching HbbTV® applications

Figure 33 provides an architecture for remotely launching HbbTV® applications.

Figure 33: Architecture for remotely launching HbbTV® applications

The following functions are distinguished in this architecture.

• HbbTVCSManager: responsible for responding to discovery requests from Companion Screens and launching

the HbbTV® application.

• CS application: responsible for discovering the HbbTV® terminal (clause 14.7) and requesting the launch of

an HbbTV® application (clause 14.6).

For a broadcast independent HbbTV® application to be launched by a CS application it first needs to discover the

application Launch service endpoint. Once this has been found, it can then attempt to launch an HbbTV® application on
the terminal by providing it with an XMLAIT as the payload of an HTTP POST request to the application Launch
service endpoint. There are a variety of reasons why the terminal may refuse the requested application launch, which
are described in clause 14.6.2.

14.3 Requirements for launching a CS application from an
HbbTV® application

14.3.1 Support for 'launching a CS application from an HbbTV® application'

Terminals shall, in conjunction with an application (provided by the terminal manufacturer or one of their agents)

running on a Companion Screen, support the 'Launching a CS application from an HbbTV® application' feature if the
terminal manufacturer (or one of their agents) provides a Companion Screen application that can link to, and control the
terminal from the Companion Screen application. This Companion Screen application may also be referred to as a
'Launcher application' (see clause 14.3.2).

HbbTV® terminal Companion Screen

Native App.
Web Browser

HTML App.

Web Browser

HbbTV® App.

HbbTV®
CSManager

CS Application

Discovery HbbTV® terminal

Launch HbbTV® application

Launch HbbTV® App

ETSI

ETSI TS 102 796 V1.3.1 (2015-10)172

If this feature is supported, then the following clauses of the present document shall apply:

• From clause 8.2.6, the following APIs are required to be implemented:

- discoverCSLaunchers and its associated callback, onCSDiscovery;

- launchCSApp and its associated callback, onCSLaunch.

• From clause 14.3.2, all requirements apply, and they shall be implemented by at least one Launcher
application from the manufacturer (or its agent):

- The manufacturer should ensure that all versions of its companion applications that can link to and
control a TV support this functionality.

• From clause 14.4, all requirements apply and shall be implemented by the terminal.

14.3.2 The Launcher application

The protocol between the HbbTV® terminal and the Companion Screen device is not defined by the present

document.Where the 'Launching a CS application from an HbbTV® application' feature is supported, a Launcher
application is required to be provided and the following behaviours of the Launcher application shall be supported:

• The Launcher application shall be able to connect and communicate with the HbbTV® terminal using the
proprietary protocol.

• The Launcher application shall support the following HbbTV® API extensions to the
application/hbbtvCSManager object defined in clause 8.2.6:

- discoverCSLaunchers() and its associated callback, onCSDiscovery

- launchCSApp() and its associated callback, onCSLaunch

Regarding the requirement for an HbbTV® terminal manufacturer to provide Launcher application functionality, it is

recommended that an HbbTV® terminal manufacturer provides a Companion Screen application with Launcher
application functionality for as many Companion Screen platforms and platform variants as possible. It is recommended
that a Launcher application can provide optional mechanisms such as the ability to block, auto allow, explicitly request
the users permission, or remember a user's previous responses.

For the purposes of this feature and the APIs defined in clause 8.2.6, the following terms are defined:

• Connected - If a CS Launcher application is communicating, or has set-up a communication path (using

whatever proprietary means) with an HbbTV® terminal, such that the launchCSApp() API would be able to be
run and return 'true', then it is said to have 'connected' and be in a 'connected' state. The communication path

carries the protocol (not defined by HbbTV®) that enables the "Launching a CS application" feature, and may
also carry other information not specified here.

For a connection to be made, a discovery and/or an association step may be required. How this is achieved is
out of scope of the current specification.

There is no requirement for the connection to stateful or persistent.

• Disconnected - A CS launcher is defined as "disconnected" if it is not "connected". Examples of disconnected

states occur if the Launcher application terminates, or if the launcher application connects to another HbbTV®

terminal (and is no longer connected to the initial HbbTV® terminal).

It does not necessarily cover the instance of a network infrastructure failure, but it may do if the

communication path between the Launcher app and the HbbTV® terminal is connection-oriented (e.g. TCP
based).

ETSI

ETSI TS 102 796 V1.3.1 (2015-10)173

14.4 Launching a CS application from an HbbTV® application

14.4.1 CS OS identification

14.4.1.1 General (informative)

A Companion Screen OS Identifier (CS OS ID) is a string containing the following information about a Companion
Screen Device:

1) the identity of the Launcher application;

2) a list of app store(s) that the Launcher application is aware of;

3) an existing User Agent string representative of a browser engine on the Companion Screen Device.

This is an example CS OS ID string. It has been split over several lines to ease understanding:

com.my-oem.tv.applauncher/1.3.7
(appstore/com.android.vending; appstore/com.amazon.venezia)
Mozilla/5.0 (Linux; U; Android 2.3.5; en-gb; HTC Desire HD A9191 Build/GRJ90) AppleWebKit/533.1
(KHTML, like Gecko) Version/4.0 Mobile Safari/533.1

In the example the Launcher application is identified as "com.my-oem.tv.applauncher" version "1.3.7". Two
application stores have been identified: "com.android.vending" (the google app store) and "com.amazon.venezia" (the
amazon kindle app store).

The remainder of the example CS OS ID is a User Agent String that indicates the device runs the Android™ operating
system and indicates its make and model. It identifies the browser engine used within WebView UI elements in that
device's Android™ installation.

Clauses 14.4.1.3 - 14.4.1.4 provide guidance on the generation of the CS OS ID for specific Companion Screen Device
OSes.

14.4.1.2 Syntax and semantics

The syntax is expressed as augmented BNF as defined in table 15 of IETF RFC 2234 [39].

Table 28: Augmented BNF syntax of the Companion Screen OS Identifier string

BNF syntax of the Companion Screen OS Identifier string
csoid = launcher WS user_agent_string
launcher = launcher_product [launcher_comment]
launcher_product = launcher_name "/" launcher_version
launcher_comment = WS "(" comment_body ")"
comment_body = comment 0*(";" WS comment)
comment = store_info | manufacturer_specific_comment
store_info = "appstore" "/" app_store_id
WS = 1*" "

NOTE: launcher_name, launcher_version, app_store_id and manufacturer_specific_comment are defined below.

The CS OS ID is structured in a format consistent with a User Agent String as defined in IETF RFC 2616 [6]. It
consists of a collection of whitespace separated product tokens and comments. Product tokens are structured as a name
followed by a slash "/" character followed by a version. Comments are text enclosed by parenthesis and immediately
follow the product token that they relate to. If a comment is not needed (because it will contain no information) then it
may be omitted.

The first product token and comment in the CS OS ID string consist of a launcher product token for the Launcher
application and a launcher comment for the Launcher application. The comment optionally lists available app stores on
the Companion Screen Device or any Launcher application developer specific additional information.

The remainder of the CS OS ID string is a User Agent string provided or derivable directly from the platform/operating-
system on which the Launcher application is running.

ETSI

ETSI TS 102 796 V1.3.1 (2015-10)174

The Launcher product token consists of a launcher name and launcher version that identifies the Launcher application.
The name shall be a reverse DNS notation formatted identifier uniquely associated with the application and its
developer. The root of the domain name used shall be a domain name registered by the application developer. The
version should be a string representation of the version number of the Launcher application.

The launcher comment is made up of zero, one or more whitespace separated tokens. Tokens can include whitespace if
they are enclosed with a double quote mark character at beginning and end.

Manufacturer or Launcher application specific tokens can be used, but may not use the prefix "appstore/", except for
the following purpose: The launcher comment may contain one or more tokens listing application stores available on
the Companion Screen Device that the Launcher application is aware of. Each application store token consists of a
prefix "appstore/" followed by an app_store_id in reverse domain name notation.

The presence of app store tokens is optional where the OS of the Companion Screen Devices has a single known fixed
app store (such that the TV application can know which app store to use simply by identifying the OS from examination
of the User Agent string part). In all other situations, app store tokens should be included. The set of store_ids returned
may be supplemented by any other app_store_ids that the Launcher application is aware of being present on the
Companion Screen Device.

The User Agent string for the Companion Screen Device shall be derived from one of the following sources (if
obtainable), listed in order of preference (the first being the most preferred):

1) User agent string of the browser application that is set up to be the current default browser on the Companion
Screen Device.

2) The default user agent of an embeddable web-view UI element provided by the platform.

3) A system-wide generic default value for a User Agent string.

4) A synthetic User Agent string generated by the Launcher application itself.

Any option from those listed above is considered obtainable if it is possible to obtain that User Agent string reliably
using documented public platform-provided APIs and without requiring user interaction or the installation or execution
of other application on the Companion Screen Device and without needing to use network connectivity to the internet or
other devices.

14.4.1.3 Hints on how to derive the CS OS identifier on Android™ (informative)

The hints described in this clause are considered applicable for all current commonly used releases of Android™ up to
and including Android™ 4.3 as of December 2013.

The launcher product token should be based on fields from the Android™ application manifest. The application
"package name" should be used as the name part and the "version name" as the version part.

app_store_ids should be included for each app store that the Launcher application is aware is available on the device
on which it is running. It can determine the list of installed intent handlers for "market://" URLs by creating an intent,
then querying the activities that will handle it using the system provided package manager. This returns a list of reverse
domain name notation package names for the installed packages that will handle requests to open "market://" URLs.
The code below demonstrates this:

Intent market = new Intent(Intent.ACTION_VIEW, Uri.parse("market://search?q=dummy"));
PackageManager manager = getPackageManager();
List<ResolveInfo> list = manager.queryIntentActivities(market, 0);
String comment = "(";
for (ResolveInfo item : list) {
 comment = comment + " appstore/" + item.activityInfo.applicationInfo.packageName;
}
comment = comment + ")";

The list of package names should be each treated as a separate store_id, and listed in the same order that they feature
in the list returned by the API call.

ETSI

ETSI TS 102 796 V1.3.1 (2015-10)175

A Launcher application should obtain a User Agent string from source (2) listed in clause 14.4.1.2. A WebView UI
element is created and its settings attribute is then queried to obtain the (default) User Agent string being used by the
WebView UI element:

WebView webview = new WebView(context);
WebSettings settings = webview.getSettings();
String user_agent = settings.getUserAgentString()

If that is unavailable then the following code can currently be used to obtain a User Agent string from source (3) listed
in clause 14.4.1.2:

String user_agent = System.getProperty("http.agent")

If a future release of Android™ makes it possible to obtain a user agent string from source (1) listed in clause 14.4.1.2,
then Launcher applications that target those versions of Android™ should use that.

14.4.1.4 Hints on how to derive the CS OS identifier on iOS™ (informative)

The hints described in this clause are considered applicable for all current commonly deployed releases of iOS™ up to
and including iOS™ 7 as of December 2013.

The launcher product token should be based on fields from the iOS™ application project settings. The application
bundle identifier should be used as the name part. Either the build/bundle version or short version string should be used
as the version part.

There is a single iTunes application store. This may optionally be identified within the launcher app comment field by
including the token "appstore/com.apple.itunes".

A Launcher application should obtain a User Agent string from source (2) listed in clause 14.4.1.2. A UIWebView UI
element is created and JavaScript is executed within it to return the navigator.userAgent object:

UIWebView* webView = [[UIWebView alloc] init];
NSString* userAgent;
userAgent = [NSString stringWithString:
 [webView stringByEvaluatingJavaScriptFromString:@"navigator.userAgent;"]];

An alternative method for obtaining this information is to initiate an HTTP request within a UIWebView UI element, but
to intercept and block it using the delegate function shouldStartLoadWithRequest(). The delegate function can
examine the request object to determine the value of the user agent header field. The following source code
demonstrates this:

/* ========== UserAgentObtainer.h ========== */
@interface UserAgentObtainer : NSObject<UIWebViewDelegate> {
 NSString* userAgent;
}

@property (nonatomic,retain) NSString *userAgent;
-(id)init;
@end

/* ========== UserAgentObtainer.m ========== */
#import "UserAgentObtainer.h"

@implementation UserAgentObtainer
@synthesize userAgent;

-(id)init {
 self = [super init];
 if (self) {
 UIWebView* webView = [[UIWebView alloc] init];
 webView.delegate = self;
 [webView loadRequest:
 [NSURLRequest requestWithURL:
 [NSURL URLWithString:@"http://null.com"]]];

 while (self.userAgent==nil) {
 [[NSRunLoop currentRunLoop]
 runMode:NSDefaultRunLoopMode
 beforeDate:[NSDate distantFuture]];
 }
 }
 return self;

ETSI

ETSI TS 102 796 V1.3.1 (2015-10)176

}

-(BOOL)webView:(UIWebView *)webView
 shouldStartLoadWithRequest:(NSURLRequest *)request
 navigationType:(UIWebViewNavigationType)navigationType
{
 self.userAgent=[request valueForHTTPHeaderField:@"User-Agent"];
 return NO;
}

@end

If a future release of iOS™ makes it possible to obtain a user agent string from source (1) listed in clause 14.4.1.2, then
Launcher applications that target those versions of iOS™ should use that.

14.4.2 Payload format for Install and Launch operations

14.4.2.1 Permissible Operations

There are two operation instructions that may be carried in the payload data of the launchCSapp() JS API. These are:

• Install application (for Native applications only)

• Launch application (for either Native or HTML applications)

The format of these instructions is described in clause 14.4.2.2. Either one or two of these operation instructions may
appear in the payload data with the following possible combinations:

• Launch Only

If the Launch Native or Launch HTML instruction is supplied, then the Launcher application shall attempt to
launch the application. If the launch fails for any reason, then the launchCSapp may (using the onCSLaunch
callback) respond with an appropriate error code as described in clause 8.2.6.1.

• Install Only

If an Install (Native) application instruction is supplied, then the Launcher application shall attempt to install
the native application using the store information (if present) and the store specific location information. If no
store information is provided a platform default store shall be used. If the install fails for any reason, then the
launchCSapp may (using the onCSLaunch callback) respond with an appropriate error code as described in
clause 8.2.6.1. See clause 14.4.2.2.1 for more information on the install operation.

• Both Launch Native and Launch HTML

If both a Launch Native and a Launch HTML instruction are supplied the Launch Native application
instruction shall be actioned first. If this is successful, then the launch of the HTML application shall not be
executed. If the Launch Native application is not successful, then the launch of the HTML application shall be

actioned. No response should be made to the HbbTV® application at this stage using the onCSLaunch callback.
If the launch of the HTML application is not successful, then the launchCSapp may (using the onCSLaunch
callback) respond with an appropriate error code as described in clause 8.2.6.1.

In this combination, the Launch Native instruction shall be the first instruction in the payload and the Launch
HTML instruction the last, otherwise the combination is not valid with the Launcher application behaviour
undefined.

Other operation combinations are invalid. In particular Install Native and Launch Native are not a valid combination of
operations; separate operations have to be used to achieve this.

14.4.2.2 JSON payload format

14.4.2.2.1 Introduction

The payload data for the install and launch operations are carried as strings which contain JSON formatted data. The
exact format of the JSON payload is described here. JSON not conforming to these rules (including empty strings) are
invalid and shall cause the onCSLaunch callback to return with an error code of 4 (general_error).

ETSI

ETSI TS 102 796 V1.3.1 (2015-10)177

The terminal and Launcher application shall support a maximum size for the string containing the JSON formatted data
of 65 536 bytes.

The JSON schema [i.10] for the launch and install operation payload formats are described in clause 14.4.2.2.4.

14.4.2.2.2 Install operation

This Installation Operation may contain multiple sources for an installation to be sourced from, but shall include at least
one source.

If there are multiple sources, then each source shall contain a store name, except for the last one in the list, which may
optionally contain a store name. If the last one in the list does not contain a store name, the platform default store shall
be assumed.

If there are multiple sources then the Launcher application shall attempt to install from the first store in the list that the
platform recognises, unless there is a specific reason for the Launcher application to do otherwise. Valid specific
reasons such as the following may exist:

• a user has set a preference for a particular store to be used;

• the Launcher application or Companion Screen platform can automatically select a store that provides the end
user with the best offer.

If there is a single source, then it may contain a store name. If it does not, the platform default store shall be assumed.

The store names (appStoreId) are defined as the app_store_id string as defined in table 28 in clause 14.4.1.2.

In all cases the install URL shall be appropriate to the associated store.

An example is as follows:

{
 "install" : [
 {
 "installUrl" : "amzn://apps/android?p=com.examples-r-us.games.puzzle_game",
 "appStoreId" : "com.amazon.venezia"
 },
 {
 "installUrl" : "market://details?id=com.examples-r-us.games.game-of-speed"
 }
]
}

14.4.2.2.3 Launch operation

The Launch Operation shall contain either a single launch entry or two launch entries. Zero, or more than two entries
are invalid.

If there is a single launch entry then the type shall be either "native" or "html" as shown below.

If there are two launch entries, then the first launch entry shall be of type "native", and the second shall be of type
"html", as shown below.

An example for a single launch entry (of type "html") is shown as follows:

{
 "launch" : [
 {"launchUrl" : "https://www.examples-r-us.com/great-game.html", "appType" : "html"}
]
}

An example for a two launch entry is shown as follows:

{
 "launch" : [
 {"launchUrl" : "g-quiz://com.examples-r-us.games.quiz-
game?colour=blue&app2app_uri=ws://192.168.1.11:992/hbbtv/", "appType" : "native"},
 {"launchUrl" : "https://www.examples-r-us.com/quiz-fallback-app.html?
colour=blue&app2app_uri=ws://192.168.1.11:992/hbbtv/", "appType" : "html"}
]

ETSI

ETSI TS 102 796 V1.3.1 (2015-10)178

}

14.4.2.2.4 JSON payload schema

The JSON schema for the install and launch operations payload of the launchCSapp() function is defined as follows:

{
 "id": "http://hbbtv.org/cs-install#",
 "$schema": "http://json-schema.org/draft-04/schema#",
 "title": "HbbTV CS Application Install",
 "description": "HbbTV CS Application Install Schema as defined in HbbTV 2.0 (TS 102 796
v1.3.1), clause 14.4.2. (c) 2014 hbbtv.org - All rights reserved.",
 "type": "object",
 "oneOf": [
 {
 "type": "object",
 "required": [
 "install"
],
 "install": {
 "type": "array",
 "items": {
 "type": "object",
 "properties": {
 "installUrl": {
 "type": "string",
 "format": "uri"
 },
 "appStoreId": {
 "type": "string"
 }
 },
 "required": [
 "installUrl"
],
 "additionalProperties": "false"
 },
 "minItems": 1
 }
 },
 {
 "type": "object",
 "required": [
 "launch"
],
 "launch": {
 "type": "array",
 "items": {
 "type": "object",
 "properties": {
 "launchUrl": {
 "type": "string",
 "format": "uri"
 },
 "appType": {
 "enum": [
 "native",
 "html"
]
 }
 },
 "required": [
 "launchUrl",
 "appType"
],
 "additionalProperties": "false"
 },
 "minItems": 1,
 "maxItems": 2
 }
 }
]
}

ETSI

ETSI TS 102 796 V1.3.1 (2015-10)179

14.4.2.2.5 Handling Special Characters in URLs (Informative)

application authors should take care to avoid the use of, or correctly escape, any special characters in URL parameters.
In particular, authors should note that the parameters in any URLs are carried in JSON data defined by the schema in
clause 14.4.2.2.4 and that any such JSON passed via the launchCSApp() API is expected to be valid JSON.
Furthermore, application authors may also need to consider any CS OS specific restrictions and the carriage of URLs
via CS OS APIs used to launch the Natice CS applications

14.5 Application to application communications

14.5.1 General

A terminal shall provide an application-to-application communication service as described here to enable an HbbTV®
application to communicate concurrently with one or more Companion Screen applications and/or applications running

on other HbbTV® terminals present on devices on the same home network as the terminal.

NOTE 1: The identity of the other party with which an application is communicating is not authenticated by the
application to application communication protocol and the integrity of the messages exchanged also
cannot be assumed. application developers are strongly recommended to consider these factors when
designing the protocols to be tunnelled within the application to application communication protocol and
also when implementing code that processes received messages.

NOTE 2: Application to application communication is also not generally suitable to be used to communicate credit
card details, PIN numbers or other sensitive data. Application developers are free to implement their own
security protocols tunnelled within the application to application communication protocol to encrypt this
data, however this is generally not recommended. For sensitive data it is more appropriate to relay this to
internet servers using an established and well supported secure communications protocol such as HTTPS.

The terminal shall implement a server providing endpoints, described in clause 14.5.2, that implement the server-side of
the Websocket protocol version 13 as defined in IETF RFC 6455 [40]. The server shall be able to accept connections

once an HbbTV® application has called the getApp2AppLocalBaseURL() method and until the application exits. The
server may be able to accept connections at other times but this is implementation dependent and outside the scope of
the present document. If the server is not able to accept connections then the server shall either abort the opening
WebSocket handshake as described in clause 7.2.2 of IETF RFC 6455 [40] or simply not have the TCP port open at all.

HbbTV® applications determine the location of the service endpoints using JavaScript APIs defined in clause 8.2.6.

HbbTV® applications and Companion Screen applications connect to the service endpoints using the WebSocket
protocol in the role of a client of the WebSocket protocol. The terminal shall handle connection requests from clients

(HbbTV® applications or Companion Screen applications) in the manner defined in clause 14.5.4 and apply pairing
rules defined in clause 14.5.5 to determine whether to pair connections from two clients. It shall then act as a relay, as
defined in clause 14.5.6 to relay messages between the two client connections that are paired.

EXAMPLE: Figure 34 illustrates the application to application communication service in use. An HbbTV®

application and a Companion Screen application use the WebSockets API, as defined by the W3C
Websocket API Recommendation [41] to create WebSocket connections. The connections are then
paired by the terminal, meaning that it will relay messages between the two clients through the
WebSockets protocol connections.

ETSI

ETSI TS 102 796 V1.3.1 (2015-10)180

Figure 34: Application to application communication using WebSockets

14.5.2 Service endpoints provided by the terminal

The terminal shall provide two service endpoints implementing the server-side of the WebSocket protocol specification
IETF RFC 6455 [40]:

• The local endpoint is for connecting to by clients that are HbbTV® applications on the terminal.

• The remote endpoint is for connecting to by clients that are applications on other devices on the home

network, including remote Companion Screen applications or applications running on other HbbTV® terminal
devices.

TV

HbbTV
WebSocket Serv er

Companion Device

app2appLocalBaseUrl = hbbtvCSManagerInstance.getApp2AppLocalBaseURL();
appEndpoint = “org.mychannel.myapp”;

ws = new WebSocket(app2appLocalBaseUrl + appEndpoint);

ws.onopen = function(evt) { alert(“Connection waiting ..."); };
ws.onclose = function(evt) { alert("Connection closed."); };

ws.onmessage = function(evt) {
 if (evt.data == “pairingcompleted”) {
 alert(“Connection paired.”);
 ws.send("Hello WebSockets!");
 } else {

alert("Unexpected message received from terminal.");
ws.close();

}
}

app2appRemoteBaseUrl = <<obtained during discovery of terminal on the home network>> ;
appEndpoint = “org.mychannel.myapp”;

ws = new WebSocket(app2appRemoteBaseUrl + appEndpoint);

ws.onopen = function(evt) { alert(“Connection waiting ..."); };
ws.onclose = function(evt) { alert("Connection closed."); };

ws.onmessage = function(evt) {
 if (evt.data == “pairingcompleted”) {
 alert(“Connection paired.”);
 ws.onmessage = function(evt) { alert("Received Message: " + evt.data); };
 } else {

alert("Unexpected message received from terminal.");
ws.close();

}
}

Companion
Scr een
Application

HbbTV
Application

local

remote

ETSI

ETSI TS 102 796 V1.3.1 (2015-10)181

HbbTV® applications only connect to the local service endpoint of the terminal on which they are running, or to a
remote service endpoint of a different terminal on the same home network. Companion Screen applications and

applications on other HbbTV® terminals only connect to the remote service endpoint of any terminal.

It is recommended that the terminal should not make it possible to connect to the local service endpoint from other
devices within the home network.

NOTE: This can be achieved, for example, by locating the local service endpoint only on a local loopback
interface within the terminal.

Both endpoints shall satisfy the security requirements of clause 11.7 of the present document.

14.5.3 Handling of new connections from clients

The terminal shall support a minimum of 10 concurrent WebSocket connections to the local service endpoint from local

HbbTV® applications and, simultaneously, a minimum of 10 concurrent WebSocket connections to the remote service
endpoint from other terminals or companion screen applications.

The terminal shall reject requests to the service endpoints if it cannot handle more concurrent connections. Otherwise, it
shall accept the WebSocket connection and complete the WebSocket protocol handshake.

The client, however, waits until pairing is completed (according to the rules defined in clause 14.5.4) before sending
data frames to be relayed. A connection in this state constitutes a waiting connection. The terminal informs the client of
successful pairing as defined in clause 14.5.5. In case the terminal wishes to implement a time-out, it shall send a Close
frame (as defined in the WebSocket protocol specification clause 5.5.1, IETF RFC 6455 [40]).

If the resource-name used in the GET line of the request handshake from the client does not match the rules defined in
clause 14.5.4 for the application to application service endpoint, the terminal shall respond with a 404 Not Found
response and close the WebSocket connection.

The terminal shall ignore any Origin header in the request handshake sent by the client.

Terminals are not required to support the Sec-WebSocket-Protocol header defined in IETF RFC 6455 [40],
clause 11.3.4.

Terminals shall not use any WebSocket extensions. Terminals shall ignore any Sec-WebSocket-Extensions header in
the request handshake sent by the client. Terminals shall not send a Sec-WebSocket-Extensions reply header.

EXAMPLE: Figure 35 illustrates the situation where a HbbTV® application, acting as a client, has made a
connection to the local service endpoint with a base-url-resource-name of "/hbbtv/" with an
app-endpoint of "org.mychannel.myapp". The connection is now in a waiting state because no
Companion Screen application has yet connected to the application to application communication
service using the same app-endpoint.

ETSI

ETSI TS 102 796 V1.3.1 (2015-10)182

Figure 35: A waiting connection for application to application communication

NOTE: Clients are not advised to attempt to request another connection to a service endpoint before any existing
waiting connection to that service endpoint was either successfully connected or has timed-out or
otherwise been disconnected.

If an HbbTV® application wishes to communicate to more than one Companion Screen application, it can do so by
waiting until an existing waiting connection has become paired, and then issue a further connection requests to the
service endpoint and repeat this until the maximum number of client-to-client connections the terminal is able to
process has been reached. This is illustrated in figure 36.

Figure 36: A paired connection for application to application communication

14.5.4 Connection pairing

A WebSocket URL, as defined in clause 3 of IETF RFC 6455 [40], defines the host, port, security, and resource-name
of a service endpoint that supports the WebSocket protocol. The terminal provides WebSocket URLs, known as the
base WebSocket URLs, for each of the local and remote service endpoints.

The WebSocket URLs shall use the "ws:" scheme.

NOTE 1: The secure mode of WebSockets cannot be used because HbbTV® applications and browser-based
Companion applications would be unable to authenticate a server having a dynamic or private IP address.
Such a server could not present a suitable certificate chain.

NOTE 2: These base WebSocket URLs are retrieved by an application from the terminal via the
getApp2AppLocalBaseURL() and getApp2AppRemoteBaseURL() methods defined in clause 8.2.6.1. The
base WebSocket URL for the remote service endpoint is also advertised through the terminal service
endpoint discovery mechanism described in clause 14.7.2.

TV

HbbTV
WebSocket Server

Companion Device

GET /hbbtv/org.mychannel.myapp

Companion
Screen
Application

org.mychannel.myapp

HbbTV
Application

local

remote

TV

HbbTV
WebSocket Server

Companion Device

Companion
Screen
Application

HbbTV
Application

local

remote

GET /hbbtv/org.mychannel.myapp

ETSI

ETSI TS 102 796 V1.3.1 (2015-10)183

The WebSocket URL that a client connects to when using either service endpoint is formed by concatenating the base
WebSocket URL for that service endpoint with an application specific suffix. This suffix is referred to in the present
document as the app-endpoint.

To establish a WebSocket connection, clients first establish a TCP connection to the host, and port as specified by the
base WebSocket URL. Then, in the opening handshake of the protocol as defined in IETF RFC 6455 [40], the client
specifies a resource name that comprises the resource name from the base WebSocket URL concatenated with the
app-endpoint.

EXAMPLE 1: A terminal advertises its remote endpoint for application to application communication as the base
WebSocket URL "ws://192.168.1.5:8140/hbbtv/". A Companion Screen application wishes to
use this service endpoint with an app-endpoint of "uk.co.bbc.cs-svc". The Companion Screen
application therefore uses the W3C WebSocket API [41] to request a WebSocket connection be
established to the WebSocket URL "ws://192.168.1.5:8140/hbbtv/uk.co.bbc.cs-svc":

ws = new WebSocket("ws://192.168.1.5:8140/hbbtv/uk.co.bbc.cs-svc");

 The first line of the opening handshake sent by the API implementation is:

GET /hbbtv/uk.co.bbc.cs-svc HTTP/1.1

app-endpoint is application specific. This is used in the process of pairing this connection with
another connection from the other service endpoint. It will be chosen by developers to avoid
collisions with other developers' applications.

NOTE 3: Developers can avoid collisions by using, for example, a reverse DNS notation formatted identifier

uniquely associated with the HbbTV® application or Companion Screen application and its developer.

Another possible option is to use an assigned HbbTV® organisation id and application id. This could be
formatted as organisation id followed by a period "." character followed by an application id, where the
ids are written as hex digits.

The terminal shall support an app-endpoint that is least 1 000 characters in length and which contains any characters
permitted in a resource-name by IETF RFC 6455 [40].

The terminal shall pair two waiting connections according to the following rules:

• One waiting connection shall be on the local service endpoint (and therefore be inferred to have come from the

HbbTV® application client).

• One other waiting connection shall be on the remote service endpoint (and therefore be inferred to have come
from a remote client, such as a Companion Screen application).

• The app-endpoint portion of the resource name used in the client handshake request shall match between
both waiting connections.

While there is a waiting connection on the local service endpoint, the terminal shall apply these rules to determine
whether there are two waiting connections that can be paired. If there is more than one waiting connection on the
remote service endpoint that could be paired with the waiting connection on the local service endpoint, the terminal
shall select only one of them. The terminal shall keep the remaining connections in the waiting state.

NOTE 4: No rules are defined in the present document for how the terminal decides which waiting connection on
the remote service endpoint is selected for pairing when multiple ones are available. Developers cannot
assume any particular algorithm is employed (such as selecting the one that has been waiting the longest).

After pairing waiting connections, the terminal shall proceed to provide application to application communication to
communication through those connections, as defined in clause 14.5.5.

EXAMPLE 2: Figure 37 illustrates the situation where a HbbTV® application, acting as a client, has made a
connection to the local service endpoint with a base-url-resource-name of "/hbbtv/" and an
app-endpoint of "org.mychannel.myapp". A Companion Screen application has also made a
connection to the remote service endpoint with a base-url-resource name of "/hbbtv/" and the

same app-endpoint as the HbbTV® application's connection. These two waiting connections will
be paired as they satisfy the above rules.

ETSI

ETSI TS 102 796 V1.3.1 (2015-10)184

Figure 37: Two waiting connections that will be paired by the TV

14.5.5 Paired connections

When connections from two clients enter into a state of being paired to each other, the terminal shall immediately
inform both clients by sending them a Data frame of type Text (as defined by the WebSocket protocol specification
clause 5.6 in IETF RFC 6455 [40]) with as Payload data the UTF-8 encoded text 'pairingcompleted'. The connections
are now both considered to be open, and the clients to be paired.

Once paired and connections to both clients are open, the terminal shall act as a relay to pass messages between them,
providing, in effect, a full-duplex bi-directional communication stream. When either client sends a WebSocket message,
consisting of one or more protocol frames, the terminal, upon receipt of each frame, shall immediately relay its contents
to the other client via the corresponding WebSocket connection and maintaining the same payload type.

The terminal shall discard any data frames received from a client before it has informed that client of successful pairing
and shall relay all data frames thereafter. Additionally the terminal shall inform a client of successful pairing before
sending it relayed data frames.

The terminal shall support all data frame types and both unfragmented and fragmented frames as required by IETF
RFC 6455 [40].

When relaying a payload received from a client, the terminal is not required to fragment the payload across frames in
the same way as the frames it received.

The terminal shall be able to handle relay messages with a payload size up to and including 131 072 bytes. For
messages sent from the remote client, the terminal shall be able to relay the message, and have it received by the local
application (client), if it is fragmented where each frame may carry any number of bytes up to the size of the message.

Over a 10 second period, during which any other paired connections have no traffic, the terminal shall be able to relay
any of the following rates of traffic across a single paired connection:

• 10 messages with a payload size of up to and including 131 072 bytes sent by the client connected to the local
service endpoint.

• 10 unfragmented messages with a payload size of up to and including 131 072 bytes sent by the client
connected to the remote service endpoint.

• 200 messages with a payload size of up to and including 512 bytes sent by the client connected to the local
service endpoint.

• 200 unfragmented messages with a payload size of up to and including 512 bytes sent by the client connected
to the remote service endpoint.

GET /hbbtv/org.mychannel.myapp

TV

Companion Device

org.mychannel.myapp

HbbTV
WebSocket Server

HbbTV
Application

Companion
Screen
Application

local

remote

ETSI

ETSI TS 102 796 V1.3.1 (2015-10)185

When messages sent by all clients across all currently paired connections are considered in aggregate then, during a 10
second period, the terminal shall be able to relay any of the following rates of traffic when spread evenly across up to 10
paired connections:

• 50 messages with a payload size of up to and including 131 072 bytes sent by the application connected to the
local service endpoint (5 frames via each paired connection).

• 50 unfragmented messages with a payload size of up to and including 131 072 bytes sent by the client
connected to the remote service endpoint (5 frames via each paired connection).

• 250 messages with a payload size of up to and including 512 bytes sent by the client connected to the local
service endpoint (25 frames via each paired connection).

• 250 unfragmented messages with a payload size of up to and including 512 bytes sent by the client connected
to the remote service endpoint (25 frames via each paired connection).

If the client connected to the remote service endpoint sends a Ping frame(as defined in IETF RFC 6455 [40]) then the
terminal shall respond with a Pong frame.

If the application closes the WebSocket connection to the local service endpoint then the terminal shall commence the
process of disconnecting the corresponding paired connection from the remote other client by sending a corresponding
Close frame as defined in IETF RFC 6455 [40]. If the application is stopped and WebSocket connections are still open,
then any WebSocket connections to the WebSocket server shall be closed in an undefined manner.

If the remote client sends a Close frame as defined in IETF RFC 6455 [40] or disconnects without sending a Close
frame, the terminal shall commence the process of disconnecting the client. In addition, it shall close the corresponding
paired WebSocket connection that was made by the application to the local service endpoint.

In normal operation the terminal should indefinitely maintain the pair of connections and relay messages as described
above. However, if the terminal has initiated the closure of the connection to either client, then it shall close both
connections in the pair.

14.6 Launching an HbbTV® application from a CS application

14.6.1 Introduction

This clause introduces the methods to launch a broadcast independent HbbTV® application on an HbbTV® terminal
from a Companion Screen application.

It consists of the following steps:

• first, the Companion Screen application discovers available DIAL servers;

• then for each DIAL server, it discovers the location of its DIAL REST service.

Then, optionally, the Companion Screen application checks that the HbbTV® DIAL application is supported by the
DIAL server, which means that the DIAL server is implemented in a terminal supporting the application launch feature.

Finally, using the DIAL application Resource URL for HbbTV® (derived as defined in clause 14.7.2), it attempts to

launch the HbbTV® application. These steps are detailed in clause 14.6.2.

14.6.2 Launching an HbbTV® application protocol

The protocol for launching an HbbTV® application from a Companion Screen application is described in this clause.

The Companion Screen requests the launch of the HbbTV® application using the mechanisms defined in clause 6.2.1 of
DIAL [50]. It is done by sending an HTTP POST request to the DIAL REST Service URL with the identifier "HbbTV"
for the application, as registered with the DIAL registry [i.8]. The DIAL REST Service URL is obtained from the
discovery phase using DIAL Service Discovery (see clause 14.7 and clause 5 of [50]). The BODY data of the HTTP

POST request shall contain an XML AIT describing the HbbTV® application to be launched (see clause 7.2.3.2).

ETSI

ETSI TS 102 796 V1.3.1 (2015-10)186

An example XML AIT is given below:

<?xml version="1.0" encoding="UTF-8"?>
<mhp:ServiceDiscovery xmlns:mhp="urn:dvb:mhp:2009"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <mhp:ApplicationDiscovery DomainName="example.com">
 <mhp:ApplicationList>
 <mhp:Application>
 <mhp:appName Language="eng">Whizzo Play Along Quiz</mhp:appName>
 <mhp:applicationIdentifier>
 <mhp:orgId>123</mhp:orgId>
 <mhp:appId>456</mhp:appId>
 </mhp:applicationIdentifier>
 <mhp:applicationDescriptor>
 <mhp:type>
 <mhp:OtherApp>application/vnd.hbbtv.xhtml+xml</mhp:OtherApp>
 </mhp:type>
 <mhp:controlCode>AUTOSTART</mhp:controlCode>
 <mhp:visibility>VISIBLE_ALL</mhp:visibility>
 <mhp:serviceBound>false</mhp:serviceBound>
 <mhp:priority>1</mhp:priority>
 <mhp:version>01</mhp:version>
 <mhp:mhpVersion>
 <mhp:profile>0</mhp:profile>
 <mhp:versionMajor>1</mhp:versionMajor>
 <mhp:versionMinor>3</mhp:versionMinor>
 <mhp:versionMicro>1</mhp:versionMicro>
 </mhp:mhpVersion>
 </mhp:applicationDescriptor>
 <mhp:applicationTransport xsi:type="mhp:HTTPTransportType">
 <mhp:URLBase>http://www.example.com/whizzo-app.html</mhp:URLBase>
 </mhp:applicationTransport>
 <mhp:applicationLocation>?launch=from-cs</mhp:applicationLocation>
 </mhp:Application>
 </mhp:ApplicationList>
 </mhp:ApplicationDiscovery>
</mhp:ServiceDiscovery>

On receiving the HTTP POST request, the terminal shall attempt to launch the HbbTV® application.

If the launch succeeds then the terminal shall respond with the response code 201.

If the launch could not be completed because the application could not be retrieved successfully then the terminal shall
respond with the response code 404.

The terminal might have states where the feature is temporarily unavailable, e.g. during a channel scan. The states when
the feature is not available are not defined by the present document. If the terminal rejects the application launch for this
reason it shall respond with the response code 503.

Terminals shall not, by default, launch applications without at least one of the following approvals or pre-approvals:

• Explicit approval by the user to launch the application at the time the launch request is made.

NOTE 1: The mechanism by which approval is requested needs to be comprehensible to users who are not
technologically aware and secure against malevolent applications or devices on the home network. One
example of such would be to assume that the user explicitly requested an application on a companion

screen to in turn request the HbbTV® application to be launched. Hence a terminal UI could ask the user

if they just requested an HbbTV® application be launched. This would avoid any need to identify the
application with information that is not, itself, secured and not very comprehensible.

• Explicit pre-approval by the user that the specific application can be launched (for example by the mechanism
referred to above).

• Explicit pre-approval by the manufacturer.

• Explicit pre-approval by another party managing the network or market where the terminal is located.

In cases of pre-approval, at the time of approval, the <applicationTransport> and <applicationLocation> elements
from the XML AIT shall be stored.

ETSI

ETSI TS 102 796 V1.3.1 (2015-10)187

At the time launching is requested, the terminal shall determine if an application is pre-approved by comparing the
complete <applicationTransport> element and of that part of the <applicationLocation> element excluding any
query or fragment from the request to launch an application with the set of pre-approved values. If a match is found for
both of these then the application shall be considered pre-approved regardless of mismatches in other values from the
XML AIT.

If a requested application is not pre-approved then terminals that support explicit approval by the user to launch the
application at the time the launch request is made shall ask the user for that explicit approval.

NOTE 2: For HbbTV® terminals which only use pre-approval, it may be necessary for some applications to be

pre-approved (and others not to be pre-approved) in order to run the HbbTV® test suite.

The terminal UI should provide means for the user to either approve or pre-approve application launching. This may
include means for the user to accept or block requests from particular companion devices. If the terminal rejects the
application launch because approval or pre-approval by the user was requested and denied, then it shall respond with the
response code 403, where the body of the response is the 4 character string "USER" and has content type "text/plain".

If the terminal rejects the request for reasons other than any of the above, then it shall respond with the response
code 403, with an empty response body.

Table 29 summarises the HTTP responses described above.

Table 29: HTTP response codes for application launch requests

Response Code Response Body (defined for
403 response code only)

Description

201 CREATED The HbbTV® application was launched successfully.
403 FORBIDDEN USER The HbbTV® application could not be launched because of

a user action or a user setting.
403 FORBIDDEN The HbbTV® application could not be launched because

the operation is rejected by the terminal.
404 NOT FOUND The HbbTV® application could not be launched because it

could not be retrieved successfully, e.g. due to invalid
application URL or application server unavailable.

500 INTERNAL SERVER
ERROR

 The HbbTV® application could not be launched for a reason
other than those described by the other response codes
listed in this table. Possible reasons include a malformed or
otherwise invalid XMLAIT or an invalid HTML document.

503 SERVICE
UNAVAILABLE

 The HbbTV® application could not be launched because of
the terminal's current state.

The HbbTV® application shall be deemed to have launched successfully when the current document readiness of the
Document object of the application transitions from "loading" to the next state.

NOTE 3: A Document object's readyState attribute returns "loading" while the Document is loading,
"interactive" once it is finished parsing but still loading sub-resources, and "complete" once it has
loaded. The readystatechange event fires on the Document object when this value changes.

14.6.3 Providing HbbTV® user agent

The Companion Screen can determine the value of the User-Agent header that is supplied by the terminal on behalf of

an HbbTV® application by sending an HTTP GET request to the DIAL application Resource for HbbTV®, as
described in clause 14.7.2. The HTTP response contains an <X_HbbTV_UserAgent> element which carries the value of

the HbbTV® terminal's User-Agent header.

NOTE: By obtaining the HbbTV® terminal's User-Agent header value, the Companion application can determine

if the HbbTV® terminal provides capabilities needed by the HbbTV® application prior to deciding

whether to launch an HbbTV® application. It also enables a Companion application to provide an XML
AIT that is customised to the capabilities of the terminal.

ETSI

ETSI TS 102 796 V1.3.1 (2015-10)188

14.7 Discovering terminals and their service endpoints

14.7.1 Introduction

In the situation where a CS application has been launched by an HbbTV® application, information regarding the
location of the service endpoints exposed by the terminal may be conveyed as parameters in the launch URL, as
described in clause 14.4.2.2.3.

However, if the CS application has launched the HbbTV® application, or has been launched independently of the

HbbTV® application, then it needs to be able to discover the locations of the service endpoints by some other means.
The methods for achieving this are described in clause 14.7.2.

These methods may also be used by another terminal which is running an application that wishes to synchronise content
presentation or communicate with the running application on this terminal.

14.7.2 Terminal and service endpoint discovery

HbbTV® is a DIAL [50] application registered at the DIAL registry [i.8]. The registered name for HbbTV®
applications is 'HbbTV'. For terminal and service endpoint discovery, the terminal shall support DIAL [50].

Before the HbbTV® service endpoints can be determined, the DIAL REST Service and the DIAL application Resource
URL need to be found. This is achieved using the mechanisms described in DIAL [50], clause 5. This consists of an
SSDP M-SEARCH request and response, followed by an HTTP GET to the URL obtained from the LOCATION:
header in the M-SEARCH response. This HTTP response contains an Application-URL header and a body. The
response body is a UPnP device description as required by clause 5.4 of DIAL [50]. The Application-URL header

provides the DIAL REST Service URL.The DIAL application Resource URL for HbbTV® is the DIAL REST Service
URL followed by a single slash character ('/') and the application name 'HbbTV'. For example:

http://192.168.1.11:11111/apps/HbbTV

The terminal shall support the HbbTV® DIAL application, and shall respond to an HTTP GET request to the DIAL

application Resource URL for HbbTV® with a 200 OK response. The response shall include an XML document, as
described in clause 6.1.2 and annex A of DIAL [50], in the body.

NOTE 1: HbbTV® terminals are only required to support discovery of other HbbTV® terminals when they have
the capability to act as a slave terminal as defined in clause 10.2.9.3.

The XML document in the HTTP response shall include the mandatory elements and attributes defined in clause 6.1.2
and annex A of DIAL [50] There shall be one <additionalData> element containing one of each of the following
elements:

• An <X_HbbTV_App2AppURL> element that provides the absolute URL of an application to application
communication service endpoint, i.e. a Web Socket Server URL, as defined in clause 14.5 and the W3C Web
Socket protocol specification IETF RFC 6455 [40].

• An <X_HbbTV_InterDevSyncURL> element that provides the absolute URL of a CSS-CII service endpoint, i.e. a
URL, as defined in clause 13.6 that is used for inter-device synchronization.

• An <X_HbbTV_UserAgent> element that provides the value of the HbbTV® terminal's User-Agent header as
defined in clause 7.3.2.4. See also clause 14.6.3.

NOTE 2: The present document interprets the DIAL specification [50] schema for the additionalData element to
be interpreted as per 6.3.2 of [50], i.e. in the application resource XML schema, the line <xs:any
minOccurs="0" processContents="lax"/> is changed to <xs:any minOccurs="0"
maxOccurs="unbounded" processContents="lax"/> .

The xmlns attribute for the HbbTV® elements defined above shall be present, and shall be set to:

urn:hbbtv:HbbTVCompanionScreen:2014

ETSI

ETSI TS 102 796 V1.3.1 (2015-10)189

The additional elements carried in the <additionalData> element shall be encoded using the following XML Schema:

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema
 xmlns:xs="http://www.w3.org/2001/XMLSchema"
 xmlns="urn:hbbtv:HbbTVCompanionScreen:2014"
 targetNamespace="urn:hbbtv:HbbTVCompanionScreen:2014"
 elementFormDefault="qualified">
 <xs:element name="X_HbbTV_App2AppURL" type="xs:anyURI"/>
 <xs:element name="X_HbbTV_InterDevSyncURL" type="xs:anyURI"/>
 <xs:element name="X_HbbTV_UserAgent" type="xs:string"/>
</xs:schema>

Implementation Note (Informative)

Clause 6.3 of DIAL [50] indicates that the First-screen application and the DIAL REST Service communicate the
location of an additionalDataURL for the First-screen application to provide additionalData to. It is out of scope of

HbbTV® to define how the DIAL REST Service obtains the additonalData which populates the <additionalData>

element of the XML document carried by the HTTP GET response. In the case of HbbTV®, the First-screen application

is the HbbTV® environment provided by the manufacturer, as is the DIAL REST service, so the co-ordination of this
information is entirely under the control of the terminal manufacturer.

14.7.3 Discovery example (informative)

14.7.3.1 DIAL Service Discovery

This is as per DIAL Service Discovery - there are no additional aspects required for HbbTV®. See the example
messages B.1 to B.4 in annex B of DIAL [50].

DIAL Device Discovery Request

A device on a home network initiates device discovery by performing an M-SEARCH from the SSDP protocol with the
Search Target header (ST) as defined by DIAL:

M-SEARCH * HTTP/1.1
HOST: 239.255.255.250:1900
MAN: "ssdp:discover"
MX: 2
ST: urn:dial-multiscreen-org:service:dial:1

Discovery Response

The terminal responses with HTTP/1.1 OK and LOCATION header, and DIAL ST:

HTTP/1.1 200 OK
CACHE-CONTROL: max-age = 1800
EXT:
LOCATION: http://192.168.1.11:50201/dial.xml
SERVER: Linux/2.6 UPnP/1.1 Sony-BDP/2.0ST: urn:dial-multiscreen-org:service:dial:1
USN: uuid:00000004-0000-1010-8000-d8d43c1923dc::urn:dial-multiscreen-org:service:dial:1

Device Description Request

The home network device requests the device description file by an HTTP GET request to the LOCATION URL:

GET /dial.xml HTTP/1.1
User-Agent: Dalvik/1.6.0 (Linux; U; Android 4.3; SGP312 Build/10.4.B.0.577)
Host: 192.168.1.11:50201
Origin: http://cs.services.broadcaster.com/

ETSI

ETSI TS 102 796 V1.3.1 (2015-10)190

Device Description Response

The terminal responds with HTTP/1.1 OK header containing the Application-URL as defined in DIAL:

• Header

HTTP/1.1 200 OK
CONTENT-LANGUAGE: <language used in description>
CONTENT-LENGTH: <bytes in body>
CONTENT-TYPE: text/xml; charset="utf-8"
Application-URL: http://192.168.1.11:11111/apps
Access-Control-Allow-Origin:*

14.7.3.2 DIAL Rest Service

As, from the Device Description Response example, the DIAL REST service is on an Application-URL of

http://192.168.1.11:11111/apps then the following are examples of how the HbbTV® service endpoints and the
User-Agent header value are discovered.

Application information request

A HTTP GET message is sent to 192.168.1.11, port 11111 as follows:

GET /apps/HbbTV HTTP/1.1
User-Agent: Dalvik/1.6.0 (Linux; U; Android 4.3; SGP312 Build/10.4.B.0.577)
Host: 192.168.1.11:11111
Origin: http://cs.services.broadcaster.com/

Application information response

An HTTP response is returned as follows:

• Header

HTTP/1.1 200 OK
Origin: http://cs.services.broadcaster.com/

• Body

<?xml version="1.0" encoding="UTF-8"?>
<service xmlns="urn:dial-multiscreen-org:schemas:dial"
 xmlns:hbbtv="urn:hbbtv:HbbTVCompanionScreen:2014" dialVer="1.7">
 <name>HbbTV</name>
 <options allowStop="false"/>
 <state>running</state>
 <additionalData>
 <hbbtv:X_HbbTV_App2AppURL>
 ws://192.168.1.11:992/hbbtv/84fa-9fd3-33a1-2481-9098-3ccd-de26-a223/
 </hbbtv:X_HbbTV_App2AppURL>
 <hbbtv:X_HbbTV_InterDevSyncURL>ws://192.168.1.11:991/css-cii
 </hbbtv:X_HbbTV_InterDevSyncURL >
 <hbbtv:X_HbbTV_UserAgent> Mozilla/5.0 (Linux armv7l) AppleWebKit/537.36 (KHTML, like
Gecko) Chrome/35.0.1916.153 Safari/537.36 OPR/22.0.1481.0 OMI/4.2.12.34.ALSAN3.16 HbbTV/1.3.1 (;
Sony; KDL55X100000; v1.000; 2015;)
 </hbbtv:X_HbbTV_UserAgent>
 </additionalData>
</service>

ETSI

ETSI TS 102 796 V1.3.1 (2015-10)191

14.8 Cross-Origin support

The HbbTV® terminal shall allow cross-origin requests to the HbbTV® UPnP device description (for the DIAL
service) and the DIAL REST Service. It shall do this by implementing the resource processing model defined in the
W3C Cross-Origin Resource Sharing recommendation [42] and authorising all HTTP requests made by a CS

application or an HbbTV® application on another terminal to come from any origin. Specifically, when the HbbTV®
terminal receives an HTTP request with request URL targetting the UPnP device description or the DIAL REST
Service:

• If the request uses the OPTIONS method, the HbbTV® terminal shall process the request as a preflight request
in accordance with clause 6.2 of the W3C Cross-Origin Resource Sharing recommendation [42] including the
following HTTP headers in the HTTP response as appropriate: Access-Control-Allow-Origin, Access-
Control-Max-Age, Access-Control-Allow-Methods and Access-Control-Allow-Headers. These headers
shall be used to indicate that requests are permitted from any origin and to confirm that a CS application may
use the HTTP POST.

• If the request contains an Origin header, then the HbbTV® terminal shall include an Access-Control-Allow-
Origin header in the HTTP response. The value of this response header shall be either the asterisk character
"*" or a case-sensitive match for the value of the Origin header from the HTTP request.

ETSI

ETSI TS 102 796 V1.3.1 (2015-10)192

Annex A (normative):
OIPF DAE specification profile

A.1 Detailed section-by-section definition for volume 5
Where constants are defined in in the OIPF DAE specification as input parameters and/or return values for methods or
as values for properties, these constants shall be supported if any method or property is supported that uses them and if
the constant is not explicitly excluded by name below. Although the constants defined in the OIPF DAE specification
are expressed in JavaScript as properties, statements in table A.1 that "Only the following properties shall be supported"
do not apply to these constants.

Table A.1: Section-by-section profile of the OIPF DAE specification

Section, sub-section Reference in
DAE [1]

Status in
HbbTV Notes Security

Gateway Discovery and Control 4.2 NI
Application Definition

Application definition 4.3 excluding
sub-clauses M(*)

Modified by the present document
concerning the application
boundary and access to privileged
capabilities.

Similarities between applications and
traditional web pages 4.3.1 M

Difference between applications and
traditional web pages 4.3.2 NI

The present document defines a
model supporting one application
executing at one time and does
not include background
applications. See clause 6.1 of the
present document.

The application tree 4.3.3 NI

The application display model 4.3.4 M(*)
The present document requires a
different application visualization
mode from those referred to here.

The Security model 4.3.5 NI See clause 11.1 of the present
document.

Inheritance of permissions 4.3.6 NI
Privileged applications APIs 4.3.7 NI Not applicable.
Active applications list 4.3.8 NI Not applicable.
Widgets 4.3.9 NI
Origin for Broadcast-delivered
Documents

4.3.10 NI See clause 6.3.2 of the present
document.

Resource Management

Application lifecycle issues 4.4.1 NI
See clause 6.2.2.11 for terminal
behaviour due to a lack of
resources.

Caching of application files 4.4.2 NI

See clause 6.1 of the present
document concerning
"background preloading" of
applications.

Memory usage 4.4.3 M The gc() method is not included.
Instantiating embedded object and
claiming scarce system resources

4.4.4 M

Media control 4.4.5 M(*) Shall be modified as defined in
clause A.2.1.

Use of the display 4.4.6 M(*)
The present document defines a
different application visualization
mode than those in clause 4.4.6.

Cross-application event handling 4.4.7 NI
Not applicable in the present
document.

Behaviour of the BACK key 4.4.7.1 M(*) See clause A.2.6.4 of the present
document.

Tuner resources 4.4.8 M

ETSI

ETSI TS 102 796 V1.3.1 (2015-10)193

Section, sub-section Reference in
DAE [1]

Status in
HbbTV Notes Security

Parental access control 4.5 M

- Approach A shall be supported
for streaming on demand content.
- Approach B shall be supported
where CI Plus is supported.
- Approach C shall always be
supported.
See clause 10.2.6.

Content Download

Download manager 4.6.1 M-D(*)
The
application/oipfStatusView
embedded object is not included.

Trusted

Content Access Download Descriptor 4.6.2 M-D Trusted
Triggering a download 4.6.3 M-D Trusted
Download protocol(s) 4.6.4 M-D Trusted
Streaming CoD

Unicast streaming 4.7.1 M(*)

Methods 1 and 2 using an HTTP
URL shall be supported.
Method 3 shall be supported if the
DRM feature is supported.
Otherwise not included.

HTTP Adaptive Streaming 4.7.1.1 NI See clause 9.4 of the present
document.

Multicast streaming 4.7.1.2 NI
Scheduled content

Conveyance of channel list 4.8.1 M
Clause 4.8.1.2 is optional in DAE
and not included in the present
document.

Broadcast
-related

Conveyance of channel list and list of
scheduled recordings 4.8.2 M-P Trusted

DLNA RUI Remote Control Function 4.9 NI
Power Consumption 4.10 NI
Display Model 4.11 M
Application lifecycle

Web applications 5.1.1.2 M

Web applications are equivalent to
broadcast-independent
applications in the present
document.

Applications started through an OITF-
specific user interface 5.1.1.3 M

Using the
Application.createApplication API call 5.1.1.4 M See clauses 6.2.2.6 and 9.2 of the

present document.

CE-HTML third party notifications 5.1.1.5 NI
Starting applications from SD&S
Signalling 5.1.1.6 NI

Applications started by the DRM agent 5.1.1.7 NI

Terminals should not start

HbbTV® applications triggered by
the DRM agent in order to avoid

killing a currently running HbbTV®
application which is trying to
present the protected content.

Instead it is recommend that
applications trying to present
protected content should handle
DRM-specific UI themselves.

Note that CI Plus application MMI
(see clause 5.6.2 of the present
document) has some conceptual
similarities with this but uses a
different presentation technology.

Applications provided by the AG
through the remote UI 5.1.1.8 NI

Stopping an application 5.1.2 M

ETSI

ETSI TS 102 796 V1.3.1 (2015-10)194

Section, sub-section Reference in
DAE [1]

Status in
HbbTV Notes Security

Application Boundaries 5.1.3 NI

This subject is addressed in
substantially more detail by
clause 6.3 of the present
document.

Application announcement and
signalling

5.2 NI

Event Notification
Event Notification Framework based
on CEA 2014 -
NotifSocket

5.3.1.1 NI

Event Notification Framework based
on CEA 2014 -
XMLHttpRequest

5.3.1.1 M None

Out of Session event notification 5.3.1.2 NI
IMS Event Notification Framework 5.3.2 NI
Formats

Web Standards TV Profile 6.1 M

See clause A.2.6 of the present
document.
NOTE: The reference to

clause 3.2.5.1.7 of
HTML5 is revised to be
clause 3.2.4.1.7.

Still Image Formats 6.2 M

Media formats 6.3 M(*) See clause 7 of the present
document.

SVG 6.4 NI
APIs

Object Factory API 7.1 M(*)

Methods for creating objects not
required by the present document
are not included.

The requiredCapabilities
argument on the
createVideoBroadcastObject()
and createVideoMpegObject()
methods shall not be used and
can be ignored.

Creation of embedded objects
(both visual and non-visual) by
using the <object> element in an
HTML document or by using the
DOM createElement() method
and adding the resulting element
to the application's DOM tree shall
be supported.

The
createMediaSynchroniser() and
createCSManager() methods
defined in clause A.2.7 shall be
supported.

The extensions to
isObjectSupported() defined in
clause A.2.7 shall be supported.

None

Applications Management APIs

The
application/oipfApplicationManager
embedded object

7.2.1 M(*)

The getOwnerApplication()
method, onLowMemory and
onApplicationLoadError
properties (and corresponding
DOM 2 events) shall be
supported. All other properties,
methods and DOM 2 events are
not included.

None

ETSI

ETSI TS 102 796 V1.3.1 (2015-10)195

Section, sub-section Reference in
DAE [1]

Status in
HbbTV Notes Security

The Application class 7.2.2 M(*)

The following properties and
methods shall be supported:
- privateData
- createApplication(URI,false)
- destroyApplication()
- show()
- hide() (broadcast independent
applications should not call this
method. Doing so may result in
only the background being visible
to the user).

All other properties and methods
are not included.

None

The ApplicationCollection class 7.2.3 NI

The ApplicationPrivateData class 7.2.4 M(*)

The following properties and
methods shall be supported:
- keyset
- currentChannel
- getFreeMem()
All other properties and methods
are not included.

None

The Keyset class 7.2.5 M(*)

The otherKeys and
maximumOtherKeys properties and
the getKeyLabel method are not
included. The icons returned by
the getKeyIcon method shall be
32 x 32 pixels.

None

New DOM events for application
support 7.2.6 NI None

Widget APIs 7.2.8 NI
Configuration and Setting APIs

The application/oipfConfiguration
embedded object 7.3.1 M(*)

The configuration property shall
be supported. All other properties,
methods and events are not
included.

None

The Configuration class 7.3.2 M(*)

Support for read-only access to
the following properties is
mandatory:
- preferredAudioLanguage
- preferredSubtitleLanguage
- preferredUILanguage
- countryId
All other properties and methods
are optional.

None

The LocalSystem class 7.3.3 NI
The NetworkInterface class 7.3.4 NI
The AVOutput class 7.3.5 NI
The NetworkInterfaceCollection class 7.3.6 NI
The AVOutputCollection class 7.3.7 NI
The TunerCollection class 7.3.8 NI
The Tuner class 7.3.9 NI
The SignalInfo class 7.3.10 NI
The LNBINfo class 7.3.11 NI
The StartupInformation class 7.3.12 NI

ETSI

ETSI TS 102 796 V1.3.1 (2015-10)196

Section, sub-section Reference in
DAE [1]

Status in
HbbTV Notes Security

Content Download APIs

application/oipfDownloadTrigger
embedded object 7.4.1 M-D(*)

The definition of the
registerDownloadURL method
shall be modified as defined in
clause A.2.19 of the present
document.

For the registerDownload and
registerDownloadURL methods,
the downloadStart parameter
shall be ignored by terminals.

Trusted

Extensions to
application/oipfDownloadTrigger 7.4.2 NI

application/oipfDownloadManager
embedded object 7.4.3 M-D(*)

The discInfo property and the
updateRegisteredDownload,
pause, resume and getDownloads
method arenot included.

A download using FDP which has
completed with errors shall be
reported as successfully
completed, in case
discard_file_on_error_flag =
0 for this download (see
clause H.4.2).

The behaviour of the reserve()
method is clarified by
clause A.2.18 below.

Trusted

The Download class 7.4.4 M-D(*)

The currentBitrate property is
not included.
The errorLevel property shall be
supported (see clause A.2.11
below).
The flaggedForDeletion
property defined in clause 8.2.4
shall be supported.

Trusted

The DownloadCollection class 7.4.5 M-D Trusted
The DRMControlInformation class 7.4.6 M-D+ M-M Mandatory if both Download and

DRM features are supported -
even if the supported DRM
systems do not use the
<DRMControlInformation>
element inside the content access
download descriptor.

If the Download feature is
supported and the terminal
supports CI Plus and if the
terminal is capable of providing
downloaded content to the CICAM
then these classes shall be
supported - even if the CAS
brought by a CICAM do not use
the <DRMControlInformation>
element inside the content access
download descriptor.

Trusted

The DRMControlInfoCollection class 7.4.7 M-D+ M-M Trusted

ETSI

ETSI TS 102 796 V1.3.1 (2015-10)197

Section, sub-section Reference in
DAE [1]

Status in
HbbTV Notes Security

Content On Demand Metadata APIs 7.5 NI

Content Service Protection API 7.6
M-C(*),
M-M(*),
M-P(*)

If the DRM feature is supported or
if the terminal supports CI Plus
then this is mandatory except as
follows:
- The canRecordContent()
method is mandatory only if either
or both of the preceding
conditions apply and also the PVR
feature is supported.
- The onDRMSystemStatusChange
property and the
DRMSystemStatus method are not
included.

The DRMSystemID argument for
the sendDRMMessage() method
shall be specified and shall not be
null

Trusted

Gateway Discovery and Control APIs 7.7 NI
Communication Services APIs 7.8 NI
Parental access control APIs

application/oipfParentalControl
Manager embedded object

7.9.1 M(*)

The parentalRatingSchemes
property shall be supported. Other
properties and methods are not
included.

None

The ParentalRatingScheme class 7.9.2 M A scheme supporting DVB-SI age
based rating shall be supported.

None

The ParentalRatingSchemeCollection
class 7.9.3 M(*)

The
addParentalRatingScheme()
method is not included.

None

The ParentalRating class 7.9.4 M

For instances with a scheme of
"dvb-si", the name property is a
string containing an age in years,
encoded as a decimal in the range
"4" to "18" inclusive. For example,
"13" means a programme that is
rated suitable for persons of 13
years of age or older.

None

The ParentalRatingCollection class 7.9.5 M(*)

The addParentalRating()
method shall be supported if the
PVR feature is supported and is
otherwise not included. All other
features of the class shall be
supported.

None

Scheduled Recording APIs
application/oipfRecordingScheduler
embedded object 7.10.1 M-P Trusted

The ScheduledRecording class 7.10.2 M-P(*)

Only the following properties shall
be supported:
- startPadding
- endPadding
- name
- description
- startTime
- duration
- state
- parentalRatings
- channel
- programmeID
All other properties are not
included.

Trusted

The ScheduledRecordingCollection
class 7.10.3 M-P Trusted

ETSI

ETSI TS 102 796 V1.3.1 (2015-10)198

Section, sub-section Reference in
DAE [1]

Status in
HbbTV Notes Security

Extension to
application/oipfRecordingScheduler for
control of recordings

7.10.4 M-P(*)

The recordings property shall be
supported and shall return
recordings that are in-progress as
well as ones that are scheduled or
completed. Other properties,
methods and events are not
included.

Trusted

The Recording class 7.10.5 M-P(*)

The following properties shall be
supported:
- uri
- id
- recordingStartTime
- recordingDuration
Since the Recording class
implements the
ScheduledRecording interface,
the properties required to be
supported from that interface as
defined above are also required.
All other properties are not
included.

Trusted

The RecordingCollection class 7.10.6 NI
The PVREvent class 7.10.7 NI
The Bookmark class 7.10.8 NI
The BookMarkCollection class 7.10.9 NI
Remote Management APIs 7.11 NI
Metadata APIs

The application/oipfSearchManager
embedded object 7.12.1 M(*)

The guideDaysAvailable and
onMetadataUpdate properties are
not included.
For the createSearch method,
only the value '1' of the
searchTarget parameter is
included.

Broadcast
-related

ETSI

ETSI TS 102 796 V1.3.1 (2015-10)199

Section, sub-section Reference in
DAE [1]

Status in
HbbTV Notes Security

The MetadataSearch class 7.12.2 M(*)

Only the value '1' of the
searchTarget property is
included.
For the createQuery method, only
the following case-insensitive
values for the field parameter
are included -
"Programme.startTime",
"Programme.name",
"Programme.programmeID". These
shall correspond to the properties
of the same name.
The addRatingConstraint,
addCurrentRatingConstraint
and
addChannelConstraint(Channel

List) methods are not included.
The orderBy method is not
included - all search results shall
be returned ordered first by
channel, in the same order as
presented to applications through
a ChannelList object, then by
start time in ascending order.

Broadcast
-related

The Query class 7.12.3 M Broadcast
-related

The SearchResults class 7.12.4 M Broadcast
-related

The MetadataSearchEvent class 7.12.5 NI
The MetadataUpdateEvent class 7.12.6 NI
Scheduled content and hybrid tuner APIs

video/broadcast embedded object 7.13.1 M(*)

In the setChannel() method, the
optional
contentAccessDescriptorURL
parameter may be ignored.

The setVolume() and getVolume()
methods and the
playerCapabilities and
allocationMethod properties are
not included.

The modifications in clause A.2.4
shall be supported.

See
clause
A.2.4

ETSI

ETSI TS 102 796 V1.3.1 (2015-10)200

Section, sub-section Reference in
DAE [1]

Status in
HbbTV Notes Security

Extensions to video/broadcast for
recording and timeshift 7.13.2 M(*), M-P

Terminals that support time-shift
of broadcast video shall support
the following events and
properties even if they do not
support the full PVR
option:
- onRecordingEvent
- recordingState
- playPosition
- onPlayPositionChanged

- playSpeed

- onPlaySpeedChanged

- playbackOffset

- maxOffset

Time-shift mode 2 (network
resources) is not included in the
present document even when the
PVR option is supported.

In the properties playbackOffset
and maxOffset, in the sentence
"When the
currentTimeShiftMode property
has the value 1, the value of this
property is undefined." the
reference to "1" shall be replaced
with "0".

Broadcast
-related

Extensions to video.broadcast for
access to EIT p/f 7.13.3 M Broadcast

-related
Extensions to video/broadcast for
playback of selected components 7.13.4 M Broadcast

-related
Extensions to video/broadcast for
parental ratings errors 7.13.5 M Broadcast

-related
Extensions to video/broadcast for
DRM rights errors 7.13.6 M-C Mandatory if the terminal supports

CI Plus.

Extensions to video/broadcast for
current channel information 7.13.7 M

Access to the currentChannel
property by broadcast-
independent applications shall
return null.

Broadcast
-related

Extensions to video/broadcast for
creating Channel lists from SD&S
fragments

7.13.8 NI

ChannelConfig class 7.13.9 M(*)

The channelList property shall
be supported. Other properties,
methods and events are not
included.

Broadcast
-related

ChannelList class 7.13.10 M(*) The getChannelBySourceID()
method is not included.

Broadcast
-related

ETSI

ETSI TS 102 796 V1.3.1 (2015-10)201

Section, sub-section Reference in
DAE [1]

Status in
HbbTV Notes Security

Channel class 7.13.11 M(*)

The following properties shall be
supported:
- channelType
- ccid
- dsd
- idType- nid
- onid
- tsid
- sid
- name
- majorChannel
- terminalChannel
All other properties and methods
are not included.

See clause 8.2.5 for more details
regarding the properties
majorChannel and
terminalChannel.

Broadcast
-related

Favourite lists 7.13.12,
7.13.13 NI

Extensions to video/broadcast for
channel scan 7.13.14 NI

The ChannelScanEvent class 7.13.15 NI
The ChannelScanOptions class 7.13.16 NI
The ChannelScanParameters class 7.13.17 NI
The DVBTChannelScanParameters
class 7.13.18 NI

The DVBSChannelScanParameters
class 7.13.19 NI

The DVBCChannelScanParameters
class

7.13.20 NI

Extensions to video/broadcast for
synchronization 7.13.21 NI Already included in clause 8.2.1 of

the present document.

The ATSCTChannelScanParameters
class 7.13.22 NI

Media Playback APIs

The A/V Control object 7.14.1 M(*)

See clause A.2.5 of the present
document

The reference to the <object>
element being defined in
clause 4.8.4 of the HTML5
specification is revised to be
clause 4.7.4.

None

State diagram for A/V Control objects 7.14.1.1 M(*)

An onPlaySpeedChanged event
shall be generated for all calls to
the play() method regardless of
the value returned by the method
call and whether the play speed
changes or not.

In the present document, the
allocationMethod property is not
included but requirements for
DYNAMIC_ALLOCATION shall apply.

The transitions in the state
diagram of figure 19 shall be
mandatory.

None

Using an A/V Control object to play
streaming content 7.14.1.2 M None

Using an A/V Control object to play
downloaded content 7.14.1.3 M(*)-D Clarified by A.2.5.5 below. Trusted

ETSI

ETSI TS 102 796 V1.3.1 (2015-10)202

Section, sub-section Reference in
DAE [1]

Status in
HbbTV Notes Security

Using an A/V Control object to play
recorded content 7.14.1.4 M-P Trusted

Using the A/V Control object to play
content fragments 7.14.1.5 M None

User Input and the A/V Control object 7.14.1.6 M
Extensions to A/V Control object for
playback through Content-
Access Streaming Descriptor

7.14.2 M None

Extensions to A/V Control object for
trickmodes 7.14.3 M(*)

Only the onPlayPositionChanged
and onPlaySpeedChanged
properties and events are
required.

None

Extensions to A/V Control object for
playback of selected components 7.14.4 M None

Extensions to A/V Control object for
parental rating errors 7.14.5 M See clause 10.2.6. None

Extensions to A/V Control object for
DRM rights errors 7.14.6 M-M, M-C

Mandatory if the DRM feature is
supported or if the terminal
supports CI Plus.

onDRMRightsError shall not
cause a state transition of the A/V
control object. It is the
application's responsibility to stop
the A/V Control object if that is the
appropriate behaviour under the
circumstances. If an error is
generated because a suitable
DRM system is not available then
the DRMSystemID argument shall
be undefined.

None

Extensions to A/V Control object for
playing media objects 7.14.7 M-D, M-P

Shall be supported if either the
download or PVR features are
supported.

Trusted

Extensions to A/V Control object for UI
feedback of buffering A/V content 7.14.8 NI

DOM events for A/V Control object 7.14.9 M None
Playback of memory audio 7.14.10 M None
Extensions to A/V Control object for
media queuing 7.14.11 NI

URI support and the queue method 7.14.11.1 NI
Implementation Requirements on the
Queue Method 7.14.11.2 NI

Extensions to A/V Control object for
volume control 7.14.12 NI

Extensions to A/V Control object for
resource management

7.14.13 NI

Miscellaneous APIs
application/oipfMDTF embedded
object 7.15.1 NI

application/oipfStatusView embedded
object

7.15.2 NI

application/oipfCapabilities embedded
object 7.15.3 M

The hasCapability() method
shall be supported with the profile

names being the HbbTV® option
strings as defined in
clause 10.2.4.

See clause A.2.1 for clarification
of the behaviour of the
extraSDVideoDecodes and
extraHDVideoDecodes properties.

None

The Navigator class 7.15.4 M None
Debug Print API 7.15.5 M None
The StringCollection class 7.16.1.1 M None

ETSI

ETSI TS 102 796 V1.3.1 (2015-10)203

Section, sub-section Reference in
DAE [1]

Status in
HbbTV Notes Security

The IntegerCollection class 7.16.1.2 NI
The Programme Class

Basics 7.16.2.1,
7.16.2.2 M(*)

The following properties are
required:
- name
- programmeID
- programmeIDType

- description
- longDescription

- startTime
- duration
- channelID
- parentalRatings
All other properties and methods
are not included.

The constants defined in
clause 7.16.2.1 shall be supported
however support for CRIDs is
outside the scope of the present
document.
The count parameter of the
findProgrammesFromStream
method of the MetadataSearch
class is not included.

Broadcast
-related

Metadata extensions to Programme 7.16.2.3 NI
DVB-SI extensions to Programme 7.16.2.4 M
Recording extensions to Programme 7.16.2.5 NI

The ProgrammeCollection class 7.16.3 M Broadcast
-related

The DiscInfo class 7.16.4 NI

Extensions for playback of selected
media components 7.16.5 M(*)

For mapping of the encoding
property for MP4 FF content, the
following additional sample track
descriptions shall be included:
"hvc1" → "video/mp4"
"hev1" → "video/mp4"

The label property defined in
clause A.2.13 shall be supported.

The selectComponent() and
unselectComponent() methods
shall be asynchronous.

The getComponents() method
shall always return fresh
information. For example, in the
case of an MPEG-2 transport
stream, after a change to the
PMT. The property defined in
clause A.2.17 shall be supported.

ETSI

ETSI TS 102 796 V1.3.1 (2015-10)204

Section, sub-section Reference in
DAE [1]

Status in
HbbTV Notes Security

Additional support for protected
content

7.16.6 M-C, M-M

Mandatory if the DRM feature is
supported or if the terminal
supports CI Plus.

NOTE: This clause defines

extensions to both the
Recording and
Download classes. The
extensions to the
Recording class are
mandatory if the PVR
feature is supported.
The extensions to the
Download class are
mandatory if the file
download feature is
supported.

Trusted

DLNA RUI Remote Control Function
APIs

7.17 NI

System integration aspects
HTTP User-Agent header 8.1.1 NI See clause 7.3.2.4.
HTTP X-OITF-RCF-User-Agent
header 8.1.2 NI

Mapping from APIs to Protocols
CoD Download Over HTTP 8.2.1 M-D
CoD Unicast Streaming with SIP
Session Management 8.2.2 NI

Scheduled Content Multicast
Streaming with SIP Session
Management

8.2.3 NI

Communication Services with SIP
Session Management 8.2.4 NI

CoD Unicast Streaming over RTP and
HTTP 8.2.5 M(*)

General 8.2.5.1 M(*) Only for the HTTP protocol
CoD Media Queuing 8.2.5.2 ??
Scheduled content Multicast
Streaming 8.2.6 NI

URI Schemes and their usage 8.3 M

The http:, https: and dvb: URL
schemes shall be supported as
defined in this clause.

Media Fragments Support 8.3.1 M
Mapping from APIs to Content
Formats

Character Conversion 8.4.1 M

AVComponent 8.4.2 M(*)

Only for properties that are
required by the present document.

Statements that a property "may"
be derived in a particular way
shall be read as "shall" be derived
in that way For AVComponents
corresponding to an MPEG DASH
Adaptation Set, the language
property shall be what is encoded
in the MPD which may be an
ISO 639-1 [60] 2-character
language code and not an
ISO 639-2 [61] 3-character
language code.

ETSI

ETSI TS 102 796 V1.3.1 (2015-10)205

Section, sub-section Reference in
DAE [1]

Status in
HbbTV Notes Security

Channel 8.4.3 M(*)

Only the requirements about
channels of type ID_DVB_* applies
and only then for properties that
are required by the present
document.

Programme, ScheduledRecording,
Recording and Download 8.4.4 M(*) Only for properties that are

required by the present document.

Exposing Audio Description Streams
as AVComponent objects 8.4.5 M(*)

This only applies to the extent that
the terminal supports audio
description.

HTML5 Media Element Mapping 8.4.6 M(*) See clause A.2.12 of the present
document.

DLNA RUI Remote Control Function
implementation 8.5 NI

Capabilities

Minimum DAE capability requirements 9.1 NI See clause 10.2.1 in the present
document.

SSL/TLS Requirements 9.1.1 NI 9.1.1 is replaced by clause 11.2 of
the present document.

Default UI profiles 9.2 M(*)

Clause 10.2.4 of the present
document requires support for
OITF_HD_UIPROF defined in this
clause. That in turn requires
support for OITF_SDEU_UIPROF.
The definition of that is modified
as follows, <security
protocolNames="ssl

tls">true</security> is
replaced by <security
protocolNames="tls">true</se
curity>

CEA-2014 capability negotiation and extensions
Tuner/broadcast capability indication 9.3.1 M
Broadcasted content over IP capability
indication

9.3.2 NI

PVR capability indication 9.3.3 M-P
Download Cod capability indication 9.3.4 M-D
Parental ratings 9.3.5 M
Extended A/V API support 9.3.6 M
OITF Metadata API support 9.3.7 M
OITF Configuration API support 9.3.8 M
Communication Services API Support 9.3.9 NI
DRM capability indication 9.3.10 M

Media profile capability indication 9.3.11 M(*)

Valid values for the "name"
attribute of the <video_profile>
element shall include ones with an
underscore and the subtitle format
name appended to the end of
what is defined in this clause.
Subtitle format names are defined
in clause 7.3.1.5 of the present
document.

Remote diagnostics support 9.3.12 NI
SVG 9.3.13 NI
Third party notification support 9.3.14 NI
Multicast Delivery Terminating
Function support 9.3.15 NI

Other capability extensions 9.3.16 M
HTML5 video 9.3.17 M
DLNA RUI Remote Control Function
support 9.3.18 NI

Power Consumption 9.3.19 NI
Widgets 9.3.20 NI
Buffer control of AV content playback
API support 9.3.21 NI

ETSI

ETSI TS 102 796 V1.3.1 (2015-10)206

Section, sub-section Reference in
DAE [1]

Status in
HbbTV Notes Security

Temporal Clipping 9.3.22 M
Capability Elements from other
schemas 9.3.23 M

Pointer support 9.3.24 M See clause 10.2.2.2.
Security
OITF requirements 10.1.1 NI
Server requirements 10.1.2 NI
Specific security requirements for
privileged JavaScript APIs

10.1.3 NI

Permission names 10.1.4 NI
Loading documents from different
domains

10.1.5 M

User Authentication 10.2 M(*)

HTTP Basic and Digest
Authentication as defined in
clause 5.4.1 of the OIPF CSP
specification [5] shall be
supported. Other forms of user
authentication from clause 5 of the
OIPF CSP specification are not
included.

DLNA RUI Remote Control 10.3 NI
DAE Widgets 11 NI
Performance
Graphics Performance 12.1 M(*) See clause A.2.16.
Content Access Descriptor Syntax and Semantics

Content Access Download Descriptor
Format E.1 M-D

Required with the extensions
defined in clause 7.3.1.5 to
support downloadable fonts for
subtitles linked with download
content.

Content Access Streaming Descriptor
Format E.2 M(*)

Required with the extensions
defined in clause 7.3.1.5 to
support downloadable fonts for
subtitles linked with streaming
content.

Abstract Content Access Descriptor
Format

E.3 M

Required as the base descriptor
for E.1 and E.2.

When parsing a
<ParentalRating> element, the
content of that element is used as
the name property of the
JavaScript ParentalRating
object. Valid values are the ones
defined as valid for a
ParentalRating object using the
indicated scheme.

Capability Extensions Schema F M
Client Channel Listing Format G NI

Display Model H M(*)

Modified by clause A.2.14
concerning scaling and clipping of
video when not in full screen
mode.

Backwards Compatible Profile Of
HTML5 Media Elements I NI

DLNA RUI Remote Control Function
Sequences J NI

Collections K M
SVG Video Tag Support L NI
Changes to section 5.6.2 of CEA-
2014-A O NI

ETSI

ETSI TS 102 796 V1.3.1 (2015-10)207

Table A.2: Key to security column

Security Description
none All applications shall have access to the referenced API.
trusted Only trusted applications as defined in clause 11.1 shall have access to the referenced API.

If other applications or web pages try to use this API, the terminal shall throw an error with the
name property set to SecurityError (see clause 10.1.1 of the OIPF DAE specification [1]).
Note that for embedded objects, untrusted applications may acquire instances of them without
restrictions, either through the object factory or by using HTMLObjectElements. Security
restrictions are enforced only when the application attempts to access properties or execute
functions on the objects.

broadcast-related Broadcast-related applications shall have access to the referenced API regardless of whether
they are trusted or not.
If other applications or web pages try to use this API, the terminal shall throw an error with the
name property set to SecurityError (see clause 10.1.1 of the OIPF DAE specification [1]).
Note that for embedded objects, untrusted broadcast-independent applications may acquire
instances of them without restrictions, either through the object factory or by using
HTMLObjectElements. Security restrictions are enforced only when the application attempts to
access properties or execute functions on the objects.

n/a
(for optional APIs)

The security level for optional APIs is the manufacturer's decision. If such APIs are provided,
they should have at least a security level of "trusted". Further restrictions may be added.

Table A.3: Key to status column

Status Meaning
M Mandatory.

M-C Mandatory if CI Plus is supported for protected content via broadcast. Support of the related section/sub-
section in table A.1 is not expected if CI Plus support is not indicated according to clause 10.2.4.

M-D Mandatory if the download feature supported otherwise not included.
M-M Mandatory if the DRM feature is supported otherwise not included. Support of the related

section/sub-section in table A.1 is not expected if the support of the DRM feature is not indicated
according to clause 10.2.4.
See note 2.

O-M Optional in the present document but may be made mandatory by the definition of how a particular DRM
solution integrates with the present document.

M-P Mandatory if the PVR feature is supported otherwise not included.
NI Not included.

NOTE 1: Any of the above may be post-fixed with (*) where only some parts of the section or sub-section are required
in the present document.

NOTE 2: A device supporting CI Plus is not expected to support all the APIs required for the DRM feature.

A.2 Modifications, extensions and clarifications to
volume 5

A.2.1 Resource management
In clause 4.4.5 of the OIPF DAE specification [1], the statement that "If insufficient resources are available to present
the media, the attempt to play the media shall fail " is modified as defined in clause 6.2.2.7 of the present document.

The STATIC_ALLOCATION model referred to in this clause is not included in the present document. All resource
allocation is under the DYNAMIC_ALLOCATION model.

NOTE: The policy for managing hardware resources defined here that applies to the AV Control object and
video/broadcast objects (first-come, first-served) is intentionally the exact opposite of the policy defined
for the HTML 5 media element in clause 9.6.2 of the present document.

If the resources that would be needed by an HTML5 media element to present media are in use by either an AV Control
object or a video/broadcast object then the request to present media through the media element shall fail with a
MediaError with code MEDIA_ERR_DECODE.

ETSI

ETSI TS 102 796 V1.3.1 (2015-10)208

If the resources that would be needed by an AV Control object or a video/broadcast object are in use by an HTML5
media element then the request to present media through the object shall fail. For an A/V control object, the object shall
go to playState 6 with the error property being 3, "insufficient resources". For a video/broadcast object, this shall be
reported by an onChannelChangeError with errorState 11, "insufficient resources are available to present the given
channel (e.g. a lack of available codec resources)".

The properties extraSDVideoDecodes and extraHDVideoDecodes shall return the number of additional A/V decoders
available at the time the application reads the properties and that can be used with either the AV Control object or
HTML5 media elements to render additional broadband streams.

A.2.2 Void

A.2.3 Void

A.2.4 Extensions to the video/broadcast object

A.2.4.1 State machine and related changes

This clause describes a set of changes to the state machine and following text for the video/broadcast object defined in
clause 7.13.1.1 of the OIPF DAE specification [1].

• Calling the setChannel() method from any state of the video/broadcast object with a null argument shall
cause the application to transition to a broadcast-independent application (as described in clause 6.2.2.6). This
is in addition to what is required by OIPF - e.g. causing the video/broadcast object to transition to the
unrealized state and releasing any resources used for decoding video and/or audio. Hence the
setChannel(null) and release() methods do not have the same behaviour in the present document.

• Suspension of access to broadcast resources as defined in clause 6.2.2.7 of the present document shall be
treated as a transient error.

• A video/broadcast object with a CSS rule of display:none shall not be loaded and hence shall not be decoding
audio or video.

A.2.4.2 Access to the video/broadcast object

The following rules and clarifications shall apply to the video/broadcast object.

Broadcast-related applications shall have full access to the video/broadcast object. If a new broadcast service is selected
then this may result in the broadcast-related application being killed as defined in clause 6.2.2.2. As defined in
clause 6.2.2.2, selecting MPEG programs which are not broadcast services and which do not contain an AIT will not
cause the running broadcast-related application to be killed.

Broadcast-independent applications shall be able to use the video/broadcast object as follows.

• The following properties and methods shall have no restrictions: createChannelObject(),
onChannelChangeSucceeded, onChannelChangeError, onPlayStateChange, addEventListener(),
removeEventListener(), width and height.

• The setChannel() method shall trigger the behaviours defined in clause 6.2. If the method is used to select a
broadcast service then this may result in the application becoming a broadcast-related application. If the
setChannel() method is used to access an MPEG program which is not a broadcast service and which does
not contain an AIT, then there are no restrictions and no consequences for the application lifecycle.

• The following methods shall always throw a "Security Error" (as defined in clause 10.1.1 of the OIPF DAE
specification [1]): getChannelConfig(), bindToCurrentChannel(), prevChannel() and nextChannel().

• The following methods shall have no effect: setFullScreen(), release(), and stop().

• The object shall always be in the unrealized or connecting states unless connected to an MPEG program which
is not a broadcast service and which does not contain an AIT.

ETSI

ETSI TS 102 796 V1.3.1 (2015-10)209

Terminals shall only support one active instance of a video/broadcast object at any time. "Active" means here that the
video/broadcast object is either in the connecting or the presenting state. Trying to activate an instance of a
video/broadcast object (through a call to bindToCurrentChannel() or a setChannel() call) while another instance is
already active shall fail and result in an error returned to the application through a ChannelChangeError event.

A.2.5 Extensions to the AV Control object

A.2.5.1 New queue method

The following method shall be added to the AV Control embedded object.

Boolean queue(String url)

Description Queue the media referred to by url for playback after the current media item has finished
playing. If a media item is already queued, url will not be queued for playback and this
method will return false. If the item is queued successfully, this method returns true. If no
media is currently playing, the queued item will be played immediately.

If url is null, any currently queued item will be removed from the queue and this method
will return true.

If an AV Control object is an audio object (as defined by clause 7.14 of the OIPF DAE
specification [1]) then queued media items shall only contain audio. Otherwise, if an AV
Control object is a video object | then queued media items shall always contain video and
may also contain audio and other media components.

When the current media item has finished playing, the AV Control object shall transition to
the finished state, update the value of the data property with the URL of the queued media
item and automatically start playback of the queued media item. The AV Control object may
transition to the connecting or buffering states before entering the playing state when the
queued media item is being presented. Implementations may pre-buffer data from the
queued URL before the current media item has finished playing in order to reduce the delay
between items.

Play speed is not affected by transitioning between the current and queued media item.

To avoid race conditions when queueing multiple items for playback, applications should
wait for the currently queued item to begin playback before queuing subsequent items,
e.g. by queueing the subsequent item when the AV Control object transitions to the
connecting, buffering or playing state for the currently queued item.

Arguments url The media item to be queued, or null to remove the currently-queued
item.

Calling stop(),modifying the data and/or type property or entering the error state shall cause any queued media item
to be discarded.

Play control keys (OK, play, stop, pause, fast forward, fast rewind and other trick play keys) shall not be handled by the
AV Control object and no action shall be taken by the terminal for these keys when they have been requested by an
application. DOM 2 events shall be generated for these keys whether the AV Control object is focused or not.

The timing of automatic transitions from the error state to the stopped state is implementation dependent; applications
should not rely on the AV Control object remaining in the error state after an error has occurred and should listen for
play state change events in order to detect errors.

If the AVControl object's play() method returns true then at least one play state change event shall be generated.

The error property shall be available in the stopped state. After an automatic transition from the error state to the
stopped state, the value of the error property shall be preserved.

ETSI

ETSI TS 102 796 V1.3.1 (2015-10)210

The following value shall be added to the list of valid values for the error property:

• undefined - no error has occurred;

• 7 - content blocked due to parental control.

A.2.5.2 State machine and related changes

This clause describes a set of changes to the state machine for the AV Control object defined in clause 7.14.1.1 of the
OIPF DAE specification [1]:

• An AV Control object with a CSS rule of display:none shall not be loaded and hence shall not be decoding
audio or video.

A.2.5.3 Support for TTML subtitles

The following extensions shall apply to support TTML subtitles as defined by clause 7.3.1.5. The <object> element of
an AV Control object shall contain a <param> element for each subtitle component that is carried out-of-band.

The attributes of the <param> element shall have the following values.

Attribute name Attribute value
name "subtitles" or "captions"
value Shall contain a list of key:value tuples separated by space.

The following keys shall be supported:
Key Value

srclang the language of the subtitles. This value should
be the same as defined by the xml:lang
attribute in clause 3 of [43].

src The HTTP URL to the TTML document. The
URL shall use percent encoding as defined in
IETF RFC 3986 [27].

Label a textual representation for the subtitle track.

The terminal shall support the component selection API defined in clause 7.14.4.1 of OIPF DAE [1] for in-band and
out-of-band delivered TTML subtitles as defined in clause 7.3.1.5. The following mappings for the properties of the
AVSubtitleComponent class as defined in clause A.2.13 shall apply.

property Value
encoding Shall have the value "application/ttml+xml"
language The value defined by the 'srclang' key used in the <param>

element.
hearingImpaired Shall be true if the value of the 'name' attribute is 'captions',

false otherwise.
label The value defined by the 'label' key used in the <param>

element.

EXAMPLE:

<object type='video/mp4' data='http://mycdn.de/video.mp4'>
<param name='subtitles ' value='srclang:de src: http%3A%2F%2Fmycdn.de%2Fsubtitles_de.ttml' />
<param name='captions ' value='srclang:en src:
 http%3A%2F%2Fmycdn.de%2Fsubtitles_hearing_impaired.ttml' />

A.2.5.4 Support for media synchronization with subtitle-only streams

The media synchronization capabilities of the terminal as defined in clause 10.2.8 allow for delivery of subtitles as
broadband streams that are re-synchronized in the terminal with another stream, either broadcast or broadband.

ETSI

ETSI TS 102 796 V1.3.1 (2015-10)211

The terminal shall support the rendering of subtitles when carried in a separate subtitle-only stream using the AV
Control object if the type of the subtitle-only stream is supported by the terminal for media synchronization. The
requirements on terminals for supporting subtitle-only streams are defined in clause 10.2.8.4. In any case, the following
restrictions shall apply:

• For DVB Subtitles:

- the video component is provided by the broadcast service;

- the type attribute of the AV Control object is "video/mpeg";

- the subtitle stream is delivered with a Content Type of "image/vnd.dvb.subtitle"; and

- the subtitle stream is a single programme transport stream.

• For TTML subtitles:

- the video component is provided by the broadcast service;

- EITHER:

� the type attribute of the AV Control object is "application/ttml+xml";

� the subtitle stream is delivered with a Content Type of "application/ttml+xml"; and

� the subtitle stream is a single XML document.

- OR:

� the subtitle stream is delivered using MPEG-DASH; and

� multi-stream media synchronization is used, as specified in clause 10.2.8.

• For Teletext subtitles (if supported):

- the video component is provided by the broadcast service;

- the type attribute of the AV Control object is "video/mpeg";

- the subtitle stream is delivered with a Content Type "text/vnd.dvb.teletext"; and

- the subtitle stream is a single programme transport stream.

The terminal shall render the subtitle stream on the subtitles plane with scaling and positioning defined by the subtitle
object element and not by any video element that it is synchronized with.

A.2.5.5 Using an A/V Control object to play downloaded content

Clause 7.14.1.3 "Using an A/V Control object to play downloaded content" shall be modified by the addition of the text
shown underlined.

If an A/V Control object is used to play content that has been downloaded and stored on the OITF (by using method
setSource() as defined in clause 7.14.7) then the following holds:

• if the download was triggered using registerDownloadURL() with a contentType other than
"application/vnd.oipf.ContentAccessDownload+xml" or the download was triggered using a Content
Access Download Descriptor with <TransferType> value "playable_download" as defined in clause E.1,
then:

- if the play() method is called before sufficient data has been download to initiate playback, then the
play state of the A/V Control object SHALL be set to 6 ('error') with a detailed error code of 5 ("content
not available").

ETSI

ETSI TS 102 796 V1.3.1 (2015-10)212

A.2.6 HTML Profile

A.2.6.1 Void

A.2.6.2 MIME type and DOCTYPE

All HTML and XHTML documents of an HbbTV® application should use the DOCTYPE defined for HTML5 in the
HTML5 specification as profiled by the OIPF Web Standards TV Profile [i.6].

Terminals shall support the DOCTYPE defined for HTML5 in the HTML5 specification as profiled by the OIPF Web
Standards TV Profile [i.6] and shall also support the following DOCTYPEs in order to run applications authored for
previous versions of the present document.

• The Strict XHTML doctype (for documents that are conformant with the subset of the XHTML 1.0 Strict DTD
defined in the present document).

• The Transitional XHTML doctype (for documents that are conformant with the subset of the XHTML 1.0
Transitional DTD defined in the present document).

• The following "doctype" declaration:

<!DOCTYPE html PUBLIC "-//HbbTV//1.1.1//EN" "http://www.hbbtv.org/dtd/HbbTV-1.1.1.dtd">

• The following "doctype" declaration:

<!DOCTYPE html PUBLIC "-//HbbTV//1.2.1//EN" "http://www.hbbtv.org/dtd/HbbTV-1.2.1.dtd">

Terminals are not required to load or run documents which do not include one of the doctype declarations defined or
referenced above.

When loading an HbbTV® document, a terminal shall not use the suffix from the filename to determine the document
type.

All HTML documents of an HbbTV® application should be served with one of the MIME types defined for HTML5.

Terminals shall support the MIME types defined for HTML5 and shall also support the following MIME type in order
to run applications authored for previous versions of the present document:

application/vnd.hbbtv.xhtml+xml

Content served with the application/vnd.hbbtv.xhtml+xml Content-Type shall be parsed using the rules in the
HTML5 specification as profiled by the OIPF Web Standards TV Profile [i.6] for the content type:

application/xhtml+xml

Terminals are not required to load or run documents which are served using HTTP with a MIME type other than those
defined or referenced above. Terminals shall use the DOCTYPE to determine the type of documents loaded from a
carousel or CICAM.

NOTE: Different requirements apply for the MIME type that serves as an application type identifier in the XML
AIT. See clause 7.2.3.2.

ETSI

ETSI TS 102 796 V1.3.1 (2015-10)213

A.2.6.3 Void

A.2.6.4 Browser History

The terminal should not offer a history UI for HbbTV® applications.

The behaviour of the history mechanism when an HbbTV® application transitions between broadcast-independent and
broadcast-related (or vice-versa) is outside the scope of the present document. Implementations may record and
reproduce these transitions when the history mechanism is used but are not required to do so.

A.2.6.5 Attribute reflection for visual embedded objects

The IDL attributes of an <object> element representing an AV Control or video/broadcast object shall reflect the
element's content attributes of the same names respectively, as defined in clauses 2.7.1, 4.7.4 and 4.7.16 of the HTML5
Recommendation [54].

NOTE: This means that the attributes 'data', 'type', 'name', 'width', and 'height' can be set and read either by
accessing the object element's JavaScript properties of the same names, or by invoking the <object>
element's setAttribute()/getAttribute() methods.

A.2.7 Extensions to the oipfObjectFactory object
 The oipfObjectFactory object as defined in clause 7.1 of the OIPF DAE specification [1] shall be extended by the
methods defined in this clause.

MediaSynchroniser createMediaSynchroniser ()

Description Creates a new MediaSynchroniser embedded object.

Object createCSManager ()

Description Creates a new HbbTVCSManager embedded object.

The isObjectSupported() method shall be extended to support the following MIME types for querying support of new
functionality defined in the present document:

• application/hbbtvMediaSynchroniser

• application/hbbtvCSManager

A.2.8 Void

A.2.9 Access to EIT Schedule Information
The Metadata APIs listed in table A.1 of the present document shall allow access to DVB-SI EIT event schedule
information for the actual transport stream and for the other transport streams (as defined in ETSI EN 300 468 [16]) that
are carried on the transport stream of the currently selected broadcast service, unless access to broadcast resources is
suspended according to clause 6.2.2.7.

The terminal shall use EIT-present/following information and, if present, EIT-schedule information. If both EIT-
schedule and EIT-present/following information are present, it is implementation dependent which shall be used in
cases where there are conflicts.

A.2.10 Correction to the application/oipfDownloadManager object
In clause 7.4.3.2 of the OIPF DAE specification [1], the definition of the allocated property shall be superseded by the
following definition.

ETSI

ETSI TS 102 796 V1.3.1 (2015-10)214

readonly Integer allocated

Returns the space (in megabytes) allocated for all downloads registered by this application and by applications
from the same organisation_id as this application.

It shall be calculated as the sum of the totalSize properties of all the download objects registered by any
application from the same organisation_id as the calling application.

A.2.11 Extensions to the Download class
This class shall be extended with the following additional property.

readonly Number errorLevel

A representation of the quantity of detected but uncorrected errors in a file downloaded using FDP (as defined
in annex H).

The value of this property shall be calculated as the number of erroneous or missing File Segments divided by
the total number of File Segments. A value of zero indicates that the downloaded file has no errors.

If state does not equal 1, or if the file is not downloaded using FDP, then the value of this property is not
defined.

A.2.12 HTML5 media element mapping

A.2.12.1 Inband VideoTracks, AudioTracks and TextTracks

The following shall apply when an HTML5 <video> element is presenting content whose system format is the MPEG-2
transport stream format:

• A VideoTrack object shall be created for each elementary stream in the transport stream where the
'stream_type' is "0x01", "0x02", "0x1B", "0x20", "0x24", or "0xEA". The order of VideoTrack objects in the
VideoTrackList shall be the same as the order of the corresponding elementary stream in the PMT.

• Audio elementary streams in the transport stream shall be recognised based on meeting one of the following
criteria:

- the 'stream_type' is "0x03", "0x04", or "0x11";

- it is an AC-3 audio component as identified by an AC-3_descriptor (as defined in ETSI
EN 300 468 [16]) in the 'Elementary Stream Descriptors' in the PMT entry for a stream with a
'stream_type' of "0x06";

- it is an Enhanced AC-3 audio component as identified by an enhanced_ac-3_descriptor (as defined in
ETSI EN 300 468 [16]) in the 'Elementary Stream Descriptors' in the PMT entry for a stream with a
'stream_type' of "0x06";

- it is a DTS® audio component as identified by a DTS_audio_stream_descriptor (as defined in ETSI
EN 300 468 [16]) in the 'Elementary Stream Descriptors' in the PMT entry for a stream with a
'stream_type' of "0x06";

- it is a DTS-HD® audio component as identified by a DTS-HD_audio_stream_descriptor (as defined in
ETSI EN 300 468 [16]) in the 'Elementary Stream Descriptors' in the PMT entry for a stream with a
'stream_type' of "0x06".

An AudioTrack object shall be created for each audio elementary stream that does not have a
supplementary_audio_descriptor (as defined in ETSI EN 300 468 [16]) with an audio purpose of "Audio
description (receiver-mix)".

ETSI

ETSI TS 102 796 V1.3.1 (2015-10)215

The following shall apply for each audio elementary stream that has a supplementary_audio_descriptor (as defined
in ETSI EN 300 468 [16]) with an audio purpose of "Audio description (receiver-mix)":

- An AudioTrack object shall be created for each permitted combination of this audio elementary stream
with another audio elementary stream as defined in clause J.2 of ETSI EN 300 468 [16]. Enabling such
an AudioTrack object shall result in the combination being presented.

- If the HbbTV® terminal can present the stream in isolation, it shall also create an AudioTrack object for
this audio component outside of a combination.

The order of AudioTrack objects in the AudioTrackList shall be the same as the order of the corresponding
elementary stream in the PMT.

• A TextTrack object shall be created for each elementary stream in the transport stream that meets one of the
following criteria:

- it is a DVB subtitle component as identified by a subtitling_descriptor (as defined in ETSI
EN 300 468 [16]) in the 'Elementary Stream Descriptors' in the PMT entry for a stream with a
'stream_type' of "0x06"

- it is an ITU-R System B Teletext component as identified by a teletext_descriptor (as defined in
ETSI EN 300 468 [16]) in the 'Elementary Stream Descriptors' in the PMT entry for a stream with a
'stream_type' of "0x06"

- it is a VBI data component as identified by a VBI_data_descriptor (as defined in ETSI
EN 300 468 [16]) or a VBI_teletext_descriptor (as defined in ETSI EN 300 468 [16]) in the
'Elementary Stream Descriptors' in the PMT entry for a stream with a 'stream_type' of "0x06"

The order of TextTrack objects in the TextTrackList shall be the same as the order of the corresponding
elementary stream in the PMT.

The following shall apply when an HTML5 <video> element is presenting content whose system format is the ISO
BMFF:

• A VideoTrack object shall be created for each track in the ISOBMFF file whose 'handler_type' is 'vide'. The
order of VideoTrack objects in the VideoTrackList shall be the same as the order of the corresponding 'trak'
boxes in the 'moov' box.

• A AudioTrack object shall be created for each track in the ISOBMFF file whose 'handler_type' is 'soun'. The
order of AudioTrack objects in the AudioTrackList shall be the same as the order of the corresponding 'trak'
boxes in the 'moov' box.

• A TextTrack object shall be created for each track in the ISOBMFF file whose 'handler_type' is either 'subt' or
'text' and whose SampleEntryFormat is XMLSubtitleSampleEntry as defined in ISO/IEC 14496-30 [52]. The
order of TextTrack objects in the TextTrackList shall be the same as the order of the corresponding 'trak'
boxes in the 'moov' box.

The following shall apply when an HTML5 <video> element is presenting content whose system format is MPEG
DASH:

• A VideoTrack object shall be created for each video Adaptation Set in the MPD. The order of VideoTrack
objects in the VideoTrackList shall be the same as the order that the corresponding Adaptation Sets are in the
MPD.

• A AudioTrack object shall be created for each audio Adaptation Set in the MPD. The order of AudioTrack
objects in the AudioTrackList shall be the same as the order that the corresponding Adaptation Sets are in the
MPD.

• A TextTrack object shall be created for each Adaptation Set in the MPD carrying EBU-TT-D TTML data as
defined in the DVB DASH profile ETSI TS 103 285 [45]. The order of TextTrack objects in the
TextTrackList shall be the same as the order that the corresponding Adaptation Sets are in the MPD.

• A TextTrack object shall be created for each event stream as defined in clause 9.3.2.2 of the present
document.

ETSI

ETSI TS 102 796 V1.3.1 (2015-10)216

NOTE 1: The HTML5 specification requires that the VideoTrack/AudioTrack/TextTrack objects will have been
created by the time the readyState attribute of the <video> element enters the HAVE_METADATA state.

NOTE 2: It is intentional that creation of VideoTrack, AudioTrack and TextTrack objects is required for tracks that
the terminal cannot decode.

A.2.12.2 Out-of-band text tracks

Independent of the system format, terminals shall create TextTrack objects for HTML <track> elements representing
TTML subtitle components that are carried out-of-band (see clause 7.3.1.5) when represented by a <track> element in
an HTML document. E.g.:

<video>
 <source src='http://mycdn.de/video.mp4' type='video/mp4'>
 <track kind='subtitles' srclang='de' label='German for the English'
 src='http://mycdn.de/subtitles_de.ttml' />
 <track kind='subtitles' srclang='de' label='German for the hard of hearing'
 src='http://mycdn.de/subtitles_de2.ttml' />
 <track kind='captions' srclang='en' src='http://mycdn.de/subtitles_hearing_impaired.ttml' />
</video>

A.2.12.3 Modifications to clause 8.4.6

The definition of the value of the kind property of a TextTrack in the MPEG DASH system layer shall be replaced with
the following:

• "captions": if (role is "main" AND the MPD contains an audio Adaptation Set with role "main" and the same
language as the subtitle track AND an accessibility descriptor is present with the schemeIdUri set to
"urn:tva:metadata:cs:AudioPurposeCS:2007" and a value 2 [for the hard of hearing]) OR (role is
"commentary");

• "subtitles": if (role is "alternate") OR (role is "main" AND no accessibility scheme is specified);

• "metadata": otherwise.

The definition of the kind property of a VideoTrack and AudioTrack in the MPEG DASH system layer shall be
replaced with the following:

Given a role scheme of "urn:mpeg:dash:role:2011", determine the kind attribute from the value of the role descriptors
in the <AdaptationSet> element.

- "alternative": if the role is "alternate" but not also "main" or "commentary", or "dub";

- "captions": if the role is "caption" and also "main";

- "descriptions": if the role is "description" and also "supplementary";

- "main": if the role is "main" but not also "caption", "subtitle", or "dub";

- "main-desc": if the role is "main" and also "description";

- "sign": not used;

- "subtitles": if the role is "subtitle" and also "main";

- "translation": if the role is "dub" and also "main";

- "commentary": if the role is "commentary" but not also "main";

- "": otherwise.

In the table defining "the mapping that SHALL be used between the HTML5 AudioTrack and the MPEG-2 transport
stream and ISO BMFF system layers" contained in the OIPF DAE specification [1], the requirement for the language
attribute does not apply for MPEG DASH. Where an AudioTrack corresponds to an MPEG DASH adaptation set, the
value of the AudioTrack.language attribute shall be the value of the lang attribute in the MPD.

ETSI

ETSI TS 102 796 V1.3.1 (2015-10)217

A.2.13 Extensions to the AVSubtitleComponent class
The following property shall be added to the AVSubtitleComponent class.

readonly String label

The label identifies a component by a human readable short description.

A.2.14 Modifications to clause H.2 "Interaction with the
video/broadcast and AV Control objects"

Clause H.2 of the OIPF DAE specification [1] defines the scaling and clipping of video when not in full screen mode as
follows.

When the video/broadcast object or AV Control object is not in "full-screen mode", any video being presented shall be
scaled and positioned in the following way:

- if the video/broadcast object has the same aspect ratio as the video the four corners of the video shall
match exactly the corners of the video/broadcast object;

- otherwise the video shall be scaled such that one side of the video fills the video/broadcast object fully
without cropping the picture. The aspect ratio shall be preserved. Along the side where the video is
shorter than the video/broadcast object, the video shall be centered. The area of the video plane not
containing video shall be opaque black.

The above text shall not be interpreted as preventing video that is being presented by an object not in full screen mode
from being scaled and/or cropped where this is indicated in the video stream. Specifically:

• If the video indicates that only part of the frame is of interest and the remainder can be cropped (e.g. AFD or
Bar Data as defined in ETSI TS 101 154 [14] or the 'default display window' from HEVC), processing of that
indication is permitted for objects not in full screen mode.

NOTE: The present document is intentionally silent on whether a terminal is required to act on AFD and Bar
Data. In practice terminals decoding video using typical digital TV silicon will likely act on it but
terminals decoding video using other silicon or software may not act on it. Applications wishing to ensure
that video is scaled and/or cropped on all terminals should handle this in the application and not rely on
the video decoder to do it.

• If the video is encoded at one resolution but is indicated as being required to be displayed at a different
resolution then that processing (i.e. scaling the video to the display resolution) is permitted for objects not in
full screen mode. For example, ETSI TS 101 154 [14] defines how broadcast video can be transmitted with
reduced horizontal luminance resolution but to be up-sampled to full-screen size in the terminal. For example,
with MPEG DASH ISO/IEC 23009-1 [29], the nominal display size in square pixels after decoding, AVC
cropping, and rescaling is indicated by the width and height values in track header box. The actual encoded
resolution will differ between Representations.

If the video is cropped or scaled as indicated by either of the indications referred to above then the original requirements
defined in clause H.2 of the OIPF DAE specification [1] (quoted above) shall apply to the video after that processing
has been performed.

ETSI

ETSI TS 102 796 V1.3.1 (2015-10)218

A.2.15 Extensions to the OIPF-defined capability negotiation
mechanism

The following schema is an extension of the schema defined by annex F of the OIPF DAE specification [1]:

<?xml version="1.0" encoding="ISO-8859-1"?>
<xs:schema xmlns:hbbtv="urn:hbbtv:config:oitf:oitfCapabilities:2014-1"
 xmlns:xs="http://www.w3.org/2001/XMLSchema"
 targetNamespace="urn:hbbtv:config:oitf:oitfCapabilities:2014-1"
 xmlns:oipf="urn:oipf:config:oitf:oitfCapabilities:2011-1"
 elementFormDefault="qualified"
 attributeFormDefault="unqualified">
 <xs:import namespace="urn:oipf:config:oitf:oitfCapabilities:2011-1"
 schemaLocation="oipf\config-oitf-oitfCapabilities.xsd"/>
 <xs:import schemaLocation="oipf\imports/ce-html-profiles-1-0.xsd"/>
 <xs:element name="profilelist" type="hbbtv:profileListType"/>
 <xs:complexType name="profileListType">
 <xs:sequence>
 <xs:element name="ui_profile" type="hbbtv:uiProfileType" maxOccurs="unbounded"/>
 <xs:element name="audio_profile" type="hbbtv:audioProfileType"
 minOccurs="0" maxOccurs="unbounded"/>
 <xs:element name="video_profile" type="hbbtv:videoProfileType"
 minOccurs="0" maxOccurs="unbounded"/>
 </xs:sequence>
 </xs:complexType>
 <xs:complexType name="videoProfileType">
 <xs:complexContent>
 <xs:extension base="oipf:videoProfileType">
 <xs:attribute name="sync_tl" type="hbbtv:sync_tl_type" use="optional"/>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>
 <xs:complexType name="audioProfileType">
 <xs:complexContent>
 <xs:extension base="oipf:audioProfileType">
 <xs:attribute name="sync_tl" type="hbbtv:sync_tl_type" use="optional"/>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>
 <xs:complexType name="uiProfileType">
 <xs:sequence>
 <xs:element name="ext" type="hbbtv:uiExtensionType" minOccurs="0"/>
 </xs:sequence>
 <xs:attribute name="name" type="xs:string" use="required"/>
 </xs:complexType>
 <xs:complexType name="uiExtensionType">
 <xs:complexContent>
 <xs:extension base="uiExtensionType">
 <xs:choice minOccurs="0" maxOccurs="unbounded">
 <xs:element name="video_broadcast" type="oipf:videoBroadcastType"
 minOccurs="0" maxOccurs="unbounded"/>
 <xs:element name="overlaylocaltuner" type="oipf:overlayType"/>
 <xs:element name="overlayIPbroadcast" type="oipf:overlayType"/>
 <xs:element name="recording" type="oipf:pvrType"/>
 <xs:element name="parentalcontrol" type="oipf:parentalControlType"/>
 <xs:element name="extendedAVControl" type="xs:boolean"/>
 <xs:element name="clientMetadata" type="oipf:metadataType"/>
 <xs:element name="configurationChanges" type="xs:boolean"/>
 <xs:element name="communicationServices" type="xs:boolean"/>
 <xs:element name="presenceMessaging" type="xs:boolean"/>
 <xs:element name="drm" type="oipf:drmType" minOccurs="0" maxOccurs="unbounded"/>
 <xs:element name="remote_diagnostics" type="xs:boolean"/>
 <xs:element name="pollingNotifications" type="xs:boolean"/>
 <xs:element name="mdtf" type="xs:boolean"/>
 <xs:element name="widgets" type="xs:boolean"/>
 <xs:element name="html5_media" type="xs:boolean"/>
 <xs:element name="remoteControlFunction" type="xs:boolean"/>
 <xs:element name="wakeupApplication" type="xs:boolean"/>
 <xs:element name="wakeupOITF" type="xs:boolean"/>
 <xs:element name="hibernateMode" type="xs:boolean"/>
 <xs:element name="telephony_services" type="oipf:telephonyServicesType"/>
 <xs:element name="playbackControl" type="oipf:playbackType"/>
 <xs:element name="temporalClipping" type="oipf:hasCapability"/>
 <xs:element name="graphicsPerformance" type="hbbtv:graphicsPerformanceType"/>
 <xs:any namespace="##other"/>
 </xs:choice>

ETSI

ETSI TS 102 796 V1.3.1 (2015-10)219

 </xs:extension>
 </xs:complexContent>
 </xs:complexType>
 <xs:simpleType name="sync_tl_type">
 <xs:list itemType="hbbtv:sync_tl_values_type"/>
 </xs:simpleType>
 <xs:simpleType name="sync_tl_values_type">
 <xs:restriction base="xs:string">
 <xs:enumeration value="pts"/>
 <xs:enumeration value="ct"/>
 <xs:enumeration value="temi"/>
 <xs:enumeration value="dash_pr"/>
 </xs:restriction>
 </xs:simpleType>
 <xs:complexType name="graphicsPerformanceType">
 <xs:attribute name="level" type="xs:string"/>
 </xs:complexType>
</xs:schema>

This schema extends the <video_profile> and <audio_profile> elements with an optional attribute "sync_tl". When
present, the value of this attribute shall be a space separated concatenation of one or more option strings denoting types
of timelines. The values of the option strings and the types of timelines that they correspond to are defined in table A.4.
The types of timeline listed in table A.4 are defined in clause 13.4.

Table A.4: Values of sync_tl attribute option strings

option string in sync_tl attribute Type of timeline denoted by the option string
pts MPEG-TS Presentation Timestamps
ct ISOBMFF Composition Time
temi MPEG-TS Timed External Media Information
dash_pr MPEG DASH Period-Relative Timeline

The value of the sync_tl attribute (when present in an element describing an audio or video profile) indicates the types
of timeline that the terminal supports for use with the MediaSynchroniser API for a media object that represents:

• any broadband stream matching the profile; or

• any broadband stream matching the profile but where some, but not all, of the audio, video and subtitle
components defined in the profile are not present in the stream.

NOTE 1: If no types of timeline are indicated as supported for a given profile of broadband stream, then by
implication it is not possible to use that stream with the MediaSynchroniser API and therefore by
implication not possible to use that stream for multi-stream or inter-device synchronization.

This schema extends the set of capabilities that can be indicated by a terminal to include graphics performance by
adding a new <graphicsPerformance> element that can appear within an <ext> element.

NOTE 2: Due to limitations of XML schema syntax and semantics, the schema above repeats the definitions of
elements permitted within an <ext> element that are defined in the OIPF DAE specification [1]. The
meaning and definition of these elements are unchanged.

The following semantics shall apply for the <graphicsPerformance> element.

The <graphicsPerformance> element indicates that the terminal declares its graphics performance. This element has
the following attribute:

• attribute "level": if the <graphicsPerformance> element is present, this attribute SHALL include a non-
empty space separated list of the graphics performance levels with which the terminal complies, encoded as
one or more URNs. For terminals conforming to a performance level as defined in clause 12.1 of the OIPF
DAE specification [1] and modified by annex A of the present document, the value of the level attribute shall
be the corresponding URN specified in table A.5 below.

ETSI

ETSI TS 102 796 V1.3.1 (2015-10)220

Table A.5: HbbTV® Graphics Performance Levels

Performance Level URN
Level 1 urn:hbbtv:graphics:performance:level1
Level 2 urn:hbbtv:graphics:performance:level2

Terminals that do not comply with any of the graphics performance levels referred to above shall not include the
<graphicsPerformance> element.

A.2.16 Graphics performance
The following modifications to clause 12.1 of the OIPF DAE specification [1] shall apply:

• Clause 12.1.7 is not included in the present document.

• The second paragraph of clause 12.1.3 is modified by the addition of the underlined text:

"Values in this table indicate the number of elements of the specified target being animated simultaneously
and updated at 25 Hz . The number is expressed as a power of 2, i.e. a value of 3 SHALL mean 4 simultaneous
animations, a value of 5 SHALL mean 16 simultaneous animations."

• Table 17 "Minimum 2D graphics performance" of [1] is modified as follows:

Target for the CSS
Property

CSS Property being
animated

Test Level 1 Level 2

Frame background-color 2d/frame-color 3 5
 background-color, opacity 2d/frame-color-alpha 3 5
 left, top 2d/frame-left-top 3 5
 opacity 2d/frame-opacity 3 5
 transform: rotate 2d/frame-rotate No

requirement
5

 transform: scale 2d/frame-scale 3 5
 transform: skew 2d/frame-skew No

requirement
5

 transform: matrix 2d/frame-matrix No
requirement

5

 border-radius 2d/frame-border-radius 3 5
 width, height 2d/frame-width-height 3 5
 linear-gradient 2d/frame-linear-gradient 3 5
Image left, top 2d/image-top-left 3 5
 opacity 2d/image-opacity 3 5
 transform: rotate 2d/image-rotate No

requirement
5

 transform: scale 2d/image-scale 3 5
 transform: skew 2d/image-skew No

requirement
5

 transform: matrix 2d/image-matrix No
requirement

5

Text left, top 2d/text-left-top 3 5
 opacity 2d/text-opacity 3 5
 transform: rotate 2d/text-rotate No

requirement
5

 transform: scale 2d/text-scale 3 5
 transform: skew 2d/text-skew No

requirement
5

 text-shadow 2d/text-emboss 3 5

ETSI

ETSI TS 102 796 V1.3.1 (2015-10)221

A.2.17 Notification of change of components
The video/broadcast and AV Control object shall be extended with the following property.

function onComponentChanged

This function is called when there is a change in the set of components in the current stream, i.e. the set of all
components that would be returned by the getComponents() method.

The specified function is called with one argument:
• Integer componentType - The type of component for which there has been a change in the current stream,
as represented by one of the constant values listed in clause 7.16.5.1.1 of the OIPF DAE specification [1]. If
there has been a change for more than one type of component, this argument will take the value undefined.

The video/broadcast and AV Control object shall be extended with the following event.

Intrinsic event Corresponding DOM 2 event DOM 2Event properties
onComponentChanged ComponentChanged Bubbles: No

Cancelable: No
Context Info: componentType

A.2.18 Clarification regarding the reserve() method of the
application/oipfDownloadManager object

The following rules and clarifications shall apply to the reserve() method of the application/oipfDownloadManager
embedded object.

In all cases, if a call to the reserve() method does not succeed (i.e. if the return status is other than RESERVE_OK), this
call shall have no effect. Any prior reservation is kept unchanged.

A.2.19 Correction to the registerDownloadURL() method
In clause 7.4.1.1 of the OIPF DAE specification [1], the definition of the registerDownloadURL() method shall be
superseded by the following definition.

ETSI

ETSI TS 102 796 V1.3.1 (2015-10)222

String registerDownloadURL(String URL, String contentType,Date downloadStart,
 Integer priority)

Description This method triggers the terminal to initiate a download of the content pointed to by the
URL and the given content type.
The contentType argument SHALL reflect the expected type of content returned by the
content server when connecting to the URL. The contentType can be used to evaluate if
the content type is part of the list of accepted content types of the terminal. For example, if
the terminal does not support content type "video/MP2T", then the
registerDownloadURL() method could return undefined to indicate this to the application
in advance of the download.

If contentType has value "application/vnd.oipf.ContentAccessDownload+xml", the
method SHALL return a download identifier, after which the terminal SHALL immediately
fetch the Content Access Download Descriptor. In cases where the Content Access
Download Descriptor is not accepted by the terminal, the state property of the download
shall be immediately changed to the value 8 ('Failed') and the reason property shall be set
to 4 ('Other reason'). Otherwise, the same SHALL happen as if registerDownload() as
defined in clause 4.6.3.1 with the given Content Access Download Descriptor as argument
was called. The downloadStart argument only applies to the individual Download objects
described by the Content Access Download Descriptor and SHALL NOT apply to the
retrieval of the Content Access Download Descriptor itself.

Note that if the Content Access Download Descriptor contains multiple content items to be
downloaded, the associated Download objects for each of these content items SHALL have
the same value for the id property. The associated Download objects can be retrieved
through the createFilteredList() method as defined in clause 7.4.3.3.
Returns a String value representing a unique identifier to identify the download, if the
given arguments are acceptable by the terminal to trigger a download. If the terminal
supports the application/oipfDownloadManager as specified in clause 7.4.3, this SHALL
be the value of the id attribute of the associated Download object(s).

The terminal SHALL guarantee that download identifiers are unique in relation to recording
identifiers and CODAsset identifiers.

The method returns undefined if the given arguments are not acceptable by the terminal to
trigger a download.

Arguments URL The URL from which the content can be fetched.
contentType The type of content referred to by the URL attribute. The contentType

can be used to evaluate if the content type is part of the list of supported
content types of the terminal.

downloadStart Optional argument indicating the time at which the download should be
started. If the argument is not included, or takes a value of null then the
download should start as soon as possible.

priority Optional argument indicating the relative priority of the download with
respect to other downloads registered by the same organisation as the
calling application. Higher values indicate a higher priority. If the
argument is not included then a priority of 0 shall be assigned.

A.2.20 Extensions to the Configuration class

A.2.20.1 Extensions to Represent Subtitle Presentation

This class shall be extended with the following additional property.

readonly Boolean subtitlesEnabled

Shall be set to false if subtitles are disabled by the terminal and applications cannot enable subtitles using the
component selection API of the supported media objects i.e. AV Control object, video/broadcast object and
HTML5 media elements. Otherwise shall be set to true.

ETSI

ETSI TS 102 796 V1.3.1 (2015-10)223

A.2.20.2 Extensions for time-shift

The following property is added to the Configuration class.

readonly Boolean timeShiftSynchronized

Returns a boolean indicating if the terminal is capable of maintaining synchronization between applications and
A/V components during time-shift. A definition of synchronization between applications and A/V components
can be found in clause 6.2.2.4.

A.2.21 AVComponent.componentTag
• In clause 7.16.5.2.1 of the OIPF DAE specification [1], in the description of the componentTag property:

a) the type of the property shall be changed from Integer to String; and

b) the following text in the description of the componentTag property:

The component tag identifier corresponds to the component_tag in the component descriptor in the ES
loop of the stream in the PMT [ETSI EN 300 468], or undefined if the component is not carried in an
MPEG-2 TS.

shall be replaced with:

The value of the property shall be as defined in clause 8.4.2. Integer values (e.g. component tags in an
MPEG-2 transport stream) shall be encoded as the string representation of a decimal integer.

• In clause 8.4.2 of the OIPF DAE specification [1], in the table that shows the mapping from the properties of
the AVComponent class to the data carried inside the MPEG-2 TS and MP4 file format, in the row for "Name:
componentTag", the reference to "Type: Integer" shall be replaced with "Type: String".

A.2.22 Modifications to clause 8.4.2
The following modifications shall be applied to clause 8.4.2 of the OIPF DAE specification [1]:

• In the row of the table for the type property, in the columns for MPEG-2 transport streams, the following item
shall be extended as shown underlined:

A value of 0x03 or 0x04 or 0x11 in the stream_type field in the PMT -> AUDIO.

A.2.23 AVAudioComponent
In clause 7.16.5.4.1 of the OIPF DAE specification [1], the definition of the audioChannels property shall be extended
as shown:

Indicates the number of main channels present in this stream (e.g. 2 for stereo, 5 for 5.1, 7 for 7.1). Potentially
available low frequency effects channels are not included in this indication.

A.3 Modifications, extensions and clarifications to
volume 5a

A.3.0 General
The following modifications shall be made to the profile of HTML5 [54] and other web standards defined by the OIPF
Web Standards TV Profile [i.6].

ETSI

ETSI TS 102 796 V1.3.1 (2015-10)224

A.3.1 Additional support for TextTracks and Cues
The following elements and properties shall be supported by terminals in addition to those required by clause A.1.3.1 of
the OIPF Web Standards TV Profile [i.6]:

• The HTMLTrackElement interface and the <track> element in an HTML document.

• For the HTMLMediaElement.textTracks property, support for out-of-band tracks is required in addition to
support for in-band tracks which is required by that specification.

• From the TextTrack class:

- The id, inBandMetadataTrackDispatchType, cues and activeCues properties.

- The oncuechange event.

• TextTrackCueList.

• TextTrackCue shall be supported as the parent for DataCue.

• DataCue (see HTML 5.1 [51]) shall be supported by terminals for DASH events as defined in clause 9.3.2.2 of
the present document.

Specifically there is no requirement to support any of the following:

• Instances of TextTrackCue which are not also instances of DataCue.

• Instances of DataCue (and hence also TextTrackCue) except for those created by the terminal to report DASH
events to applications as defined in clause 9.3.2.2 of the present document.

• Instances of TextTrack other than those required to be created by clause A.2.12.1 of the present document or
created using the HTML track element.

Instances of TextTrackCue (or any sub-class) and the methods addCue() and removeCue() should not be supported for

TTML in order to avoid unpredictable interactions with the HbbTV® terminal's internal TTML decoder. For example
cues being rendered in duplicate.

A.3.2 Additional support for getStartDate in HTML5 media
elements

The getStartDate() method of HTML5 media elements shall be supported by terminals in addition to the
requirements of clause A.1.3.1 of the OIPF Web Standards TV Profile [i.6]. The method shall be implemented for
MPEG DASH content as defined in clause 9.4.2 of the present document.

A.3.3 Event model
Clause 6.2 of the OIPF Web Standards TV Profile [i.6] does not apply in the present document. Instead "keydown",
"keypress" and "keyup" events shall be supported as defined by annex B of the Open IPTV Forum DAE specification
release 1 [53] under the heading "Add keypress events to Requirement 5.4.1.a in the following way".

A.3.4 Resize event
In clause A.1.3.2 "Media Element Events Support" of the Web Standards TV Profile [i.6], the resize event defined in
HTML5 [54] shall also be supported.

A.3.5 HTML5 recommendation
In the Web Standards TV Profile [i.6], the reference to HTML5 shall be changed from:

Robin Berjon; Steve Faulkner; Travis Leithead; Erika Doyle Navara; Edward O'Connor; Silvia Pfeiffer. HTML5. 6
August 2013. W3C Candidate Recommendation. URL: http://www.w3.org/TR/2013/CR-html5-20130806/.

http://www.w3.org/TR/2013/CR-html5-20130806/

ETSI

ETSI TS 102 796 V1.3.1 (2015-10)225

To:

Ian Hickson; Robin Berjon; Steve Faulkner; Travis Leithead; Erika Doyle Navara; Edward O'Connor; Silvia Pfeiffer.
HTML5: A vocabulary and associated APIs for HTML and XHTML; W3C Recommendation 28 October 2014.

NOTE: The following should be noted as a consequence of this change:

The scoped attribute of the HTMLStyleElement which is made optional by [i.6] is dropped from HTML5
by this change. As a consequence, this element becomes fully supported.

The seamless attribute of the <iframe> element which is made optional by [i.6] is dropped from HTML5
by this change. However the sandbox and srcdoc attributes also made optional by [i.6] remain in HTML
after this change hence this element remains partially supported.

The <command>, <details> and <summary> elements which are made optional by [i.6] are dropped from
HTML5 by this change.

The <menu> element is not required to be supported, not even partially as required by [i.6].

A.3.6 Support for volume controls
The requirements for the following elements and properties are modified with respect to the OIPF Web Standards TV
Profile [i.6]:

• There is no requirement to support the volume attribute of the HTMLMediaElement on terminals that do not
support multiple audio decoders.

A.3.7 Support for multiple audio tracks
The requirements for the following elements and properties are modified with respect to the OIPF Web Standards TV
Profile [i.6]:

• There is no requirement to support multiple simultaneously enabled audio tracks on an HTML5 media
element. Enabling a new audio track shall automatically disable the previous one on terminals that are unable
to decode multiple audio tracks and mix them.

ETSI

ETSI TS 102 796 V1.3.1 (2015-10)226

Annex B (normative):
Support for protected content delivered via broadband

B.1 Introduction
When content protection is being used, the type of content protection in use shall be signalled:

• as defined in clause 9.3.10 of the OIPF DAE specification [1] and in table 9 ("DRMControlInformation Type
Semantics") of the OIPF Metadata specification [18];

• using DVB-CA identifier codepoints (CA_System_ID) allocated as usual by the DVB Project and found in
ETSI TS 101 162 [19] for the DRMSystemID.

Some issues that need to be considered when defining how a particular content protection technology is integrated with
implementations of the present document are described in annex F.

B.2 Common Encryption for ISOBMFF
NOTE: The requirements formerly found in this clause are replaced by those in clause 8 of the DVB DASH

profile ETSI TS 103 285 [45].

ETSI

ETSI TS 102 796 V1.3.1 (2015-10)227

Annex C (informative):
Support for analogue broadcasting networks

C.1 Scope
The main target of the HbbTV® specification is to combine services delivered via a DVB compliant broadcast network
and a broadband connection to the Internet. Many of the conceptual and technical aspects of HbbTV, however, are also
applicable to a combination of an analogue Broadcast network and a broadband Internet connection. Analogue TV
distribution may for some years still be of relevance for some markets.

If a terminal includes an analogue front end, the HbbTV® concept may be applied to analogue channels as described in

this annex. If the HbbTV® concept is not applied to analogue channels then they would be treated in the same way as
DVB channels without an AIT.

C.2 AIT retrieval and monitoring
As the AIT cannot be provided within the analogue broadcast channel, it has to be retrieved via the Internet connection.
When tuning to an analogue service the hybrid terminal can send an http request to a server hosting AIT information as
following.

 http://[AIT_server]/service?CNI=xxx
 http://[AIT_server]/service?name=xxx

This request will return the AIT of the corresponding service encoded in XML format as defined in ETSI
TS 102 809 [3]. The AIT is contained in a single application discovery record.

The IP address or the base URL of the AIT server may be market or manufacturer specific. It could be part of the
default settings of the terminal and may allow for changes by the user.

For the identification of the service the CNI code as registered in ETSI TS 101 231 [i.3] should be used. As an
alternative the name of the service may be used.

AIT monitoring while being tuned to a specific service can be done by repeating the http requests defined above. The
xml document that contains the AIT carries a version attribute within the <ServiceDiscovery> element. If present the
version attribute is used in the request as follows:

 http://[AIT_server]/service?CNI=xxx&version=YY
 http://[AIT_server]/service?name=xxx&version=YY

where YY are two hexadecimal digits. If the recent version on the server is the same as in the request the server returns
the HTTP status code 204 with no message body.

The repetition rate should not be more frequent than once per 30 seconds.

C.3 Tuning to a new channel
The video/broadcast embedded object defined in the OIPF DAE specification [1] can be used to determine available
analogue broadcast services and to tune between them as described in this clause.

An analogue broadcast service is represented by a channel object with an idType of ID_ANALOG including the properties
cni and/or name. The cni property contains the CNI of the service when it is available in the broadcast signal. The
name property is available when the CNI is not broadcast. For CNI and name see clause C.2.

The channel line-up of the HbbTV® terminal is available to the application in order to be able to retrieve channel
objects for a CNI or name.

The currentChannel property on the video/broadcast object and the ApplicationPrivateData.currentChannel
property returns the channel object for the analogue service currently presented.

ETSI

ETSI TS 102 796 V1.3.1 (2015-10)228

C.4 Other aspects
EIT access, application transport with DSM-CC, stream events, etc. are not available on analogue channels. Method
calls related to these features cause exceptions with a message "not supported". Properties related to these features have
the value undefined.

ETSI

ETSI TS 102 796 V1.3.1 (2015-10)229

Annex D (informative):
Server root certificate selection policy

D.1 Introduction
This informative annex describes the policy that is adopted for the selection of root certificates for inclusion in
terminals compliant with the present document. A list of such certificates is published at
http://www.hbbtv.org/spec/certificates.html.

D.2 Background
There are over 150 root certificates in web browsers at the time of publication.

• This list changes frequently over time.

• The larger the list of root certificates the more likely it is to change.

The security of TLS against man-in-the-middle attacks is dependent on the weakest root certificate trusted by a
terminal.

The security of various key lengths changes with time as computing power increases. Specifically 1 024 bit RSA keys
are no longer recommended for use.

Service providers need to know which root certificates are trusted by terminals to achieve interoperability. Service
providers are often not in control of the servers delivering their content (e.g. delivery via a CDN).

Service providers may also wish to make use of third party web services that are not under their control.

Maintaining an independent list of root certificates that are validated requires significant resources.

D.3 Policy
The Mozilla list of approved root certificates has been selected as the authoritative source for the mandatory and
optional list of root certificates for inclusion in terminals compliant with the present document. This was chosen
because:

• The approved root certificate list is publicly available.

• The process for inclusion in the list is open.

• Anyone can take part in the acceptance process.

• The acceptance process itself happens in public.

• Metadata is provided to differentiate root certificates for web server authentication, e-mail and code signing.

• The procedure for requesting a root certificate for inclusion in the list requires a test website be provided
which uses that certificate.

The Mozilla list of approved root certificates is published on their website at
http://www.mozilla.org/projects/security/certs/. Each certificate marked as approved for web server authentication is
automatically an optional root certificate as specified in clause 11.2.

The present document will rely upon the Mozilla list for verifying the trustworthiness of Certificate Authorities.

A list of root certificates that are mandatory will be maintained which will be a subset of the certificates specified
above.

• The list will be updated periodically.

http://www.hbbtv.org/spec/certificates.html
http://www.mozilla.org/projects/security/certs/

ETSI

ETSI TS 102 796 V1.3.1 (2015-10)230

• The list will only include certificates that use algorithms mandated by clause 11.2.4.

• The mandatory list of certificates will be determined based on the requirements of service providers and the
Certificate Authorities that are in widespread use.

• The list will be compiled relying upon published statistics to determine how widespread a Certificate
Authority is.

• Certificate Authorities may be excluded from the mandatory list if they impose requirements that are deemed
unreasonable.

• A revision history of changes to the mandatory list will be maintained and published.

This policy is subject to change.

ETSI

ETSI TS 102 796 V1.3.1 (2015-10)231

Annex E (normative):
Profiles of MPEG DASH

E.1 Introduction (informative)
This annex defines some minor additional requirements and constraints to the DVB DASH profile ETSI
TS 103 285 [45]. Most of the text in earlier versions of this annex is replaced by text in that document. When those
additional requirements and constraints are included, the DVB DASH profile is believed to support all content
compatible with this annex in earlier versions of the present document.

Unlike the previous version of this annex, this version also supports adaptive delivery of radio services.

E.2 Requirements relating to the MPD

E.2.1 Profile definition
The MPD shall indicate either or both of the following profiles:

• the profile of DASH defined by DVB in ETSI TS 103 285 [45] ("urn:dvb:dash:profile:dvb-dash:2014");

• "urn:hbbtv:dash:profile:isoff-live:2012" as used in previous versions of the present document.

Terminals may raise an error to the application when a referenced MPD does not contain either of these profiles in the
@profiles attribute. Terminals shall be able to play the content described by the profile-specific MPD (as defined in
clause 8.1 of DASH ISO/IEC 23009-1 [29]) (but not necessarily other Adaptation Sets or Representations in the MPD
discarded as part of the process of deriving the profile-specific MPD).

The following clauses define the additional restrictions and requirements on an MPD identified as conforming to the
DVB profile, as well as requirements on terminals when playing such content. Additionally:

• The profile specific MPD shall include at least one Adaptation Set encoded using the audio or video codecs
defined in clause 7.3.1 of the present document. Adaptation Sets and Representations in non-supported codecs
shall be ignored.

E.2.2 Numerical requirements
NOTE: The numerical constraints formerly in this clause can now be found in clause 4.5 of the DVB DASH

profile ETSI TS 103 285 [45].

The behaviour of a terminal is undefined for MPDs that do not comply with the requirements in that clause.

E.2.3 Metadata requirements
NOTE: The requirements formerly in this clause can now be found in clause 4.4 and 6.1.2 of the DVB DASH

profile ETSI TS 103 285 [45].

E.2.4 Role Related requirements
NOTE: The requirements formerly in this clause can now be found in clause 6.1.2 of the DVB DASH profile

ETSI TS 103 285 [45].

E.2.5 Audio Channel Configuration requirements
For E-AC-3 the Audio Channel Configuration shall use either the
"tag:dolby.com,2014:dash:audio_channel_configuration:2011" (as defined in the DVB DASH profile ETSI
TS 103 285 [45]) or the legacy "urn:dolby:dash:audio_channel_configuration:2011" schemeURI.

ETSI

ETSI TS 102 796 V1.3.1 (2015-10)232

NOTE: The other requirements formerly in this clause can now be found in clauses 6.1.1, 6.2 and 6.3 of the DVB
DASH profile ETSI TS 103 285 [45].

E.2.6 Content protection signalling
NOTE: The requirements formerly in this clause can now be found in clause 8.4 of the DVB DASH profile ETSI

TS 103 285 [45].

E.3 Restrictions on content

E.3.1 Restrictions on file format

E.3.1.1 ISO Base Media File Format

NOTE: The requirements formerly in this clause can now be found in clauses 4.3 and 10.2 of the DVB DASH
profile ETSI TS 103 285 [45].

E.3.2 Restrictions on adaptation sets
NOTE: The requirements formerly in this clause can now be found in clauses 4.2.4, 4.3, 4.5 and 5.1.2 of the DVB

DASH profile ETSI TS 103 285 [45].

E.4 Requirements on terminals

E.4.1 DASH profile support
Terminals shall support the DVB DASH profile ETSI TS 103 285 [45] as modified in the present document. MPDs that
identify themselves with the profile "urn:hbbtv:dash:profile:isoff-live:2012" and not
"urn:dvb:dash:profile:dvb-dash:2014" shall be supported as if they had indicated
"urn:dvb:dash:profile:dvb-dash:2014" and "urn:dvb:dash:profile:dvb-dash:isoff-ext-live:2014".

Other profiles may be supported.

E.4.2 Transitions between representations

E.4.2.1 Video tracks

NOTE: The requirements formerly in this clause can now be found in clauses 10.3 and 10.4 of the DVB DASH
profile ETSI TS 103 285 [45].

In addition to the set of resolutions in the table 18 in the DVB DASH profile ETSI TS 103 285 [45], 720 x 576i shall
also be supported.

E.4.2.2 Audio tracks

NOTE: The requirements formerly in this clause can now be found in clause 10.4 of the DVB DASH profile
ETSI TS 103 285 [45].

E.4.3 Buffering
NOTE: The requirements formerly in this clause can now be found in clause 10.7 of the DVB DASH profile

ETSI TS 103 285 [45] and clause 10.2.3.2 of the present document.

ETSI

ETSI TS 102 796 V1.3.1 (2015-10)233

E.4.4 ISO File Format support
NOTE: The main requirements relating to this subject are now found in clause 10.2 of the DVB DASH profile

ETSI TS 103 285 [45].

Additionally terminals shall support both the 'avc1' and 'avc3' sample entry types for H.264 content that are referred to
in clause 5.1.2 of that profile.

ETSI

ETSI TS 102 796 V1.3.1 (2015-10)234

Annex F (informative):
DRM Integration

F.1 Introduction
This annex identifies issues which need to be considered and in most cases documented when defining how a DRM

system is to be integrated with HbbTV®. It is expected that solutions to these issues would form the basis of the

document defining the technical integration between HbbTV® and that DRM system and subsequently a test
specification and test suite.

F.2 General issues
Some informative text is needed identifying how the key aspects of the DRM technology map on to the mechanisms
and local interfaces showing in annex D of the OIPF DAE specification [1].

A DRM System ID for the DRM system needs to be registered in as described in the OIPF DAE specification [1],
clause 9.3.10.

If the DRM agent can generate user interfaces on the terminal then the interaction between these and the HbbTV®
system needs to be defined. This is particularly critical if these user interfaces are rendered using the same browser as is

used for HbbTV® applications. (See the OIPF DAE specification [1], clause 5.1.1.6).

Which combinations of protocols and codecs are required to be supported with the DRM technology need to be defined.
These need to be in the format of the video profile capability strings indicating as defined in the OIPF DAE
specification [1], clause 9.3.11.

F.3 DRM Agent API
In the sendDRMMessage method (as defined in the OIPF DAE specification [1], clause 7.6.1.2), it needs to be defined
which values of the msgType parameter are valid and what the contents of the msg parameter are for each message type.

In the onDRMMessageResult function (as defined in the OIPF DAE specification [1], clause 7.6.1.1), the valid values for

the resultMsg parameter should be defined if they are intended to be parsed by an HbbTV® application. Additionally it
needs to be defined which conditions in the DRM system trigger which resultCode values and any implications on the
value of the resultMsg.

F.4 Content via the AV Control object
If DRM is used to protect content presented via the AV Control object then the following need to be specified:

1) Whether the content access streaming descriptor is needed to provide information for the DRM system. If so
then which of the fields are used, under what circumstances and what the requirements are on their contents
need to be defined. If not then the mechanism by which DRM information is obtained needs to be defined.

2) Whether the DRM system can enforce parental access control and trigger an onParentalRatingChange event
(as defined in the OIPF DAE specification [1], clause 7.14.5). If this event can be triggered then how the value
of the contentID parameter is obtained needs to be specified. The same applies for onParentalRatingError
event.

3) The conditions when the onDRMRightsError event is generated (as defined in the OIPF DAE specification [1],
clause 7.14.6). If it is generated, the values to be used for the contentID and the rightsIssuerURL parameters
need to be defined.

ETSI

ETSI TS 102 796 V1.3.1 (2015-10)235

F.5 Content via the HTML5 media element
If DRM is used to protect content presented via the HTML5 media element, then the following need to be specified:

1) Whether the content access streaming descriptor is needed to provide information for the DRM system. If so
then which of the fields are used, under what circumstances and what the requirements are on their contents
need to be defined. If not then the mechanism by which DRM information is obtained needs to be defined.

2) How detection and handling of errors need to be defined - see also clause 9.6.7.

NOTE: The present document does not require the support of Encrypted Media Extensions (EME) being
specified by the W3C.

ETSI

ETSI TS 102 796 V1.3.1 (2015-10)236

Annex G (informative):
Implementer guidelines for media synchronization

G.1 General
Annex G provides implementer guidelines for media synchronization. It focusses on the broadcaster perspective.
Whereas the present document defines only the terminal behaviour, provisions by broadcaster are needed to make
media synchronization actually work.

Clause G.2 shows how a broadcaster could manage delay throughout distribution network in order to prevent buffer
overflow or underrun at the terminal or Companion Screen.

Clause G.3 shows how a broadcaster could manage multiple content timelines and provide correct correlation
timestamps for cases where the distribution network make changes to the timeline (e.g. changes to PTS).

More implementation guidelines for broadcasters are provided in annex B of ETSI TS 103 268-2 [47].

G.2 Managing delay throughout distribution network
There are several reasons why a broadcaster may want to manage and equalise delays throughout the distribution
network(s):

• DVB broadcast streams have typically much lower latency than OTT streams.

• Delays are different in different network segments, e.g. due to transcoding.

• Media-stream buffer capacity is limited in HbbTV® terminal.

Especially for live broadcasts with live companion streams, it is important that media streams arrive at similar times
such that there are no buffer overflows or underflows at the user side. Equalizing delays between head-ends can also be
beneficial to social TV use cases (out of scope for the present document), where friends or groups of people
communicate with each other while watching the same content at different locations, a.k.a. "watching apart together".

Figure G.1 sketches an architecture to achieve the required delay management and equalisation.

Figure G.1: Architecture for delay management and equalisation

TV Device TV Device

“Studio”

Broadcast
stream

Companion
stream

“Sync center”

Var. Buffer

Var. Buffer

Head
End

Internet

HbbTV®
 Term

COS Device COS Device Comp Scr

SM

SM

SM

Var. Buffer

Head
End

SM

ETSI

ETSI TS 102 796 V1.3.1 (2015-10)237

The architecture has a broadcaster studio that provides broadcast and companion streams. The broadcaster is assumed to
have a "synchronization center" where synchronization is managed. Stream monitors (SM) are placed at strategic points
in the distribution networks to monitor the playout timing of the different network segments, typically at a head end or
at a special TV device. The reports from the stream monitors are used at the synchronization center to control variable-
delay buffers per network segment and per channel, resulting in a coarse delay equalisation of the different streams. The

fine synchronization will happen in/between the HbbTV® terminal and Companion Screen(s) in the home.

G.3 Managing multiple content timelines
The existence of multiple timelines will be a fact of life for a broadcaster, until all its distribution networks support
immutable timelines like MPEG TEMI. Head ends of distribution networks typically re-multiplex, transcode and even
re-originate broadcast streams. In some head-ends, the broadcast timeline (PCR/PTS) may remain unchanged whereas
in other head ends, the broadcast timeline may be stripped and a new broadcast timeline is created. This means at least
an unknown offset between PCR/PTS values of the original stream and the new stream(s). Also, there may be subtle
variations between the tick rates of the original-stream PCR clock and the new-stream(s) PCR clock(s). The broadcaster
will need to handle the situation of having different PCR/PTS in different distribution-network segments.

Figure G.2 sketches an architecture to manage multiple content timelines.

Figure G.2: Architecture for managing multiple content timelines

The architecture has a broadcaster studio that provides broadcast and companion streams. The broadcaster is assumed to
have a "synchronization center" where synchronization is managed. Stream monitors (SM) are placed at strategic points
in the distribution networks to monitor the relationship between the play-out timing and PCR/PTS, typically at a head
end or at a special TV device. The broadcasters may fingerprint and/or watermark the broadcast content such that the
stream monitors can correlated the measured timeline (e.g. PCR/PTS) values with a specific point in the content,
identified by a fingerprint or watermark. The result is passed to the material resolution server (MRS), such that the MRS

can provide HbbTV® terminals material information (MI) expressed in the appropriate broadcast timeline.

G.4 Synchronization with no buffer in the HbbTV®
terminal

G.4.0 General

This clause informatively describes the operation of the HbbTV® terminal and the Companion Screen application in the

case that the HbbTV® terminal has no buffering capability for broadcast content.

TV Device TV Device

“Studio”

Broadcast
stream

Companion
stream

"Sync center"

Fing./Wat.*

Fing./Wat.*

Head
End

Internet

HbbTV® term

COS Device COS Device Comp Scr

SM

SM MRS

*Fing./Wat.: fingerprinting and/or watermarking

Head
End

SM

ETSI

ETSI TS 102 796 V1.3.1 (2015-10)238

G.4.1 Inter-device media synchronization with the HbbTV®
terminal as master with no buffer

Figure G.3 shows the operation of the HbbTV® terminal and the Companion Screen application in the case that the
terminal has no buffering capability and is the master device for synchronization.

Figure G.3: Architecture for managing multiple content timelines

The SCbr receives and displays one or more components of the service on the HbbTV® terminal (for example, video
via broadcast or IP). It provides Earliest, Latest and Actual Presentation Timestamps to the MSAS. For broadcast
content, it is not possible to adjust the timing of presentation as there is no buffer. For IP content, there is no need for

the HbbTV® terminal to adjust the timing of presentation as the HbbTV® terminal is master. Therefore, Earliest, Latest
and Actual Presentation Timestamps are all equal. There is no need for the MSAS to send Control Timestamps to the
SCbr as no adjustment is possible, although it is not prevented from doing so (the interface is shown in grey in
figure 40).

The MSAS generates Control Timestamps and sends them to the SCcos on the Companion Screen, which is receiving
one or more components to be synchronised (for example, an alternative audio track). The SCcos will attempt to render
these component(s) according to the Control Timestamps. In case this is not possible, the CSA is responsible for
deciding whether to continue rendering the component(s) and/or making any necessary indication to the user.

The SCcos may send Earliest/Latest/Actual Presentation Timestamps to the MSAS, but it is not obliged to do so. As it

is not possible to adjust the playout of the component on the HbbTV® terminal, if timestamps are sent by the SCcos,
the MSAS can ignore them (the interface is shown in grey in figure 40).

G.4.2 Multi-stream (Intra-device) media synchronization with no
buffer for broadcast within the HbbTV® terminal

Figure G.4 shows the operation of multi-stream (intra-device) synchronization within the HbbTV® terminal in the case
that the terminal has no buffering capability for broadcast content.

HbbTV Terminal

SCbr

MSAS
Companion Screen

CS App

Earliest, Latest
and Actual

Presentation
Timestamps
(all equal) Control

Timestamps
(not required)

Earliest, Latest
and Actual

Presentation
Timestamps
(ignored by

MSAS)

Control
Timestamps

Component(s)
via IP

Component(s) via
broadcast or IP

SCcos SCcos

ETSI

ETSI TS 102 796 V1.3.1 (2015-10)239

Figure G.4: Multi-stream Media Synchronization with no buffer
for broadcast within the HbbTV® terminal

The SCbr receives and displays one or more components of the service from broadcast. It provides Earliest, Latest and
Actual Presentation Timestamps to the MSAS. As there is no buffer, it is not possible to adjust the timing of broadcast
presentation. Therefore, Earliest, Latest and Actual Presentation Timestamps are all equal. There is no need for the
MSAS to send Control Timestamps to the SCbr as no adjustment is possible, although it is not prevented from doing so
(the interface is shown in grey in figure G.4).

The MSAS generates Control Timestamps and sends them to the SCms, which is receiving further component(s) to be
synchronised. This SC will attempt to render these component(s) according to the Control Timestamps. In case this is

not possible, this is reported to the HbbTV® app. Correlation Timestamps are delivered to the SCms from the HbbTV®
App. These are used by the SCms to map between the Control Timestamps received from the MSAS and the timeline of
the media components that it is receiving.

The SCms will send Earliest, Latest and Actual Presentation Timestamps to the MSAS. However, as it is not possible to
adjust the playout of the broadcast component, the MSAS can ignore these (the interface is shown in grey in
figure G.4).

HbbTV Terminal

SCbr

MSAS

HbbTV
App

Earliest, Latest
and Actual

Presentation
Timestamps
(all equal) Control

Timestamps
(not required)

Earliest, Latest
and Actual

Presentation
Timestamps
(ignored by

MSAS)

Control
Timestamps

Correlation
Timestamps

Component(s)
via IP

Component(s)
via broadcast

SCms SCms

ETSI

ETSI TS 102 796 V1.3.1 (2015-10)240

Annex H (normative):
HbbTV® File Delivery Protocol (FDP)

H.1 High-level principles of FDP (informative)
The broadcast of a file using FDP is based on three categories of messages: an Initialization Message, Data Messages,
and a Termination Message.

These messages are carried according to the Data Piping model of the DVB Data Broadcasting specification (ETSI
EN 301 192 [38]). The present document describes how the messages are encapsulated directly into the payload of the
MPEG-2 Transport Stream Packets.

Before being broadcast, the file is divided into segments (the File Segments), each of which is carried in a Data
Message.

The Initialization Message is sent before the first Data Message. It provides information regarding the file, which is
necessary for the terminal to initialize its reception (file size, segment size, etc.). This is followed by the Data Messages
containing the File Segments. Finally, the Termination Message is sent to indicate to the Terminal that this instance of
the broadcasting of this file has ended.

The following clauses give details on the usage rules of FDP Messages and their syntax.

Each of these Messages ends with a CRC, allowing the terminal to check the integrity of the received message.

The FDP protocol makes provision for indicating for each file a URL where the terminal may retrieve via broadband the
File Segments which have not been successfully received via broadcast (see clause H.3.4 for details).

The current document does not specify any mechanism for error or erasure correction (FEC). However, the FDP
protocol has been designed in such a way that it can be extended in the future with one (or more) error/erasure
correction scheme, whilst keeping compatible with terminals not implementing it.

H.2 Encapsulation and signalling

H.2.1 DVB signalling
The broadcasting of the files is done on DVB Data Broadcast services using Data Piping, as specified in ETSI
EN 301 192 [38], and duly signalled as such, in compliance with ETSI EN 300 468 [16]. A service may contain one or
more Data Pipes carrying files via FDP.

H.2.2 Encapsulation of FDP in Data Pipes
Files are broadcast with the help of the FDP messages, as specified in clauses H.3 and H.4 below. Each of these FDP
messages is carried in a DVB Data Pipe, i.e. the FDP Messages are directly encapsulated into the payload of the
MPEG-2 Transport Stream packets.

The start of an FDP Message may or may not be aligned with the start of the Transport Stream packet payload.

The payload_unit_start_indicator shall be used for FDP Messages in the same way as specified in
ISO/IEC 13818-1 [46] for PSI sections, i.e. with the following significance: if the Transport Stream packet carries the
first byte of an FDP Message, the payload_unit_start_indicator value shall be '1', indicating that the first byte of the
payload of this Transport Stream packet carries the pointer_field. If the Transport Stream packet does not carry the first
byte of an FDP Message, the payload_unit_start_indicator value shall be '0', indicating that there is no
pointer_field in the payload.

The pointer_field is used as specified in ISO/IEC 13818-1 [46] to indicate the position of the first byte of the first
FDP Message starting in the Transport Stream Packet.

Only one file shall be carried with FDP in one given Data Pipe at a given moment. However, broadcasting files
simultaneously with FDP is possible, by using different Data Pipes.

ETSI

ETSI TS 102 796 V1.3.1 (2015-10)241

H.2.3 File identification
In FDP, files are identified uniquely using the organisation_id and a file_id, which are both 32 bit identifiers
present in the header of all FDP Messages. This means that an organisation_id and file_id combination cannot
correspond to more than one file.

Consequently, the terminal shall treat multiple files identified with the same organisation_id and file_id values as
being the same file being broadcast multiple times.

H.2.4 Referring to files using URLs
The location where a file is carried via FDP can be referred to using a URL. This URL has the same form as a dvb:
URL (as specified in ETSI TS 102 851 [10] and IETF RFC 3986 [27]) with the only difference being that the URI
Scheme is fdp: instead of dvb:. Such URLs are referred to as "FDP URLs".

FDP URLs are defined to have the form:

fdp://<original_network_id>.<transport_stream_id>.<service_id>.<component_tag>/<organisation_id>/<file_id>

where file_id and organisation_id are the 32 bit identifiers defined in clause H.2.3 encoded as hex_string as
defined in ETSI TS 102 851 [10] but with no leading zeros. All other parts are as defined in ETSI TS 102 851 [3].

H.3 File segmentation and broadcasting

H.3.1 File segmentation
Each file shall be divided into segments (the File Segments). These segments shall be of equal size except for the last
File Segment which may be smaller. The size of these segments shall be specified in the file_segment_size field of
the Initialization Message of the file, which precedes the Data Messages carrying these segments.

Optionally, in addition to the File Segments (containing the actual data of the file), the Data Messages may also carry
segments containing error correction data that the terminal can use to reconstruct the file in case some File Segments
have not been properly received (the FEC Segments). When present, these segments shall be of equal size except for the
last FEC Segment which may be smaller. The size of these segments shall be specified in the FEC_segment_size field
of the Initialization Message of the file, which precedes the Data Messages carrying these segments.

The message_type field indicates to the terminal whether a Data Message carries a File Segment or a FEC Segment.

All File Segments shall be numbered contiguously and in order, starting at the value 0x00000000.

The number of File Segments for a given file can be calculated as follows:

 Nfile = INT ((file_size - 1) / file_segment_size) + 1

Consequently, all File Segments have a segment_ number in the range [0 : Nfile - 1].

When present, FEC segments shall be numbered contiguously and in order, starting at the value 0x00000000.

The number of FEC Segments for a given file can be calculated as follows:

 Nfec = INT ((FEC_size - 1) / FEC_segment_size) + 1

Consequently, when present, FEC Segments have a segment_ number in the range [0 : Nfec - 1].

The file segmentation and the message sequences are illustrated in the figure H.1.

ETSI

ETSI TS 102 796 V1.3.1 (2015-10)242

Figure H.1: FDP message sequence

The use of FEC is optional, and is not specified in the present document. FEC Segments can only be sent in addition to
File Segments. All File Segments shall be broadcast, regardless of whether FEC segments are broadcast or not, to allow
terminals ignoring FEC segments to be able to reconstruct files from the received File Segments.

H.3.2 Message sequence
The timing of the broadcast of files using FDP is described by the <availabilityWindow> element of the Content
Access Download Descriptor (as defined in the OIPF DAE specification [1]).

For a file download to take place, the following message sequence has to occur within the availabilityWindow period:

• Initialization Message (possibly repeated several times).

• Data Messages, carrying the File Segments and possibly also FEC Segments.

• Termination Message (possibly repeated several times).

NOTE: One or more repetitions of the Initialization Message may be broadcast after the first Data Message.

Within the availabilityWindow period, the following rules shall apply:

• The above message sequence shall not occur more than once per availabilityWindow period.

• There shall be at least one Initialization Message sent between the start of the availabilityWindow period and
the first Data Message.

• There shall be at least one Termination Message sent between the last Data Message and the end of the
availabilityWindow period.

• There shall not be any Initialization Messages sent after the first Termination Message

• All Data Messages making up the file shall be sent between the first Initialization Message and the first
Termination Message. However, during this period Data Messages may be sent in any order and each Data
Message may be sent more than once.

Each message contains a CRC_32. The terminal shall check the integrity of each received message by checking the CRC
value as specified in annex A of ISO/IEC 13818-1 [46].

ETSI

ETSI TS 102 796 V1.3.1 (2015-10)243

H.3.3 Repeated broadcasts of file segments
When segments of the same file (according to the criterion specified in clause H.2.3) are broadcast multiple times, each
of these segments shall be identical across all repetitions. Therefore, it shall be possible for the terminal to reconstruct
the file by reassembling segments obtained from different broadcasts of same file.

The multiple broadcasts may be carried in the same Data Pipe (same component of the same data broadcast service), or
in a different Data Pipe (e.g. in another service, located on a different Transport Stream).

In case of multiple broadcasts of a file, the following shall apply:

• When the terminal has received a subset of the File Segments related to a file, the terminal shall not discard
those File Segments but shall attempt to receive the missing File Segments during a subsequent broadcast.

• When the terminal has received a set of File Segments and FEC Segments which permits the successful
reconstruction of the file, the terminal shall deem the download as completed, disregard all subsequent
messages relating to this file, and free-up the corresponding resources.

H.3.4 File segment recovery
The Initialization Message may provide a Recovery URL, which is associated with the file it relates to. This Recovery
URL indicates the location where the terminal may retrieve the File Segments which have not been received
successfully. The use of the recovery URL by the terminal is optional.

To retrieve a specific File Segment using this Recovery URL, the terminal shall issue an HTTP GET with the URL
formed by the concatenation of the Recovery URL with <segment_number> (as an 8-character hex string).

EXAMPLE:

 If the Recovery URL supplied for a specific file is:

http://recovery_server.service_provider.com/recovery/FileXYZ/,

 the terminal can retrieve the File Segment number 0x01234567 of this file at the following URL:

http://recovery_server.service_provider.com/recovery/FileXYZ/01234567.

The terminal shall only use this mechanism in cases where a subset of the File Segments of a file has been successfully
received, but this subset is not sufficient for the file to be completely reconstructed and there is no subsequent
availabilityWindow known to the terminal during which missing segments could be received. In such cases:

• If a Recovery URL is associated with the file, the terminal may attempt to fetch missing segments via
broadband using this URL as described above. If so, the first request to this URL shall occur only after the
receipt of a Termination Message within the last known availabilityWindow associated to the file or after the
end of this last known availabilityWindow, whichever earlier. From this event, the terminal shall wait a
random duration between zero and the value of the time_dispersion field specified in the Initialization
Message (see clause H.4.2) before performing this first request. This randomization is required, in order to
avoid large numbers of terminals contacting the recovery server simultaneously, resulting possibly in server
overloads.

• If for any reason, such a recovery is not attempted, or is unsuccessful, the terminal shall consider the download
of this file as completed with errors or failed (depending on the value of discard_file_on_error_flag as
described in clause H.4.2) and report accordingly to the application.

H.4 Syntax and semantics of FDP messages

H.4.1 Message types
The FDP messages can be of different types but all include the same header information. The Message Type is
indicated in the header of each message as an 8-bit field, with a value as defined in table H.1.

ETSI

ETSI TS 102 796 V1.3.1 (2015-10)244

Table H.1: FDP message types

Value Type of message
0x00 Reserved
0x01 Initialization Message
0x02-0x10 Reserved
0x11 Data Message containing a File Segment (see clause H.3.1)
0x12 Data Message containing a FEC Segment (see clause H.3.1)
0x13-0x20 Reserved
0x21 Termination Message
0x22-0xFF Reserved

H.4.2 Initialization Message
The Initialization Message shall have the following syntax.

Table H.2: Initialization message

Syntax Number of bits Identifier
initialization_message() {
 protocol_version 8 uimsbf
 message_type 8 uimsbf
 message_length 16 uimsbf
 organisation_id 32 uimsbf
 file_id 32 uimsbf
 file_size 48 uimsbf
 file_segment_size 16 uimsbf
 FEC_size 48 uimsbf
 FEC_segment_size 16 uimsbf
 max_recovery_requests 20 uimsbf
 min_time_between_requests 12 uimsbf
 time_dispersion 16 uimbsf
 discard_file_on_error_flag 1 bslbf
 reserved_future_use 7 bslbf
 recovery_URL_length 8 uimsbf
 for (i=0 ; i < N ; i++) {
 recovery_URL_char 8 uimsbf
 }
 private_data_length 8 uimsbf
 for (i=0 ; i < M ; i++) {
 private_data_byte 8 uimsbf
 }
 CRC_32 32 rpchof
}

Semantics for the Initialization Message:

protocol_version: This field shall have the value 0x01. Terminals shall ignore all messages that have a different value
in this field.

message_type: In Initialization Messages, this field shall have the value 0x01.

message_length: This field specifies the number of bytes of the message, starting immediately following the
message_length field and including the CRC.

organisation_id: This field is the organisation_id as defined in ETSI TS 102 851 [3]. Along with the file_id, it
forms a tuple which uniquely identifies the file being broadcast (see clause H.2.3).

file_id: This field is the identifier of the file as defined in clause H.2.3. Along with the organisation_id, it forms a
tuple which uniquely identifies the file being broadcast.

file_size: This field gives the total size (in bytes) of the file.

ETSI

ETSI TS 102 796 V1.3.1 (2015-10)245

file_segment_size: This field gives the number of data bytes in the File Segments, except for the last File Segment of
the file which may be smaller (see clause H.3.1).

FEC_size: This field gives the total size (in bytes) of the FEC data block (see clause H.3.1). If there are no FEC
segments transmitted, this field shall have the value zero.

FEC_segment_size: This field gives the number of data bytes in the FEC Segments sent in addition to the File
Segments, except for the last FEC Segment which may be smaller (see clause H.3.1). If FEC_size equals zero, this field
has no meaning.

discard_file_on_error_flag: This field is a 1-bit flag indicating how the terminal should behave when a file cannot be
reconstructed without any error. A value of '0' indicates that the terminal shall keep the file even when there are
uncorrected errors (erroneous or missing File Segments). In such a case, the Download shall be reported as successfully
completed to the application, and the presence of errors shall be reported by using the errorLevel property of the
Download class (see clause A.2.11). A value of '1' indicates that the terminal shall not keep the file when there are
uncorrected errors (erroneous or missing File Segments). In such a case, the incomplete or erroneous file shall be
deleted, and the Download shall be reported to the application as "failed".

max_recovery_requests: This is a 20-bit field indicating the maximum number of recovery requests each terminal may
make to the Recovery URL (see clause H.3.4) to recover File Segments of this file. This includes any retries a terminal
may make in response to failing requests. A value of '0' indicates that there is no limit specified by this message. If there
is no Recovery URL provided in this message, this field may be ignored.

min_time_between _requests: This is a 12-bit field indicating the minimum time (in seconds) that shall separate two
consecutive requests made by a terminal to the Recovery_URL. In case there is no Recovery URL provided in this
message, this field may be ignored.

time_dispersion: This is a 16-bit field indicating the range (in seconds) of the time dispersion that shall be applied by
terminals to randomize the time at which the terminal will perform the first attempt to retrieve missing segments using
the Recovery URL (as described in clause H.3.4). A value of '0' indicates that no time dispersion is required. If there is
no Recovery URL provided in this message, this field may be ignored.

recovery_URL_length: This field gives the total length in bytes of the text string forming the Recovery URL (see
clause H.3.4). If no Recovery URL is provided in this message, this field shall have the value zero.

recovery_URL char: Character of the text string forming the Recovery URL (see clause H.3.4).

private_data_length: This field gives the total length in bytes of the following loop containing private data.

private_data_byte: This is an 8-bit field, the value of which is privately defined.

CRC_32: This is a 32 bit field that contains the CRC value that gives a zero output of the registers in the decoder
defined in annex B of ISO/IEC 13818-1 [46] after processing the entire message.

ETSI

ETSI TS 102 796 V1.3.1 (2015-10)246

H.4.3 Data Message
A Data Message can be used to carry either a File Segment or a FEC Segment (see clause H.3.1 for details).

The Data Message shall have the following syntax.

Table H.3: Data message

Syntax Number of bits Identifier
data_message() {
 protocol_version 8 uimsbf
 message_type 8 uimsbf
 message_length 16 uimsbf
 organisation_id 32 uimsbf
 file_id 32 uimsbf
 segment_number 32 uimsbf
 data_length 16 uimsbf
 for (i=0 ; i < N ; i++) {
 data_byte 8 uimsbf
 }
 CRC_32 32 rpchof
}

Semantics for the Data Message:

protocol_version: This field shall have the value 0x01. Terminals shall ignore all messages that have a different value
in this field.

message_type: In Data Messages carrying File Segments, this field shall have the value 0x11. In Data Messages
carrying FEC Segments, this field shall have the value 0x12.

message_length: This field specifies the number of bytes of the message, starting immediately following the
message_length field and including the CRC.

organisation_id: This field is the organisation_id as defined in ETSI TS 102 809 [3]. Along with the file_id, it
forms a tuple which uniquely identifies the file being broadcast (see clause H.2.3).

file_id: This field is the Identifier of the file as defined in clause H.2.3. Along with the organisation_id, it forms a
tuple which uniquely identifies the file being broadcast.

segment_number: This 32 bit field gives the number of the segment, allowing the Terminal to re-order the segments to
reconstruct the file. The first segment of the file shall have the number 0x00000000. See clause H.3.1 for details.

data_length: This field gives the total length in bytes of the following loop containing the message data

data_byte: This is an 8-bit field, constituting the content of the File Segment or the FEC segment. The number of
data_byte fields in a Data Message shall be equal to the file_segment_size or FEC_segment_size field, as appropriate,
carried in the Initialization Message within this availabilityWindow period.

CRC_32: This is a 32 bit field that contains the CRC value that gives a zero output of the registers in the decoder
defined in annex B of ISO/IEC 13818-1 [46] after processing the entire message.

H.4.4 Termination Message
The Termination Message shall have the following syntax.

ETSI

ETSI TS 102 796 V1.3.1 (2015-10)247

Table H.4: Termination message

Syntax Number of bits Identifier
termination_message() {
 protocol_version 8 uimsbf
 message_type 8 uimsbf
 message_length 16 uimsbf
 organisation_id 32 uimsbf
 file_id 32 uimsbf
 private_data_length 8 uimsbf
 for (i=0 ; i < M ; i++) { bslbf
 private_data_byte 8 uimsbf
 }
 CRC_32 32 rpchof
}

Semantics for the Termination Message:

protocol_version: This field shall have the value 0x01. Terminals shall ignore all messages that have a different value
in this field.

message_type: In Termination Messages, this field shall have the value 0x21.

message_length: This field specifies the number of bytes of the message, starting immediately following the
message_length field and including the CRC.

organisation_id: This field is the organisation_id as defined in ETSI TS 102 809. Along with the file_id, it forms a
tuple which uniquely identifies the file being broadcast (see clause H.2.3).

file_id: This field is the Identifier of the file as defined in clause H.2.3. Along with the organisation_id, it forms a
tuple which uniquely identifies the file being broadcast.

private_data_length: This field gives the total length in bytes of the following loop containing private data

private_data_byte: This is an 8-bit field, the value of which is privately defined.

CRC_32: This is a 32 bit field that contains the CRC value that gives a zero output of the registers in the decoder
defined in annex B of ISO/IEC 13818-1 [46] after processing the entire message.

ETSI

ETSI TS 102 796 V1.3.1 (2015-10)248

Annex I (informative):
Push-VoD services

I.1 Introduction
Terminals which support the "download feature" provide an enhanced content download API which allows for

implementing push-VoD services. Following this concept an HbbTV® application schedules the download of movies or
other audio-visual content prior to its presentation. Content is downloaded from the broadcast channel. The application
should schedule content downloads automatically and without any user interaction. Once the content is completely
downloaded it can be offered for playback to provide an instantaneous and error-free VoD experience. Push-VoD
provides highest quality of service even for content of high data volume (HD, 3D, Ultra HD) and even if a high
bandwidth broadband channel is not available.

I.2 Level of trust
APIs used for push-VoD services are trusted. Therefore, the service provider should ensure that its application is trusted
on the target terminals.

I.3 Protocols

I.3.1 Broadcast protocol
The protocol for push-VOD services is FDP as defined in annex H.

I.3.2 Download protocol
A download is described by a Content Access Download Descriptor (CADD) as defined in annex E of OIPF DAE with
the clarifications as described in clause 7.3.1.5.1 of the present document.

I.3.3 Sources
The source of the file data is defined by an FDP URL as defined in clause H.2.4.

I.4 Application features

I.4.1 Overview on application features
In general, a Push-VoD application will provide at least the following user interfaces:

• Advertising the service.

• Subscription / Unsubscription to the service.

• Content browsing and management.

• Content Playback.

Additionally, a push-VoD application will necessarily implement at least the following functions in the background:

• Schedule downloads.

• Delete or cancel old downloads.

Applications may also reserve hard disk space for push-VoD content.

ETSI

ETSI TS 102 796 V1.3.1 (2015-10)249

Applications will implement these functions using the Content Download API as defined in clause 7.4 of the OIPF DAE
specification [1].

I.4.2 Hard disk space reservation
To ensure that there will be space on the hard disk for scheduled downloads, the application should use the Content
Download API to reserve a part of the hard disk for its push-VoD content. Applications from the same organisation (as
indicated by the application's organisation ID) can only reserve one part of the hard disk. Hard disk space reservation is
usually done when the user subscribes to the service, and accepts its conditions.

To reach a wide range of coverage the content provider should carefully decide about the size of the reserved space. It
might be limited due to hardware capabilities or due to the hard disk being used for PVR recordings or other
applications. The application should not reserve more space than needed.

The Terminal decides whether or not to reserve storage space in response to a request from an application. HbbTV®
intentionally does not define the criteria that are used for making this decision. Some examples of possible criteria that
may be used include the following:

• The order in which requests to reserve space were made.

• Space being available.

• Asking the end-user.

• A commercial agreement between the terminal manufacturer and the service provider making the request.

• The presence of the calling application on a white list of applications maintained by the terminal manufacturer.

• The absence of the calling application from a black list of applications maintained by the terminal
manufacturer.

If the Terminal refuses the requested reservation, the application should evaluate the return value of the API function
and should inform the user accordingly.

I.4.3 Hard disk deallocation
A push-VoD application should provide the possibility to free some or all of the storage space that it may have reserved,
allowing the user to recover it for other purposes. Thus, if the user selects such an option, the application should:

• Delete all completed and in-progress downloads.

• Cancel all scheduled downloads.

• Free its storage space.

Unsubscription from a push-VoD service should necessarily result in the freeing of the reserved space.

Additionally, the Terminal UI may also provide means to free storage space, independently from any application.

I.5 Content management

I.5.1 Content schedule
The content provider should plan its content schedule according to the reserved space.

The application is responsible for deleting expired content (or for flagging which content items can be deleted
automatically by the terminal) and to cancel outdated downloads. The criteria for deciding which downloads should be
deleted are defined by the application. This should be done prior to scheduling new downloads if necessary.

ETSI

ETSI TS 102 796 V1.3.1 (2015-10)250

I.5.2 Play-out
The content provider should be aware that there may be competing access resources of the Terminal such as tuners (e.g.
for other push-VoD services, for TV viewing, or for PVR recordings). Therefore, the content provider should provide
several availability windows for each content item.

I.6 Playback
The application should provide a user interface for browsing and playing the downloaded content. Additionally, the
Terminal UI may provide access to downloaded content. In that case the Terminal should only offer content that is
already completely downloaded and ready for playback. Downloads scheduled for the future or ongoing downloads
should not be shown.

HbbTV® applications from one organization are not able to access the content downloaded by an application from a
different organization.

ETSI

ETSI TS 102 796 V1.3.1 (2015-10)251

Annex J (informative):
Advert insertion guidance for content providers
The present document provides support for dynamic insertion of advertising using multiple HTML5 media elements.
This clause provides guidance to content providers on how to use these capabilities.

Application authors should write their applications assuming that at any given time, only one <video> or <audio>
element can be in the PLAYING state. If multiple media elements exist within the DOM, the transition to the
PLAYING state of one media element might cause all other media elements to transition to the PAUSED state.

As per clause 9.6.1, how the terminal renders <video> elements that are not in the PLAYING state is undefined. This
means that if multiple <video> elements exist within the DOM it is possible that the <video> element that is in the
PLAYING state might be obscured by one or more of the other <video> elements that are not in the PLAYING state.
To maximise interoperability between HTML5 environments, it is recommended that application authors ensure that
any <video> element that is not required to be actively presenting content is explicitly hidden. Using "display:none"
for media elements that are in the PAUSED state is a method to achieve this recommendation.

When creating a <video> element for prefetching, the computed CSS of this element should have the display property
set to none.

When creating a media element for prefetching, the recommended order of actions is:

1) Create the media element, for example by using document.createElement("video").

2) Set the CSS display property to none, either by directly setting this property on the element or via a CSS class
with a suitable CSS rule.

3) Add the media element to the DOM.

4) Call the load() function of the media element.

When switching between <video> elements, the recommended order of actions is:

1) Set the display CSS property of the pre-fetched video to block.

2) Pause the currently playing media element, using the pause() function.

3) Start playback of the pre-fetched media, using the play() function.

4) Set the display CSS property of the previous media element to none.

5) If the previous media element is no longer required, remove it from the DOM.

If a <video> element is to be paused and resumed later on, it needs to be kept in the DOM. When resuming a <video>
element, the terminal might have discarded previously decoded key frames, which might delay the start of presentation
until the next random access point in the stream is reached.

Detecting when to perform the switch between <video> elements can be implemented in a variety of ways, including:

• Listening to "timeupdate" events from the currently playing media element.

• Polling the "currentTime" attribute of the currently playing media element.

• Listening to "cuechange", "enter" and "exit" events of a TextTrack on the currently playing media element.

For accurate timing, it is possible to combine these techniques. For example, a "timeupdate" event can be used to
discover the approximate playback position and then, 500 ms before the ad break, the application can switch to polling
the "currentTime" attribute of the currently playing media element using setTimeout() or setInterval(). Note that
the HTML5 Recommendation [54] requires a terminal to emit a "timeupdate" event for this media element at least
every 250 ms, therefore relying on the "timeupdate" event might not provide sufficient accuracy for ad insertion by
itself.

ETSI

ETSI TS 102 796 V1.3.1 (2015-10)252

Each media element might consume significant amounts of memory on the terminal, because several fragments of each
stream might be downloaded in to system memory before the "canplay" event is fired. Application authors should limit
the number of media elements that exist in the DOM to three, and should be careful to make sure they remove all
references to a media element when removing it from the DOM.

The current best practice is to remove all listeners from the media element, set the src attribute to an empty string,
delete this attribute, call the load() function on the <video> element and then remove the media element from the
DOM.

console.log('Removing video element '+videoElement);
videoElement.pause();
videoElement.src="";
try{
 videoElement.removeAttribute("src");;
} catch(e){
}
videoElement.load();
videoElement.parentNode.removeChild(videoElement);
videoElement=null;

Care needs to be taken to avoid accidentally keeping a reference to a media element within the closure scope of a
function. Such a reference would cause the JavaScript virtual machine to have a reference to the media element that
would stop the garbage collector releasing the media element's resources.

There is no prioritisation between media elements, which means that the prefetching of one media element might
impact the media element that is currently playing. If the currently playing video uses adaptive bitrate control, the
prefetching of one media element might cause the currently playing video to drop to a lower bitrate representation.
Typically two to three fragments are downloaded of a pre-fetched video.

When implementing the soft-partition use case, the buffered property of the "long-form" video element can be used to
discover when sufficient data has been downloaded to reach the next advertising break. Once sufficient content has
been downloaded to reach the next advertising break, the preload property can set to "none" or "metadata", to provide
a hint that retrieval of data should be stopped. If possible, delay pre-fetching adverts until the buffered property of the
"long-form" video element indicates that sufficient data has been downloaded to reach the next advertising break. When
the last advert in the advertising break is playing, the preload property of the "long-form" content should be set to
"auto".

If the preload attribute of a media element is set to "metadata", the terminal should reduce the amount of data that the
<video> element downloads when the load() function is called. If a <video> element was pre-fetched with the preload
attribute set to "metadata", it is recommended to change this to "auto" once video playback has started. The reason for
this recommendation is that a media element with preload="metadata" in the PLAYING state is defined in the
HTML5 Recommendation [54] to indicate to the terminal that it should minimise its bandwidth consumption when
playing this media. For streams using adaptive bitrate control, this might cause an unnecessarily conservative bitrate
adaptation to be chosen.

The following table summarises how the HTML5 Recommendation [54] defines how an application can influence the
buffering decisions of the terminal:

PLAYING/PAUSED state Preload property Acquisition state
PAUSED
load() has not been called

n/a Not playing, not acquiring

PAUSED
load() has been called

"metadata" Not playing, acquiring at "reduced rate"

PAUSED
load() has been called

"auto" Not playing, acquiring at "any rate"

PLAYING "metadata" Playing, acquiring at "reduced rate"
PLAYING "auto" Playing, acquiring at "any rate"
PLAYING "none" Playing, not acquiring

ETSI

ETSI TS 102 796 V1.3.1 (2015-10)253

History

Document history

V1.1.1 June 2010 Publication

V1.2.1 November 2012 Publication

V1.3.1 October 2015 Publication

	Intellectual Property Rights
	Foreword
	Modal verbs terminology
	Introduction
	1 Scope
	2 References
	2.1 Normative references
	2.2 Informative references

	3 Definitions and abbreviations
	3.1 Definitions
	3.2 Abbreviations

	4 Overview
	4.1 Applications
	4.2 Architecture (informative)
	4.2.1 Introduction
	4.2.2 System overview
	4.2.3 Functional terminal components

	4.3 Terminal capabilities and extensions
	4.4 Specification overview
	4.5 Referenced W3C Specifications

	5 User experience (informative)
	5.0 Introduction
	5.1 Visual appearance of interactive applications
	5.1.1 Balance of video and application
	5.1.2 Service selection and event change

	5.2 User input
	5.3 Access to interactive applications
	5.3.1 Overview of ways of access
	5.3.2 Inaccessibility of applications
	5.3.3 Starting broadcast-related autostart applications
	5.3.3.1 Possible states of an autostart application
	5.3.3.2 "Red Button" applications

	5.3.4 Starting digital teletext applications
	5.3.5 Starting broadcast-independent applications

	5.4 Exiting and hiding broadcast-related applications
	5.5 Companion Screens
	5.6 User interface issues
	5.6.1 Advertising broadcast applications
	5.6.2 Co-existence with CI and CI Plus MMI
	5.6.3 Encrypted channels

	6 Service and application model
	6.1 Application model
	6.2 Application lifecycle
	6.2.1 Introduction
	6.2.2 Starting and stopping applications
	6.2.2.1 Summary
	6.2.2.2 Behaviour when selecting a broadcast service
	6.2.2.3 Behaviour while a broadcast service is selected
	6.2.2.4 Time-shifting behaviour
	6.2.2.5 Simultaneous broadcast/broadband/CI Plus application signalling
	6.2.2.5.1 Priority
	6.2.2.5.2 Not currently operational broadband connection
	6.2.2.5.3 Currently operational broadband connection and error accessing initial page
	6.2.2.5.4 Not currently operational CI Plus protocol
	6.2.2.5.5 Currently operational CI Plus connection and error accessing file system
	6.2.2.5.6 Application launch failure

	6.2.2.6 Broadcast-independent applications
	6.2.2.6.1 Lifecycle issues

	6.2.2.7 Suspension of access to broadcast resources
	6.2.2.8 Behaviour on encrypted broadcast services
	6.2.2.9 Applications launched from non-HbbTV® application environments
	6.2.2.10 Parental ratings
	6.2.2.11 Other general behaviour

	6.2.3 Application lifecycle example (informative)

	6.3 Application boundary
	6.3.1 Introduction
	6.3.2 Origin
	6.3.3 Application boundary definition

	7 Formats and protocols
	7.1 General formats and protocols
	7.1.1 Graphic formats
	7.1.2 Audio description

	7.2 Broadcast-specific format and protocols
	7.2.1 System, video, audio and subtitle formats
	7.2.2 Protocol for application transport
	7.2.3 Signalling of applications
	7.2.3.1 Broadcast signalling
	7.2.3.2 Broadcast-independent application signalling

	7.2.4 Synchronization
	7.2.5 DSM-CC carousel
	7.2.5.1 Mounting related constraints
	7.2.5.2 Initial carousel mounting
	7.2.5.3 Subsequent carousel mountings (during the lifecycle of an application)
	7.2.5.4 Constraints

	7.2.6 Data services
	7.2.7 File system acceleration
	7.2.7.1 Introduction
	7.2.7.2 HbbTV® stored groups descriptor
	7.2.7.3 Group location descriptor
	7.2.7.4 Group Manifest file name

	7.2.8 Protocol for download

	7.3 Broadband-specific format and protocols
	7.3.1 System, video and audio formats
	7.3.1.1 General requirements
	7.3.1.2 Systems layers
	7.3.1.3 Video
	7.3.1.4 Audio
	7.3.1.5 Subtitles
	7.3.1.5.1 TTML based subtitles
	7.3.1.5.2 Broadcast subtitles

	7.3.2 Protocols
	7.3.2.1 Protocols for streaming
	7.3.2.2 Protocols for download
	7.3.2.3 Void
	7.3.2.4 HTTP User-Agent header
	7.3.2.5 HTTP Redirects

	8 Browser application environment
	8.1 DAE specification usage
	8.2 Defined JavaScript APIs
	8.2.1 Acquisition of DSM-CC stream events
	8.2.1.1 Adding and removing stream event listeners
	8.2.1.2 DSM-CC StreamEvent event

	8.2.2 Carousel objects access with XMLHttpRequest
	8.2.3 APIs for media synchronization
	8.2.3.1 Introduction (Informative)
	8.2.3.2 The MediaSynchroniser embedded object
	8.2.3.2.0 General
	8.2.3.2.1 Properties
	8.2.3.2.2 Methods
	8.2.3.2.3 DOM2 events
	8.2.3.2.4 Error codes

	8.2.3.3 The CorrelationTimestamp class
	8.2.3.3.1 General
	8.2.3.3.2 Properties

	8.2.4 APIs for automatic deletion of downloaded content
	8.2.5 APIs for obtaining the LCN of a service
	8.2.6 Companion Screen discovery APIs
	8.2.6.1 HbbTVCSManager embedded object
	8.2.6.2 DiscoveredTerminal class
	8.2.6.3 DiscoveredCSLauncher class

	9 System integration
	9.1 Mapping from APIs to protocols
	9.1.1 Unicast streaming
	9.1.1.1 General streaming requirements
	9.1.1.2 HTTP streaming

	9.1.2 Unicast content download

	9.2 URLs
	9.3 Other file formats
	9.3.1 Stream event
	9.3.2 MPEG DASH event integration
	9.3.2.1 General
	9.3.2.2 HTML5 media element

	9.4 Presentation of adaptive bitrate content
	9.4.1 General
	9.4.2 Behaviour for HTML5 media objects
	9.4.3 Behaviour for the AV Control object

	9.5 Downloading content via FDP
	9.5.1 Download registration
	9.5.2 Single file with multiple URLs
	9.5.3 Properties of the Download object
	9.5.4 Download state diagram

	9.6 Media element integration
	9.6.1 General
	9.6.2 Resource management
	9.6.3 Transition behaviour
	9.6.4 Reporting and control of buffering
	9.6.5 Distinguishing multiple media tracks (informative)
	9.6.6 Controls attribute
	9.6.7 DRM
	9.6.8 Parental Rating Errors
	9.6.9 Downloaded Content
	9.6.10 Video presentation
	9.6.11 getStartDate method

	9.7 Synchronization
	9.7.1 Synchronization and video objects
	9.7.1.1 video/broadcast object
	9.7.1.2 HTML5 media element
	9.7.1.3 AV Control object

	9.7.2 Tolerance
	9.7.3 Timeline availability
	9.7.4 Minimum synchronization accuracy

	10 Capabilities
	10.1 Display model
	10.2 Terminal capabilities and functions
	10.2.1 Minimum terminal capabilities
	10.2.2 User input
	10.2.2.1 Key events
	10.2.2.2 Mouse and wheel events

	10.2.3 Terminal functions
	10.2.3.1 Favourites and bookmarks
	10.2.3.2 Streaming and Download
	10.2.3.3 PVR
	10.2.3.4 Download via broadcast using FDP

	10.2.4 HbbTV® reported capabilities and option strings
	10.2.5 Void
	10.2.6 Parental access control
	10.2.6.1 Broadcast channel
	10.2.6.2 Broadband delivered content
	10.2.6.3 Downloaded content
	10.2.6.4 PVR
	10.2.6.5 Synchronization and parental access control

	10.2.7 Component selection
	10.2.7.1 General
	10.2.7.2 Component selection by the terminal
	10.2.7.3 Component selection by the application
	10.2.7.4 Single decoder model
	10.2.7.5 Multi-decoder model

	10.2.8 Multi-stream media synchronization
	10.2.8.1 General
	10.2.8.2 Synchronization using gen-locked STC
	10.2.8.3 Other synchronization cases
	10.2.8.4 Supported combinations

	10.2.9 Inter-device media synchronization
	10.2.9.1 General
	10.2.9.2 Master terminal
	10.2.9.3 Slave terminal

	10.2.10 Application to media synchronization

	11 Security
	11.1 Application and service security
	11.2 TLS and Root Certificates
	11.2.1 TLS support
	11.2.2 Cipher suites
	11.2.3 Root certificates
	11.2.4 Signature algorithms
	11.2.5 Key sizes and elliptic curves
	11.2.6 Backward compatibility

	11.3 TLS client certificates
	11.4 CI Plus
	11.4.1 CI Plus communication
	11.4.2 IP delivery Host player mode
	11.4.2.1 Error handling in "IP delivery Host player mode"
	11.4.2.2 DRM metadata source

	11.4.3 Auxiliary file system

	11.5 Protected content via broadband
	11.6 Protected content via download
	11.7 Terminal WebSocket service endpoints

	12 Privacy
	12.0 Overview
	12.1 Terminal privacy features
	12.1.1 Tracking preference expression (DNT)
	12.1.1.0 Background
	12.1.1.1 Principles
	12.1.1.2 Expressing a tracking preference
	12.1.1.2.1 Expression format
	12.1.1.2.2 DNT header field for HTTP requests

	12.1.2 Third party cookies
	12.1.3 Blocking tracking websites
	12.1.4 Persistent storage

	12.2 Respecting privacy in applications

	13 Media synchronization
	13.1 General (informative)
	13.2 Architecture (informative)
	13.2.1 General
	13.2.2 Multi-stream synchronization
	13.2.3 Inter-device synchronization
	13.2.4 Master media and other media

	13.3 Media synchronization states and transitions
	13.3.1 States overview (informative)
	13.3.2 Multi-stream synchronization
	13.3.3 Becoming a master terminal
	13.3.4 Ceasing to be a master terminal
	13.3.5 Becoming a slave terminal
	13.3.6 Ceasing to be a slave terminal
	13.3.7 Transient errors
	13.3.8 Permanent errors

	13.4 Timelines and timestamping
	13.4.1 Reference point for timestamping
	13.4.2 Supported timelines and their selection
	13.4.3 Synchronization timeline
	13.4.3.1 Timelines for the MediaSynchroniser API
	13.4.3.2 Synchronization timeline for Inter-device synchronization

	13.5 Buffer for media synchronization
	13.5.1 General
	13.5.2 Media synchronization buffering cases
	13.5.3 Media synchronization buffer model

	13.6 Content Identification Information service endpoint
	13.6.1 General
	13.6.2 CSS-CII service endpoint (master terminal)
	13.6.3 Use of CSS-CII service endpoint (slave terminal)

	13.7 Wall clock synchronization
	13.7.1 General
	13.7.2 Wall clock properties
	13.7.3 WC-Server (master terminal)
	13.7.4 WC-Client (slave terminal)

	13.8 Timeline Synchronization service endpoint
	13.8.1 General
	13.8.2 CSS-TS service endpoint (master terminal)
	13.8.2.1 General
	13.8.2.2 Synchronization timeline availability
	13.8.2.3 Frequency of control timestamp messages
	13.8.2.4 Controlling timing of presentation

	13.8.3 SC function (slave terminal)
	13.8.3.1 General
	13.8.3.2 Setup-data message
	13.8.3.3 Sending Actual, Earliest and Latest Presentation Timestamps
	13.8.3.4 Value of Actual, Earliest and Latest Presentation Timestamps
	13.8.3.5 Adjusting timing of presentation in response to Control Timestamps

	13.9 Trigger Events
	13.10 Sequence diagrams for timeline synchronization (Informative)
	13.10.1 General
	13.10.2 Initiation of timeline synchronization
	13.10.3 Protocols interactions for beginning inter-device synchronization
	13.10.4 Termination of timeline synchronization
	13.10.5 Detailed protocol interaction (HTML5 media element presenting ISOBMFF as master media)
	13.10.6 Detailed protocol interaction (AV Control object presenting DASH as master media)
	13.10.7 Detailed protocol interaction (video/broadcast object as master media)
	13.10.8 Detailed protocol interaction (two media objects at the slave terminal)

	13.11 Application to media synchronization
	13.11.1 General
	13.11.2 Reading the media playback position of media objects
	13.11.3 Reading the media playback position of the MediaSynchroniser object

	14 Companion screens
	14.1 Introduction
	14.2 Description of framework (informative)
	14.2.1 Supported features
	14.2.2 Model
	14.2.2.1 Launching a companion screen application
	14.2.2.2 Application to application communication
	14.2.2.3 Remotely launching HbbTV® applications

	14.3 Requirements for launching a CS application from an HbbTV® application
	14.3.1 Support for 'launching a CS application from an HbbTV® application'
	14.3.2 The Launcher application

	14.4 Launching a CS application from an HbbTV® application
	14.4.1 CS OS identification
	14.4.1.1 General (informative)
	14.4.1.2 Syntax and semantics
	14.4.1.3 Hints on how to derive the CS OS identifier on AndroidŽ (informative)
	14.4.1.4 Hints on how to derive the CS OS identifier on iOSŽ (informative)

	14.4.2 Payload format for Install and Launch operations
	14.4.2.1 Permissible Operations
	14.4.2.2 JSON payload format
	14.4.2.2.1 Introduction
	14.4.2.2.2 Install operation
	14.4.2.2.3 Launch operation
	14.4.2.2.4 JSON payload schema
	14.4.2.2.5 Handling Special Characters in URLs (Informative)

	14.5 Application to application communications
	14.5.1 General
	14.5.2 Service endpoints provided by the terminal
	14.5.3 Handling of new connections from clients
	14.5.4 Connection pairing
	14.5.5 Paired connections

	14.6 Launching an HbbTV® application from a CS application
	14.6.1 Introduction
	14.6.2 Launching an HbbTV® application protocol
	14.6.3 Providing HbbTV® user agent

	14.7 Discovering terminals and their service endpoints
	14.7.1 Introduction
	14.7.2 Terminal and service endpoint discovery
	14.7.3 Discovery example (informative)
	14.7.3.1 DIAL Service Discovery
	14.7.3.2 DIAL Rest Service

	14.8 Cross-Origin support

	Annex A (normative): OIPF DAE specification profile
	A.1 Detailed section-by-section definition for volume 5
	A.2 Modifications, extensions and clarifications to volume 5
	A.2.1 Resource management
	A.2.2 Void
	A.2.3 Void
	A.2.4 Extensions to the video/broadcast object
	A.2.4.1 State machine and related changes
	A.2.4.2 Access to the video/broadcast object

	A.2.5 Extensions to the AV Control object
	A.2.5.1 New queue method
	A.2.5.2 State machine and related changes
	A.2.5.3 Support for TTML subtitles
	A.2.5.4 Support for media synchronization with subtitle-only streams
	A.2.5.5 Using an A/V Control object to play downloaded content

	A.2.6 HTML Profile
	A.2.6.1 Void
	A.2.6.2 MIME type and DOCTYPE
	A.2.6.3 Void
	A.2.6.4 Browser History
	A.2.6.5 Attribute reflection for visual embedded objects

	A.2.7 Extensions to the oipfObjectFactory object
	A.2.8 Void
	A.2.9 Access to EIT Schedule Information
	A.2.10 Correction to the application/oipfDownloadManager object
	A.2.11 Extensions to the Download class
	A.2.12 HTML5 media element mapping
	A.2.12.1 Inband VideoTracks, AudioTracks and TextTracks
	A.2.12.2 Out-of-band text tracks
	A.2.12.3 Modifications to clause 8.4.6

	A.2.13 Extensions to the AVSubtitleComponent class
	A.2.14 Modifications to clause H.2 "Interaction with the video/broadcast and AV Control objects"
	A.2.15 Extensions to the OIPF-defined capability negotiation mechanism
	A.2.16 Graphics performance
	A.2.17 Notification of change of components
	A.2.18 Clarification regarding the reserve() method of the application/oipfDownloadManager object
	A.2.19 Correction to the registerDownloadURL() method
	A.2.20 Extensions to the Configuration class
	A.2.20.1 Extensions to Represent Subtitle Presentation
	A.2.20.2 Extensions for time-shift

	A.2.21 AVComponent.componentTag
	A.2.22 Modifications to clause 8.4.2
	A.2.23 AVAudioComponent

	A.3 Modifications, extensions and clarifications to volume 5a
	A.3.0 General
	A.3.1 Additional support for TextTracks and Cues
	A.3.2 Additional support for getStartDate in HTML5 media elements
	A.3.3 Event model
	A.3.4 Resize event
	A.3.5 HTML5 recommendation
	A.3.6 Support for volume controls
	A.3.7 Support for multiple audio tracks

	Annex B (normative): Support for protected content delivered via broadband
	B.1 Introduction
	B.2 Common Encryption for ISOBMFF

	Annex C (informative): Support for analogue broadcasting networks
	C.1 Scope
	C.2 AIT retrieval and monitoring
	C.3 Tuning to a new channel
	C.4 Other aspects

	Annex D (informative): Server root certificate selection policy
	D.1 Introduction
	D.2 Background
	D.3 Policy

	Annex E (normative): Profiles of MPEG DASH
	E.1 Introduction (informative)
	E.2 Requirements relating to the MPD
	E.2.1 Profile definition
	E.2.2 Numerical requirements
	E.2.3 Metadata requirements
	E.2.4 Role Related requirements
	E.2.5 Audio Channel Configuration requirements
	E.2.6 Content protection signalling

	E.3 Restrictions on content
	E.3.1 Restrictions on file format
	E.3.1.1 ISO Base Media File Format

	E.3.2 Restrictions on adaptation sets

	E.4 Requirements on terminals
	E.4.1 DASH profile support
	E.4.2 Transitions between representations
	E.4.2.1 Video tracks
	E.4.2.2 Audio tracks

	E.4.3 Buffering
	E.4.4 ISO File Format support

	Annex F (informative): DRM Integration
	F.1 Introduction
	F.2 General issues
	F.3 DRM Agent API
	F.4 Content via the AV Control object
	F.5 Content via the HTML5 media element

	Annex G (informative): Implementer guidelines for media synchronization
	G.1 General
	G.2 Managing delay throughout distribution network
	G.3 Managing multiple content timelines
	G.4 Synchronization with no buffer in the HbbTV® terminal
	G.4.0 General
	G.4.1 Inter-device media synchronization with the HbbTV® terminal as master with no buffer
	G.4.2 Multi-stream (Intra-device) media synchronization with no buffer for broadcast within the HbbTV® terminal

	Annex H (normative): HbbTV® File Delivery Protocol (FDP)
	H.1 High-level principles of FDP (informative)
	H.2 Encapsulation and signalling
	H.2.1 DVB signalling
	H.2.2 Encapsulation of FDP in Data Pipes
	H.2.3 File identification
	H.2.4 Referring to files using URLs

	H.3 File segmentation and broadcasting
	H.3.1 File segmentation
	H.3.2 Message sequence
	H.3.3 Repeated broadcasts of file segments
	H.3.4 File segment recovery

	H.4 Syntax and semantics of FDP messages
	H.4.1 Message types
	H.4.2 Initialization Message
	H.4.3 Data Message
	H.4.4 Termination Message

	Annex I (informative): Push-VoD services
	I.1 Introduction
	I.2 Level of trust
	I.3 Protocols
	I.3.1 Broadcast protocol
	I.3.2 Download protocol
	I.3.3 Sources

	I.4 Application features
	I.4.1 Overview on application features
	I.4.2 Hard disk space reservation
	I.4.3 Hard disk deallocation

	I.5 Content management
	I.5.1 Content schedule
	I.5.2 Play-out

	I.6 Playback

	Annex J (informative): Advert insertion guidance for content providers
	History

