

ETSI TS 102 705 V13.0.0 (2019-05)

Smart Cards;
UICC Application Programming Interface for Java Card™

for Contactless Applications
(Release 13)

TECHNICAL SPECIFICATION

ETSI

ETSI TS 102 705 V13.0.0 (2019-05)2Release 13

Reference
RTS/SCP-THCIAPIvd00

Keywords
API, smart card

ETSI

650 Route des Lucioles
F-06921 Sophia Antipolis Cedex - FRANCE

Tel.: +33 4 92 94 42 00 Fax: +33 4 93 65 47 16

Siret N° 348 623 562 00017 - NAF 742 C

Association à but non lucratif enregistrée à la
Sous-Préfecture de Grasse (06) N° 7803/88

Important notice

The present document can be downloaded from:
http://www.etsi.org/standards-search

The present document may be made available in electronic versions and/or in print. The content of any electronic and/or
print versions of the present document shall not be modified without the prior written authorization of ETSI. In case of any

existing or perceived difference in contents between such versions and/or in print, the prevailing version of an ETSI
deliverable is the one made publicly available in PDF format at www.etsi.org/deliver.

Users of the present document should be aware that the document may be subject to revision or change of status.
Information on the current status of this and other ETSI documents is available at

https://portal.etsi.org/TB/ETSIDeliverableStatus.aspx

If you find errors in the present document, please send your comment to one of the following services:
https://portal.etsi.org/People/CommiteeSupportStaff.aspx

Copyright Notification

No part may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying
and microfilm except as authorized by written permission of ETSI.

The content of the PDF version shall not be modified without the written authorization of ETSI.
The copyright and the foregoing restriction extend to reproduction in all media.

© ETSI 2019.

All rights reserved.

DECTTM, PLUGTESTSTM, UMTSTM and the ETSI logo are trademarks of ETSI registered for the benefit of its Members.
3GPPTM and LTETM are trademarks of ETSI registered for the benefit of its Members and

of the 3GPP Organizational Partners.
oneM2M™ logo is a trademark of ETSI registered for the benefit of its Members and

of the oneM2M Partners.
GSM® and the GSM logo are trademarks registered and owned by the GSM Association.

http://www.etsi.org/standards-search
http://www.etsi.org/deliver
https://portal.etsi.org/TB/ETSIDeliverableStatus.aspx
https://portal.etsi.org/People/CommiteeSupportStaff.aspx

ETSI

ETSI TS 102 705 V13.0.0 (2019-05)3Release 13

Contents

Intellectual Property Rights .. 4

Foreword ... 4

Modal verbs terminology .. 4

1 Scope .. 5

2 References .. 5

2.1 Normative references .. 5

2.2 Informative references ... 6

3 Definition of terms, symbols and abbreviations ... 6

3.1 Terms ... 6

3.2 Symbols ... 6

3.3 Abbreviations .. 7

4 Description ... 7

4.1 Architecture ... 7

4.2 Card Emulation Mode ... 9

4.3 Reader Mode ... 10

4.3.0 Reader Mode service description ... 10

4.3.1 Receiving and sending messages over the contactless interface .. 10

4.3.2 Receiving notifications about reader status ... 11

4.4 Connectivity Service ... 11

4.5 CLT specific extension to Card Emulation Mode ... 12

5 Interaction with Proactive Functionality .. 12

6 Java Card Resource Handling .. 12

Annex A (normative): Java Card™ Platform HCI API for the UICC 13

Annex B (normative): Java Card™ Platform HCI API for the UICC identifiers 14

Annex C (normative): HCI API package version management ... 15

Annex D (informative): Change history ... 16

History .. 17

ETSI

ETSI TS 102 705 V13.0.0 (2019-05)4Release 13

Intellectual Property Rights

Essential patents

IPRs essential or potentially essential to normative deliverables may have been declared to ETSI. The information
pertaining to these essential IPRs, if any, is publicly available for ETSI members and non-members, and can be found
in ETSI SR 000 314: "Intellectual Property Rights (IPRs); Essential, or potentially Essential, IPRs notified to ETSI in
respect of ETSI standards", which is available from the ETSI Secretariat. Latest updates are available on the ETSI Web
server (https://ipr.etsi.org/).

Pursuant to the ETSI IPR Policy, no investigation, including IPR searches, has been carried out by ETSI. No guarantee
can be given as to the existence of other IPRs not referenced in ETSI SR 000 314 (or the updates on the ETSI Web
server) which are, or may be, or may become, essential to the present document.

Trademarks

The present document may include trademarks and/or tradenames which are asserted and/or registered by their owners.
ETSI claims no ownership of these except for any which are indicated as being the property of ETSI, and conveys no
right to use or reproduce any trademark and/or tradename. Mention of those trademarks in the present document does
not constitute an endorsement by ETSI of products, services or organizations associated with those trademarks.

Foreword
This Technical Specification (TS) has been produced by ETSI Technical Committee Smart Card Platform (SCP).

The contents of the present document are subject to continuing work within TC SCP and may change following formal
TC SCP approval. If TC SCP modifies the contents of the present document, it will then be republished by ETSI with
an identifying change of release date and an increase in version number as follows:

Version x.y.z

where:

x the first digit:

0 early working draft;

1 presented to TC SCP for information;

2 presented to TC SCP for approval;

3 or greater indicates TC SCP approved document under change control.

y the second digit is incremented for all changes of substance, i.e. technical enhancements, corrections,
updates, etc.

z the third digit is incremented when editorial only changes have been incorporated in the document.

Modal verbs terminology
In the present document "shall", "shall not", "should", "should not", "may", "need not", "will", "will not", "can" and
"cannot" are to be interpreted as described in clause 3.2 of the ETSI Drafting Rules (Verbal forms for the expression of
provisions).

"must" and "must not" are NOT allowed in ETSI deliverables except when used in direct citation.

https://ipr.etsi.org/
https://portal.etsi.org/Services/editHelp!/Howtostart/ETSIDraftingRules.aspx

ETSI

ETSI TS 102 705 V13.0.0 (2019-05)5Release 13

1 Scope
The present document describes the UICC Application Programming Interface for Java Card™ for contactless
Applications. Its purpose is to provide access for a contactless Applet to the services provided by the HCI protocol
defined in ETSI TS 102 622 [4] for the communication via the CLF. In the scope of the present document contactless
means support for the RF Technologies referenced by the HCI specification [4]. Low level functionality to manage
gates and pipes as defined in the HCI specification [4] is not in the scope of the present document. Registration of
contactless parameters and management of contactless Applets in card emulation mode is defined in "GlobalPlatform
Card Specification Amendment C" [8]. Related APIs are provided in "Java Card API and Export File for Card
Specification v2.2.1 (org.globalplatform)" [12] and "Card Contactless API and Export File for Card Specification v2.3
(org.globalplatform.contactless)" [13].

2 References

2.1 Normative references
References are either specific (identified by date of publication and/or edition number or version number) or
non-specific. For specific references, only the cited version applies. For non-specific references, the latest version of the
referenced document (including any amendments) applies.

• In the case of a reference to a TC SCP document, a non-specific reference implicitly refers to the latest version
of that document in the same Release as the present document.

Referenced documents which are not found to be publicly available in the expected location might be found at
https://docbox.etsi.org/Reference.

NOTE: While any hyperlinks included in this clause were valid at the time of publication ETSI cannot guarantee
their long term validity.

The following referenced documents are necessary for the application of the present document.

[1] ISO/IEC 7816-3 (2006): "Identification cards - Integrated circuit cards - Part 3: Cards with
contacts - Electrical interface and transmission protocols".

[2] ETSI TS 102 221: "Smart Cards; UICC-Terminal interface; Physical and logical characteristics".

[3] ETSI TS 101 220: "Smart Cards; ETSI numbering system for telecommunication application
providers".

[4] ETSI TS 102 622: "Smart Cards; UICC - Contactless Front-end (CLF) Interface; Host Controller
Interface (HCI)".

[5] ETSI TS 102 241: "Smart Cards; UICC Application Programming Interface (UICC API) for Java
CardTM".

[6] ETSI TS 102 223: "Smart Cards; Card Application Toolkit (CAT)".

[7] ETSI TS 102 226: "Smart Cards; Remote APDU structure for UICC based applications".

[8] GlobalPlatform: "GlobalPlatform Technology, Contactless Services, Card Specification v2.3,
Amendment C" Version 1.2.1.

NOTE: See http://www.globalplatform.org/.

[9] ORACLE: "Application Programming Interface, Java Card™ Platform, 3.0.1 Classic Edition".

[10] ORACLE: "Runtime Environment Specification, Java Card™ Platform, 3.0.1 Classic Edition".

https://docbox.etsi.org/Reference
http://www.globalplatform.org/

ETSI

ETSI TS 102 705 V13.0.0 (2019-05)6Release 13

[11] ORACLE: "Virtual Machine Specification Java Card™ Platform, 3.0.1 Classic Edition".

NOTE: ORACLE Java Card Specifications can be downloaded at
https://docs.oracle.com/en/java/javacard/3.1/index.html.

[12] GlobalPlatform: "Java Card API and Export File for Card Specification v2.2.1
(org.globalplatform)" v1.6.

[13] GlobalPlatform: "Card Contactless API and Export File for Card Specification v2.3
(org.globalplatform.contactless)" v1.3.

[14] ETSI TS 102 613: "Smart Cards; UICC - Contactless Front-end (CLF) Interface; Physical and data
link layer characteristics".

[15] ETSI TS 102 705: "Smart Cards; UICC Application Programming Interface for Java Card™ for
Contactless Applications".

2.2 Informative references
References are either specific (identified by date of publication and/or edition number or version number) or
non-specific. For specific references, only the cited version applies. For non-specific references, the latest version of the
referenced document (including any amendments) applies.

• In the case of a reference to a TC SCP document, a non-specific reference implicitly refers to the latest version
of that document in the same Release as the present document.

NOTE: While any hyperlinks included in this clause were valid at the time of publication ETSI cannot guarantee
their long term validity.

The following referenced documents are not necessary for the application of the present document but they assist the
user with regard to a particular subject area.

Not applicable.

3 Definition of terms, symbols and abbreviations

3.1 Terms
For the purposes of the present document, the following terms apply:

contactless mode: used as a generic term for "Card Emulation Mode" and "Reader Mode"

contactless state: corresponds to the logical state of the contactless framework

HCP message: Message as specified in ETSI TS 102 622 [4].

NOTE: An HCP message can be of type "command", "event" or "response to a command".

RF Technology: radio frequency technology supported by the HCI (ETSI TS 102 622 [4]) protocol specification

3.2 Symbols
Void.

https://docs.oracle.com/en/java/javacard/3.1/index.html

ETSI

ETSI TS 102 705 V13.0.0 (2019-05)7Release 13

3.3 Abbreviations
For the purposes of the present document, the following abbreviations apply:

APDU Application Protocol Data Unit

NOTE: According to ISO/IEC 7816-3 [1].

API Application Programming Interface
CAT Card Application Toolkit
CLF ContactLess Front-end

NOTE: According to ETSI TS 102 622 [4].

CLT ContactLess Tunnelling

NOTE: According to ETSI TS 102 613 [14].

CRS Contactless Registry Service
HCI Host Controller Interface

NOTE: According to ETSI TS 102 622 [4].

HCP Host Controller Protocol

NOTE: According to ETSI TS 102 622 [4].

RF Radio Frequency
SCP Smart Card Platform
SWP Single Wire Protocol

NOTE: According to ETSI TS 102 613 [14].

TC Technical Committee
TS Technical Specification

4 Description

4.1 Architecture
The present document describes an API and a Contactless Framework that enables Java CardTM Platform based
Applets, defined in [9], [10] and [11], to send and receive messages using the HCI protocol as specified in ETSI
TS 102 622 [4] and to act as contactless Applets. The Contactless Framework shall support card emulation mode and
reader mode as specified in the HCI protocol specification (ETSI TS 102 622 [4]).

ETSI

ETSI TS 102 705 V13.0.0 (2019-05)8Release 13

CREL App
CardEmulation
Mode Applets

Reader Mode
Applets

CRS App

uicc.hci.service.*
packages

uicc.hci.framework
package

 CRS API

Java Card
TM

Packages

Java Card
TM

 Runtime Environment

Items that are defined in this specification

Items that are defined GP Amendment C

Contactless
Framework

CL Registry

Figure 1

The functionality of the Contactless Framework and the configuration of contactless parameters and the management of
contactless Applets in card emulation mode are based on the functionality provided by the Contactless Registry Service
(CRS), the related APIs, the CRS Application and other features and concepts which are defined in the "GlobalPlatform
Amendment C" [8] and the related APIs "Java Card API and Export File for Card Specification (org.globalplatform)"
[12] and "Card Contactless API and Export File for Card Specification (org.globalplatform.contactless)" [13].

The API is event driven and based on the Observer/Listener pattern. Every HCI service is encapsulated by a dedicated
Service interface. These Service interfaces shall allow the registration of Listener Interfaces and the activation of
events. The Listener Interfaces shall be implemented by Java objects to receive HCI messages and events in the
onCallback method. The Registration of Listener Interfaces and activation of events shall be persistent.

An HCIMessage object shall encapsulates one HCP message according to the HCI protocol as specified in ETSI
TS 102 622 [4]. HCI message for the different contactless modes shall be identified by different types of interfaces. It is
not guaranteed that any Applet originated HCI messages are sent before the completion of the execution of the current
Applet. The Contactless Framework sends the Applet originated HCI messages in the same order as they are submitted
by the Applet.

NOTE 1: The Contactless Framework may not have enough resources to send several HCI messages submitted
during the same onCallback method execution. The Applet should be aware of this limitation (e.g. use
suitable error handling strategy, or send only one HCI message in the onCallback method at a time).

Any onCallback() method of a Listener interface shall not be invoked again while another onCallback() method is still
being executed. The Contactless Framework shall be able to receive one or more HCI messages while waiting for a
response related to a command originated by the Applet (e.g. processing a request for parameters) especially for the
EVT_FIELD_OFF case.

The HCI event EVT_FIELD_OFF shall be buffered and sent by the Contactless Framework as soon as the Contactless
Framework becomes the current context.

All other HCI messages shall be delivered to the Applet instance in the same order as they were received by the
Contactless Framework.

ETSI

ETSI TS 102 705 V13.0.0 (2019-05)9Release 13

Contactless State is the logical state of the Contactless Framework it can take the value enabled and disabled. It refers to
the "contactless functionality in the UICC" as used in ETSI TS 102 223 [6].

This state can be changed with the mechanisms defined in ETSI TS 102 223 [6], and by the method
setCommunicationInterface() API method of "GlobalPlatform Amendment C" [8].

The Contactless State applies only to the Card Emulation Mode and the Reader Mode, and it does not apply to the
Connectivity service.

When the Contactless State is disabled, the Contactless Framework shall throw an HCIException with reason code
HCI_CURRENTLY_DISABLED when an Applet invokes a method which requires that the Contactless State is
enabled.

When the Contactless State is enabled and the state of the SWP [14] interface is DEACTIVATED and when the
Contactless Framework needs to send data over the SWP [14] interface then it shall send the proactive command
ACTIVATE defined in ETSI TS 102 223 [6] if supported by the terminal. The ACTIVATE command is defined as
system proactive command sent by the CAT Runtime Environment defined in ETSI TS 102 241 [5].

NOTE 2: An Applet may use the method HCIDevice.isHCIServiceAvailable() to check if the Contactless
Framework supports sending the ACTIVATE command on pre Rel-11 implementations.

The underlying HCI communication layer as defined in ETSI TS 102 622 [4] provides reliable message transfer.
Therefore no errors can be reported to the application layer. For this reason no error reporting and recovery mechanism
related to HCI communication are defined in the present document.

The API is split into two parts. One is a generic framework that provides a factory class to retrieve the different Service
instances that are provided by the HCI implementation, and that allows discovery of whether the UICC is inserted into a
HCI network. The second part of the API implements the Services that are defined for the HCI protocol, card emulation
mode, reader mode and connectivity service. The support of the package implementing reader mode,
uicc.hci.services.readermode, is optional.

4.2 Card Emulation Mode
In card emulation mode there exist two exclusive ways to exchange messages over the HCP [4]. The first is based on
APDUs provided to the Applet through its process() method as specified in "Application Programming Interface, Java
Card™ Platform, 3.0.1 Classic Edition" [9]. The second is made available by the package
uicc.hci.services.cardemulation defined in the present document.

The uicc.hci.services.cardemulation package shall provide the communication technologies for the card emulation
mode defined by the HCP as specified in ETSI TS 102 622 [4]. The Contactless Framework shall bind the services
defined in the uicc.hci.services.cardemulation package to the underlying HCI resources (e.g. gates and pipes) defined in
the HCI architecture as specified in ETSI TS 102 622 [4]. The parameters to be used by the HCI layer may be provided
to the framework as defined in "GlobalPlatform Amendment C" [8].

In case of a communication error on the RF interface (i.e. the RF error indicator is set), messages are not propagated to
the application layer in CardEmulation Mode.

For the API defined in the present document the card emulation capability shall be provided to Applets through a
service interface implemented by the Contactless Framework. Applet instances shall receive CardEmulationMessages
after the registration of a CardEmulationListener interface to a CardEmulationService only if the
EVENT_ON_SEND_DATA is activated for the Applet instance. If the EVENT_ON_SEND_DATA is deactivated for
the Applet instance and an APDU is received via the EVT_SEND_DATA, the javacard.framework.APDU class and the
process() method of the Applet instance shall be invoked.

It shall not be possible to switch between the usage of the CardEmulationListener interface and the invocation through
the process() method within a contactless application session, i.e. not before the Applet has been deselected and
selected again. Applets communicating through the process() method shall also be able to use the API services defined
in the present document which do not require a CardEmulationListener registration (e.g. requesting the power mode or
connectivity service).

If the current application was selected through a SELECT by DF name, the Contactless Framework shall handle an
application session termination according to ETSI TS 102 221 [2] independent of the interface used for APDU
exchange.

ETSI

ETSI TS 102 705 V13.0.0 (2019-05)10 Release 13

Applet selection and deselection shall be performed by the Contactless Framework according to the rules defined in the
"Java Card™ Runtime Environment Specification, 3.0.1 Classic Edition" [10] and in "GlobalPlatform
Amendment C" [8].

The select() method of the Applet instance shall always be invoked for an Applet selection according to the rules given
in "Java Card™ Runtime Environment Specification, 3.0.1 Classic Edition" [10].

In case the Applet instance has registered the CardEmulationListener and has activated the
EVENT_ON_SEND_DATA the process() method of this Applet instance shall not be invoked during the selection. The
CardEmulationListener.onCallback method shall be called by the Contactless Framework. The HCP message that
resulted in the selection of this Applet according to the rules defined in "GlobalPlatform Amendment C" [8] shall be
provided by the CardEmulationMessage.

If the HCI event EVT_FIELD_OFF or EVT_CARD_DEACTIVATED defined by the HCP specified in ETSI
TS 102 622 [4] is received by the Contactless Framework and the UICC is still powered, the Applet instance shall be
deselected according to "GlobalPlatform Amendment C" [8] by invocation of the deselect() method.

When the HCI event EVT_FIELD_OFF is received and if the Applet instance has activated this event the Contactless
Framework shall raise an EVENT_FIELD_OFF before the invocation of the deselect() method of the Applet instance.

After the deselection of the Applet instance, it shall not be invoked by any other event defined in the interface
CardEmulationListener until the Applet instance is selected again.

4.3 Reader Mode

4.3.0 Reader Mode service description

The functionality to support the reader mode is provided in the package uicc.hci.services.reader. In reader mode the
communication technologies defined by the contactless platform for reader mode [4] are supported. The Contactless
Framework shall bind the services defined in uicc.hci.services.reader to the corresponding resources (e.g. gates and
pipes) defined by the contactless platform for reader mode [4].

In case of a communication error on the RF interface (i.e. the RF error indicator is set), messages are propagated to the
application layer in Reader Mode.

An Applet has to be in the selectable state (according to the Java Card™ specification [9], [10] and [11]) to act as a
contactless Applet in reader mode.

Reader mode Applets shall follow the extended lifecycle model that is defined in "GlobalPlatform Amendment C" [8]
for contactless Applets in card emulation mode (i.e. following Application Availability States and the related transition
rules).

There shall not be more than one reader mode Applet in the state ACTIVATED (a state defined in "GlobalPlatform
Amendment C" [8]) at any time.

The installation parameters for contactless reader mode applications are specified in ETSI TS 102 226 [7].

When the state of a reader mode Applet changes to lifecycle ACTIVATED (according to "GlobalPlatform
Amendment C" [8]) the Contactless Framework shall ensure that the HCI gates and pipes are setup for the RF
technologies that are supported by the reader mode Applet.

The procedures for receiving and sending messages over the contactless interface and the procedures for notifications
about the reader status are described in the following clauses.

4.3.1 Receiving and sending messages over the contactless interface

To be able to receive and send messages over the contactless interface in reader mode the Applet shall activate the
ReaderListener.EVENT_TARGET_DISCOVERED. An Applet shall only be able to activate this event or to use the
restartReadermodeProcedure method if it is in lifecycle state ACTIVATED. To release the CLF control at the end of a
transaction an Applet shall deactivate the ReaderListener.EVENT_TARGET_DISCOVERED.

ETSI

ETSI TS 102 705 V13.0.0 (2019-05)11 Release 13

When an Applet lifecycle state changes from ACTIVATED to DEACTIVATED the Contactless Framework shall
enforce that the ReaderListener.EVENT_TARGET_DISCOVERED is deactivated.

The Contactless Framework shall request the reader mode control on the CLF by sending the HCI events
EVT_READER_REQUESTED and EVT_END_OPERATION according to the state of the reader mode Applet. The
EVT_READER_REQUESTED shall be sent by the Contactless Framework if an Applet instance activates the event
ReaderListener.EVENT_TARGET_DISCOVERED_ The HCI event EVT_END_OPERATION shall be sent to the CLF
when an Applet instance or the Contactless Framework deactivates the event
ReaderListener.EVENT_TARGET_DISCOVERED.

The Contactless Framework shall inform the Applet instance which has activated the
ReaderListener.EVENT_TARGET_DISCOVERED when a target is discovered on one of the RF technologies the Applet
instance is registered to with its installation parameters as specified in ETSI TS 102 226 [7].

The Contactless Framework shall ensure that the ReaderListener.EVENT_TARGET_DISCOVERED is deactivated for
an Applet when access to the interface is disabled on the UICC level.

4.3.2 Receiving notifications about reader status

To be able to receive CLF reader status notifications the Applet shall activate the event
ReaderListener.EVENT_READER_STATUS. An Applet shall only be able to activate this event if it is in lifecycle state
ACTIVATED. To release the CLF reader status notifications an Applet shall deactivate the event
ReaderListener.EVENT_READER_STATUS.

When the Applet lifecycle state changes from ACTIVATED to DEACTIVATED the Contactless Framework shall
enforce that the event ReaderListener.EVENT_READER_STATUS is deactivated.

The Contactless Framework shall request the CLF reader status notification on the CLF by sending the HCI commands
ANY_SET_PARAMETER(STATUS_EVENT_EN) with the respective value to the HCI registry of the Reader Gate(s)
of the RF technologies for which the Applet instance is registered according to its installation parameters, according to
rules below:

• HCI ANY_SET_PARAMETER(STATUS_EVENT_EN) command with the value 1 shall be sent when an
Applet instance activates the event ReaderListener.EVENT_READER_STATUS.

• HCI ANY_SET_PARAMETER(STATUS_EVENT_EN) command with the value 0 shall be sent when an
Applet instance or the Contactless Framework deactivates the event
ReaderListener.EVENT_READER_STATUS.

The Contactless Framework shall notify the Applet instance which has activated the event
ReaderListener.EVENT_READER_STATUS as described above when the reader status has changed for the respective
RF technology.

The Contactless Framework shall ensure that the event ReaderListener.EVENT_READER_STATUS is deactivated for
all Applet instances when access to the interface is disabled on the UICC level.

4.4 Connectivity Service
The functionality to support the connectivity mechanisms specified in the HCI specification [4] is provided in the
package uicc.hci.services.connectivity. The Contactless Framework shall bind the services defined in
uicc.hci.services.connectivity to the corresponding resources (e.g. gates and pipes) specified in the HCI specification [4]
for connectivity.

The Contactless Framework shall only accept the request to send the HCI event EVT_CONNECTIVITY or
EVT_TRANSACTION specified by the HCP [4] when initiated by an Applet instance calling one of the
ConnectivityService interface methods in the following situations:

• the Applet is the selected Applet in card emulation mode;

• the Applet is in the state ACTIVATED (according to "GlobalPlatform Amendment C" [8]) for the reader
mode;

ETSI

ETSI TS 102 705 V13.0.0 (2019-05)12 Release 13

• the Applet has been notified by the event EVENT_CLT_TRANSACTION_A_DONE. In this case the Applet
does not need to be selected nor has to be in the life cycle state ACTIVATED.

4.5 CLT specific extension to Card Emulation Mode
The Contactless Framework shall observe the communication in CLT mode as specified in the SWP specification [14]
between the CLF and arbitrary entities on the UICC. It shall notify every Applet which registered a
CLTObserverListener object and activated the event EVENT_CLT_TRANSACTION_A_DONE about the end of a
CLT session Type A (see ETSI TS 102 613 [14]).

5 Interaction with Proactive Functionality
The ProactiveHandler defined in ETSI TS 102 241 [5] shall not be available when the contactless Applet is invoked
with the callback methods defined in the present document, or when the Applet is invoked with the process() method of
the Applet class defined in Application Programming Interface, Java Card™ Platform [9] (in card emulation mode). If
the Applet wants to use proactive functionality it shall use the Connectivity Service defined above to send an HCI event
EVT_CONNECTIVITY to the terminal, register for EVENT_EVENT_DOWNLOAD_HCI_CONNECTIVITY and
return. All the proactive functionality of the UICC API defined in ETSI TS 102 241 [5] is then available to the Applet
when that Applet instance is triggered with the processToolkit() method defined in ETSI TS 102 241 [5].

6 Java Card Resource Handling
The Runtime Environment invokes an Applet by calling the onCallback() method of the respective contactless Listener
Interface. As a consequence all the rules defined in "Java Card™ Platform 3.0.1 Classic Edition, Runtime Environment
Specification" [10] apply (e.g. access to CLEAR_ON_DESELECT transient objects, context switch, multi selectable).

When the onCallback() method of a Listener Interface is invoked, no transaction shall be in progress.

The context as defined in the Java Card™ specification [9], [10] and [11] shall be set to the context of the Applet which
implements the onCallback() method. The previous context (context of the caller) shall be the context of the Contactless
Framework.

Upon return from the onCallback() method a pending transaction shall be aborted.

ETSI

ETSI TS 102 705 V13.0.0 (2019-05)13 Release 13

Annex A (normative):
Java Card™ Platform HCI API for the UICC
The source files for the UICC Application Programming Interface for Java Card™ for contactless Applets
(102705_Annex_A_Java.zip and 102705_Annex_A-HTML.zip) are contained in ts_102705v130000p0.zip, which
accompanies the present document.

ETSI

ETSI TS 102 705 V13.0.0 (2019-05)14 Release 13

Annex B (normative):
Java Card™ Platform HCI API for the UICC identifiers
The export files for the uicc.hci.* package (102705_Annex_B_Export_Files.zip) are contained in
ts_102705v130000p0.zip, which accompanies the present document.

ETSI

ETSI TS 102 705 V13.0.0 (2019-05)15 Release 13

Annex C (normative):
HCI API package version management
Table C.1 describes the relationship between each ETSI TS 102 705 [15] specification version and its HCI API
packages AID and Major, Minor versions defined in the export files.

Table C.1

ETSI TS 102 705 [15] uicc.hci.framework package
 AID Major, Minor

11.0.0 A0 00 00 00 09 00 05 FF FF FF FF 89 16 01 00 00 1.3

Table C.2

ETSI TS 102 705 [15] uicc.hci.services.cardemulation package
 AID Major, Minor

11.0.0 A0 00 00 00 09 00 05 FF FF FF FF 89 16 02 01 00 1.1

Table C.3

ETSI TS 102 705 [15] uicc.hci.services.connectivity package
 AID Major, Minor

11.0.0 A0 00 00 00 09 00 05 FF FF FF FF 89 16 02 02 00 1.0

Table C.4

ETSI TS 102 705 [15] uicc.hci.services.readermode package
 AID Major, Minor

11.0.0 A0 00 00 00 09 00 05 FF FF FF FF 89 16 02 03 00 1.1

Table C.5

ETSI TS 102 705 [15] uicc.hci.services.cltobserver package
 AID Major, Minor

13.0.0 A0 00 00 00 09 00 05 FF FF FF FF 89 16 02 04 00 1.0

The package AID coding is defined in ETSI TS 101 220 [3]. The HCI API packages' AIDs are not modified by changes
to Major or Minor Version.

The Major Version shall be incremented if a change to the specification introduces byte code incompatibility with the
previous version.

The Minor Version shall be incremented if a change to the specification does not introduce byte code incompatibility
with the previous version.

ETSI

ETSI TS 102 705 V13.0.0 (2019-05)16 Release 13

Annex D (informative):
Change history

Meeting Document CR Rev Cat Title Resulting
Version

SCP#45 First publication of the specification 9.0.0
SCP#46 SCP(10)0286 001 1 F Clarification about restartReaderModeProcedure method use 9.1.0
SCP#46 SCP(10)0287 002 1 F Wrong Reference in HCIDevice.java related to UICC power mode 9.1.0
SCP#46 SCP(10)0288 003 - F Correction of wrong constant value and name 9.1.0
SCP#46 SCP(10)0289 004 - F Clarification of contactless framework behaviour when HCI event

EVT_FIELD_OFF is received
9.1.0

SCP#46 SCP(10)0291 007 - F Addition of uses of HCI_CONDITIONS_NOT_SATISFIED in
ConnectivityService

9.1.0

SCP#46 SCP(10)0292 008 - F Clarification of use of HCI_CURRENTLY_DISABLED reason code 9.1.0
SCP#46 SCP(10)0309 006 - F Handling of HCI data link layer reset by HCI Framework 9.1.0
SCP#47 SCP(11)0053 009 - F Behaviour of HCIDevice.getHCIService() method when Applet.register()

method has not been invoked
9.2.0

SCP#47 SCP(11)0055 010 - F Correction of prepareAndSendGetParameterCommmand() method
name

9.2.0

SCP#47 SCP(11)0056 011 - F HCIMessage content after requestCallbackNotification() 9.2.0
SCP#47 SCP(11)0057 012 - F New exception for HCIService.activateEvent() method 9.2.0
SCP#47 SCP(11)0058 013 - F WRITE_EXCHANGE event for HCIService activation, deactivation and

get status methods
9.2.0

SCP#47 SCP(11)0054 014 - F Range specification for event parameter in requestCallbackNotification() 9.2.0
SCP#47 SCP(11)0052r1 005 2 C CR 102 705 R10 #005r2: Clarification about HCI messages sending

order
10.0.0

SCP#48 SCP(11)0160 016 - A CR 102 705 R10 #016: Clarification of use of events
EVENT_HCI_RECEPTION_FAILED and
EVENT_HCI_TRANSMISSION_FAILED

10.0.0

SCP#52 SCP(11)0316 021 A Clarification of HCIMessage.getReceiveBuffer(), getReceiveOffset() and
getReceiveLength()

10.1.0

SCP#52 SCP(11)0317 022 A Missing constant in HCIMessage corresponding to HCI response
ANY_E_PIPE_NOT_OPENED

10.1.0

SCP#52 SCP(11)0318 023 A Correction of several inaccuracies in HCIMessage.isHeading() and
isComplete()

10.1.0

SCP#52 SCP(11)0319r1 024 1 A Removal of requestCallbackNotification functionality 10.1.0
SCP#56 SCP(12)000217 034 A Define the relationship between the access to the contactless interface

and the install parameters
10.1.0

SCP#56 SCP(12)000218 035 A Activation of events 10.1.0
SCP#56 SCP(12)000219 036 A Clarification of service availability 10.1.0
SCP#56 SCP(12)000220 037 A Correct usage of Listener Interfaces 10.1.0
SCP#54 SCP(12)000017 028 C Deprecation of two constants for reading CLF registry 11.0.0
SCP#56 SCP(12)000158 029 3 C Clarifications related to the use of the proactive command ACTIVATE 11.0.0
SCP#65 SCP(14)000225 040 F Add reader RF gate registry OPERATING STATUS constants 11.1.0
SCP#65 SCP(14)000227r1 042 F Add reader RF gate registry READER STATUS functionality 11.1.0
SCP#66 SCP(14)000287 045 A Correction of description of error handling 11.1.0
SCP#68 SCP(15)000125 049 F Correction of export file version 11.1.0
SCP#61 SCP(13)000240 038 B Update of reference to GlobalPlatform Amendment C 12.0.0
SCP#65 SCP(14)000224 039 D Update of Java Card reference 12.0.0
SCP#66 SCP(14)000288 046 A Correction of description of error handling 12.0.0
SCP#66 SCP(14)000289 047 C Clarification of minimum supported size of HCP messages 12.0.0
SCP#66 SCP(14)000348 048 C Optional support for uicc.hci.services.readermode 12.0.0
SCP#70 SCP(15)000241 050 D Typographic corrections in descriptions and correction of

implementation error for CR 029
13.0.0

SCP#70 SCP(15)000242 051 C Reader Mode simplification 13.0.0
SCP#71 SCP(15)000276r1 052 1 B Definition of a new event to notify an Applet when a CLT session

occurred
13.0.0

SCP#71 SCP(15)000277 053 F Update of references to GlobalPlatform specifications 13.0.0
SCP#72 SCP(16)000025 054 D Linking the automatic sending of the ACTIVATE proactive command to

the related feature in ETSI TS 102 241
13.0.0

SCP#73 SCP(16)000094 055 F Update of references to GlobalPlatform specifications 13.0.0
SCP#76 SCP(16)000262r1 056 F Correction of package version 13.0.0

ETSI

ETSI TS 102 705 V13.0.0 (2019-05)17 Release 13

History

Document history

V13.0.0 May 2019 Publication

	Intellectual Property Rights
	Foreword
	Modal verbs terminology
	1 Scope
	2 References
	2.1 Normative references
	2.2 Informative references

	3 Definition of terms, symbols and abbreviations
	3.1 Terms
	3.2 Symbols
	3.3 Abbreviations

	4 Description
	4.1 Architecture
	4.2 Card Emulation Mode
	4.3 Reader Mode
	4.3.0 Reader Mode service description
	4.3.1 Receiving and sending messages over the contactless interface
	4.3.2 Receiving notifications about reader status

	4.4 Connectivity Service
	4.5 CLT specific extension to Card Emulation Mode

	5 Interaction with Proactive Functionality
	6 Java Card Resource Handling
	Annex A (normative): Java CardTM Platform HCI API for the UICC
	Annex B (normative): Java CardTM Platform HCI API for the UICC identifiers
	Annex C (normative): HCI API package version management
	Annex D (informative): Change history
	History

