

ETSI TS 102 323 V1.1.1 (2004-09)

Technical Specification

Digital Video Broadcasting (DVB);
Carriage and signalling of TV-Anytime information

in DVB transport streams

European Broadcasting Union Union Européenne de Radio-Télévision

EBU·UER

ETSI

ETSI TS 102 323 V1.1.1 (2004-09) 2

Reference
DTS/JTC-DVB-163

Keywords
broadcasting, content, digital, DVB, TV

ETSI

650 Route des Lucioles
F-06921 Sophia Antipolis Cedex - FRANCE

Tel.: +33 4 92 94 42 00 Fax: +33 4 93 65 47 16

Siret N° 348 623 562 00017 - NAF 742 C

Association à but non lucratif enregistrée à la
Sous-Préfecture de Grasse (06) N° 7803/88

Important notice

Individual copies of the present document can be downloaded from:
http://www.etsi.org

The present document may be made available in more than one electronic version or in print. In any case of existing or
perceived difference in contents between such versions, the reference version is the Portable Document Format (PDF).

In case of dispute, the reference shall be the printing on ETSI printers of the PDF version kept on a specific network drive
within ETSI Secretariat.

Users of the present document should be aware that the document may be subject to revision or change of status.
Information on the current status of this and other ETSI documents is available at

http://portal.etsi.org/tb/status/status.asp

If you find errors in the present document, please send your comment to one of the following services:
http://portal.etsi.org/chaircor/ETSI_support.asp

Copyright Notification

No part may be reproduced except as authorized by written permission.
The copyright and the foregoing restriction extend to reproduction in all media.

© European Telecommunications Standards Institute 2004.

© European Broadcasting Union 2004.
All rights reserved.

DECTTM, PLUGTESTSTM and UMTSTM are Trade Marks of ETSI registered for the benefit of its Members.

TIPHONTM and the TIPHON logo are Trade Marks currently being registered by ETSI for the benefit of its Members.
3GPPTM is a Trade Mark of ETSI registered for the benefit of its Members and of the 3GPP Organizational Partners.

http://www.etsi.org/
http://portal.etsi.org/tb/status/status.asp
http://portal.etsi.org/chaircor/ETSI_support.asp

ETSI

ETSI TS 102 323 V1.1.1 (2004-09) 3

Contents

Intellectual Property Rights ..7

Foreword...7

Introduction ..7

1 Scope ..8

2 References ..8

3 Definitions and abbreviations...9
3.1 Definitions..9
3.2 Abbreviations ...10

4 Overview ..11

5 TV-Anytime information discovery...13
5.1 Introduction ..13
5.2 Resolution providers...13
5.2.1 Discovering RARs ..13
5.2.2 Resolution provider notification table...14
5.3 Descriptors ...16
5.3.1 Parsing of descriptors..16
5.3.2 Descriptor identification and location...16
5.3.3 Metadata pointer descriptor ..18
5.3.3.1 Usage...18
5.3.3.2 Semantics ..18
5.3.4 Metadata descriptor...19
5.3.4.1 Usage...19
5.3.4.2 Semantics ..19
5.3.5 RAR over DVB stream descriptor ..21
5.3.6 RAR over IP descriptor...23
5.3.7 RNT scan descriptor ...23

6 CRIDs and other URIs in DVB networks ..24
6.1 Introduction ..24
6.2 Encoding of URI strings and the use of non-Latin characters ..24
6.3 Default authority and abbreviated CRIDs ..25
6.3.1 Abbreviated CRID rules ...25
6.3.2 Scope of a default authority definition..25
6.3.3 Default authority descriptor ..25
6.4 DVB locator extensions..26

7 Content resolution ..27
7.1 Introduction ..27
7.2 Resolving CRIDs in a DVB network ...28
7.2.1 DVB transport stream resolution handler ...28
7.2.2 CRI data sets ...29
7.2.3 Complete and incomplete CRI data sets ...29
7.3 Delivery of content referencing information ..30
7.3.1 Container ..30
7.3.1.1 Description ..30
7.3.1.2 Classifications of CRI structures and containers...30
7.3.1.3 Container format ...31
7.3.1.4 Container section...32
7.3.1.5 Compression wrapper..33
7.3.2 CRI results structures..34
7.3.2.1 Description ..34
7.3.2.2 Results_list ..34
7.3.2.3 Result_data..34

ETSI

ETSI TS 102 323 V1.1.1 (2004-09) 4

7.3.2.3.1 Usage ...34
7.3.2.3.2 Syntax..35
7.3.2.3.3 DVB binary locator ...38
7.3.2.4 Services ...39
7.3.2.5 Data repository..40
7.3.3 CRI index structures ...40
7.3.3.1 Description ..40
7.3.3.2 Cri_index...41
7.3.3.3 Cri_prepend_index..43
7.3.3.4 Cri_leaf_index...43
7.3.3.5 Result_locator formats ..44
7.3.3.5.1 local_result_locator ...44
7.3.3.5.2 remote_result_locator ..44

8 Profile of TVA metadata over DVB transport streams ..45
8.1 Introduction ..45
8.2 Summary ..45
8.3 ProgramInformation fragment..45
8.4 GroupInformation fragment ...45
8.5 Schedule fragment..46
8.6 ServiceInformation fragment..46
8.7 Other types ...46

9 Delivery of metadata ..46
9.1 Introduction ..46
9.2 Delivery of containers ..47
9.2.1 Delivery by MHP object carousel...47
9.2.2 Container file names ...48
9.3 Fragment encapsulation..49
9.3.1 Introduction...49
9.3.2 Encapsulation structure...49
9.3.3 DVB BiM fragment reference ..50
9.4 Fragment encoding ...50
9.4.1 Introduction...50
9.4.2 Rules for BiM encoding..50
9.4.2.1 DVB-TVA-init message..50
9.4.2.2 DecoderInit and default TVAMain fragment ..51
9.4.2.3 DVB BiM access unit..52
9.4.3 Codec definitions ..54
9.4.3.1 Introduction...54
9.4.3.2 Classification scheme of DVB codecs ..54
9.4.3.3 dvbStringCodec...55
9.4.3.3.1 Introduction ...55
9.4.3.3.2 Rationale and encoding process (informative) ..55
9.4.3.3.3 Decoding ...56
9.4.3.4 dvbLocatorCodec ..57
9.4.3.4.1 Usage ...57
9.4.3.4.2 Rationale and encoding process (informative) ..57
9.4.3.4.3 Decoding ...57
9.4.3.5 dvbDateTimeCodec...59
9.4.3.5.1 Rationale and encoding process (informative) ..59
9.4.3.5.2 Decoding ...60
9.4.3.6 dvbDurationCodec ..61
9.4.3.6.1 Rationale and encoding process (informative) ..61
9.4.3.6.2 Decoding ...61
9.4.3.7 dvbControlledTermCodec...61
9.4.3.7.1 Usage ...61
9.4.3.7.2 Rationale and encoding process (informative) ..62
9.4.3.7.3 Decoding ...62
9.4.4 Forward compatibility...63
9.4.4.1 Use of forward compatible mode ..63
9.4.4.2 Overview (informative)...63

ETSI

ETSI TS 102 323 V1.1.1 (2004-09) 5

9.4.4.3 Multiple version encoding of an element (informative)..63
9.5 TV-Anytime structures...64
9.5.1 Profiled index structures ...64
9.5.1.1 Introduction...64
9.5.1.2 Field identifier values..64
9.5.1.3 Index list..65
9.5.1.4 GroupInformation index by CRID ..66
9.5.1.4.1 Index definition ...66
9.5.1.4.2 Index list entry...66
9.5.1.4.3 Index structure ...66
9.5.1.4.4 Sub index structure ..67
9.5.1.5 GroupInformation index by title ...67
9.5.1.5.1 Index definition ...67
9.5.1.5.2 Index list entry...67
9.5.1.5.3 Index structure ...68
9.5.1.5.4 Sub index structure ..68
9.5.1.6 ProgramInformation index by CRID...69
9.5.1.6.1 Index definition ...69
9.5.1.6.2 Index list entry...69
9.5.1.6.3 Index structure ...70
9.5.1.6.4 Sub index structure ..70
9.5.1.7 ProgramInformation index by title ..70
9.5.1.7.1 Index definition ...70
9.5.1.7.2 Index list entry...71
9.5.1.7.3 Index structure ...71
9.5.1.7.4 Sub index structure ..71
9.5.1.8 Schedule index by time and DVB service...72
9.5.1.8.1 Index definition ...72
9.5.1.8.2 Index list entry...72
9.5.1.8.3 Index structure ...73
9.5.1.8.4 Sub index structure layer 1 ..73
9.5.1.8.5 Sub index structure layer 2 ..74
9.5.1.9 Schedule index by title ..74
9.5.1.9.1 Index definition ...74
9.5.1.9.2 Index list entry...75
9.5.1.9.3 Index structure ...75
9.5.1.9.4 Sub index structure ..76
9.5.2 Additional structures...76
9.5.2.1 Structure types...76
9.5.2.2 Type list ..76

10 Promotional links ...77
10.1 Introduction ..77
10.2 Restriction of tva:ExtendedRelatedMaterialType ..78
10.3 Related content descriptor ..79
10.4 Related Content Table (RCT)...79
10.4.1 Description..79
10.4.2 Syntax ...79
10.4.3 Link info structure ..80

11 Accurate recording ...82
11.1 Modes of operation...82
11.2 TVA_id descriptor..83

12 Extensions to DVB SI ..85
12.1 Content identifier descriptor...85
12.1.1 Introduction...85
12.1.2 Explicit CRID definition...85
12.1.3 Indirect CRID definition...85
12.1.4 Syntax ...86
12.2 Content Identifier Table (CIT) ...87

Annex A (informative): Example recorder behaviour ..89

ETSI

ETSI TS 102 323 V1.1.1 (2004-09) 6

Annex B (informative): Example BiM format for ScheduleEvent fragment....................................91

B.1 TVA schedule schema..91

B.2 TVA dchedule instance: Textual coding ..92

B.3 TVA schedule instance: Binary coding..93

Annex C (informative): Example TVA-init and DecoderInit messages ..97

C.1 Example TVA-init message ...97

C.2 Example decoderInit message ..97

Annex D (informative): Example extension of the TVA Schema...98

D.1 Example extended schema ...98

D.2 Example decoderInit message for the extended schema ..98

D.3 Example index XPaths for the extended schema ...99

Annex E (informative): Example Scenarios for encoding of TVA_id running_status as
carried in EIT-present...100

E.1 Introduction ..100

E.2 Examples ..100
E.2.1 Example 1...100
E.2.2 Example 2...100
E.2.3 Example 3...100
E.2.4 Example 4...101
E.2.5 Example 5...101

Annex F (normative): Classification schemes ...102

F.1 Encoding...102

F.2 Extension..102
F.2.1 Introduction ..102
F.2.2 Example extension ...103

Annex G (informative): Bibliography...104

History ..105

ETSI

ETSI TS 102 323 V1.1.1 (2004-09) 7

Intellectual Property Rights
IPRs essential or potentially essential to the present document may have been declared to ETSI. The information
pertaining to these essential IPRs, if any, is publicly available for ETSI members and non-members, and can be found
in ETSI SR 000 314: "Intellectual Property Rights (IPRs); Essential, or potentially Essential, IPRs notified to ETSI in
respect of ETSI standards", which is available from the ETSI Secretariat. Latest updates are available on the ETSI Web
server (http://webapp.etsi.org/IPR/home.asp).

Pursuant to the ETSI IPR Policy, no investigation, including IPR searches, has been carried out by ETSI. No guarantee
can be given as to the existence of other IPRs not referenced in ETSI SR 000 314 (or the updates on the ETSI Web
server) which are, or may be, or may become, essential to the present document.

Foreword
This Technical Specification (TS) has been produced by Joint Technical Committee (JTC) Broadcast of the European
Broadcasting Union (EBU), Comité Européen de Normalisation ELECtrotechnique (CENELEC) and the European
Telecommunications Standards Institute (ETSI).

NOTE: The EBU/ETSI JTC Broadcast was established in 1990 to co-ordinate the drafting of standards in the
specific field of broadcasting and related fields. Since 1995 the JTC Broadcast became a tripartite body
by including in the Memorandum of Understanding also CENELEC, which is responsible for the
standardization of radio and television receivers. The EBU is a professional association of broadcasting
organizations whose work includes the co-ordination of its members' activities in the technical, legal,
programme-making and programme-exchange domains. The EBU has active members in about 60
countries in the European broadcasting area; its headquarters is in Geneva.

European Broadcasting Union
CH-1218 GRAND SACONNEX (Geneva)
Switzerland
Tel: +41 22 717 21 11
Fax: +41 22 717 24 81

Founded in September 1993, the DVB Project is a market-led consortium of public and private sector organizations in
the television industry. Its aim is to establish the framework for the introduction of MPEG-2 based digital television
services. Now comprising over 200 organizations from more than 25 countries around the world, DVB fosters
market-led systems, which meet the real needs, and economic circumstances, of the consumer electronics and the
broadcast industry.

Introduction
Phase 1 of the work of the TV-Anytime Forum (TVAF) has defined key technologies for Personal Digital Recorders
(PDRs). DVB has adopted these specifications as the basis of support for PDRs on DVB networks. The present
document provides an implementation of the TV-Anytime phase one on DVB transport streams in a way that enhances
and extends existing DVB functionality.

http://webapp.etsi.org/IPR/home.asp

ETSI

ETSI TS 102 323 V1.1.1 (2004-09) 8

1 Scope
The present document describes a method of supporting Personal Digital Recorders (PDRs) in DVB broadcast
networks. It was developed to fulfil the commercial requirements for supporting PDRs detailed in DVB commercial
module document PDR008. The data types and protocols defined in the present document are based upon TV-Anytime
phase 1 specifications TS 102 822-2 [3], TS 102 822-3-1 [4], TS 102 822-3-2 [5] and TS 102 822-4 [6].

2 References
The following documents contain provisions which, through reference in this text, constitute provisions of the present
document.

• References are either specific (identified by date of publication and/or edition number or version number) or
non-specific.

• For a specific reference, subsequent revisions do not apply.

• For a non-specific reference, the latest version applies.

Referenced documents which are not found to be publicly available in the expected location might be found at
http://docbox.etsi.org/Reference.

[1] ETSI EN 300 468 (V1.4.1): "Digital Video Broadcasting (DVB); Specification for Service
Information (SI) in DVB systems".

[2] IETF RFC 2396: "Uniform Resource Identifiers (URI): Generic Syntax".

[3] ETSI TS 102 822-2: "Broadcast and On-line Services: Search, select and rightful use of content on
personal storage systems ("TV-Anytime Phase 1"); Part 2: System description".

[4] ETSI TS 102 822-3-1: "Broadcast and On-line Services: Search, select, and rightful use of content
on personal storage systems ("TV-Anytime Phase 1"); Part 3: Metadata; Sub-part 1: Metadata
schemas".

[5] ETSI TS 102 822-3-2: "Broadcast and On-line Services: Search, select, and rightful use of content
on personal storage systems ("TV-Anytime Phase 1"); Part 3: Metadata; Sub-part 2: System
aspects in a uni-directional environment".

[6] ETSI TS 102 822-4: "Broadcast and On-line Services: Search, select, and rightful use of content
on personal storage systems ("TV-Anytime Phase 1"); Part 4: Content referencing".

[7] ISO/IEC 13818-1 (2000 - Amendment 1): "Carriage of metadata over ISO/IEC 13818-1 streams".

[8] ISO/IEC 13818-1 (2000): "Information technology - Generic coding of moving pictures and
associated audio information: Systems".

[9] ISO/IEC 15938-1 (2001): "Information technology - Multimedia content description interface -
Part 1: Systems".

[10] ETSI TS 102 812 (V1.2.1): "Digital Video Broadcasting (DVB); Multimedia Home Platform
(MHP) Specification 1.1.1".

[11] IETF RFC 1591: "Domain Name System Structure and Delegation".

[12] ISO/IEC 13818-6: "Information technology - Generic coding of moving pictures and associated
audio information - Part 6: Extensions for DSM-CC".

[13] ISO 8601 (2002): "Data elements and interchange formats - Information interchange -
Representation of dates and times".

[14] W3C Recommendation: "XML Schema Part 2: Datatypes". http://www.w3.org/TR/xmlschema-2/.

http://docbox.etsi.org/Reference
http://www.w3.org/TR/xmlschema-2/

ETSI

ETSI TS 102 323 V1.1.1 (2004-09) 9

[15] IETF RFC 1951: "DEFLATE Compressed Data Format Specification version 1.3".

[16] ETSI TS 102 822-6-1: "Broadcast and On-line Services: Search, select, and rightful use of content
on personal storage systems ("TV-Anytime Phase 1"); Part 6: Delivery of metadata over a
bi-directional network; Sub-part 1: Service and transport".

[17] IETF RFC 1945: "Hypertext Transfer Protocol - HTTP/1.0. T".

[18] IETF RFC 1950: "ZLIB Compressed Data Format Specification version 3.3".

[19] ISO 646: "Information technology - ISO 7-bit coded character set for information interchange".

[20] ISO/IEC 15938-2: "Information technology - Multimedia content description interface -
Part 2: Description definition language".

[21] ISO 639-2: "Codes for the representation of names of languages - Part 2: Alpha-3 code".

3 Definitions and abbreviations

3.1 Definitions
For the purposes of the present document, the following terms and definitions apply:

authority: term used in TS 102 822-3-1 [4] and TS 102 822-3-2 [5] for organization that creates CRIDs

NOTE: In the present document the term CRID authority is used instead.

broadcaster (service provider): organization which assembles a sequence of events or programmes to be delivered to
the viewer based upon a schedule

broadcast time: time and date on which an event is actually broadcast

EXAMPLE: A news programme may actually start at 18:04:38.21. See also published time and scheduled time.

complete set of CRI data: single set of CRI data that carries all CRI data available for a CRID authority

NOTE: See also set of CRI data.

context: grouping of resolution providers for the purposes of managing the discovery of TV-Anytime information

NOTE: A context could relate to a particular bouquet for which CRI is provided, or a network, etc.

CRID authority: organization that creates CRIDs

NOTE: This is termed in TS 102 822-4 [6] as simply an authority.

CRID resolution: location resolution

CRID result: the (possibly empty) set of locators or CRIDs that a CRID resolves to

CRI service: coherent set of CRI data provided by a resolution provider and describing one or more CRID authorities

location resolution: process for establishing the address (location and time) of content instance(s) from a CRID

NOTE: Sometimes termed "CRID resolution".

locator: URI reference to the location of content

NOTE: A locator can reference a file on the internet, an event on a DVB network, etc. For broadcast content a
locator would include DVB service, date and time information.

ETSI

ETSI TS 102 323 V1.1.1 (2004-09) 10

metadata service: coherent set of TV-Anytime metadata carried within a DVB object carousel and distinguished by a
metadata_service_ID

NOTE: See ISO/IEC 13818-1 (Amendment 1) [7].

promotional link: reference to material related to content currently being viewed

published time: time and date on which a service provider publishes that an event starts

EXAMPLE: A news programme may have a published time of 18:00. See also broadcast time and scheduled
time.

related material: content that is related in some way to the present content

EXAMPLE: Other events in the same series or the web-page for the current programme.

resolution provider: body which provides location resolution

NOTE: In TS 102 822-4 [6] this term is a synonym for the term resolving authority, a term which is not used in
the present document.

scheduled time: time and date on which a service provider has scheduled to start an event

EXAMPLE: A news programme may have a scheduled time of 18:02. See also broadcast time and published
time.

set of CRI data: all CRI data for a single CRID authority at a single location

NOTE: See also complete set of CRI data.

3.2 Abbreviations
For the purposes of the present document, the following abbreviations apply:

BiM Binary format for Multimedia description streams
CIT Content Identifier Table
CRI Content Referencing Information
CRID Content Reference IDentifier
DNS Domain Naming System
DSI Download Server Initiate
DVB Digital Video Broadcasting
EIT Event Information Table
IP Internet Protocol
MJD Modified Julian Date
MPEG Motion Picture Experts Group
PDR Personal Digital Recorder
RAR Resolving Authority Record
RCT Related Content Table
RNT RAR Notification Table
SI Service Information
TVAF TV-Anytime Forum
TVA_id TV-Anytime event identifier
UML Unified Modelling Language
URI Uniform Resource Indicator
URL Uniform Resource Locator
UTC Co-ordinated Universal Time
XML eXtensible Markup Language
TS Transport Stream
IMI Instance Metadata Identifier

ETSI

ETSI TS 102 323 V1.1.1 (2004-09) 11

4 Overview
The present document defines how PDR devices can be supported using TV-Anytime phase 1 specifications on DVB
transport streams. The TV-Anytime phase 1 specifications relevant to the present document are:

• TS 102 822-2 [3]: "System description";

• TS 102 822-3-1 [4]: "Metadata schemas";

• TS 102 822-3-2 [5]: "System aspects in a uni-directional environment"; and

• TS 102 822-4 [6]: "Content referencing".

The TV-Anytime process for recording content is "search, select, acquire". Metadata is searched for the content the
viewer wishes to record, the viewer selects the correct content and the PDR then records it. Figure 1 illustrates how this
process is interpreted in a DVB transport stream environment.

Promotional link

Metadata
search

EIT schedule

Booking

Content
Referencing
Information

Content
resolution
monitoring

Content
Referencing
Information

Recording

CRID

Viewing

Metadata

Search
(Promote)

Select Acquire Consume

Event
information

Metadata

Key: Data Process Flow of

control

Flow of

data

Figure 1: Overview of PDR process

A number of interrelated technologies are defined that can be used to enable various PDR applications. Figure 2
illustrates how the present document integrates these technologies into DVB transport streams. The main sections of the
present document are listed below. Each section has a more detailed introduction as its first subsection.

a) TV-Anytime information discovery (clause 5): Defines how TV-Anytime metadata services and CRI
services are discovered on DVB transport streams. Central to this is the resolution provider Notification Table
(RNT), which lists resolution providers and the CRID authorities the resolution providers provide information
on. The RNT and related descriptors implements the TV-Anytime RAR structure, as defined in
TS 102 822-4 [6].

b) CRIDs in DVB networks (clause 6): Defines how URIs (including CRIDs) shall be encoded in the data
structures defined in the present document. This clause also describes the rules for default authorities which
can be used to abbreviate CRID strings, saving on bandwidth. CRIDs are defined in TS 102 822-4 [6].

c) Content resolution (clause 7): Defines how CRIDs shall be resolved (i.e. content resolution) in DVB
transport streams and how this process works when more than one relevant CRI service is available. This
clause also defines how CRI data, the information required for content resolution, shall be delivered in DVB
transport streams.

d) Profile of TVA metadata types (clause 8): Defines restrictions on specific parts of the TVA metadata
schema. These restrictions are necessary to provide an integrated and self-consistent TV-Anytime toolkit on
DVB transport streams.

ETSI

ETSI TS 102 323 V1.1.1 (2004-09) 12

e) Delivery of metadata (clause 9): Defines how TV-Anytime metadata shall be carried on DVB transport
streams. TV-Anytime metadata is defined in TS 102 822-3-1 [4]. Clause 9 is an implementation of
TS 102 822-3-2 [5], which defines how TV-Anytime metadata is delivered in unidirectional environments.
This clause includes a set of profiled metadata indices based on that specification.

f) Promotional links (clause 10): Defines a mechanism for referencing related material in a real-time manner.
This mechanism is for providing the viewer with the opportunity to book content related to what is being
viewed, e.g. booking a film whilst watching it being trailed.

g) Accurate recording (clause 11): Defines how the receiver uses the different recording modes signalled in
locators in CRI data. The different modes are intended to allow easy adoption of TV-Anytime whilst providing
increasing functionality for more advanced broadcaster infrastructures.

h) Extensions to DVB SI (clause 12): Defines how TV-Anytime technologies can be integrated into the DVB SI
Event Information Table (EIT). This allows those platforms that use the EIT to provide schedule information,
to use TV-Anytime content resolution and metadata.

object carousel CRID

Content referencing
Information (content
resolution)

Loc at or

EIT present/following

TVA_id descriptor
(accurate
recording)

Met adat a
(delivery of
metadata)

Resolution Provider
Notification Table
(TV-Anytime
information discovery)

EIT schedule

content
identifier
descriptor
(extensions
to DVB SI)

(content resolution)

(CRIDs in DVB
networks)

Related
material section
(promotional
links)

Event
Desc r ipt ion

Serv ic e
Desc r ipt ionSDT

metadata
pointer
descriptor
(TV-Anytime
information
discovery)

Aut hor i t y

BAT/NIT

Bouquet /
Net w ork

names of sections of
this specificaton

Flow of information

italics

Reference

data structure defined
in this specification

existing DVB data
structure

content_identifier
descriptor
(extensions to
DVB SI)

metadata
pointer
descriptor
(TV-Anytime
information
discovery)

Figure 2: Overview of defined technologies

ETSI

ETSI TS 102 323 V1.1.1 (2004-09) 13

5 TV-Anytime information discovery

5.1 Introduction
The TV-Anytime Forum has defined a rich set of content referencing information and metadata. This information may
be carried on a broadcast network or on other networks such as an IP network. On a broadcast network metadata is
carried in metadata services and content referencing information is carried in content referencing services. A receiver
accessing TV-Anytime information first has to discover the location of this data. Content referencing services are
located by accessing the resolution provider Notification Table (RNT). Metadata services are located by following
linkage that may be present in a number of places, depending on whether the metadata sought relates to content, a
service's schedule, or another type of entity.

A key concept in TV-Anytime for discovering content referencing information is the resolution provider. On DVB
transport streams a resolution provider is a separate entity described by a resolution provider Notification Table (RNT).
The resolution provider entity is independent of networks, bouquets and DVB services. Therefore, a resolution provider
may provide content resolving information for CRIDs that refer to content carried on one or more networks, bouquets or
DVB services. Conversely, a network, bouquet or DVB service may deliver content described by more than one
resolution provider.

NOTE: A resolution provider may carry information on CRIDs published by one or more CRID authorities. For
details on CRID authorities and resolution providers, see TS 102 822-4 [6].

This clause defines how information regarding resolving authorities entities shall be represented and discovered on a
DVB broadcast network and how content referencing services and metadata services shall be discovered.

5.2 Resolution providers

5.2.1 Discovering RARs

On a DVB transport stream, Resolving Authority Records (RARs) are represented by RAR descriptors, which are
carried in the resolution provider Notification Table (RNT) (see clauses 5.2.2, 5.3.5 and 5.3.6). This clause describes the
process for discovering RARs relevant to a given combination of resolution provider and CRID authority. See figure 3
for a graphical representation of an example implementation of this process.

NOTE 1: The term "resolving authority" is a synonym for "resolution provider." Therefore a Resolving Authority
Record (RAR) refers to a particular resolution provider.

RNT subtables shall be carried on a fixed PID, with each RNT subtable being distinguished by its context_id,
context_id_type and the transport stream the subtable is carried on. The context_id may be a bouquet ID, original
network id, or another type of identifier. The type of value carried by the context_id is identified by the value of
context_id_type (see table 2). Each RNT subtable can carry information on one or more resolution providers, each
being distinguished by their resolution_provider_name. A receiver may be configured by means outside the scope of the
present document to know the values of context_id, context_id_type and resolution_provider_name it should use.

NOTE 2: The use of the context_id_type allows a RNT subtable to be targeted at a particular population of
receivers in the best way for a given circumstance. The best value of context_id_type to use may depend,
for example, on whether or not a network uses bouquets, or the way network_ids are used.

If the RNT subtable on the current transport stream does not provide information on the desired combination of CRID
authority and resolution provider, the RNT may include a RNT scan descriptor. This descriptor shall contain a complete
list of transport streams where RNT subtables with the same context_id and context_id_type are available. If a RNT
scan descriptor is not present in a RNT subtable, that RNT subtable shall list all CRI sets for all CRID authorities for all
resolution providers for that combination of context_id and context_id_type.

It is possible that CRI sets are available from multiple resolution providers for a particular CRID authority.

ETSI

ETSI TS 102 323 V1.1.1 (2004-09) 14

Change transport
stream

Parse RAR
descriptorsDoes RNT

subtable contain correct
resolution provider entry

with correct CRID
authority?

Yes

Acquire RNT
subtable using
context_id and
context_id_type

CRI search start

CRI search
succesful

Parse RNT scan
descriptor (if

available)

CRI search failed

Yes

Acquire CRI

Have all alternative RNT
locations been tried?

Does CRI contain
information on CRID

alternative
RNT subtable

locations

No Yes

No

CRI set
locations

Are there
alternative CRI sets

worth acquiring?
No

Yes

No

Is this the first RNT
acquired?

Yes

Locate RNT describing
correct combination of
resolution provider and
CRID authority

Locate CRI set delivering information
on CRID to be resolved

No

CRI search failed

Process Data
flow of
data

flow of
controlKey

Figure 3: Example procedure for acquiring CRI (informative)

5.2.2 Resolution provider notification table

The resolution provider Notification Table (RNT) carries information provided by resolution providers relating to CRID
authorities (see TS 102 822-4 [6], clause 6), providing the locations of CRI and metadata for those CRID authorities.

Each RNT subtable provides information on a particular context (see clause 5.2.1). An RNT subtable is distinguished
by context_id, context_id_type and the transport stream the RNT is carried on. RNTs with the same context_id and
context_id_type but carried on different transport streams shall not be considered the same subtable.

The RNT shall be segmented into sections using the syntax of table 1. Sections forming part of the RNT shall be carried
in Transport Stream (TS) packets with a PID value of 0x0016.

Table 1: Resolution provider notification section

Name Number of bits Identifier
resolution_authority_notification_section() {
 table_id 8 uimsbf
 section_syntax_indicator 1 bslbf
 reserved 1 bslbf
 reserved 2 bslbf
 section_length 12 uimsbf
 context_id 16 uimsbf
 reserved 2 bslbf
 version_number 5 uimsbf
 current_next_indicator 1 bslbf
 section_number 8 uimsbf
 last_section_number 8 uimsbf
 context_id_type 8 uimsbf

ETSI

ETSI TS 102 323 V1.1.1 (2004-09) 15

Name Number of bits Identifier
 common_descriptors_length 12 uimsbf
 reserved 4 bslbf
 for (i=0; i<N1; i++) {
 descriptor()
 }
 for (i<0; i<N2; i++) {
 resolution_provider_info_length 12 uimsbf
 reserved 4 bslbf
 resolution_provider_name_length 8 uimsbf
 for (j<0; j<resolution_provider_name_length; j++) {
 resolution_provider_name_byte 8 uimsbf
 }
 resolution_provider_descriptors_length 12 uimsbf
 reserved 4 bslbf
 for (j=0; j<N3; j++) {
 descriptor()
 }
 for (j=0; j<N4; j++) {
 CRID_authority_name_length 8 uimsbf
 for (k<0; k<CRID_authority_name_length; k++) {
 CRID_authority_name_byte 8 uimsbf
 }
 CRID_authority_descriptors_length 12 uimsbf
 reserved 4 bslbf
 for (k=0; k<N5; k++) {
 CRID_authority_descriptor()
 }
 }
 }
 CRC_32 32 rpchof
}

table_id: This field shall be set to 0x79.

section_syntax_indicator: This field shall be set to "1".

reserved: Fields marked as reserved shall have all bits set to "1".

section_length: This field specifies the number of bytes of the section, starting immediately following the
section_length fields and including the CRC. The section_length shall not exceed 4 093 so that the entire section has a
maximum length of 4 096.

context_id: This field identifies a particular context to which this subtable applies.

version_number: This 5-bit field is the version number of the subtable. The version_number shall be incremented by 1
when a change in the information carried within the subtable occurs. When it reaches value 31, it wraps around to 0.

current_next_indicator: This 1-bit indicator shall be set to "1".

section_number: This 8-bit field gives the number of the section. The section_number of the first section in the
subtable shall be "0x00". The section_number shall be incremented by 1 with each additional section with the same
table_id, context_id and context_id_type.

last_section_number: This 8-bit field indicates the number of the last section (that is, the section with the highest
section_number) of the subtable of which this clause is part.

context_id_type: This field defines the type of the context to which this subtable applies. It shall be encoded according
to table 2.

ETSI

ETSI TS 102 323 V1.1.1 (2004-09) 16

Table 2: context_id_type

Value Semantics
0x00 context_id is a value of bouquet_id
0x01 context_id is a value of original_network_id.
0x02 context_id is a value of network_id

0x03-0x7F DVB reserved
0x80-0xFF user defined

common_descriptors_length: The total length in bytes of the following descriptors.

resolution_provider_info_length: This field specifies the number of bytes in this resolution provider entry, starting
immediately after this field and including information on all CRID authorities within this entry.

resolution_provider_name_length: The total length in bytes of the resolution provider name.

resolution_provider_name_byte: This byte forms part of a sequence that is the resolution provider name for this entry.
The resolution provider name is a registered internet domain name. See RFC 1591 [11] for DNS name registration. The
resolution provider name is case insensitive and must be a fully qualified name according to the rules given by
RFC 1591 [11]. See TS 102 822-4 [6], clause 11.1.

resolution_provider_descriptors_length: The total length in bytes of the following descriptors.

CRID_authority_name_length: The total length in bytes of the CRID authority name.

CRID_authority_name_byte: This byte forms part of a sequence that is the CRID authority name string. The encoding
of this field follows the same rules as for the resolution provider name. See TS 102 822-4 [6], clause 6.

CRID_authority_descriptors_length: The total length in bytes of the following descriptors.

CRC_32: This is a 32-bit field that contains the CRC value that gives a zero output of the registers in the decoder
defined in EN 300 468 [1] after processing the entire private section.

5.3 Descriptors

5.3.1 Parsing of descriptors

When parsing any one of the descriptors defined by the present document, receivers shall always use the descriptor
length field to determine the length of the descriptor.

NOTE: In common with all DVB descriptors the receiver shall always use the encoded descriptor length when
parsing or skipping a descriptor. This is because DVB may in the future extend the syntax beyond that
currently understood by the receiver.

5.3.2 Descriptor identification and location

Table 3 lists the descriptors defined or profiled in the present document, giving their intended placement and their
values of descriptor_tag.

ETSI

ETSI TS 102 323 V1.1.1 (2004-09) 17

Table 3: Possible locations of descriptors

Descriptor Tag value Clause NIT 1 NIT 2 BAT1 BAT 2 SDT PMT 1 PMT 2 EITs EITpf RNT 1 RNT 2 RNT 3
metadata pointer descriptor 0x25 5.3.3 see note see note see note see note see note see note
metadata descriptor 0x26 5.3.4 see note
RAR over DVB stream descriptor 0x40 5.3.5 see note
RAR over IP descriptor 0x41 5.3.6 see note
RNT scan descriptor 0x42 5.3.7 see note
default authority descriptor 0x73 6.3.3 see note see note see note see note see note
related content descriptor 0x74 10.3 see note
TVA_id descriptor 0x75 11.2 see note
content identifier descriptor 0x76 12.1 see note see note
NOTE:
NIT 1: common (outer) descriptor loop of the NIT.
NIT 2: transport stream descriptor loop of the NIT.
BAT 1: common descriptor loop of the BAT.
BAT 2: transport stream descriptor loop of the BAT.
PMT 1: common descriptor loop of the PMT.
PMT 2: elementary stream descriptor loop of the PMT.
EITs: the descriptor loop of the EIT schedule.
EITpf: the descriptor loop of the EIT present/following.
RNT 1: common descriptor loop of the RNT.
RNT 2: resolution provider descriptor loop of the RNT.
RNT 3: CRID authority descriptor loop of the RNT.

ETSI

ETSI TS 102 323 V1.1.1 (2004-09) 18

5.3.3 Metadata pointer descriptor

5.3.3.1 Usage

The metadata pointer descriptor defines linkage to a metadata service. The scope of that linkage is either global, a DVB
service or a CRID authority. The metadata service should carry information relevant to the scope of the linkage. For
example, if a metadata service linkage is located in the descriptor loop of an SDT for a particular DVB service, it should
carry information relating to that DVB service. A single metadata service may be referenced from a number of different
locations and may therefore carry information relevant to a number of scopes. Table 4 defines the intended locations of
the metadata pointer descriptor and gives example fragment types (see TS 102 822-3-2 [5], clause 4.3.1) relevant to
that location.

Table 4: Permitted locations of the metadata pointer descriptor

Scope Linkage location Example metadata fragment types
Global BAT, NIT, common descriptor loop of the

RNT, resolution provider descriptor loop of
the RNT

BroadcastEvent, Schedule, ServiceInformation,
ProgramInformation, GroupInformation, Review,
SegmentInformation, SegmentGroupInformation,
PersonName, OrganizationName.

DVB Service Service loop of the SDT BroadcastEvent, Schedule, ServiceInformation.
CRID authority CRID authority descriptor loop of the RNT ProgramInformation, GroupInformation, Review,

SegmentInformation, SegmentGroupInformation,
PersonName, OrganizationName.

5.3.3.2 Semantics

This clause defines the use and additional semantics of fields of the metadata pointer descriptor. See ISO/IEC 13818-1
(amendment 1) [7], clause 2.6.58, for the format and basic semantics of this descriptor. This descriptor shall be used
with the constraints given below when associating an entity in a DVB network with a metadata service delivering
relevant TV-Anytime metadata.

metadata_application_format: This field shall have the same value as encoded in the metadata_application_format
field of the metadata descriptor describing the target metadata service (see clause 5.3.4), that is the metadata descriptor
with matching metadata_service_id carried in the PMT subtable indicated by this descriptor.

metadata_application_format_identifier: This field shall not be used.

metadata_format: This field shall have the same value as encoded in the metadata_format field of the metadata
descriptor describing the target metadata service (see clause 5.3.4), that is the metadata descriptor with matching
metadata_service_id carried in the PMT subtable indicated by this descriptor.

metadata_format_identifier: This field shall not be used.

metadata_service_id: This field shall be used to identify which metadata service this descriptor references. When that
metadata service is delivered in a DVB transport stream, the target metadata service shall be described by a metadata
descriptor with a matching value of metadata_service_id in the PMT subtable identified by this descriptor (see
clause 5.3.4).

metadata_locator_record_flag: This field shall be set to "1" if this descriptor references a metadata service not
delivered in a DVB transport stream. Otherwise, this field shall be set to "0".

EXAMPLE: If delivered over bi-directional IP according to TS 102 822-6-1 [16].

metadata_locator_record_length, metadata locator record: An option that may be used to point to an arbitrary URL
not within a DVB network. If it is used the metadata locator record shall contain a compliant URI (see RFC 2396 [2])
which shall be encoded as described in clause 6.2. If this field contains a HTTP URL as specified in RFC 1945 [17],
then that URL shall reference a metadata service that conforms to TS 102 822-6-1 [16].

MPEG_carriage_flags: A 2-bit field that shall be coded according to table 5. If the metadata_locator_record_flag is set
to "1" then this field shall be set to 3. Otherwise, this field shall be set to either 0 or 1.

ETSI

ETSI TS 102 323 V1.1.1 (2004-09) 19

Table 5: MPEG_carriage_flags

Value Semantics
0 Carried in the "actual" DVB transport stream
1 Carried in another DVB transport stream
2 Not used in the present document
3 None of the above - may be used if there is no relevant

metadata carried on the DVB network. In this case the
metadata locator record shall be present

Together the following three fields make up the normal triple that define a DVB service.

program_number: This field shall be set to the service_id in which the referenced metadata service can be found.

transport_stream_location: This field shall be set to the original_network_id. If not present the program number
refers to the actual transport stream.

transport_stream_id: This field shall be set to the transport_stream_id. If set to 0x0000 this field shall be ignored and
the combination of transport_stream_location and program_number define the original_network_id and service_id that
uniquely identify the service in which the reference metadata can be found.

private_data_bytes: If the metadata_locator_record_flag is set to "0" the first bytes of this field shall contain the
metadata descriptors extension structure as defined in table 9. When this is the case, the DVB_carriage_format field of
the metadata descriptors extension structure shall be set to the same value as encoded in the DVB_carriage_format field
of the metadata descriptors extension structure in the metadata descriptor describing the target metadata service (see
clause 5.3.4), that is the metadata descriptor with matching metadata_service_id carried in the PMT subtable indicated
by this descriptor

5.3.4 Metadata descriptor

5.3.4.1 Usage

MPEG-2 part 1 amendment 1: Carriage of metadata over ISO/IEC 13818-1 [7] (amendment 1) streams defines the
metadata descriptor (see clause 2.6.60 of ISO/IEC 13818-1 [7]). This descriptor with the constraints given below shall
be carried in PMT subtables in the descriptor loop of an elementary stream that carries the DSI of an MHP object
carousel delivering one or more metadata services (see clause 9.2). It is used to describe the format and download
parameters of the metadata service carried on that elementary stream.

5.3.4.2 Semantics

This clause defines the use and additional semantics of fields of the metadata descriptor. See ISO/IEC 13818-1 [7]
(amendment 1), clause 2.6.60, for the format and basic semantics of this descriptor.

metadata_application_format: This field shall have the value 0x0100. The use of this value signifies that the metadata
service contains TVA metadata as profiled according to DVB (see clause 8).

metadata_application_format_identifier: This field shall not be used.

metadata_format: This field indicates the coding format of the metadata. It shall be encoded according to table 6.
When the metadata_locator_record_flag is set to "1" this field shall be set to 0x3F.

Table 6: metadata_format

Value Semantics
0x00 to 0x3E Not used in the present document

0x3F Defined by metadata application format
0x40 to 0xEF User defined

0xF0 The encoding and encapsulation format as defined in clauses 9.3 and 9.4
0xF1 to 0xF7 DVB Reserved
0xF8 to 0xFE User defined

0xFF Not used in the present document

ETSI

ETSI TS 102 323 V1.1.1 (2004-09) 20

metadata_format_identifier: This field shall not be used.

metadata_service_ID: This field indicates the metadata service to which this descriptor applies. This value shall be
unique within the scope of the PMT subtable in which this descriptor is carried.

decoder_config_flags: This field indicates the location of the DVB-TVA-init message (see clause 9.4.2.1).

If the DVB_carriage_format field is set to 0 then this field shall have the value "000" if the DVB-TVA-init message is
carried in a BIOP::FileMessage object referenced by the default file name, or it shall have the value "011" if the
DVB-TVA-init message is carried in a BIOP::FileMessage object referenced by the
dec_config_identification_record_bytes. No other values of decoder_config_flags are permitted.

For other values of DVB_carriage_format the semantics of this field are undefined.

DSM-CC_flag: This field shall be set to "1" if the metadata is carried in an ISO/IEC 13818-6 [12] data or object
carousel. Otherwise it shall be set to "0".

service_identification_record_byte: This field is part of a sequence that conveys the metadata service location string.

If the DVB_carriage_format field is set to 0 then the following rules apply:

• This string is the location of the metadata service within the object carousel associated with this descriptor.
The location is described as a file path that references the directory within which the metadata service's
containers can be found.

If the service_identification_record_byte sequence is a string with length greater than zero, then contents of this field
define the service location string (mds_explicit_path). If this sequence is a zero-length string, then the default value of
the metadata service location string shall be used (mds_default_path). The format of the metadata service location string
is defined in table 7.

Table 7: Metadata service location string

metadata_service_location_string = mds_explicit_path | mds_default_path
mds_explicit_path = "/" path_segments
mds_default_path = "/" metadata_service_ID_string
metadata_service_ID_string = hex_string
hex_string = 4*hex
hex = digit | "A" | "B" | "C" | "D" | "E" | "F" |
 "a" | "b" | "c" | "d" | "e" | "f"
digit = "0" | "1" | "2" | "3" | "4" | "5" | "6" |
 "7" | "8" | "9"

The format for path_segments is defined in RFC 2396 [2].

The format for metadata_service_ID_string is the value of metadata_service_ID carried in this descriptor encoded as a
hex_string.

Below are example metadata service location paths, the first two examples are explicitly encoded in the
service_identification_record_byte field, the last example is a default metadata service location path, defined by a
zero-length service_identification_record_byte sequence:

"/metadata/service1"
"/"
"/579A"

For other values of DVB_carriage_format the semantics of this field are undefined.

dec_config_identification_record_byte: This field is part of a sequence that conveys the location of the decoder
configuration.

ETSI

ETSI TS 102 323 V1.1.1 (2004-09) 21

If the DVB_carriage_format field is set to 0 then the following rules apply:

• The location is described as a file path that references the BIOP::FileMessage object within the metadata
service referenced by this descriptor, which carries the DVB-TVA-init message (see clause 9.4.2.1). The
format of this field is defined below:

- If the dec_config_identification_record_byte sequence is a string with length greater than zero, then
contents of this field define the location of the DVB-TVA-init message (the dti_explicit_path). If this
sequence is a zero-length string, then the default value of the DVB-TVA-init message location shall be
used (the dti_default_path). The format of the DVB-TVA-init message location is defined in table 8.

Table 8: DVB TVA init message location

DVB_TVA_init_msg_location = dti_explicit_path | dti_default_path
dti_explicit_path = "/" path_segments
dti_default_path = "/" metadata_service_ID_string
metadata_service_ID_string = metadata_service_location_string

The format for path_segments is defined in TS 102 812 [10], clause 14.1.

The format for the metadata service location string is conveyed by the service_identification_record_bytes. See
semantics for that field, above.

For other values of DVB_carriage_format the semantics of this field are undefined.

private_data_bytes: This field shall contain the metadata_descriptors_extension structure as defined in table 9.
Otherwise, the contents of this field is not defined.

Table 9: Metadata descriptors extension

Name Number of bits Identifier
metadata_descriptors_extension() {
 DVB_carriage_format 4 uimsbf
 reserved 4 uimsbf
 for (i=0; i<N; i++) {
 user_data_byte 8 bslbf
 }
}

DVB_carriage_format: This field defines the precise delivery format used for this metadata service. It shall be
encoded according to table 10.

Table 10: DVB_carriage_format

Value Semantics
0 Delivery as defined in clause 9.2

1 to 7 DVB reserved
8 to 15 User defined

5.3.5 RAR over DVB stream descriptor

The RAR over DVB stream descriptor encapsulates a RAR for a CRID authority whose data can be found on a DVB
stream. This descriptor is permitted in the CRID authority descriptor loop of a RNT section. The format for this
descriptor is defined in table 11.

ETSI

ETSI TS 102 323 V1.1.1 (2004-09) 22

Table 11: RAR over DVB stream descriptor

Syntax Number of bits Identifier
RAR_over_DVB_stream_descriptor() {
 descriptor_tag 8 uimsbf
 descriptor_length 8 uimsbf
 first_valid_date 40 bslbf
 last_valid_date 40 bslbf
 weighting 6 uimsbf
 complete_flag 1 bslbf
 scheduled_flag 1 bslbf
 transport_stream_id 16 uimsbf
 original_network_id 16 uimsbf
 service_id 16 uimsbf
 component_tag 8 uimsbf
 if (scheduled_flag == 1) {
 download_start_time 40 bslbf
 download_period_duration 8 uimsbf
 download_cycle_time 8 uimsbf
 }
}

descriptor_tag: This field shall be set to 0x40.

descriptor_length: This field shall be set to the number of bytes in this descriptor immediately following this field.

first_valid_date: The first date when this CRID authority reference can be used, using UTC as the time reference.

last_valid_date: The first date when this CRID authority reference cannot be used, using UTC as the time reference.

NOTE: The reason for providing start and end dates for resolution is so that resolution providers can move their
resolution URLs and be sure all PDRs have switched to the new URL once the last valid date of the old
resolution record has passed.

weighting: The weighting field is a hint to the PDR as to the order to try multiple records for a single CRID authority
from the same resolution provider. The largest weighting number shall be assigned to the URL that should be tried first.
The weighting field is only used to provide ordering between resolution provider records for the same combination of
resolution provider and CRID authority name and not for ordering one provider over another.

complete_flag: This flag indicates if the referenced CRI data is complete. It shall be set to "1" if the referenced CRI
data is complete, otherwise it shall be set to "0". See clause 7.2.3 for details on the use of this field.

scheduled_flag: This flag indicates if the referenced CRI data is delivered at a scheduled time, rather than being
delivered continuously. It shall be set to "1" if the referenced CRI data is scheduled, or "0" if the referenced CRI data is
delivered continuously.

transport_stream_id: This field shall be set to the transport_stream_id of the DVB service in which the referenced
CRI is carried. If set to 0x0000 then this field shall be ignored and the DVB service shall be uniquely identified by a
combination of original_network_id and service_id.

original_network_id: This field shall be set to the original_network_id of the DVB service in which the referenced
CRI is carried.

service_id: This field shall be set to the service_id of the DVB service in which the referenced CRI is carried.

component_tag: This field identifies the elementary stream on which the referenced CRI is carried. The
stream_identifier_descriptor is mandatory for all components referenced by this descriptor (see EN 300 468 [1],
clause 6.2.34).

download_start_time: This field describes the date and time at which the CRI service will start to be available. This
field shall be encoded as MJD and UTC (see EN 300 468 [1], annex C). This 40-bit field is coded as 16 bits giving the
16 LSBs of MJD followed by 24 bits coded as 6 digits in the 4-bit BCD.

download_period_duration: This field describes the length of time from the start time during which the CRI service
will be available. This field shall be encoded as a count of 6 minute periods.

ETSI

ETSI TS 102 323 V1.1.1 (2004-09) 23

download_cycle_time: This field shall be set to the minimum time required for one complete repetition of all data in
the CRI service, measured in minutes.

5.3.6 RAR over IP descriptor

The RAR over IP descriptor encapsulates a RAR for a CRID authority whose data can be found via an IP network. This
descriptor is permitted in the CRID authority descriptor loop of a RNT section. The syntax for this descriptor is defined
by table 12.

Table 12: RAR over IP descriptor

Syntax Number of bits Identifier
RAR_over_IP_descriptor() {
 descriptor_tag 8 Uimsbf
 descriptor_length 8 uimsbf
 first_valid_date 40 bslbf
 last_valid_date 40 bslbf
 weighting 6 uimsbf
 complete_flag 1 bslbf
 reserved 1 bslbf
 url_length 8 uimsbf
 For (i=0;i < url_length< i++) { 8 uimsbf
 url_char 8 uimsbf
 }
}

descriptor_tag: This field shall be set to 0x41.

descriptor_length: This field shall be set to the number of bytes in this descriptor immediately following this field.

first_valid_date: The first date when this CRID authority reference can be used, using Universal Time Coordinates
(UTC) as the time reference.

last_valid_date: The first date when this CRID authority reference cannot be used, using UTC as the time reference.

NOTE: The reason for providing start and end dates for resolution is so that resolution providers can move their
resolution URLs and be sure all PDRs have switched to the new URL once the last valid date of the old
resolution record has passed.

weighting: The weighting field is a hint to the PDR as to the order to try multiple records for a single CRID authority
from the same resolution provider. The largest weighting number shall be assigned to the URL that should be tried first.
The weighting field is only used to provide ordering between resolution provider records for the same combination of
resolution provider and CRID authority name and not for ordering one provider over another.

complete_flag: This flag indicates if the referenced CRI data is complete. It shall be set to "1" if the referenced CRI
data is complete, otherwise it shall be set to "0". See clause 7.2.3 for details on the use of this field.

reserved: Reserved bits shall be set to "1".

url_length: The length of the URL.

url_char: The URL describing the location where CRIDs belonging to this CRID authority can be resolved. This field
shall be encoded according to clause 6.2.

5.3.7 RNT scan descriptor

The RNT scan descriptor carries references to transport streams that carrying RNTs. This descriptor is permitted in the
common descriptor loop of an RNT section, see clause 5.2.1 for details on the use of this descriptor. The format for the
RNT scan descriptor is defined by table 13.

ETSI

ETSI TS 102 323 V1.1.1 (2004-09) 24

Table 13: RNT scan descriptor

Syntax Number of bits Identifier
RNT_scan_descriptor() {
 descriptor_tag 8 uimsbf
 descriptor_length 8 uimsbf
 for (i=0; i<N; i++) {
 transport_stream_id 16 uimsbf
 original_network_id 16 uimsbf
 scan_weighting 8 uimsbf
 }
}

descriptor_tag: This field shall be set to 0x42.

descriptor_length: This field shall be set to the number of bytes in this descriptor immediately following this field.

transport_stream_id: This field carries the value of transport stream id of the transport stream referenced by this entry.

original_network_id: This field carries the value of original network id of the transport stream referenced by this
entry.

scan_weighting: This field defines the intended order of tuning to other transport streams to acquire RNTs. An entry
with a larger weighting value should be inserted before entries with smaller weightings.

6 CRIDs and other URIs in DVB networks

6.1 Introduction
This clause defines how CRIDs and other URIs shall be encoded in the structures defined in the present document. It
also defines a mechanism for defining a default authority and associated scoping rules for the purpose of improving the
compaction of CRIDs.

6.2 Encoding of URI strings and the use of non-Latin characters
The URI format (see RFC 2396 [2]) consists of a sequence of a limited range of Latin characters plus a limited number
of graphical characters (e.g. "@", "=", etc., but not including a space character). In order for non-Latin characters to be
used in URIs, a standard mapping from those non-Latin characters is defined.

All characters not within the range of characters allowed in a URI must be encoded into UTF8 and included in the URI
as a sequence of escaped octets. An escaped octet is encoded as a character triplet, consisting of the percent character
"%" followed by the two hexadecimal digits representing the octet code.

The syntax of the CRID is URI compliant and is defined in TS 102 822-4 [6]. Its format is as follows:

• crid://<CRIDauthority>/<data>

An example being:

• crid://company.com/foobar

CRIDs are insensitive to the case of characters.

Where lexicographical ordering is applied to CRIDs in the present document, it shall be applied after characters not in
the allowed range are converted into sequences of escaped octets.

ETSI

ETSI TS 102 323 V1.1.1 (2004-09) 25

6.3 Default authority and abbreviated CRIDs

6.3.1 Abbreviated CRID rules

In certain situations described in the present document a CRID string may use the following abbreviated forms. These
reduce the overhead of a CRID string by leaving out information that can be inferred from the location of the CRID
entry.

Firstly, the characters "crid://" may be omitted from the start of the string so that the string starts with the first character
of the CRID authority. So the example CRID:

• crid://company.com/foobar

may be encoded as:

• company.com/foobar

Additionally, within the scope of the definition of a default authority (see clause 6.3.2), the CRID authority part of the
string may also be omitted if the CRID's authority matches the current value of default authority. In this case the string
starts with the delimiter between CRID authority and data parts of the CRID (i.e. "/"). Therefore, the example CRID:

• crid://company.com/foobar

may be encoded as:

• /foobar

6.3.2 Scope of a default authority definition

A default authority is defined by the presence of a default authority descriptor. The purpose of the default authority is
to allow a CRID reference within the scope of such a definition to leave out the protocol and authority parts of a CRID
URI, if the CRID authority part of that CRID reference is the same as the defined default authority.

The scope of a particular value of default authority is defined by the location of the default authority descriptor. A value
of default authority defined in a scope overrides any value of default authority already defined for a wider, enclosing
scope. See table 14 for definitions of the permitted locations of the default authority descriptor and which scope
override which others.

Table 14: Permitted locations of default authority descriptor

Default authority descriptor location Scope of definition Scopes this definition overrides
First descriptor loop of NIT network none
Transport stream descriptor loop of NIT transport stream bouquet or network
First descriptor loop of BAT bouquet none
Transport stream descriptor loop of BAT transport stream bouquet or network
Service descriptor loop of SDT service transport stream, bouquet or network

The effect of defining a default authority in a BAT that conflicts with a definition of equivalent scope in a NIT is not
defined by the present document.

EXAMPLE: If a default authority is defined at the scope of a network, this can be overridden for a single
service on that transport stream by the inclusion of a default authority descriptor in the service
loop of an SDT on that transport stream.

6.3.3 Default authority descriptor

The default authority descriptor is permitted in either the first of second descriptor loop of a NIT or BAT, or the service
descriptor loop of a SDT. The syntax of this descriptor is defined in table 15.

ETSI

ETSI TS 102 323 V1.1.1 (2004-09) 26

Table 15: Default authority descriptor

Syntax Number of bits Identifier
default_authority_descriptor() {
 descriptor_tag 8 uimsbf
 descriptor_length 8 uimsbf
 for (i=0; i < descriptor length; i++) {
 default_authority_byte 8 uimsbf
 }
}

descriptor_tag: This field shall be set to 0x73.

descriptor_length: This field shall be set to the number of bytes in this descriptor immediately following this field.

default_authority_byte: This field forms part of a sequence that is the default authority for this scope. The encoding of
this field shall follow the rules defined in clause 5.2.2 for resolution_provider_name_byte. See also TS 102 822-4 [6],
clause 6.

6.4 DVB locator extensions
The present document extends the DVB locator format as defined in TS 102 812 [10], clause 14.1. The syntax is
extended as defined by table 16.

Table 16: DVB locator extension

dvb_event_constraint = event_id_mode | tva_id_mode | time_constraint
event_id_mode = ";" event_id [time_constraint]
tva_id_mode = ";;" TVA_id [time_constraint]
time_constraint = "@" time_duration
TVA_id = hex_string
time_duration = string
hex_string = 4*hex
hex = digit | "A" | "B" | "C" | "D" | "E" | "F" | "a" | "b" | "c" |
 "d" | "e" | "f"
digit = "0" | "1" | "2" | "3" | "4" | "5" | "6" | "7" | "8" | "9"

The time_duration string shall be formatted according to the extended format defined in ISO 8601 [13], clause 5.5.4.3.
Note that "/" must be replaced by two "-" characters, as in the example below.

EXAMPLE: CCYY-mm-ddThh:mm[:ss]Z--PThhHmmM[ssS].

When referencing a DVB service the DVB locator shall be restricted like so:

• dvb://<original_network>.[<transport_stream>].<service_id>

When referencing an event the DVB locator shall be restricted to any of the following:

• dvb://<original_network.>[<transport_stream>].<service_id>;<event_id> [@time_duration]

• dvb://<original_network.>[<transport_stream>].<service_id>;;<TVA_id> [@time_duration]

• dvb://<original_network.>[<transport_stream>].<service_id>@time_duration

A metadata fragment may contain a DVB locator referencing a file in an object carousel (see for example the Logo
element in clause 8.6). When this occurs and the file is delivered in the same object carousel as the metadata service
delivering the metadata fragment, the following syntax may be used for the DVB locator:

• dvb:/path_segments

This path shall be interpreted as being an absolute path, that is one that is relative to the ServiceGateway for the object
carousel carrying the metadata service. The format of this shall follow the restrictions defined in TS 102 812 [10],
clause 14.1.4.

ETSI

ETSI TS 102 323 V1.1.1 (2004-09) 27

If a metadata fragment references a file delivered in a different object carousel to the metadata service delivering that
metadata fragment, the following syntax shall be used for the DVB locator:

• dvb://<original_network_id>.[<transport_stream_id>].<service_id>.<component_tag>{&<component_tag>}/p
ath_segments.

7 Content resolution

7.1 Introduction
The purpose of content referencing is to allow acquisition of a specific item of content or a group of items of content.
For example, if a consumer sees a promotion on TV saying, "there will be a new series on 'Foxes in the cold' around
Christmas", he may want to instruct his Personal Digital Recorder (PDR) to record the whole series. However the actual
time and channel of airing of the episodes might be unknown to the PDR. In fact, the broadcaster may not know yet,
either. However, at the time when the viewer sees the promotion he will want to make sure that he does not miss the
opportunity to acquire the content.

The ability to refer to content (in this example a series of programs) independent of its time or location will provide this
capability desired by the consumer. Whether that location is on a particular broadcast channel on some date and time, or
on a file server connected to Internet, or wherever.

In the current example of a series, the PDR system would be provided with a reference for that series. In due time, the
information required to link this reference to the individual episodes would be supplied to the PDR. Subsequently, a
specific location (channel, date and time) would be provided for each episode so that the PDR would then be able to
acquire all of them.

Figure 4 demonstrates the purpose of content referencing: to provide the ability to refer to content independent of its
location; and to provide the ability to subsequently resolve such a reference into one or more locations where the
content can be obtained.

Location Resolution is not a once-only operation. Receivers may need to re-resolve CRIDs at intervals before and
during recordings in response to changes in the content referencing information.

Resolution

CRID

Locator(s)

CRID(s)

Figure 4: The location resolution process

The key concept in content referencing is the separation of the reference to a content item - the CRID - from the
information needed to actually retrieve the content item - the locator. The separation provided by the CRID enables a
one-to-many mapping between content references and the locations of the deliverables. From a system perspective,
content referencing and resolution lies between search and selection and actually acquiring the content. From the
content referencing perspective, search and selection yields a CRID, which is resolved into either a number of CRIDs or
a number of locators (the number may be one). A full discussion of content referencing is beyond the scope of the
present document; rather it is the intention here to show how content referencing fits into the overall system. In the
examples below, the syntax of a CRID and the syntax of a locator are employed. The syntax of a CRID is:

• CRID://<CRIDauthority>/<data>

Where <CRIDauthority> takes the form:

• <DNS name><name_extension>

ETSI

ETSI TS 102 323 V1.1.1 (2004-09) 28

<DNS name> is a registered Internet domain name. (See RFC 1591 [11] for DNS name registration.) The <DNS name>
is case insensitive and must be a fully qualified name according to the rules defined by RFC 1591 [11].

<name_extension> is an optional string (beginning with a ";" character) to enable multiple authorities to use the same
DNS name. All <name_extension> elements which share the same <DNS name> must be unique. The
<name_extension> section is case insensitive.

The syntax of the locator is:

• <transport mechanism>:<transport system specific>

The content referencing mechanism employs two key elements. The first is the resolution provider notification table
that maps the CRID authority that issued the CRID to the Resolution Service Provider. The second is the actual Content
Resolution Information (CRI), which maps a CRID to another CRID or to a location. The CRI may also contain
information to link a locator to metadata describing that instance. See TS 102 822-4 [6] for a more detailed explanation
of the concepts and tables involved.

7.2 Resolving CRIDs in a DVB network

7.2.1 DVB transport stream resolution handler

TS 102 822-4 [6], clause 10.1.1, describes a conceptual modular resolution system. The modular resolution system has
different resolution handler modules, each handling a different protocol over which location resolving can occur. This
clause defines the functionality of a DVB transport stream resolution handler module for the purpose of defining CRID
resolving on DVB transport streams (see figure 5).

The use of other types of resolution handler is supported. For example, a PDR may additionally support CRID
resolution over the internet via a return path connection.

Resolving
Authority
Record

CRID

CRIDs or
Locators

DVB transport
stream resolution

handler

DVB transport stream

Content
Referencing

Information (CRI)

Back-channel
resolution handler

Local storage
resolution handler

Local
storage

Internet

Figure 5: Modular location resolving system

ETSI

ETSI TS 102 323 V1.1.1 (2004-09) 29

7.2.2 CRI data sets

CRI data consists of the information required to resolve CRIDs into its result (i.e. CRIDs or locators). On DVB
transport streams, CRI data for a particular CRID authority is organized into one or more sets of CRI data (or "CRI data
sets"). A CRI data set is the CRI data for a CRID authority in a particular content resolution service or internet location.
See figure 6 for an example of different CRI data sets. References to CRI data are carried in Resolving Authority
Records (RARs) which, on a DVB transport stream, are embodied in RAR descriptors (see clauses 5.3.5 and 5.3.6).
These descriptors are carried in the resolution provider notification table (see clause 5.2.2).

Each content resolution service shall only contain CRI provided by one resolution provider. A content resolution service
may contain CRI regarding more than one CRID authority (i.e. more than one CRI data set).

Resolution service 1

CRI set 1 for
another.com

CRI set 1 for
aprovider.com

RAR #1 for
aprovider.com

Internet location 1

CRI set 2 for
aprovider.com

CRI set 1for
athird.comRAR for

athird.com

RAR for
another.com

RAR #2 for
aprovider.com

Figure 6: Sets of CRI data in different locations

7.2.3 Complete and incomplete CRI data sets

Sets of CRI data may be signalled as either being complete or incomplete. A complete set of CRI data contains
information on all CRIDs provided by a particular resolution provider for a particular CRID authority.

Where a complete set of CRI data is supplied by a resolution provider for a CRID authority, incomplete sets of CRI data
can be used in addition, for example to provide resolution information for CRIDs relevant to the local transport stream.
Because of this a receiver may optimize location resolving by accessing an incomplete CRI data set in the current
transport stream before falling back to accessing a complete CRI data set on another transport stream.

CRI data provided by a resolution provider for a CRID authority may alternatively be distributed between several
incomplete sets of CRI data, with no complete set being available. In this case, a receiver resolving a CRID should
access all CRI data sets available from a resolution provider for the relevant CRID authority before returning an error.

If a receiver is configured to access CRI provided by more than one resolution provider it should check both for CRI
relating to a particular CRID authority.

NOTE: Failure to resolve a CRID may be due to resolving information not being available for that CRID, or it
may be because of a network failure. Therefore, a receiver may wish to continue to attempt to resolve
such a CRID over a period of time not determined by the present document.

ETSI

ETSI TS 102 323 V1.1.1 (2004-09) 30

7.3 Delivery of content referencing information

7.3.1 Container

7.3.1.1 Description

The container is the means by which all CRI structures shall be carried in a transport stream. A container shall contain
one or more CRI structures. Each container is distinguished by a unique identifier, which is the container_id. Containers
are mapped on to a table of MPEG 2 TS private sections, the headers of which carry the container_id. The container
carrying the cri_index structure, which is the first structure required by the receiver, shall have its container_id set to
0x0000.

7.3.1.2 Classifications of CRI structures and containers

There are two classifications of CRI structures, CRI index structures and CRI results structures.

CRI Index Structures: cri_index, cri_prepend_index cri_leaf_index, data_repository.

CRI Results Structures: results_list, result_data, data_repository, services.

A container carrying index structures is termed an index container, whilst a container carrying results structures termed
a results container. A container can carry either a mixture of classifications of structure, or just a single classification.
Therefore, a container can be both an index container and a results container. Figure 7 shows an example configuration
suitable for a large set of CRI data, with CRI index structures separated into different containers than CRI results
structures. Figure 8 shows an example configuration suitable for a small set of CRI data, with CRI index structures
carried in the same container as CRI results structures.

NOTE: The types of structures used in each example differ slightly because a cri_leaf_index structure does not
require a results_list structure if it uses the local_result_locator.

container_header
container_id = 1

cri_leaf_index

cri_prepend_index

data_repository

Results Container

container_header
container_id = 2

results_list

services

data_repository

result_data

container_header
container_id = 0

cri_index

cri_leaf_index

cri_prepend_index

data_repository

Index Containers

Figure 7: Example container structure for a large CRI data set

ETSI

ETSI TS 102 323 V1.1.1 (2004-09) 31

services

result_data

container_header
container_id = 0

cri_index

cri_leaf_index

cri_prepend_index

data_repository

Index & Results
Container

Figure 8: Example container structure for a small CRI data set

7.3.1.3 Container format

Entries within the container_header shall be ordered in ascending cri_structure_type and cri_structure_id. This enables a
device to efficiently locate a particular structure. The maximum size of a container shall be 65 536 bytes. The format of
the container is defined by table 17.

Table 17: Container

Syntax Number of bits Identifier
container() {
 container_header {
 num_cri_structures 8 uimsbf
 for(j=0; j<num_cri_structures; j++) {
 cri_structure_type 8 uimsbf
 cri_structure_id 8 uimsbf
 cri_structure_ptr 24 uimsbf
 cri_structure_length 24 uimsbf
 }
 }
 for (j=0; j<num_cri_structures; j++) {
 cri_structure()
 }
}

num_cri_structures: This field specifies the number of structures in this container.

cri_structure_type: This field identifies the type of structure this entry relates to, it shall be encoded according to
table 18.

ETSI

ETSI TS 102 323 V1.1.1 (2004-09) 32

Table 18: CRI structure type and structure id

cri_structure_type value cri_structure_id value Description
0x00 not defined reserved
0x01 0x00 results_list
0x02 0x00 data_repository
0x03 not defined reserved
0x04 0x00 - 0xFF cri_index
0x05 0x00 - 0xFF cri_prepend_index or cri_leaf_index

0x06 to 0x07 not defined reserved
0x08 0x00 result_data
0x09 0x00 services

0x0A to 0xEF not defined DVB Reserved
0xF0 to 0xFF not defined User Private

cri_structure_id: An 8 bit field used to distinguish between multiple instances of the same structure in a single
container. This field shall be encoded according to table 18. Where only one value of cri_structure_id is allowed for a
particular value of cri_structure_type, this indicates that only one occurrence of that cri_structure_type is allowed in a
container.

cri_structure_ptr: A 24 bit field giving the offset in bytes from the start of this container to the first byte of the CRI
structure.

cri_structure_length: A 24 bit field which indicates the length in bytes of the CRI structure pointed to by
cri_structure_ptr.

7.3.1.4 Container section

For delivery, a container is carried in a container_subtable split into a sequence of one or more blocks of container data.
Each block is carried as a section, the numbering of each section corresponding to the position of the container data
block in the sequence. The clauses for a container form a single container_subtable, distinguished by container_id.
Before a container can be parsed, all sections forming a single container_subtable must be acquired. The container is
reconstructed by appending container data blocks together in the order defined by the section number and reversing
compression if this has been applied.

The container section is derived from the standard private_section syntax as defined in ISO/IEC 13818-1 [8]. A
container is carried by one or more container sections. Every container section shall carry 4 084 bytes of container data,
except the container_section with section_number equal to last_section_number, which shall carry however many bytes
remain of the container subtable. The syntax of the container section is defined by table 19.

Table 19: Container section

Syntax Number of bits Identifier
container_section() {
 table_id 8 uimsbf
 section_syntax_indicator 1 bslbf
 private_indicator 1 bslbf
 reserved 2 bslbf
 private_section_length 12 uimsbf
 container_id 16 uimsbf
 reserved 2 bslbf
 version_number 5 uimsbf
 current_next_indicator 1 bslbf
 section_number 8 uimsbf
 last_section_number 8 uimsbf
 container_data()
 CRC32 32 uimsbf
}

table_id: This field shall be set to 0x75.

section_syntax_indicator: This shall be set to "1" to indicate that the private section follows the generic section syntax.

ETSI

ETSI TS 102 323 V1.1.1 (2004-09) 33

private_indicator: This flag shall be set to "1".

private_section_length: The number of remaining bytes in the private section immediately following the
private_section_length field up to the end of the private_section.

container_id: This shall contain the container_id of the container carried by the table this section is part of.

version_number: The version of the table. The version shall be incremented by 1 modulo 32 when there is a change in
the information.

current_next_indicator: This field shall be set to "1" to indicate that the section is currently valid.

section_number: This 8-bit field specifies the number of the private section. This section_number will be incremented
by 1 with each additional section in the table.

last_section_number: This specifies the number of the last section making up this table.

container_data(): A sequence of bytes making up a portion of a compression_wrapper.

CRC32: This field contains the CRC value that gives a zero output of the registers in the decoder defined in
EN 300 468 [1] after processing the entire private section.

7.3.1.5 Compression wrapper

The compression_wrapper allows a container to be carried in a compressed or uncompressed format. The syntax of the
compression_wrapper is defined by table 20.

Table 20: Compression_wrapper

Syntax Number of bits Identifier
compression_wrapper() {
 compression_method 8 uimsbf
 if (compression_method == 0x00) {
 container()
 } else if (compression_method == 0x01) {
 original_size 24 uimsbf
 compression_structure() N x 8
 }

compression_method: This field shall be encoded according to table 21.

Table 21: Compression method

Value Meaning
0x00 The container is not compressed
0x01 The container is carried in a Zlib stream as defined in RFC 1950 [18]

0x02 to 0x7F DVB reserved
0x80 to 0xFF User private

container(): See clause 7.3.1.3 for the definition of the container structure.

original_size: This field indicates the size in bytes of the container prior to compression.

compression_structure: This shall contain a Zlib stream as defined in RFC 1950 [18]. When present, the Zlib stream
shall have its compression method nibble set to "1000", indicating use of the Deflate compression algorithm as specified
in RFC 1951 [15].

ETSI

ETSI TS 102 323 V1.1.1 (2004-09) 34

7.3.2 CRI results structures

7.3.2.1 Description

CRI results structures shall be used to carry Content Referencing Information on DVB transport streams. Individual
CRID results conveyed within these structures may be identified and located using the CRI indexing structures. Every
CRID result has a handle_value that is used by index CRI structures to refer to a result. The results_list maps those
handles to the relevant CRID result data, which is carried in the result_data structure.

Of the following structures a results container shall contain those that are mandatory and may contain those that are
optional:

• results_list (Mandatory if results in this container are referenced by a cri_sub_index in another container);

• result_data (Mandatory);

• services (Mandatory if DVB binary locators are used).

7.3.2.2 Results_list

The results_list CRI structure associates results data with a handle_value. Entries within the results_list structure shall
be in order of ascending handle_value.

There shall be one instance of the results_list CRI structure within a results container if any CRI results in that container
are referred to from other containers. The syntax of the results_list structure is defined by table 22.

Table 22: Results_list

Syntax Number of bits Identifier
results_list () {
 for(j=0; j<NumCRIDs; j++) {
 handle_value 16 uimsbf
 result_ptr 16 uimsbf
 }
}

handle_value: This field uniquely identifies a CRID result within the current container, this is for the purpose of
referencing the CRID result from a cri_leaf_index. The value assigned to a CRID result should be persistent for the life
of that CRID result so long as it is transmitted in the same container. If a CRID result moves from one container to
another, the handle_value must then be unique within the new container. All entries shall be ordered by ascending value
of handle_value.

result_ptr: The offset, in bytes, from the first byte of the result_data structure of the current container to the first byte
of the relevant content referencing information.

7.3.2.3 Result_data

7.3.2.3.1 Usage

The result_data CRI structure carries the CRID results data. There shall be one instance of the result_data CRI structure
within a results container.

ETSI

ETSI TS 102 323 V1.1.1 (2004-09) 35

7.3.2.3.2 Syntax

The syntax of the result_data structure is defined by table 23.

Table 23: Result_data

Syntax Number of bits Identifier
result_data () {
 year_offset 16 uimsbf
 for(j=0; j<Table_size; j += sizeof(Result)) {
 status 2 uimsbf
 acquisition_flag 1 bslbf
 re_resolve_flag 1 bslbf
 result_type 2 bslbf
 imi_flag 1 bslbf
 reserved 1 bslbf
 if(status=="00") {
 num_results 8 uimsbf
 for(r=0; r<num_results; r++) {
 if(result_type == "00") {
 CRID_prepend_ptr 16 uimsbf
 result_CRID_data_ptr 16 uimsbf
 }
 else if(result_type == "01") {
 dvb_binary_locator()
 }
 else if(result_type == "10") {
 locator_format 4 uimsbf
 locator_length 12 uimsbf
 if (locator_format == 0x01) {
 dvb_binary_locator()
 }
 else {
 for(j=0; j<locator_length; j++) {
 locator_byte 8 uimsbf
 }
 }
 }
 else {
 DVB_reserved_length 16 uimsbf
 for (i=0; i<DVB_reserved_length; i++) {
 DVB_reserved_byte 8 uimsbf
 }
 }
 if(result_type != "00" && imi_flag == "1") {
 Imi_prepend_ptr 16 uimsbf
 result_imi_data_ptr 16 uimsbf
 }
 }
 }
 if(status == "01" || (status == "00" && re_resolve_flag == "1") {
 reserved 7 bslbf
 reresolve_date 9 uimsbf
 reresolve_time 16 uimsbf
 }
 }
}

year_offset: The year relative to which date values in this structure shall be calculated. This field shall be encoded as
the binary value of the year, for example "2003" would be encoded as 0x07D3.

status: A two bit field used to indicate the current status of the CRID result. This field shall be encoded according to
table 24.

ETSI

ETSI TS 102 323 V1.1.1 (2004-09) 36

Table 24: CRID resolution status

status Meaning
"00" Valid result, CRID or locators follow
"01" CRID is not yet resolvable

"10" to "11" DVB Reserved

It is not possible to encode a result with status "discard CRID", as defined by TS 102 822-4 [6], clause 12.2. This value
is assumed implicitly if a CRID has no entry in a relevant complete set of CRI data, or in all relevant CRI data sets
should a complete set not be available. See clauses 7.2.2 and 7.2.3.

acquisition_flag: A flag to indicate what type of acquisition is required for this CRID. This field shall be encoded
according to table 25.

Table 25: Acquisition flag

acquisition flag Meaning
"0" Acquire all items this CRID resolves into
"1" Acquire any one of the items this CRID resolves into

re_resolve_flag: A flag to indicate whether resolution of the CRID is complete. This field shall be encoded according
to table 26.

Table 26: Re-resolve flag

re_resolve_flag Meaning
"0" Resolution is complete
"1" Resolution is incomplete, more resolution information to follow

result_type: Indicates whether this is a group or leaf CRID and how they are encoded. This field shall be encoded
according to table 27.

Table 27: Result type

result_type Meaning
"00" Result is a list of CRIDs, from one or more CRID authorities
"01" Result is a list of DVB binary encoded locators
"10" Result is a list of locators, in mixed format (see table 29)
"11" DVB Reserved

NOTE 1: If a CRID resolves to other CRIDs, rather than locators, it is possible that the CRID relates to a single
programmes rather than a collection of programmes. This may occur, for example, when the options for
capturing that single programme are too complex to be described as a list of locators. Therefore, where
metadata is available, a receiver should try to access ProgramInformation for a CRID that resolves to
other CRIDs, if accessing GroupInformation does not succeed. See clause 8.3.

imi_flag: A flag to indicate whether Instance Metadata Identifiers (IMIs) are provided. This shall not be set to "1" if
result_type is equal to "00". This field shall be encoded according to table 28.

Table 28: IMI flag

imi_flag Meaning
"0" There are no IMIs for this result
"1" IMIs are provided for this result

num_results: The number of resolution results for this entry.

CRID_prepend_ptr: The offset in bytes within the string data repository, where the CRID prepend string can be
found. The first seven letters ("crid://") shall be omitted from the CRID prepend string.

ETSI

ETSI TS 102 323 V1.1.1 (2004-09) 37

result_CRID_data_ptr: The offset, in bytes, from the first bytes of the data repository within the current container, to
the first byte of the result CRID data string. Concatenating the string "crid://" with the prepend string and the result
CRID data string shall result in a valid CRID.

• crid://<CRID prepend string><result CRID data string>

locator_format: The format of the locator bytes. This field shall be encoded according to table 29.

Table 29: Locator format

Locator format Meaning
0x00 URI compliant string followed by a byte of value 0x00
0x01 DVB binary locator (see clause 7.3.2.3.3)

0x02 to 0x0B Reserved
0x0C to 0x0F Private Use

locator_length: The number of bytes in the following locator.

locator_byte: One of a sequence of bytes that together form the locator.

DVB_reserved_length: The number of DVB_reserved_bytes.

DVB_reserved_byte: A sequence of bytes reserved for future use.

imi_prepend_ptr: The offset, in bytes, from the first bytes of the data repository within the current container, to the
first byte of the prepend string for the IMI. Where the name portion of the IMI is the same as the CRID authority name
part of the CRID that is being resolved, this field may point at a zero length string, in which case the prepend string
shall be considered to be the CRID authority name. The "imi:" prefix shall be omitted from the IMI prepend string.

result_imi_data_ptr: The offset, in bytes, from the first bytes of the data repository within the current container, to the
first byte of the string which is the remaining part of the IMI. The act of concatenating the prepend string with the string
pointed to by the result_imi_data_ptr results in a valid IMI.

If the imi_flag is set to "1" but a result does not have an IMI, this condition shall be signalled by the result_imi_data_ptr
for that result pointing to a zero-length string. This may occur in the case where some but not all of the results have
been assigned IMIs.

reresolve_date: The first date on which the receiver should try to re-resolve this CRID. This field uses Universal
Co-ordinated Time (UTC) as the time reference. It shall be encoded as the number of days from the beginning of the
year indicated by the year_offset field, the value zero indicating the 1st of January of that year.

NOTE 2: The size of this field allows the encoded date to extend into the year following that encoded in the
year_offset field.

reresolve_time: The time, on the date given by reresolve_date, after which the receiver should try to re-resolve this
CRID, using UTC as the time reference. This field shall be encoded as the number of 2-second periods since midnight.

ETSI

ETSI TS 102 323 V1.1.1 (2004-09) 38

7.3.2.3.3 DVB binary locator

The syntax of the DVB binary locator sub-structure is defined by table 30.

Table 30: DVB_binary_locator

Syntax Number of bits Identifier
dvb_binary_locator() {
 identifier_type 2 bslbf
 scheduled_time_reliability 1 bslbf
 inline_service 1 bslbf
 reserved 1 bslbf
 start_date 9 uimsbf
 if (inline_service == "0") {
 DVB_service_triplet_ID 10 uimsbf
 } else {
 reserved 2 bslbf
 transport_stream_id 16 uimsbf
 original_network_id 16 uimsbf
 service_id 16 uimsbf
 }
 start_time 16 uimsbf
 duration 16 uimsbf
 if (identifier_type == "01") {
 event_id 16 uimsbf
 }
 if (identifier_type == "10") {
 TVA_id 16
 }
 if (identifier_type == "00" && scheduled_time_reliability == "1")) {
 early_start_window 3 uimsbf
 late_end_window 5 uimsbf
 }
}

identifier_type: This field indicates the type of event identifier used in this DVB binary locator. This field shall be
encoded according to table 31.

Table 31: Identifier type

value Meaning
"00" no event identifier field is present
"01" event identifier is an event_id
"10" event identifier is a TVA_id
"11" DVB Reserved

See clause 11.1 for details on the semantics of this field.

scheduled_time_reliability: This field only has meaning when the value of identifier_type is "00", i.e. when no event
identifier is provided and the receiver will need to use the scheduled time to control recording. When set, the
early_start_window and late_end_window information shall be provided, which the receiver may use to improve the
reliability of capture of the item of content (see clause 11.1). If the value of identifier_type is not "00" then this field
shall be set to "0".

inline_service: This flag indicates how the original network ID, transport stream ID and service ID for the DVB service
that this locator refers to may be found. If set to "1" this flag indicates that these values are carried in-line in this
structure. If set to "0" these values are found in the services structure in the current container and are referenced by the
DVB_service_triplet_ID.

reserved: Reserved bits shall be set to "1".

ETSI

ETSI TS 102 323 V1.1.1 (2004-09) 39

start_date: The date on which the content pointed to by this locator is scheduled to start. This field uses Universal
Co-ordinated Time (UTC) as the time reference. It shall be encoded as the number of days from the beginning of the
year indicated by the year_offset field in the enclosing structure. The value zero indicates the 1st of January of that year.

NOTE: The size of this field allows the encoded date to extend into the year following that encoded in the
year_offset field.

DVB_service_triplet_ID: A zero-based index into the services structure present in the current container. The entry at
this index shall contain the details of the DVB service (original network ID, transport stream ID and service ID) that
this locator refers to. See clause 7.3.2.4 for the definition of the services structure.

transport_stream_id: The transport stream ID for the transport stream that carries the DVB service that this locator
refers to. If set to 0x0000 then this field shall be ignored and the DVB service shall be uniquely identified by a
combination of original_network_id and service_id.

original_network_id: The original network ID for the transport stream that carries the DVB service that this locator
refers to.

service_id: The DVB service ID for the DVB service that this locator refers to.

start_time: The time at which the content pointed to by this locator is scheduled to start, using UTC as the time
reference. This is encoded as the number of 2-second periods since midnight.

duration: The duration of the event encoded as a count of 2-second periods.

event_id: The value of event_id that may be used to detect the transmission of the content pointed to by this locator.
See clause 11.1.

TVA_id: The value of TVA_id that may be used to detect the transmission of the content pointed to by this locator. See
clause 11.1.

early_start_window: This field indicates a duration by which the start of transmission for the content pointed to by this
locator may occur ahead of the scheduled start_time. This field shall be encoded as a count of 1 minute periods, giving a
range of 0 min to 7 min.

late_end_window: This field indicates a duration by which the end of transmission for the content pointed to by this
locator may occur after the end time (which is calculated by adding the start start_time to the duration). This field shall
be encoded as a count of 2 minute periods, giving a range of 0 min to 62 min.

7.3.2.4 Services

The services CRI structure is used to provide an efficient means of identifying a DVB service by index. Items in this
structure are referenced by the DVB_service_triplet_ID field of the results CRI structure (see clause 7.3.2.3). The index
of the first entry is zero. There shall be at most one instance of this CRI structure within a container. The syntax of the
services structure is defined by table 32.

Table 32: Services structure

Syntax Number of bits Identifier
Services() {
 for(j=0; j<NumServices; j++) {
 transport_stream_id 16 uimsbf
 original_network_id 16 uimsbf
 service_id 16 uimsbf
 }
}

transport_stream_id: The transport stream ID for the transport stream that carries the DVB service. If set to 0x0000
then this field shall be ignored and the DVB service shall be uniquely identified by a combination of
original_network_id and service_id.

original_network_id: The original network ID for the transport stream that carries the DVB service.

service_id: The DVB service ID for the DVB service.

ETSI

ETSI TS 102 323 V1.1.1 (2004-09) 40

7.3.2.5 Data repository

The data repository is used by both CRI index structures and CRI results structures for holding variable length strings. It
can be present in an index container or in a results container. All references to a data repository refer to the data
repository carried in the same container. The string_encoding field defines the encoding used for the strings contained
within. There shall be at most one data repository in a container. The structure_id field in the container_header entry
referring to a data_repository shall be set to 0x00. The syntax of the data repository is defined by table 33.

Table 33: Data repository structure

Syntax Number of bits Identifier
data_repository() {
 string_encoding 8 uimsbf
 for (i=0; i<item_count; i++) {
 if (string_encoding < 0x03) {
 for (j=0; j<stringlength; j++) {
 string_character 8 uimsbf
 }
 if(string_encoding == 0x00){
 0x00 8 uimsbf
 } else if(string_encoding == 0x01){
 0x00 8 uimbsf
 } else if(string_encoding == 0x02){
 0x0000
 }
 else { /* string_encoding ≥ 0x03*/
 for (j=0; j<stringlength; j++) {
 private_byte 8 uimsbf
 }
 }
 }
}

string_encoding: An 8 bit field used to define the character encoding system. This field shall be encoded according to
table 34.

Table 34: String encoding

Value Description Termination value
0x00 8 bit ASCII (ISO 646 [19]) 0x00
0x01 UTF-8 0x00
0x02 UTF-16 0x0000

0x03 to 0xE0 reserved undefined
0xE1 to 0xFF User Private undefined

7.3.3 CRI index structures

7.3.3.1 Description

The CRI indexing format consists of a three level indexing system (see figure 9). The first level is described by a
cri_index structure and the second by cri_prepend_index structures and the third by cri_leaf_index structures.

The first level of indexing, consisting of a single cri_index structure, lists ranges of CRID values, referencing one
cri_prepend_index structure for each range.

The second level, consisting of cri_prepend_index structures, groups CRIDs together that have the same initial string,
termed a prepend string. Each entry in the cri_prepend_index contains a prepend string and references the entries in the
third indexing layer that represent CRIDs that start with that prepend string.

ETSI

ETSI TS 102 323 V1.1.1 (2004-09) 41

The third level, consisting of cri_leaf_index structures, lists references to results and describes the variable string (the
last part of the CRID). Every cri_prepend_index references one subordinate cri_leaf_index structure. The entries in a
cri_prepend_index structure point to the relevant entries in the cri_leaf_index structure.

The full CRID string is fully recoverable by concatenating the appropriate prepend string from the second level with the
variable string of the third level.

When assigning prepend strings the CRID string is treated as a simple sequence of characters that can be split at any
point. The point at which the CRID string is split will depend on the amount of commonality in the first characters of
the CRID strings encoded.

cri_prepend_index

cri_leaf_index

cri_index
(string range)

CRID://bbc.co.uk/films/
range_end_offset=2

CRID://bbc.co.uk/sport/
range_end_offset=6

CRID://bbc.co.uk/soaps/
range_end_offset=4

from CRID://bbc.co.uk/f to
CRID://bbc.co.uk/s

from CRID://bbc.co.uk/a
to CRID://bbc.co.uk/e

from CRID://bbc.co.uk/t to
CRID://bbc.co.uk/z

T
itanic

G
ladiators

S
tar W

ars

W
orld C

up

W
im

bledon

E
astenders

N
eighbours

Figure 9: Example illustrating the use of string ranges, prepend strings and variable strings

7.3.3.2 Cri_index

The cri_index structure is the entry point for CRI carriage, it is the first structure that is located and decoded. It provides
a list of all cri_prepend_index structures, describing the ranges of CRID values that those structures relate to.

When the overlapping_subindices flag is set to "1" the receiver should attempt to de-reference CRID results for a
particular CRID by retrieving and parsing matching cri_prepend_index structures in the order that they are found in the
cri_index structures.

Having overlapping ranges enables prioritization of particularly important CRIDs within the indexing structure. These
CRIDs could be, for example, referencing programmes that are currently being broadcast or that will be broadcast very
soon. Prioritization by grouping of results data is independent of prioritization (if any) within the indexing structures.

When cri_prepend_index ranges are not flagged as overlapping (overlapping_subindices set to "0"), the
cri_prepend_index entries within the cri_index shall be in ascending lexicographical order. Lexicographical ordering
shall be applied to the encoded CRID string, that is after converting characters outside of the standard Latin set into
sequences of escaped octets, as defined in clause 6.2.

There shall only be one cri_index CRI structure within the CRI data delivered on a single PID. The syntax of the
cri_index structure is defined by table 35.

ETSI

ETSI TS 102 323 V1.1.1 (2004-09) 42

Table 35: Cri_index structure

Syntax Number of bits Identifier
cri_index() {
 overlapping_subindices 1 bslbf
 reserved_other_use 1 bslbf
 reserved 6 bslbf
 result_locator_format 8 uimsbf
 for (i=0; i<sub_index_count; i++) {
 if (overlapping_subindices == 1) {
 low_key_value_CRID 16 uimsbf
 }
 high_key_value_CRID 16 uimsbf
 prepend_index_container 16 uimsbf
 prepend_index_identifier 8 uimsbf
 }
}

overlapping_subindices: When set to "1" indicates that one or more of the cri_prepend_index structures which form
this index have ranges of values which overlap. Where cri_prepend_indices overlap entries in the cri_index structure are
in descending order of search priority. When set to "0" indicates that the sub indices do not overlap, in which case the
declared cri_prepend_index structures shall be ordered in ascending lexicographical order (see clause 6.2).

reserved_other_use: This field shall be set to "0".

reserved: All bits marked as being reserved shall be set to "1".

result_locator_format: Identifies the format of the result locator structure within cri_leaf_index CRI structures
referenced from this structure. This field shall be encoded according to table 36.

Table 36 : result_locator_format

Value Meaning
0x00 local_result_locator
0x01 remote_result_locator

0x02 to 0xFF DVB reserved

See clause 7.3.3.5 for definitions of the local_result_locator and remote_result_locator.

low_key_value_CRID: This 16 bit field is the offset, in bytes, from the first byte of the data repository to the first byte
of a CRID string. This CRID string must have a lexicographical value equal to or less than any CRID string referred to
by the referenced cri_prepend_index structure (see clause 6.2).

If the overlapping_subindices field is set to "0" then this field shall not be used. In this case, every CRID string referred
to by the referenced cri_sub_index structure must have an lexicographical value greater than the high_key_value_CRID
of the previous entry in this structure.

high_key_value_CRID: This 16 bit field is the offset, in bytes, from the first byte of the data repository to the first byte
of a CRID string. This CRID string must have a lexicographical value equal to or higher than any CRID string referred
to by the referenced cri_prepend_index structure (see clause 6.2).

NOTE: When defining the range of values which a particular sub index shall cover, sufficient space can be left in
containers to permit adding further CRID results without necessitating reallocation of the ranges of the
sub index structures.

prepend_index_container: This field is the container ID of the container carrying the cri_prepend_index structure.

prepend_index_identifier: This 8 bit field shall be equal to the value of the cri_structure_id field of the target
cri_prepend_index structure.

ETSI

ETSI TS 102 323 V1.1.1 (2004-09) 43

7.3.3.3 Cri_prepend_index

The cri_prepend_index CRI structure comprises the second level of indexing. Each cri_prepend_index structure
provides references (via a cri_leaf_index structure) to CRID results that are within the lexicographical range of values
specified by the cri_index structure.

For every cri_prepend_index structure there shall be a cri_leaf_index structure in the same container. These structures
have the same cri_structure_type but are differentiated by their cri_structure_id values. All references to a
cri_prepend_index or cri_leaf_index contain the cri_structure_id of the target structure, preventing confusion.
Cri_prepend_index and cri_leaf_index CRI structures are also differentiable by the value of the leaf_flag field, which is
present in both structures.

All entries within the sub index shall be ordered in ascending lexicographical order (see clause 6.2). When trying to
select the appropriate prepend string used for a CRID being resolved, the receiver shall select the longest matching
prepend string. A matching prepend string is defined as one where all characters in the prepend string match the
corresponding characters in the CRID.

All entries that share the same prepend string shall be grouped together in the subordinate cri_leaf_index structure.
These groups shall be in the same order as defined in the cri_prepend_index structure. For a given prepend string the
correct range of cri_leaf_index entries is defined as being from one after the range_end_offset for the previous prepend
string to the range_end_offset for the current prepend string. The start of the range for the first prepend string listed in a
cri_prepend_index is the first entry in the subordinate cri_leaf_index.

The syntax of the cri_prepend_index structure is defined by table 37.

Table 37: Cri_prepend_index structure

Syntax Number of bits Identifier
cri_prepend_index() {
 leaf_flag 1 bslbf
 reserved 7 uimsbf
 sub_index_ref 8 uimsbf
 for (j=0; j<reference_count; j++) {
 prepend_CRID_data 16 uimsbf
 range_end_offset 16 uimsbf
 }
}

leaf_flag: This shall be set to "0" indicating that this structure is a cri_prepend_index.

reserved: All fields marked as being reserved shall have all bits set to "1".

sub_index_ref: This 8 bit field identifies the cri_structure_id of the cri_leaf_index that is the final level. The target
cri_leaf_index shall be in the same container as this cri_prepend_index structure.

prepend_CRID_data: This 16 bit field gives the offset, in bytes, from the first byte of the data repository to the first
byte of the prepend string.

range_end_offset: This 16 bit field gives the zero-based index of the last entry within the relevant cri_leaf_index
structure that shares the current prepend string.

7.3.3.4 Cri_leaf_index

The cri_leaf_index CRI structure comprises the third level of indexing. Each entry in a cri_prepend_index structure
provides the variable string part of a CRID and a reference to the results for that CRID.

All entries within this structure shall be ordered in ascending lexicographical order. The syntax of the cri_leaf_index
structure is defined by table 38.

ETSI

ETSI TS 102 323 V1.1.1 (2004-09) 44

Table 38: Cri_leaf_index structure

Syntax Number of bits Identifier
cri_leaf_index() {
 leaf_flag 1 bslbf
 reserved 7 uimsbf
 for (j=0; j<reference_count; j++) {
 variable_CRID_data 16 uimsbf
 result_locator() variable
 }
}

leaf_flag: This 1 bit field shall be set to "1", indicating that this is a cri_leaf_index structure.

reserved: All fields marked as being reserved shall have all bits set to "1".

variable_CRID_data: This 16 bit field gives the offset, in bytes, from the first byte of the data repository to the first
byte of the variable CRID string for this entry.

result_locator: This sub-structure references the results for this CRID. The format of this locator is dependent on the
result_locator_format defined for this index within the cri_index structure. See clause 7.3.3.5 for the format of this field.

7.3.3.5 Result_locator formats

7.3.3.5.1 local_result_locator

If the CRI results structures are located in the same container as the cri_prepend_index CRI structure that refers to them
then the local_result_locator format may be used. The syntax of the local_result_locator structure is defined by table 39.

Table 39: Local_result_locator

Syntax Number of bits Identifier
local_result_locator {
 result_ptr 16 uimsbf
}

result_ptr: The offset, in bytes, from the first byte of the result_data CRI structure to the first byte of the relevant CRID
results.

7.3.3.5.2 remote_result_locator

If the CRI results structures are located in a separate container than the cri_leaf_index CRI structure then the
remote_result_locator format shall be used. The syntax of the remote_result_locator structure is defined by table 40.

Table 40: Remote_result_locator

Syntax Number of bits Identifier
remote_result_locator {
 target_container_id 16 uimsbf
 target_handle 16 uimsbf
}

target_container_id: The ID of the container holding the CRID content referencing result.

target_handle: This field identifies a CRID result within the target container. This value of this field shall match the
value of the handle_value field that corresponds to the relevant CRID result in the target container's results_list structure
(see clause 7.3.3.2).

ETSI

ETSI TS 102 323 V1.1.1 (2004-09) 45

8 Profile of TVA metadata over DVB transport streams

8.1 Introduction
The TV-Anytime metadata specification provides several options for how to structure descriptions of programme, group
and schedule information. This clause defines the options that are either mandatory, optional or not used, for
TV-Anytime metadata delivered over DVB transport streams.

NOTE: The present document does not provide any profiling for metadata delivered by other means.

8.2 Summary
Fragment DVB profile

ProgramInformation Required for support of metadata searching. In addition, a
ProgramInformation fragment (with the same CRID) shall be
present for each ScheduleEvent element that does not contain
an InstanceDescription element. Otherwise optional.

GroupInformation A GroupInformation fragment shall be present for each group
CRID that is referenced by other fragments. Otherwise optional.

BroadcastEvent Not used in the present document.
Schedule Optional.
ServiceInformation A ServiceInformation fragment shall be present for each

serviceID referenced by other fragments. Otherwise optional.
PersonName (from
CreditsInformationTable)

A PersonName fragment shall be present for each person that
is referenced from other fragments. Otherwise optional.

OrganizationName (from
CreditsInformationTable)

An OrganizationName fragment shall be present for each
organization that is referenced from other fragments. Otherwise
optional.

SegmentInformation Not specified by this version of the present document.
Review (from ProgramReviewTable) Optional.
OnDemandProgram Optional.
OnDemandService Optional.
ClassificationScheme Mandatory if any classification scheme other than those defined

in TS 102 822-3-1 [4] is referenced by any other fragment.
Otherwise optional.

8.3 ProgramInformation fragment
When a program is a member of a series, the EpisodeOf element should be present. When a program is a member of a
group that is not considered to be a series, the MemberOf element should be present.

When one or more Synopsis elements are present, the length attribute for each Synopsis element shall be present. The
lang attribute of the Title and Synopsis elements should be present. The programID attribute of the ProgramInformation
element shall contain a CRID. This CRID should be available in the CRI and will normally resolve to locators, but it
may resolve to other CRIDs.

8.4 GroupInformation fragment
The groupId attribute of the GroupInformation element shall contain a CRID that resolves to other CRIDs and not
locators. The Title element shall be present. When multiple synopsis elements are present, the length attribute of each
Synopsis element shall be present.

ETSI

ETSI TS 102 323 V1.1.1 (2004-09) 46

8.5 Schedule fragment
The ScheduleEvent elements within the Schedule element shall be in chronological order, with the earliest item first.
The Schedule element shall contain a start attribute that contains a time equal to or earlier to the PublishedStartTime of
the first ScheduleEvent element and an end attribute that contains a time that is equal to or greater than the end of the
last ScheduleEvent element. This end time is calculated by adding PublishedDuration to PublishedStartTime. Temporal
gaps may also exist between consecutive ScheduleEvent elements.

The start and end times in Schedule elements shall not overlap with other Schedule elements for the same service.
Taken together, the Schedule elements for a particular service shall form a contiguous chronological sequence.

The PublishedStartTime and PublishedDuration elements in the ScheduleEvent element shall be used, and the
PublishedEndTime element shall not be present. The Program element shall be present and shall contain a CRID that
can be found in the ProgramInformationTable and this CRID should also be present in the CRI.

The ProgramURL element may be present, to provide an indication of the expected broadcast location. If the
ProgramURL refers to an event delivered in a DVB transport stream it shall contain a DVB locator that refers to an
event, using the syntax as defined in clause 6.4. The CRI shall be considered the authoritative source of CRID to
location information.

The InstanceMetadataId may be present and when present the same IMI shall be available in the CRI.

8.6 ServiceInformation fragment
Optional elements that are absent in a ServiceInformation element may be taken from DVB-SI information.

The ServiceURL element shall be present and shall contain a valid DVB locator that refers to a service, using the syntax
as defined in clause 6.4.

The Name element shall either be an empty element, or contain the same name as specified by the SDT subtable for that
service. If the Name element is empty, its contents shall be inferred from the SDT subtable for that service.

If the Logo element is present, it shall contain a URL that points to an image file.

8.7 Other types
Elements of type anyURI, as defined by XML Schema Part 2: Datatypes [14], may contain a DVB locator (see
clause 6.4).

9 Delivery of metadata

9.1 Introduction
The TV-Anytime forum has defined how metadata shall be encoded and encapsulated for delivery over a unidirectional
network (see TS 102 822-3-2 [5]).

There are several aspects to this technology (see TS 102 822-3-2 [5], clause 4.2):

• Fragmentation: splitting the metadata document into a number of self-contained fragments.

• Encoding: binary encoding of fragments for efficient delivery.

• Encapsulation: structures for identification of fragments and concatenation of fragments into containers.

• Indexing: structures for identification of fragments according to the value of an attribute or element.

ETSI

ETSI TS 102 323 V1.1.1 (2004-09) 47

Both metadata and indices are carried in containers. However, TS 102 822-3-2 [5] does not define how containers are to
be delivered in a particular environment, such as DVB transport streams. In clause 4.5.1 of that specification the
following requirements are defined for the carriage of containers:

• Containers are to be classified into data containers or index containers (or containers that carry both).

• Containers are to be identifiable by a 16 bit identifier.

This clause defines how TV-Anytime metadata may be encoded and delivered on DVB transport streams. This clause
implements TS 102 822-3-2 [5] and defines a number of additional extensions and constraints. These include:

• Carriage of metadata containers by object carousel, including classification and identification.

• Additional semantics for encapsulation of fragments.

• Additional semantics and codecs for encoding of fragments using BiM.

• A set of profiled indices.

9.2 Delivery of containers

9.2.1 Delivery by MHP object carousel

The metadata_pointer_descriptor and the metadata_descriptor both contain a DVB_carriage_format field, which
signals the transport protocol being used for the metadata service being described (see clause 5.3.4). If the value of this
field is set to 0x00 then the metadata shall be delivered in an object carousel compliant with the object carousel profile
as defined in annex B of TS 102 812 [10] with the additional constraints defined in this clause.

Containers, as defined in TS 102 822-3-2 [5], clause 4.5.1, shall be carried within BIOP::FileMessages (file objects).
All containers for a single metadata service shall be referenced from the root directory (BIOP::DirectoryMessage or
BIOP::ServiceGatewayMessage) for that metadata service, as indicated by the relevant metadata descriptor (see
clause 5.3.4). Containers for a metadata service shall not be carried in sub-directories of the directory signalled by the
metadata descriptor for that metadata service. One object carousel may contain several metadata services.

Since the MHP profile of the object carousel provides a number of features that are not required for the delivery of TVA
metadata, within the context of the present document the constraints defined in table 41 shall be observed.

ETSI

ETSI TS 102 323 V1.1.1 (2004-09) 48

Table 41: MHP object carousel constraints

MHP section
B.2.2.4.1 Label descriptor Not used by the present document (see note).
B.2.2.4.2 Caching priority descriptor Not used by the present document (see note).
B.2.3.4 Content type descriptor Not used by the present document (see note).
B.2.3.7.2 LiteOptionsProfileBody All containers of a metadata service shall be carried in a single object

carousel. Therefore, LiteOptionsProfileBody may not form part of the
reference to any such container. However, external assets,
e.g. images, audio clips, referenced by the metadata service may be
delivered in a different object carousel, the LiteOptionsProfileBody
may be used as part of the reference to any such external assets.

B.2.3.8 BIOP StreamMessage Not used by the present document (see note).
B.2.3.9 BIOP StreamEventMessage Not used by the present document (see note).
B.2.4 Stream Events Not relevant to the present document.
B.2.10.2 DVB-J mounting of an object

carousel
Not relevant to the present document.

B.3.2 DSM-CC association_tags to
DVB component_tags

All DIIs and DDBs used in the delivery of a metadata service shall be
carried in elementary streams that are listed in the PMT that carries
the metadata descriptor for that metadata service (see clause 5.3.5).
Therefore, use of the deferred_association_tags_descriptor is not
required.

B.3.1.2 TapUse is
BIOP_PROGRAM_USE

Not used by the present document (see note).

B.5 Caching Informative for receiver manufacturers.
NOTE: Metadata services shall not include such information in the object carousel. Receivers may ignore the

presence of such information in the object carousel when accessing metadata services.

9.2.2 Container file names

The format for the file name for container files (i.e. the format of the NameComponent ID given in the binding that
references a container file) is defined by table 42.

Table 42: File name format for container files

container_file_name = mapped_container_id "." classification_indicator
mapped_container_id = hex_string
classification_indicator ="d" | "i" |"b"
hex_string = 4*hex
hex = digit | "A" | "B" | "C" | "D" | "E" | "F" | "a" | "b" | "c" |
 "d" | "e" | "f"
digit = "0" | "1" | "2" | "3" | "4" | "5" | "6" | "7" | "8" | "9"

The mapped_container_id carries the container ID for this container expressed as a hex_string.

The classification_indicator is a single character that indicates the classification of the container (see
TS 102 822-3-2 [5], clause 4.5.1.2). It shall be encoded according to table 43.

Table 43: classification_indicator

Value Semantics
"d" The container is a data container
"i" The container is an index container
"b" The container is both a data container and an index container

other values reserved

Table 44 contains example file names.

ETSI

ETSI TS 102 323 V1.1.1 (2004-09) 49

Table 44: Example file names

Example Container ID Container classification
"001F.d" 0x001F data container
"0DB6.b" 0x0DB6 data container and index container
"0000.i" 0x0000 index container which carries index list

9.3 Fragment encapsulation

9.3.1 Introduction

TS 102 822-3-2 [5], clause 4.6, defines how fragments shall be encapsulated within containers. As part of that
encapsulation the encapsulation structure uses fragment references as a means to reference fragments and provide
version information for those fragments. The present document defines a DVB BiM fragment reference, which is
necessary for supporting the dvbStringCodec defined in clause 9.4.3.3. The DVB BiM fragment reference differs from
the fragment reference defined in TS 102 822-3-2 [5] by containing an additional external string buffer reference.

Figure 10 illustrates the format of a data container where the encapsulation structure uses the DVB fragment reference.

 Container
Header

Encapsulation
structure

Binary Data
Repository (BiM

fragments)

String Data
Repository

Fragment 2

Fragment 1 Data

Fragment 1

Fragment 1 String

Fragment 2 Data

Fragment 2 String

Figure 10: Example illustrating container when using DVB fragment references

9.3.2 Encapsulation structure

This clause defines additional semantics of fields of the encapsulation structure as defined in TS 102 822-3-2 [5],
clause 4.6.1.1.

fragment_reference_format: This field defines the format and the interpretation of the fragment_reference field. This
field shall be encoded according to table 45.

Table 45: Fragment reference format

Value Semantics
0x00 to 0xE0 Defined by TS 102 822-3-2 [5], clause 4.6.1.1

0xE1 DVB_BiM_fragment_reference
0xE2 to 0xEF DVB Reserved
0xF0 to 0xFF User defined

If a container carries fragments that use the dvbStringCodec then the fragment_reference_format field shall be set to
0xE1.

ETSI

ETSI TS 102 323 V1.1.1 (2004-09) 50

9.3.3 DVB BiM fragment reference

The format of the DVB BiM fragment reference is defined by table 46.

Table 46: DVB BiM fragment reference

Syntax Number of bits Mnemonic
DVB_BiM_fragment_reference () {
 BiM_fragment_ptr 16 uimsbf
 external_string_buffer_ptr 16 uimsbf
}

BiM_fragment_ptr: The zero-based offset in bytes from the start of the binary repository within this container to the
first byte of the FragmentUpdateUnit() enclosing the intended fragment.

external_string_buffer_ptr: The zero-based offset in bytes from the start of the string repository within this container
to the first byte of the external string buffer for the fragment.

The structure of the data repositories of type string data (or "string repository") is specified in TS 102 822-3-2 [5],
clause 4.8.4.1. The structure of the data repositories of type binary data (or "binary repository") is defined in
clause 9.4.3.2.

9.4 Fragment encoding

9.4.1 Introduction

In order to simplify the implementation of BiM decoders and to improve the compression of TV-Anytime fragments,
the present document imposes a number of restrictions on the TVA MPEG-7 BiM profile, as defined in
TS 102 822-3-2 [5].

9.4.2 Rules for BiM encoding

9.4.2.1 DVB-TVA-init message

The present document defines a DVB profile of the TVA MPEG-7 profile defined in TS 102 822-3-2 [5]. A new
encoding version is introduced and a number of restrictions have been imposed on the initialization of the BiM
decoders. The DVB-TVA-init message shall be delivered as specified in clause 5.3.4. The DVB-TVA-init message is
adapted from the TVA-init message defined in TS 102 822-3-2 [5], clause 4.4.1, it shall be encoded according to
table 47.

ETSI

ETSI TS 102 323 V1.1.1 (2004-09) 51

Table 47: DVB-TVA-init

Syntax Number of bits Mnemonic
DVB-TVA-init {
 EncodingVersion 8 uimsbf
 IndexingFlag 1 bslbf
 reserved 7
 DecoderInitptr 8 bslbf
 if(EncodingVersion == "0x01" ||
 EncodingVersion == "0xF0") {
 BufferSizeFlag 1 bslbf
 PositionCodeFlag 1 bslbf
 reserved 6
 CharacterEncoding 8 uimsbf
 if (BufferSizeFlag == "1") {
 BufferSize 24 uimsbf
 }
 }
 if(IndexingFlag) {
 IndexingVersion 8 uimsbf
 }
 Reserved 0 or 8+
 DecoderInit() bslbf
}

The semantic of all terms of the DVB-TVA-init message is as defined for the TVA-init message defined in
TS 102 822-3-2 [5], excepted for the PositionCodeFlag and EncodingVersion fields.

EncodingVersion: This field indicates the method of encoding used to represent the TVA metadata fragments. This
field shall be encoded according to table 48.

Table 48: Encoding version

Value Encoding version
0x00 to 0xEF TVA reserved

0xF0 DVB profile of TVA MPEG_7 profile (BiM) ISO/IEC 15938-1 [9] as
defined in the present document

0xF1 to 0xF7 DVB reserved
0xF8 to 0xFF User defined

PositionCodeFlag: This field indicates if the BiM contextPath Position Code is used in the encoded fragment. This
field shall be set to "0".

NOTE 1: This value indicates that the position code is not used within the contextPath, as defined in clause 9.4.2.3.
This means that the canonical format of the instance description is not preserved, i.e. the relative ordering
of fragments is not preserved.

CharacterEncoding: This field shall be encoded as defined by TS 102 822-3-2 [5], clause 4.4.1.

NOTE 2: For compatibility it is advised that receivers should at least support the UTF-8 character encoding format.

9.4.2.2 DecoderInit and default TVAMain fragment

In BiM, the DecoderInit is used to configure parameters required for the decoding of the binary fragments and to
transmit the initial state of the decoder.

At least one schema URN shall be transmitted in the DecoderInit. Consequently, the field NumberOfSchemas of the
DecoderInit shall be greater or equal to 1 and the field SchemaURI[0] of the DecoderInit shall be set to
"urn:tva:metadata:2002", indicating the use of the schema defined by TS 102 822-3-1 [4].

ETSI

ETSI TS 102 323 V1.1.1 (2004-09) 52

Additional schemas may be signalled if the TV-Anytime metadata types are extended. If this is the case the zero-based
index of the entry of the schemas also serves as a means of defining namespace prefixes in index XPaths. This is an
extension to the predefined prefixes defined in TS 102 822-3-2 [5], clause 4.8.5.3. The resulting namespace prefixes
shall be generated according to the format defined in table 49. An example of the use of namespace prefixes for
extended schemas is given in clause D.3. Since the first schema signalled in the DecoderInit is always that defined by
TS 102 822-3-1 [4] and that schema has a predefined prefix (see TS 102 822-3-2 [5], clause 4.8.5.3), the prefix "d0" is
disallowed.

Table 49: Format for namespace prefixes

namespace_prefix = "d" namespace_index
namespace_index = * digit
digit = "0" | "1" | "2" | "3" | "4" | "5" | "6" | "7" | "8" | "9"

The initial state of a BiM decoder for a binary description tree is given by an initial description. In a TVA fragment
stream, the initial description is given by the TVAMain fragment.

In the present document, the transmission of the initial description to the decoder is not mandatory. If the TVAMain
fragment is not delivered to the decoder, the decoder is initialized with a default TVAMain fragment. The default
TVAMain fragment is defined in table 50.

Table 50: Default TVAMain fragment

<TVAMain xmlns='urn:tva:metadata:2002'>
 <ClassificationSchemeTable />
 <ProgramDescription>
 <ProgramInformationTable />
 <GroupInformationTable />
 <ProgramLocationTable />
 <ServiceInformationTable />
 <CreditsInformationTable />
 <ProgramReviewTable />
 <SegmentInformationTable>
 <SegmentList />
 <SegmentGroupList />
 </SegmentInformationTable>
 </ProgramDescription>
</TVAMain>

If the TVAMain fragment is delivered to the decoder, it shall be encapsulated in a data container as defined in the
clause 9.3, and this container shall be delivered as defined in the clause 9.2 with the following restriction: the name of
the file name for the container which conveys the TVAMain fragment shall be </TVAMain>.

As a consequence, the InitialDescription() field of the DecoderInit message as specified in ISO/IEC 15938-1 [9], shall
always be empty.

9.4.2.3 DVB BiM access unit

In BiM, a path is encoded at the beginning of each fragment. This path specifies the type of the element encoded in the
fragment. The TVA MPEG-7 BiM profile specify the fixed set of possible TV-Anytime fragments. The present
document replaces the resulting ContextPath expressions in the fragment encoding, whose format is defined in
ISO/IEC 15938-1 [9], clause 7.6.5, by a set of fixed ContextPath values identifying the type of the TVA fragments.

ETSI

ETSI TS 102 323 V1.1.1 (2004-09) 53

As a consequence, the definition of the binary_ repository table as specified in TS 102 822-3-2 [5], clause 4.6.1.4.1.1, is
profiled according to table 51.

Table 51: Binary repository carrying DVB BiM access unit

Syntax Number of bits Identifier
binary_repository() {
 DVBBiMAccessUnit {
 NumberOfFUU 8+ vluimsbf8
 for(i=0; i< NumberOfFUU; i++) {
 FUULength 8+ vluimsbf8
 DVBContextPath 16 uimsbf
 FragmentUpdatePayload(startType)
 }
 }
 for (i=0; i<N; i++) {
 private_byte 8 uimsbf
 }
}

startType: This flag is set to the EquivalentStartType associated to the value of the DVBContextPath flag as defined in
table 52.

FragmentUpdatePayload: Triggers the decoding of the TV-anytime fragment of type startType as defined in
ISO/IEC 15938-1 [9], clause 8.3.

DVBContextPath: This field identifies the type of the fragment. It shall be encoded according to table 52. This table
defines the DVBContextPath value for each fragment type defined by TS 102 822-3-2 [5], clause 4.3. The
EquivalentStartType type names are namespace qualified and use the following namespace prefix:

• tva urn:tva:metadata:2002.

Table 52: DVBContextPath

Value Description EquivalentStartType
0x0000 reserved
0x0001 ProgramInformation fragment tva:ProgramInformationType
0x0002 GroupInformation fragment tva:GroupInformationType
0x0003 OnDemandProgram fragment tva:OnDemandProgramType
0x0004 BroadcastEvent fragment tva:BroadcastEventType
0x0005 Schedule fragment tva:ScheduleType
0x0006 ServiceInformation fragment tva:ServiceInformationType
0x0007 PersonName fragment LocalType(tva:CreditsInformationTableType,

PersonName)
0x0008 OrganizationName fragment LocalType(tva:CreditsInformationTableType,

OrganizationName)
0x0009 Review fragment LocalType(tva:ProgramReviewTableType, Review)
0x000A CSAlias fragment LocalType(tva:ClassificationSchemeTableType,

CSAlias)
0x000B ClassificationScheme fragment LocalType(tva:ClassificationSchemeTableType,

ClassificationScheme)
0x000C SegmentInformation fragment tva:SegmentInformationType
0x000D SegmentGroupInformation fragment tva:SegmentGroupInformationType
0x000E TVAMain fragment tva:TVAMainType
0x000F OnDemandService fragment tva:OnDemandServiceType

0x0010 to 0x00EF DVB Reserved
0x00F0 to 0xFFFF User defined

ETSI

ETSI TS 102 323 V1.1.1 (2004-09) 54

LocalType(T, E): represents the local type of the child element whose name is E in the content model of the type T. In
XML Schema, local types defined within the content model of a type T are anonymous (no global name for T is
defined). As none W3C tool is currently available in order to point to such types, the function LocalType has been
defined.

EXAMPLE: LocalType(tva:CreditsInformationTableType, PersonName) represents the local type of the child
elements whose name are "PersonName" in the type tva:CreditsInformationTableType. See
figure 11.

 <complexType name="CreditsInformationTableType">

 <sequence>
 <choice minOccurs="0" maxOccurs="unbounded">

 <element name="PersonName">
 <complexType>

 <complexContent>
 <extension base="mpeg7:PersonNameType">

 <attribute name="personNameId"

type="tva:TVAIDType" use="required" />
 <attributeGroup ref="tva:fragmentIdentification"/>

 </extension>
 </complexContent>

 </complexType>

 </element>

 <element name="OrganisationName">
 </choice>

 </sequence>
 <attribute name="copyrightNotice" type="string" use="optional" />

 </complexType

LocalType(tva:CreditsInformationTableType,
PersonName)

Figure 11: Example for localType function

9.4.3 Codec definitions

9.4.3.1 Introduction

The present document defines a set of codecs that shall be used by default for the encoding of TV-Anytime fragment in
the DVB-GBS context.

9.4.3.2 Classification scheme of DVB codecs

In the MPEG-7 framework, the use of a specific codec for a specific type is signalled using the codec configuration
mechanism defined in ISO/IEC 15938-1 [9]. This mechanism associates a codec using its URI with a list of schema
types. For that purpose, a URI is assigned to each codec in a classificationScheme, which defines the list of the specific
codecs.

In the present document, this list is composed of the following codecs: dvbStringCodec, dvbDateTimeCodec,
dvbDurationCodec, dvbLocatorCodec, and dvbControlledTermCodec. The following figure gives the standard
ClassificationScheme used by the present document.

ETSI

ETSI TS 102 323 V1.1.1 (2004-09) 55

<ClassificationScheme uri="urn:tva:metadata:2002:cs:CodecTypeCS ">
 <Term termID="1">
 <Name xml:lang="en">dvbStringCodec</Name>
 <Definition xml:lang="en">Encodes string by using an external string
 buffer</Definition>
 </Term>
 <Term termID="2">
 <Name xml:lang="en">dvbDateTimeCodec</Name>
 <Definition xml:lang="en">Encodes date using Modified Julian Date & Time in
 Millisecond and differential encoding</Definition>
 </Term>
 <Term termID="3">
 <Name xml:lang="en">dvbDurationCodec</Name>
 <Definition xml:lang="en">Encodes duration using strings or
 approximation with an accuracy of 1 minute </Definition>
 </Term>
 <Term termID="4">
 <Name xml:lang="en">dvbLocatorCodec</Name>
 <Definition xml:lang="en">Encodes DVB Locator using prefix dictionary </Definition>
 </Term>
 <Term termID="5">
 <Name xml:lang="en">dvbControlledTermCodec</Name>
 <Definition xml:lang="en">Encodes Controlled Terms using indices</Definition>
 </Term>
</ClassificationScheme>

Figure 12: DVB codec classification

9.4.3.3 dvbStringCodec

9.4.3.3.1 Introduction

The dvbStringCodec codec, as defined in this clause, may be used for the encoding of strings.

9.4.3.3.2 Rationale and encoding process (informative)

9.4.3.3.2.1 Rationale

Most TV-Anytime fragments are likely to have a rather small size. This implies a limited redundancy over the string
data, and therefore the efficiency of the zlibCodec string codec, as specified by TS 102 822-3-2 [5], might be poor. On
another hand some redundancy in the strings across different fragments can be expected. Therefore, to achieve good
compression ratio, the optimized dvbStringCodec codec gather the strings of all binary fragments of a TV-Anytime
container in a single string repository within this container. The delivery method used for carrying the TV-Anytime data
containers applies a compression method to the whole container. For instance, a metadata container may be transmitted
within a compressed object carousel module. Therefore the statistical compression can take advantage of the
inter-fragment redundancy.

9.4.3.3.2.2 Encoding

At the encoding time, the dvbStringCodec gathers all the strings from a BiM fragment in an external string buffer. The
external string buffers of all fragments of a TV-Anytime container shall be stored in a string repository in the same
container. This dvbStringCodec is reinitialized for each TV-Anytime fragment. The syntax of the string repository is as
specified in TS 102 822-3-2 [5], clauses 4.6.1.4 and 4.8.4.1.

Figure 13 represents how a regular BiM bitstream can be converted into a BiM bitstream as supported by the present
dvbStringCodec and its associated external string repository.

ETSI

ETSI TS 102 323 V1.1.1 (2004-09) 56

 Strings

iM Fragment

xternal string
uffer

Regular BiM bitstream

BiM bitstream with
external string buffer

Figure 13: BiM bitstream with an external string buffer

The external string buffers are sets of consecutive strings separated by a string_terminator as defined
TS 102 822-3-2 [5], clause 4.8.4.1.

9.4.3.3.2.3 Decoding principle

The principle of the decoding a BiM fragment with an external string buffer is the same as the decoding of a regular
BiM bitstream. The main difference so far is that the string codec is reading the string data from the external string
buffer instead of reading the strings from the main regular BiM bitstream.

At the beginning of the decoding of a BiM Fragment unit, the string codec is initialized with a reference to the first byte
of the first string of the external string buffer.

9.4.3.3.2.4 Managing schema compatibility and skippable chunks

Things get a bit complicated when one want the string codec to support schema compatibility (in that case, the decoder
can skip extended elements - see clause 9.4.4) or allow the user to skip parts of the bitstream. Indeed, at decoding time
after a chunk of the bitstream is skipped, the string codec must be re-synchronized at the appropriate place in the
external string buffer.

This is done by inserting in the BiM bitstream, for each string immediately following the end of a skippable element,
the offset of this string in the external string buffer. When decoding the string, the decoder reads this offset and use it to
re-synchronize the string codec at the appropriate location in the external string buffer.

Figure 14 illustrates how the bitstream shall be encoded in order to support the skip of an element which preceded a
string element.

iM Fragment

xternal string
uffer

BiM bitstream with
external string buffer

skippable element

Offset of the first string
following the end of the
skippable element

Figure 14: BiM bitstream with a skippable element before a string element

9.4.3.3.3 Decoding

The format for this codec is defined in table 53.

ETSI

ETSI TS 102 323 V1.1.1 (2004-09) 57

Table 53: dvbStringCodec

Syntax Number of bits Identifier
dvbStringCodec () {
 if(isFollowingSkippableElement == 1) {
 string_offset 16 uimsbf
 resynchronizeCodec(string_offset)
 }
 getNextStringFromBuffer()
}

isFollowingSkippableElement: This field shall be set to "1" when the decoder is decoding the first of the strings
following the end of a skippable element. In this case, this means that the offset of this string in the external string
repository shall be read in the bitstream.

string_offset: The offset in bytes, from the beginning of the external string buffer, of the first character of the string
being decoded.

resynchronizeCodec(string_offset): Synchronizes the dvbStringCodec on the first byte, in the external string buffer, of
the string to be decoded. The offset, in bytes, from the beginning of the external string buffer, is given by the
string_offset parameter.

getNextStringFromBuffer(): Reads the current string in the external string buffer, and jumps to the first byte of the
next string of the buffer.

9.4.3.4 dvbLocatorCodec

9.4.3.4.1 Usage

The dvbLocatorCodec is used by default for the encoding of elements or attributes of type anyURI in order to
efficiently encode the DVB Locator as defined in clause 6.4.

9.4.3.4.2 Rationale and encoding process (informative)

Within a single TV-Anytime fragment a given DVB locator prefix, composed of the original networks ID, a transport
stream ID and a service ID, is often reused by several CRIDs. In order to efficiently encode this repetition, the
dvbLocatorCodec reuses the prefix of the decoded DVB locator which is immediately preceding in the fragment if it
has the same prefix.

9.4.3.4.3 Decoding

The format of the DVBLocatorCodec is defined by table 54.

Table 54: DVBLocatorCodec

Name Number of bits Identifier
DVBLocatorCodec() {
 optimized_codec_flag 1 bslbf
 if (optimized_codec_flag == 1) {
 OptimizedDVBLocator()
 } else {
 dvbStringCodec()
 }
}

optimized_codec_flag: A flag which indicates whether the optimized codec is used or not. If not, the default string
encoding codec is used.

dvbStringCodec(): For the definition of the dvbStringCodec() see clause 9.4.3.3.

ETSI

ETSI TS 102 323 V1.1.1 (2004-09) 58

OptimizedDVBLocator(): This field encodes the DVB locator in a optimized way. The format for this field is defined
by table 55.

Table 55: OptimizedDVBLocator

Name Number of bits Identifier
OptimizedDVBLocator() {
 prefix_flag 1 bslbf
 if (prefix_flag ==1) {
 DVBLocatorPrefix()
 }
 ctag_flag 1 bslbf
 if (ctag_flag ==1) {
 component_tags()
 }
 eventOrTVAflag 2 bslbf
 if (eventOrTVAflag == 01) {
 event_id 16 uimsbf
 }
 else if (eventOrTVAflag == 10) {
 TVA_id 16 uimsbf
 }
 time_flag 1 bslbf
 if (time_flag = 1){
 day_flag 1 bslbf
 if (day_flag = 1) {
 day 16 uimsbf
 }
 time 17
 duration 17
 }
 path_segments_flag 1 bslbf
 if (path_segments_flag ==1) {
 path_segments()
 }
}

prefix_flag: If the prefix_flag is set to "1" the DVBLocatorPrefix is encoded. For the first occurrence in the fragment,
this flag shall be set to 1. For subsequent occurrences, the prefix_flag may be set to "0" in which case the previous value
of DVBLocatorPrefix encoded in this fragment is reused.

If this field is set to "1" within a skippable encoded chunk relating to a schema extension, then the next occurrence of
this codec outside of that encoded chunk shall set this field to "1". For extending the TV-Anytime schema see
clause 9.4.4.

NOTE 1: This is to prevent problems with the reused information being set in part of the BiM bitstream
inaccessible by a receiver that doesn't understand the extended schema. This receiver would use the
wrong value of the reused information for the next occurrence.

DVBLocatorPrefix: This field encodes the original_network, the transport_stream and the service_id. If the
transport_stream_id field is set to 0x0000 then it shall be ignored and the DVB service shall be uniquely identified by a
combination of original_network_id and service_id. The format of this field is defined by table 56.

Table 56: DVBLocatorPrefix

Name Number of bits Identifier
DVBLocatorPrefix() {
 transport_stream_id 16 uimsbf
 original_network_id 16 uimsbf
 service_id 16 uimsbf
}

ctag_flag: If the ctag_flag is set to "1" the one or more component_tags() field of the dvb locator are encoded.

ETSI

ETSI TS 102 323 V1.1.1 (2004-09) 59

component_tags(): This field encodes the component_tag fields of the dvbLocator in a string representation. The
format of this field is defined by table 57.

Table 57: component_tag

Name Number of bits Identifier
component_tags() {
 dvbStringCodec()
}

eventOrTVAFlag: This field indicates if an event_id or a TVA_id or none of them is encoded. This field shall be
encoded according to table 58.

Table 58: eventOrTVAFlag

Value Description
"00" event-id and TVA-id are not encoded
"01" event_id is encoded
"10" TVA_id is encoded
"11" reserved

time-flag: This flag shall be set to "1" if time information is encoded. Otherwise it shall be set to "0".

day_flag: If the day_flag is set to "1", the day is encoded. For the first occurrence in a fragment this flag shall be set to
"1". For subsequent occurrences the day_flag may be set to "0" in which case the previous value of day encoded in this
fragment is reused.

If this field is set to "1" within a skippable encoded chunk relating to a schema extension, then the next occurrence of
this codec outside of that encoded chunk shall set this field to "1". For extending the TV-Anytime schema see
clause 9.4.4.

NOTE 2: This is to prevent problems with the reused information being set in part of the BiM bitstream
inaccessible by a receiver that doesn't understand the extended schema. This receiver would use the
wrong value of the reused information for the next occurrence.

day: The date to which this locator refers. This field is coded as 16 bits giving the 16 LSBs of MJD. See
EN 300 468 [1], annex C.

time: The time of day to which this locator refers. This field is represented using 17 bits expressed as the number of
elapsed seconds since midnight.

duration: Is represented using 17 bits expressed as the number of elapsed seconds.

path_segments(): This field encodes the path_segments component of the dvbLocator in a string representation. The
format of this field is defined by table 59.

Table 59: path_segments

Name Number of bits Identifier
path_segments() {
 dvbStringCodec()
}

dvbStringCodec(): For the definition of the dvbStringCodec see clause 9.4.3.3.

9.4.3.5 dvbDateTimeCodec

9.4.3.5.1 Rationale and encoding process (informative)

The XML Schema primitive simple type dateTime is used widely within the TVA metadata Schema, and so a specific
codec has been designed to represent date time elements or attributes.

ETSI

ETSI TS 102 323 V1.1.1 (2004-09) 60

Times shall be based on UTC, with no provision provided for maintaining the local time offset information. Any
requirement to localize time values shall be performed by the receiving terminal.

The dateTime type is used by the following TV-Anytime types: TVAMainType, ScheduleType, ScheduleEventType,
OnDemandProgramType, and ServiceRefType.

Within a single TV-Anytime fragment a given date is often reused. In order to efficiently encode this repetition, the
dvbDateTimeCodec can reuse the value of the immediately preceding date instead of re-encoding it.

When the date is different from the previously encoded one, the date is represented using 2 bytes as a Modified Julian
Date.

In order to further improve the compression ratio of dateTime elements or attributes, the time information are
represented using 11 bits, with an accuracy of 1 min.

9.4.3.5.2 Decoding

The format of the dvbDateTimeCodec is defined by table 60.

Table 60: dvbDateTimeCodec

Name Number of bits Identifier
dvbDateTimeCodec() {
 dateTime_Flag 2 bslbf
 if (dateTime_flag==00) {
 dateTimeOfTVA 64 bslbf
 }
 if (dateTime_flag==01) {
 PublishedTime()
 }
}

dateTime_flag: This flag is used to state the encoding mode of the dateTime element or attribute. When an accuracy of
one minute is sufficient, publishedTime() should be used. PublishedTime() is recommended for encoding the
publishedStartTime and publishedEndTime sub-elements of the ScheduleEventType type. This field shall be encoded
according to table 61.

Table 61: dateTime_flag

Value Semantic
00 the dateTime codec as defined in TS 102 822-3-2 [5], clause 4.4.2.4.2 is used
01 A published time is encoded

10 to 11 reserved

dateTimeOfTVA: The dateTime elements or attributes shall be encoded with the dateTimeCodec as defined in
TS 102 822-3-2 [5], clause 4.4.2.4.2.

PublishedTime(): Optimized encoding of the dateTime elements or attributes as defined in the present document. This
field shall be formatted according to table 62.

Table 62: PublishedTime

Name Number of bits Identifier
PublishedTime() {
 date_flag 1 bslbf
 if (date_flag == 1) {
 date 16 bslbf
 }
 time 11 uimsbf
}

ETSI

ETSI TS 102 323 V1.1.1 (2004-09) 61

date_flag: If the this field is set to "1", the date is encoded. For the first occurrence in the fragment, this field shall be
set to "1". For subsequent occurrences, the date_flag field may be set to "0" in which case the previous value of date
encoded in this fragment is reused.

If this field is set to "1" within a skippable encoded chunk relating to a schema extension, then the next occurrence of
this codec outside of that encoded chunk shall set this field to "1". For extending the TV-Anytime schema see
clause 9.4.4.

NOTE: This is to prevent problems with the reused information being set in part of the BiM bitstream
inaccessible by a receiver that doesn't understand the extended schema. This receiver would use the
wrong value of the reused information for the next occurrence.

date: Modified Julian Date represented using 2 bytes as defined in EN 300 468 [1], annex C.

time: Time of the day represented using 11 bits, expressed as the number of elapsed minutes since midnight.

9.4.3.6 dvbDurationCodec

9.4.3.6.1 Rationale and encoding process (informative)

The XML Schema primitive simple type duration is used widely within the TVA metadata Schema, and so a specific
codec has been designed to represent date time elements or attributes.

The XML Schema primitive simple type duration is used by the following TV-Anytime types: ScheduleEventType, and
OnDemandProgramType.

In order to efficiently encode duration elements or attributes, it is recommended to represent the duration information
are represented using 11 bits, with an accuracy of 1 min.

9.4.3.6.2 Decoding

The format of the dvbDurationCodec is defined by table 63.

Table 63: dvbDurationCodec

Name Number of bits Identifier
dvbDurationCodec() {
 encoding_flag 1 bslbf
 if (encoding_flag == 0) {
 dvbStringCodec()
 }
 if (encoding_flag == 1) {
 minutes 11 uimsbf
 }
}

encoding_flag: If the encoding_flag is set to 0, the duration is encoded as a string as specified by XML Schema
part 2 [14], clause 3.2.6. If the encoding_flag is set to 1, the duration is encoded as a number of minutes.

dvbStringCodec(): For the definition of the dvbStringCodec see clause 9.4.3.3.

minutes: The duration is encoded as a number of minutes and represented using 11 bits.

9.4.3.7 dvbControlledTermCodec

9.4.3.7.1 Usage

The dvbControlledTermCodec codec is used by default for encoding elements and attributes of type
termReferenceType.

ETSI

ETSI TS 102 323 V1.1.1 (2004-09) 62

9.4.3.7.2 Rationale and encoding process (informative)

Default classification schemes have been developed by TV-Anytime to provide a universally applicable default set of
classification terms.

The following dvbControlledTermCodec shall be used by default for encoding the fixed values defined by
TV-Anytime. It encodes references to the classification scheme and a controlled term from that scheme.

When using the dvbControlledTermCodec for fixed terms defined by TV-Anytime classification schemes, it is
recommended that elements of type ControlledTermType should not include Name or Definition child elements.

9.4.3.7.3 Decoding

The format of the ControlledTermCodec is defined by table 64.

Table 64: ControlledTermCodec

Name Number of bits Identifier
dvbControlledTermCodec () {
 encoding_flag 1 bslbf
 if (encoding_flag == 0) {
 dvbStringCodec()
 }
 if (encoding_flag == 1) {
 ClassificationSchemeID 8 uimsbf
 termID 8+ vluismbf8
 }
}

encoding_flag: If the encoding_flag is set to 0, the term reference is encoded as a string. If the encoding_flag is set to 0,
the term reference as a pair of classification schema identifier and term identifier.

dvbStringCodec(): For the definition of the dvbStringCodec see clause 9.4.3.3.

ClassificationSchemeID: An identifier for the classification scheme defined in TS 102 822-3-1 [4] annex A. This field
shall be encoded according to table 65.

Table 65: ClassificationSchemeID

Value Classification scheme URI
0x00 reserved
0x01 urn:tva:metadata:cs:ActionTypeCS:2002
0x02 urn:tva:metadata:cs:AtmosphereCS:2002
0x03 urn:tva:metadata:cs:ContentAlertCS:2002
0x04 urn:tva:metadata:cs:ContentCommercialCS:2002
0x05 urn:tva:metadata:cs:ContentCS:2002
0x06 urn:tva:metadata:cs:FormatCS:2002
0x07 urn:tva:metadata:cs:HowRelatedCS:2002
0x08 urn:tva:metadata:cs:IntendedAudienceCS:2002
0x09 urn:tva:metadata:cs:IntentionCS:2002
0x0A urn:tva:metadata:cs:LanguageCS:2002
0x0B urn:tva:metadata:cs:MediaType:2002
0x0C urn:tva:metadata:cs:OriginationCS:2002
0x0D urn:mpeg:mpeg7:cs:RoleCS:2001
0x0E urn:tva:metadata:cs:TVARoleCS:2002

0x0F to 0xEF DVB Reserved
0xF0 to 0xFF User Private

termID: The rank of the element in the classification Scheme, according to the document order defined in
TS 102 822-3-1 [4], annex A. This termID is coded as a vluimsbf8 in order to support extension to the classification
schemes. The rank of the first term according to document order shall be zero.

ETSI

ETSI TS 102 323 V1.1.1 (2004-09) 63

NOTE: The rank of an element should not be calculated before processing all import statements and ordering all
imported elements.

Guidelines for extending classification schemes with new controlled terms, while maintaining compatibility with the
existing classification schemes, are provided in annex F.

9.4.4 Forward compatibility

9.4.4.1 Use of forward compatible mode

A decoder shall be able to decode all information related to the schema identified by the urn "urn:tva:metadata:2002"
and shall be able to skip information related to any schema extensions.

If the schema "urn:tva:metadata:2002" is extended, instance documents using those extensions shall be encoded in a
forward compatible manner.

9.4.4.2 Overview (informative)

As defined in ISO/IEC 15938-1 [9], with some constraints, interoperability is provided between different versions of
ISO/IEC 15938 schema definitions, without the full knowledge of all schema versions being required.

It is assumed that the updated version of a schema imports the previous version of that schema. Forward compatibility
allows a decoder only aware of a previous version of a schema to partially decode a description conformant to an
updated version of that schema.

Forward compatibility is ensured by a specific syntax defined in ISO/IEC 15938-1 [9], clauses 7 and 8. Its main
principle is to use the namespace of the schema, i.e. the Schema URI, as a unique version identifier. The binary format
allows one to keep parts of a description related to different schema in separate chunks of the binary description stream,
so that parts related to unknown schema may be skipped by the decoder.

In order for this approach to work, an updated schema should not be defined using the ISO/IEC 15938-2 [20] "redefine"
construct but should be defined in a new namespace. The Decoder Initialization identifies schema versions with which
compatibility is preserved by listing their Schema URIs. A decoder that knows at least one of the Schema URIs will be
able to decode at least part of the binary description stream.

In case an updated version of the schema is used, an element is coded in several version-consistent bitstream chunks
i.e. ElementContentChunks. All elements in an ElementContentChunk are decoded using a single schema. A schema
identifier is present before each ElementContentChunk. These identifiers are generated on the basis of URIs conveyed
in the DecoderInit (see ISO/IEC 15938-1 [9], clause 7.2). A Length is present when the element is coded in several
ElementContentChunks, allowing the decoder to skip ElementContentChunks related to unknown schema.

NOTE: The decoder keeps track of a SchemaModeStatus. It is used to improve coding efficiency. The decoder
can "freeze" the schema needed to decode the description. In this case no overhead is induced by the
multiple-version element coding for the elements contained in the element being decoded, i.e. the entire
sub-tree.

9.4.4.3 Multiple version encoding of an element (informative)

Each XML element is associated to a type which defines its content model. Derived types are defined by restriction or
extension of existing types. When managing different versions of a schema, a version 2 type might extend a version 1
type as shown in figure 15. In this case, a multiple-version coding can be used to provide a forward compatible coding
of this element. For example, the type T2.6 can be coded in two ElementContentChunks. The first
ElementContentChunk could encode those parts of T2.6 which were derived from T1.4 (see figure 16). Encoding would
be done exactly as if it were type T1.4. The second ElementContentChunk then encodes the difference between types
T1.4 and T2.6. A "Schema-1-decoder" will be able to decode the first part of the element content and skip the second
part using the Length information. Figure 17 shows the same element encoded in a non forward compatible way.

ETSI

ETSI TS 102 323 V1.1.1 (2004-09) 64

Schema 1

Schema 2

Type of the element
to be decoded

T1.1

T1.2

T1.4

T2.5

T2.6

Figure 15: Example of a type hierarchy defined across versions

 Length T1.4 T2.6 S1 S2

Figure 16: Example of a forward compatible encoding

 Length T2.6 S2

Figure 17: Example of a non forward compatible encoding

9.5 TV-Anytime structures

9.5.1 Profiled index structures

9.5.1.1 Introduction

TS 102 822-3-2 [5], clause 4.8.5 defines a means to index metadata delivered on a uni-directional network. If a
metadata service is delivered indexing may be included that conforms to that specification. The present document
defines a number of profiled indices; if a metadata service carries an index that is of the same type as one of the profiled
indices defined in the present document, that is with the same fragment XPath and field XPath(s), then that index must
conform to the profiled format defined herein. A metadata service may contain indices of other types not profiled in the
present document, in which case those indices must conform to TS 102 822-3-2 [5].

The profiled indices are defined in the following way: structures are expressed in an informative, simplified form that
removes options not used; normative values and options are defined. The structure definitions and field semantics are
normatively defined in TS 102 822-3-2 [5], the profiled indices conform to that specification.

See clause 9.4.2.2 of the present document for creating indices for extended schemas.

9.5.1.2 Field identifier values

Table 66 defines the permitted values of the field identifier field in the index list structure.

ETSI

ETSI TS 102 323 V1.1.1 (2004-09) 65

Table 66: Allowed values of field_identifier field

Value Equivalent field XPath expression
0x0000 "@tva:groupId"
0x0001 "tva:BasicDescription/tva:Title.text()"
0x0002 "@tva:programid"
0x0003 "@tva:end"
0x0004 "@tva:ServiceIDRef"
0x0005 "tva:ScheduleEvent/tva:InstanceDescription/tva:Title.text()"

0x0006 to 0x7FFF DVB reserved
0x7FFF to 0xFFFE user private

0xFFFF Field Xpath expression is carried as a string

9.5.1.3 Index list

Table 67 is informative. It illustrates how the ListEntry profiled index structures defined in the present document fit into
the index list structure, which is defined normatively in TS 102 822-3-2 [5].

If a receiver does not recognize the index definition for any entry in the index_list that entry shall be ignored.

Table 67: Index list

Syntax Number
of bits

Identifier Value Comment

index_list() {
 for (i=0; i<N; i++) {
 Either GroupInfoCridIndexListEntry() entries for profiled indices
 OR GroupInfoTitleIndexListEntry()
 OR ProgramInfoCridIndexListEntry()
 OR ProgramInfoTitleIndexListEntry()
 OR ScheduleTimeServiceIndexListEntry()
 OR ScheduleTitleIndexListEntry()
 OR { generic index entry
 index_descriptor_length 8 uimsbf + (see

note 1)

 fragment_type 16 uimsbf +
 if (fragment_type == 0xFFFF) {
 fragment_xpath_ptr 16 if fragment_type==0xFFFF

this is ref. (see note 2) to
XPath string

 }
 num_fields 8 uimsbf +
 for (i=0; i<num_fields; i++) {
 field_identifier 16 uimsbf + 0xFFFF indicates use of

W3C Xpath expression for
field.

 if (field_identifier == 0xFFFF) {
 field_xpath_ptr 16 uimsbf * (see

note 3)
if field_identifier==0xFFFF
this is ref. to XPath string

 }
 field_encoding 16 uimsbf +
 }
 container_id 16 uimsbf + .
 index_identifier 8 uimsbf + .
 }
 }
}
NOTE 1: '+' indicates that the value is assigned (e.g. an identifier value).
NOTE 2: References to strings are all offsets from the start of the string_repository carried in the same container.
NOTE 3: '*' indicates that the value is calculated (e.g. a length or an offset value).

ETSI

ETSI TS 102 323 V1.1.1 (2004-09) 66

9.5.1.4 GroupInformation index by CRID

9.5.1.4.1 Index definition

An index of GroupInformation by CRID is defined by the XPath values in table 68.

Table 68: XPath values for GroupInformation index by CRID

 Value
fragment Xpath /tva:TVAMain/tva:ProgramDescription/tva:ProgramInformationTable/tva:GroupInformation
field Xpath @tva:groupId

The following structures define how an index of GroupInformation by CRID shall be constructed if present. These
structures are compatible with the index and multi_field_sub_index structures defined by TS 102 822-3-2 [5].

9.5.1.4.2 Index list entry

Table 69 defines the index list entry that must be included in the index list structure if an index of this type is delivered.

Table 69: Index list entry for GroupInformation index by CRID

Syntax Number of
bits

Value Comments

GroupInfoCridIndexListEntry() {
 index_descriptor_length 8 0x0C
 fragment_type 16 0x0002 indicates GroupInformation fragment
 num_fields 8 0x01 single key index
 field_identifier 16 0xFFFF indicates use of W3C Xpath expression for field
 field_xpath_ptr 16 * ref. to string "@tva:groupId"
 field_encoding 16 0x0000 indicates no encoding for field entries in

GroupInfoCridIndex or GroupInfoCridSubIndex
structures

 container_id 16 + the ID of the container carrying the
GroupInfoCridIndex structure

 index_identifier 8 + the instance_id of the GroupInfoCridIndex structure
}

9.5.1.4.3 Index structure

Table 70 defines the profile of index structure that must be used if an index of this type is delivered.

Table 70: Index structure for GroupInformation index by CRID

Syntax Number of bits Value Description
GroupInfoCridIndex() {
 Overlapping_subindices 1 "0" no overlapped indexing
 Single_layer_sub_index 1 "0" single layer only
 Reserved 6 "111111"
 fragment_locator_format 8 0x01 remote fragment_locators
 for (i=0; i<num_sub_indicies; i++) {
 high_field_value 16 * ref. to CRID string
 GroupInfo_sub_index_container 16 + the ID of the container carrying the

GroupInfoCridSubIndex structure
 GroupInfo_sub_index_identifier 8 + the instance_id of the

GroupInfoCridSubIndex structure
 }
}

ETSI

ETSI TS 102 323 V1.1.1 (2004-09) 67

9.5.1.4.4 Sub index structure

Table 71 defines the profile of multi_field_sub_index structure that must be used if an index of this type is delivered.

Table 71: Sub index structure for GroupInformation index by CRID

Syntax Number of
bits

Value Description

GroupInfoCridSubIndex() {
 { multi_field_header
 leaf_field 1 "1" Only one index layer so this is the leaf field
 multiple_locators 1 "0" fragment locators are in-line
 Reserved 6 "111111

"

 }
 for (j=0; j<num_entries;j++) { repeat for each CRID indexed
 field_value 16 * ref. to GroupInformation CRID string
 { inline fragment locator structure referencing

remote (see note) fragments
 target_container 16 + container carrying GroupInfo fragment
 target_fragment 24 + unique fragment ID
 }
 }
}
NOTE: "remote fragments" are fragments not in the same container as the sub index structure. This format

of fragment locator is the more flexible, but is not optimized for when data fragments are delivered
in the same containers as the index structures.

9.5.1.5 GroupInformation index by title

9.5.1.5.1 Index definition

An index of GroupInformation by title is defined by the XPath values in table 72.

Table 72: XPath values for GroupInformation index by title

 Value
fragment Xpath /tva:TVAMain/tva:ProgramDescription/tva:ProgramInformationTable/tva:GroupInformation
field Xpath tva:BasicDescription/tva:Title.text()

The following structures define how an index of GroupInformation by title shall be constructed if present. These
structures are compatible with the index and multi_field_sub_index structures defined by TS 102 822-3-2 [5].

9.5.1.5.2 Index list entry

Table 73 defines the index list entry that must be included in the index list structure if an index of this type is delivered.

ETSI

ETSI TS 102 323 V1.1.1 (2004-09) 68

Table 73: Index List entry for GroupInformation index by title

Syntax Number of
bits

Value Description

GroupInfoCridIndexListEntry() {
 index_descriptor_length 8 0x0C
 fragment_type 16 0x0002 indicates GroupInformation fragments
 num_fields 8 0x01 single key index
 field_identifier 16 0xFFFF indicates use of W3C Xpath expression for field
 field_xpath_ptr 16 * ref. to string "tva:BasicDescription/tva:Title.text()"
 field_encoding 16 0x0000 indicates no encoding for field entries in

GroupInfoTitleIndex or GroupInfoTitleSubIndex
structures

 container_id 16 + the ID of the container carrying the
GroupInfoTitleIndex _index structure

 index_identifier 8 + the instance_id of the GroupInfoTitleIndex _index
structure

}

9.5.1.5.3 Index structure

Table 74 defines the profile of index structure that must be used if an index of this type is delivered.

Table 74: Index structure for GroupInformation index by CRID

Syntax Number of
bits

Value Description

GroupInfoCridIndex() {
 Overlapping_subindices 1 "0" no overlapped indexing
 Single_layer_sub_index 1 "0" single layer only
 Reserved 6 "111111"
 fragment_locator_format 8 0x01 remote fragment_locators
 for (i=0; i<num_sub_indicies; i++) {
 high_field_value 16 * ref. to title string
 GroupInfo_sub_index_container 16 + the ID of the container carrying the

GroupInfoTitleSubIndex structure
 GroupInfo_sub_index_identifier 8 + the instance_id of the GroupInfoTitleSubIndex

structure
 }
}

9.5.1.5.4 Sub index structure

Table 75 defines the profile of multi_field_sub_index structure that must be used if an index of this type is delivered.

ETSI

ETSI TS 102 323 V1.1.1 (2004-09) 69

Table 75: Sub index structure for GroupInformation index by title

Syntax Number of
bits

Value Description

GroupInfoTitleSubIndex() {
 { multi_field_header
 leaf_field 1 "1" Only one index layer so this is the leaf field
 multiple_locators 1 "0" fragment locators are in-line
 Reserved 6 "111111"
 }
 for (j=0;
j<num_entries;j++) {

 repeat for each title indexed

 field_value 16 * ref. to GroupInformation title string
 { inline fragment locator structure referencing remote

fragments
 target_container 16 + container carrying GroupInformation fragment
 target_fragment 24 + unique fragment ID
 }
 }
}

9.5.1.6 ProgramInformation index by CRID

9.5.1.6.1 Index definition

An index of ProgramInformation by CRID is defined by the XPath values in table 76.

Table 76: XPath values for ProgramInformation index by CRID

 Value
fragment Xpath /tva:TVAMain/tva:ProgramDescription/tva:ProgramInformationTable/tva:ProgramInformation
field Xpath @tva:programid

The following structures define how an index of ProgramInformation by CRID shall be constructed if present. These
structures are compatible with the index and multi_field_sub_index structures defined by TS 102 822-3-2 [5].

9.5.1.6.2 Index list entry

Table 77 defines the index list entry that must be included in the index list structure if an index of this type is delivered.

Table 77: Index List entry for ProgramInformation index by CRID

Syntax Number of
bits

Value Description

ProgramInfoCridIndexListEntry() {
 index_descriptor_length 8 0x0C
 fragment_type 16 0x0002 indicates ProgramInformation fragment
 num_fields 8 0x01 single key index
 field_identifier 16 0xFFFF indicates use of W3C Xpath expression for field
 field_xpath_ptr 16 * ref. to string "@tva:groupId"
 field_encoding 16 0x0000 indicates no encoding for field entries in

ProgramInfoCridIndex or ProgramInfoCridSubIndex
structures

 container_id 16 + the ID of the container carrying the
ProgramInfoCridIndex structure

 index_identifier 8 + the instance_id of the ProgramInfoCridIndex
structure

}

ETSI

ETSI TS 102 323 V1.1.1 (2004-09) 70

9.5.1.6.3 Index structure

Table 78 defines the profile of index structure that must be used if an index of this type is delivered.

Table 78: Index structure for ProgramInformation index by CRID

Syntax Number of
bits

Value Description

ProgramInfoCridIndex() {
 Overlapping_subindices 1 "0" no overlapped indexing
 Single_layer_sub_index 1 "0" single layer only
 Reserved 6 "111111"
 fragment_locator_format 8 0x01 remote fragment_locators
 for (i=0; i<num_sub_indicies; i++) {
 high_field_value 16 * ref. to CRID string
 ProgramInfo_sub_index_container 16 + the ID of the container carrying the

ProgramInfoCridSubIndex structure
 ProgramInfo_sub_index_identifier 8 + the instance_id of the

ProgramInfoCridSubIndex structure
 }
}

9.5.1.6.4 Sub index structure

Table 79 defines the profile of multi_field_sub_index structure that must be used if an index of this type is delivered.

Table 79: Sub index structure for ProgramInformation index by CRID

Syntax Number of
bits

Value Description

ProgramInfoCridSubIndex() {
 { multi_field_header
 leaf_field 1 "1" Only one index layer so this is the leaf field
 multiple_locators 1 "0" fragment locators are in-line
 Reserved 6 "111111"
 }
 for (j=0; j<num_entries;j++) { repeat for each CRID indexed
 field_value 16 * ref. to ProgramInformation CRID string
 { inline fragment locator structure referencing

remote fragments
 target_container 16 + container carrying ProgramInfo fragment
 target_fragment 24 + unique fragment ID
 }
 }
}

9.5.1.7 ProgramInformation index by title

9.5.1.7.1 Index definition

An index of ProgramInformation by title is defined by the XPath values in table 80.

Table 80: XPath values for GroupInformation index by title

 Value
fragment Xpath /tva:TVAMain/tva:ProgramDescription/tva:ProgramInformationTable/tva:ProgramInformation
field Xpath tva:BasicDescription/tva:Title.text()

The following structures define how an index of ProgramInformation by title shall be constructed if present. These
structures are compatible with the index and multi_field_sub_index structures defined by TS 102 822-3-2 [5].

ETSI

ETSI TS 102 323 V1.1.1 (2004-09) 71

9.5.1.7.2 Index list entry

Table 81 defines the index list entry that must be included in the index list structure if an index of this type is delivered.

Table 81: Index List entry for ProgramInformation index by title

Syntax Number of
bits

Value Description

ProgramInfoCridIndexListEntry() {
 index_descriptor_length 8 0x0C
 fragment_type 16 0x0002 indicates ProgramInformation fragments
 num_fields 8 0x01 single key index
 field_identifier 16 0xFFFF indicates use of W3C Xpath expression for field
 field_xpath_ptr 16 * ref. to string "tva:BasicDescription/tva:Title.text()"
 field_encoding 16 0x0000 indicates no encoding for field entries in

ProgramInfoTitleIndex or ProgramInfoTitleSubIndex
structures

 container_id 16 + the ID of the container carrying the
ProgramInfoTitleIndex _index structure

 index_identifier 8 + the instance_id of the ProgramInfoTitleIndex _index
structure

}

9.5.1.7.3 Index structure

Table 82 defines the profile of index structure that must be used if an index of this type is delivered.

Table 82: Index structure for ProgramInformation index by title

Syntax Number of bits Value Description
ProgramInfoCridIndex() {
 Overlapping_subindices 1 "0" no overlapped indexing
 Single_layer_sub_index 1 "0" single layer only
 Reserved 6 "111111"
 fragment_locator_format 8 0x01 remote fragment_locators
 for (i=0; i<num_sub_indicies; i++) {
 high_field_value 16 * ref. to title string
 ProgramInfo_sub_index_container 16 + the ID of the container carrying the

ProgramInfoTitleSubIndex structure
 ProgramInfo_sub_index_identifier 8 + the instance_id of the

ProgramInfoTitleSubIndex structure
 }
}

9.5.1.7.4 Sub index structure

Table 83 defines the profile of multi_field_sub_index structure that must be used if an index of this type is delivered.

ETSI

ETSI TS 102 323 V1.1.1 (2004-09) 72

Table 83: Sub index structure for ProgramInformation index by title

Syntax Number of
bits

Value Description

ProgramInfoCridSubIndex() {
 { multi_field_header
 leaf_field 1 "1" Only one index layer so this is the leaf field
 multiple_locators 1 "0" fragment locators are in-line
 Reserved 6 "111111"
 }
 for (j=0; j<num_entries;j++) { repeat for each title indexed
 field_value 16 * ref. to ProgramInformation title string
 { inline fragment locator structure referencing

remote fragments
 target_container 16 + container carrying ProgramInformation fragment
 target_fragment 24 + unique fragment ID
 }
 }
}

9.5.1.8 Schedule index by time and DVB service

9.5.1.8.1 Index definition

An index of Schedule by time and DVB service is defined by the XPath values in table 84.

Table 84: XPath values for Schedule index by time and DVB service

 Value
fragment Xpath /tva:TVAMain/tva:ProgramDescription/tva:ProgramLocationTable/tva:Schedule
first field Xpath @tva:end
second field Xpath @tva:ServiceIDRef

The following structures define how an index of Schedule by DVB service and time shall be constructed if present.
These structures are compatible with the index and multi_field_sub_index structures defined by TS 102 822-3-2 [5].

The index of Schedule by time and DVB service is a two-layer index, indexing first by the value of the end time of the
period covered by a Schedule fragment and second by the value of serviceIdRef.

9.5.1.8.2 Index list entry

Table 85 defines the index list entry that must be included in the index list structure if an index of this type is delivered.

ETSI

ETSI TS 102 323 V1.1.1 (2004-09) 73

Table 85: Index List entry for Schedule index by time and DVB service

Syntax Number of
bits

Value Description

ScheduleTimeServiceIndexListEntry() {
 index_descriptor_length 8 0x12
 fragment_type 16 0x0002 indicates Schedule fragment
 num_fields 8 0x02 two key index
 field1_identifier 16 0xFFFF indicates use of W3C Xpath expression for first key

field
 field1_xpath_ptr 16 * ref. to string "@tva:end"
 field1_encoding 16 0x0000 indicates no encoding for first key field entries in

ScheduleTimeServiceIndex or
ScheduleTimeServiceSubIndex structures

 field2_identifier 16 0xFFFF indicates use of W3C Xpath expression for second
key field

 field2_xpath_ptr 16 * ref. to string "@tva:serviceIdRef"
 field2_encoding 16 0x0000 indicates no encoding for second key field entries

in ScheduleTimeServiceIndex or
ScheduleTimeServiceSubIndex structures

 container_id 16 + the ID of the container carrying the
ScheduleTimeServiceIndex structure

 index_identifier 8 + the instance_id of the ScheduleTimeServiceIndex
structure

}

9.5.1.8.3 Index structure

Table 86 defines the profile of index structure that must be used if an index of this type is delivered.

Table 86: Index structure for Schedule index by DVB service and time

Syntax Number of
bits

Value Description

ScheduleCridIndex() {
 Overlapping_subindices 1 "0" no overlapped indexing
 Single_layer_sub_index 1 "0" single layer only
 Reserved 6 "111111"
 fragment_locator_format 8 0x01 remote fragment_locators
 for (i=0; i<num_sub_indices; i++) {
 high_field_value1 16 * ref. to serviceIdRef string
 high_field_value2 16 * ref. to date string
 Schedule_sub_index_container 16 + the ID of the container carrying the

ScheduleCridSubIndex structure
 Schedule_sub_index_identifier 8 + the instance_id of the

ScheduleCridSubIndex structure
 }
}

9.5.1.8.4 Sub index structure layer 1

Table 87 defines the profile of multi_field_sub_index structure that must be used for the first layer of indexing if an
index of this type is delivered.

ETSI

ETSI TS 102 323 V1.1.1 (2004-09) 74

The first layer sub index structure for a schedule index by time and DVB service lists all values of the "end" attribute
for entries in the current container. A first layer sub index structure must be carried in the same container as the
corresponding second layer sub index structure. Entries in this first layer sub index must be ordered by incrementing
value of time.

Table 87: First layer sub index structure for Schedule index by DVB service and time

Syntax Number of
bits

Value Description

ScheduleCridSubIndex1() {
 { multi_field_header
 leaf_field 1 "0" this is not the last sub index layer
 multiple_locators 1 "0" fragment locators are in-line
 Reserved 6 "111111"
 }
 child_sub_index_ref 8 + The structure_id of the associate 2nd

layer sub index structure
 for (j=0; j<num_entries;j++) { repeat for each DVB service indexed in

this container
 field_value 16 * ref. to Schedule service string
 range_end_offset 16 + container carrying Schedule fragment
 }
}

9.5.1.8.5 Sub index structure layer 2

Table 88 defines the profile of multi_field_sub_index structure that must be used for the second layer of indexing if an
index of this type is delivered.

The second layer sub index structure for a schedule index by DVB service and time lists references to fragments, giving
the value of ServiceIdRef of referenced fragments. Every first layer sub index structure must be carried in the same
container as its corresponding second layer sub index structure. Entries in this second layer sub index relating to the
same first layer sub index entry must be ordered by ascending lexicographical value.

Table 88: Second layer sub index structure for Schedule index by DVB service and time

Syntax Number of
bits

Value Description

ScheduleCridSubIndex2() {
 { multi_field_header
 leaf_field 1 "1" this is the last sub index layer
 multiple_locators 1 "0" fragment locators are in-line
 Reserved 6 "111111"
 }
 for (j=0; j<num_entries;j++) { repeat for each schedule fragment

indexed in this container
 field_value 16 * ref. to end time string
 { inline fragment locator structure

referencing remote fragments
 target_container 16 + container carrying Schedule fragment
 target_fragment 24 + unique fragment ID
 }
 }
}

9.5.1.9 Schedule index by title

9.5.1.9.1 Index definition

An index of Schedule by title is defined by the XPath values in table 89.

ETSI

ETSI TS 102 323 V1.1.1 (2004-09) 75

Table 89: XPath values for Schedule index by title

 Value
fragment Xpath /tva:TVAMain/tva:ProgramDescription/tva:ProgramLocationTable/tva:Schedule
field Xpath tva:ScheduleEvent/tva:InstanceDescription/tva:Title.text()

The following structures define how an index of Schedule by title shall be constructed if present. These structures are
compatible with the index and multi_field_sub_index structures defined by TS 102 822-3-2 [5].

NOTE: One Schedule fragment may contain more than one ScheduleEvent element, therefore each Schedule
fragment will be referenced once for each ScheduleEvent it contains.

9.5.1.9.2 Index list entry

Table 90 defines the index list entry that must be included in the index list structure if an index of this type is delivered.

Table 90: Index List entry for Schedule index by Title

Syntax Number of
bits

Value Description

ScheduleCridIndexListEntry() {
 index_descriptor_length 8 0x0C
 fragment_type 16 0x0002 indicates Schedule fragments
 num_fields 8 0x01 single key index
 field_identifier 16 0xFFFF indicates use of W3C Xpath expression for field
 field_xpath_ptr 16 * ref. to string

"tva:ScheduleEvent/tva:InstanceDescription/tva:Ti
tle.text()"

 field_encoding 16 0x0000 indicates no encoding for field entries in
ScheduleTitleIndex or ScheduleTitleSubIndex
structures

 container_id 16 + the ID of the container carrying the
ScheduleTitleIndex _index structure

 index_identifier 8 + the instance_id of the ScheduleTitleIndex _index
structure

}

9.5.1.9.3 Index structure

Table 91 defines the profile of index structure that must be used if an index of this type is delivered.

Table 91: Index structure for Schedule index by title

Syntax Number of
bits

Value Description

ScheduleCridIndex() {
 Overlapping_subindices 1 "0" no overlapped indexing
 Single_layer_sub_index 1 "0" single layer only
 Reserved 6 "111111"
 fragment_locator_format 8 0x01 remote fragment_locators
 for (i=0; i<num_sub_indicies; i++) {
 high_field_value 16 * ref. to title string
 Schedule_sub_index_container 16 + the ID of the container carrying the

ScheduleTitleSubIndex structure
 Schedule_sub_index_identifier 8 + the instance_id of the

ScheduleTitleSubIndex structure
 }
}

ETSI

ETSI TS 102 323 V1.1.1 (2004-09) 76

9.5.1.9.4 Sub index structure

Table 92 defines the profile of multi_field_sub_index structure that must be used if an index of this type is delivered.

Table 92: Sub index structure for Schedule index by title

Syntax Number of
bits

Value Description

ScheduleCridSubIndex() {
 { multi_field_header
 leaf_field 1 "1" Only one index layer so this is the leaf field
 multiple_locators 1 "0" fragment locators are in-line
 Reserved 6 "111111"
 }
 for (j=0; j<num_entries;j++) { repeat for each title indexed
 field_value 16 * ref. to Schedule title string
 { inline fragment locator structure referencing

remote fragments
 target_container 16 + container carrying Schedule fragment
 target_fragment 24 + unique fragment ID
 }
 }
}

9.5.2 Additional structures

9.5.2.1 Structure types

TS 102 822-3-2 [5], clause 4, defines a number of structure types for the purpose of carriage of TV-Anytime
information. These structures shall be delivered by container, each structure having a structure_type and structure_id
used to reference it from the container_header (see clause 4.5.2.1 of TS 102 822-3-2 [5]).

Structure types extending TS 102 822-3-2 [5], clause 4 are defined in the present document. The structure type and field
of the container_header (see TS 102 822-3-2 [5], clause 4.5.2.1) shall be encoded as defined in table 93 if such a
structure is included in a container.

Table 93: Structure type

Value Meaning
0x00 to 0x7F TVA structures

0x80 type list
0x81 to 0xAF DVB reserved
0xB0 to 0xFF private use

9.5.2.2 Type list

The type list structure is an extension to the TV-Anytime structures for carriage of metadata in unidirectional
environments (see TS 102 822-3-2 [5], clause 4.5), its purpose is to define which containers carry certain types of
metadata.

At most one type list structure may be carried in a metadata service. If present it shall be carried in the container with
container ID equal to 0x0000. When the type list structure is present in a container, the structure_type and structure_id
fields in the container_header (see TS 102 822-3-2 [5], clause 4.5.2.1) shall be set to 0x80 and 0x00, respectively.

This structure may contain entries for any number of types, but for each type there must be at most one entry.
Additionally, for each entry, all containers in the current metadata service should be listed that carry fragments of the
relevant type.

Table 94 defines the type list structure.

ETSI

ETSI TS 102 323 V1.1.1 (2004-09) 77

Table 94: Type list structure

Syntax Number of bits Identifier
type_list_structure() {
 num_types; 16 uimsbf
 for (i=0; i<num_types; i++) {
 reserved 4 uimsbf
 type_description_length 12 uimsbf
 fragment_type 16 uimsbf
 if (fragment_type == 0xFFFF) {
 fragment_xpath_ptr 16 uimsbf
 }
 num_containers 8 uimsbf
 for (j=0; j< num_containers; j++) {
 container_id 16 uimsbf
 }
 }
}

num_types: This field shall be set to the number of fragment types listed in this structure.

reserved: This field shall be set to "1111".

type_description_length: This field shall be set to the number of bytes immediately following it in this fragment type
entry.

fragment_type: This field identifies the type of fragment this entry pertains to. It shall be encoded according to the
fragment_type field of the index list structure defined in clause 4.8.5.3 of TS 102 822-3-2 [5].

fragment_xpath_ptr: If the fragment_type is set to 0xFFFF then this field shall provide a reference to the XPath string
that describes the fragment type for this entry. This reference shall be set to the offset, in bytes, from the start of the
string repository in the current container to the first character of the fragment type XPath string.

num_containers: This field shall be set to the number of container_ids immediately following.

container_id: This field shall be set to the container_id of a container that carries at least one fragment that matches the
fragment type of this entry.

10 Promotional links

10.1 Introduction
The purpose of promotional links is to provide the means to record material related to what the viewer is currently
watching. For instance, if the viewer is currently watching a trailer for a film a promotional link can be used to give the
viewer the opportunity to record the film.

Promotional links relating to a DVB service shall be carried by a Related Content Table (RCT), see clause 10.4 for the
definition of the RCT. Each link consists of a reference (either a URI string which is likely to be a CRID, a DVB binary
locator or both) and promotional text in at least one language. The format of this information is based on the
tva:ExtendedRelatedMaterialType (see clause 10.2). The presence of a related content subtable for a particular service
is indicated by the related content descriptor (see clause 10.3).

Promotional links are intended to be used in a real-time manner. While a promotional link is present for the current
DVB service, a compliant receiver may make the viewer aware of the opportunity to book related material in some way.
The receiver should present the viewer with the choice of related material, each item being described by the
promotional text. When the viewer makes his selection the receiver should acquire the related content using the
provided reference for the selected link. The subsequent removal of promotional links indicates that the receiver should
cease to provide this opportunity to the viewer.

Figure 18 shows an example receiver implementation of promotional links. An actual receiver implementation may
differ in many ways, for example by waiting for a short period before removing information from the screen.

ETSI

ETSI TS 102 323 V1.1.1 (2004-09) 78

Does RCT
sub-table contain
promotional links?

Has viewer indicated
wish to book?

Display icon
indicating related

material is
available

Has the viewer
selected content to

book?

Yes

Start

Does RCT
sub-table contain
promotional links?

Does RCT still
contain links?

Present list of
related material

based on last RCT
acquisition

Start process of
obtaining content
indicated by URI

No

Yes

Remove icon
indicating related

material is
available

Remove list of
related material

No

No

Yes

No

Yes

Yes

No

No

Figure 18: Example receiver implementation of promotional links (informative)

10.2 Restriction of tva:ExtendedRelatedMaterialType
The format for delivering promotional links is based upon a restriction of the tva:RelatedMaterialType type (see
TS 102 822-3-1 [4], clause 6.3.4). Table 95 defines these restrictions.

It is not mandatory to provide metadata for CRIDs included in promotional links.

Table 95: Restrictions on types relevant to promotional links

Element Restriction
mpeg7:MediaLocatorType
MediaURI One instance of this element is present
InlineMedia Not present
StreamID Not present
tva:RelatedMaterialType
Format Not present
PromotionalText Present
SourceMediaLocator Not present

ETSI

ETSI TS 102 323 V1.1.1 (2004-09) 79

10.3 Related content descriptor
The related content descriptor identifies an elementary stream that delivers a related content subtable. This descriptor
may be carried in a PMT subtable in the descriptor loop for an elementary stream. Only one related_content descriptor
is permitted in a single PMT subtable. The syntax of the related content descriptor is defined by table 96.

Table 96: Related content descriptor

Syntax bits format
related content descriptor() {
 descriptor_tag 8 uimsbf
 descriptor_length 8 uimsbf
}

descriptor_tag: This eight bit field shall be set to 0x74.

descriptor_length: This eight bit field shall be set to the number of bytes that follow it.

10.4 Related Content Table (RCT)

10.4.1 Description

The Related Content Table (RCT) carries promotional links related to the content currently being broadcast. Each
subtable of the RCT relates to a single DVB service.

An RCT subtable is carried in an elementary stream whose PID is identified by the presence of a related content
descriptor in the corresponding elementary stream descriptor loop of the current service"s PMT (see clause 10.3). The
stream_type for an elementary stream carrying an RCT subtable must be set to 0x05, indicating private sections (see
ISO/IEC 13818-1 [8], table 2-29).

When the related content descriptor is present in the PMT an RCT subtable shall be present and it shall be delivered at
least once every two seconds. Receivers that are capable of using related material data may constantly monitor for its
presence.

When an RCT subtable is obtained that has a link count greater than zero, the receiver should indicate to the viewer that
there is the opportunity to book content. The way in which the user is prompted, or the conditions under which the list
of available content is presented, are not part of the present document.

The time at which a related material is no longer being promoted is signalled by removing the specific link information
from the related content table. A section with link_count set to zero shall be transmitted if there are currently no related
materials.

10.4.2 Syntax

Each RCT subtable shall be delivered as sections as defined by table 97.

ETSI

ETSI TS 102 323 V1.1.1 (2004-09) 80

Table 97: Related content section

Syntax Number of bits format
related content section() {
 table_id 8 uimsbf
 section_syntax_indicator 1 bslbf
 reserved 1 bslbf
 reserved_future_use 2 bslbf
 section_length 12 uimsbf
 reserved 16 uimsbf
 reserved 2 bslbf
 version_number 5 uimsbf
 current_next_indicator 1 bslbf
 section_number 8 uimsbf
 last_section_number 8 uimsbf
 year_offset 16 uimsbf
 link_count 8 uimsbf
 for (j=0; j<link_count; j++) {
 reserved 4 uimsbf
 link_info_length 12 uimsbf
 link_info()
 }
 CRC_32 32 rpchof
}

table_id: This is an eight bit field that shall be set to 0x76.

section_syntax_indicator: This is a one-bit indicator which shall be set to "1".

reserved, reserved_future_use: All bits of fields marked as being reserved or reserved_future_use shall be set to "1".

section_length: This is a twelve bit field. It specifies the number of bytes of the section, starting immediately following
the section_length field and up to the end of the section. The maximum allowed value of section_length is 4 093.

version_number: This 5-bit field is the version number of the subtable. The version_number shall be incremented by 1
when a change in the information carried within the subtable occurs. When it reaches value 31, it wraps around to 0.

current_next_indicator: This 1-bit indicator shall be set to "1".

section_number: This 8-bit field gives the number of the section. The section_number of the first section in the
subtable shall be "0x00". The section_number shall be incremented by 1 with each additional section with the same
table_id, context_id and context_id_type.

last_section_number: This 8-bit field indicates the number of the last section (that is, the section with the highest
section_number) of the subtable of which this section is part.

year_offset: The year relative to which date values in this structure shall be calculated. This field shall be encoded as
the binary value of the year, for example "2003" would be encoded as 0x07D3.

link_count: This is an eight bit field. It specifies the number of related material references in this clause.

CRC_32: This is a 32-bit field that contains the CRC value that gives a zero output of the registers in the decoder
defined in annex B of EN 300 468 [1] after processing the entire section.

10.4.3 Link info structure

The syntax of the link info structure of the related content section is defined by table 98.

ETSI

ETSI TS 102 323 V1.1.1 (2004-09) 81

Table 98: Link info structure

Syntax Number of bits Identifier
link_info() {
 link_type 8 uimsbf
 how_related 8 uimsbf
 if (link_type == 0x00 || link_type == 0x02) {
 media_uri_length 8
 for (k=0; k<media_uri_length; k++) {
 media_uri_byte 8 uimsbf
 }
 }
 if (link_type == 0x01 || link_type == 0x02) {
 dvb_binary_locator()
 }
 number_items 8 uimsbf
 for (m=0; m<number_items; m++) {
 ISO 639-2_language_code 24 bslbf
 promotional_text_length 8 uimsbf
 for (n=0; n< promotional_text_length; n++) {
 promotional_text_char 8 uimsbf
 }
 }
 reserved 4 uimsbf
 descriptor_loop_length 12 uimsbf
 for (p=0; p<descriptor_loop_length; p++) {
 descriptor() 8 uimsbf
 }
}

link_type: This field indicates the format of the link information contained within this structure. This link information
may consist of a URI (e.g. a CRID), a DVB binary locator or both a URI and a DVB binary locator.

If the link information consists of a CRID URI and a binary locator, the binary locator should be considered an
indication of the likely broadcast time and location, the location the CRID resolves to should be considered the
authoritative broadcast time and location. The semantics of the link information consisting of a different URI type and a
binary locator are not defined.

This field shall be encoded according to table 99.

Table 99: link_type

Value Description
0x00 Link information is a URI string only
0x01 Link information is a binary locator only
0x02 Link information is both a binary locator and a URI string

how_related: This is an eight bit field that defines the relationship between the content being broadcast and the content
referenced by this link. This field shall be encoded according to table 100.

Table 100: how_related

Value Description
0x00 to 0x1F The numerical value of the TermID field in the

urn:tva:metadata:cs:HowRelatedCS:2002 schema as
defined in TS 102 822-3-1 [4], clause A.3.

0x20 to 0xAF DVB reserved
0xB0 to 0xFF User private

media_uri_length: If this field is present it shall be set to the number of media_uri_bytes that follow.

ETSI

ETSI TS 102 323 V1.1.1 (2004-09) 82

media_uri_byte: This field is part of a sequence that forms the MediaUri string. This string shall be a URI. If it is a
CRID this string may use the abbreviated format (see clause 6.3). No other URIs may be abbreviated and must include
the protocol part. The CRID authority part of the CRID may only be omitted if there is a default authority defined for
the scope of the DVB service this related content section relates to.

dvb_binary_locator(): See clause 7.3.2.3.3 for definition. The year_offset value used by the DVB binary locator is
defined in the enclosing related content section (see clause 10.4.2). The inline_service flag of the DVB binary locator
shall be set to "1".

number_items: This field shall be set to the number of items in the following multilingual promotional text loop.

ISO 639-2_language_code: This field shall be set to the ISO 639-2 [21] code that describes the language of the
following text field.

promotional_text_length: This field shall be set to the number of bytes in the following promotional text string.

promotional_text_char: This field is part of a sequence that forms the promotional text for the language given. Text
information shall be encoded using the character sets and methods described in annex A of EN 300 468 [1].

descriptor_loop_length: This field shall be set to the total length in bytes of the following descriptors.

NOTE: The descriptor loop is included for future extension.

11 Accurate recording

11.1 Modes of operation
The DVB binary encoding for locators supports two modes for signalling the broadcast of an event. The mode in use is
signalled by the identifier_type field of the DVB_binary_locator sub-structure (see clause 7.3.2.3.3).

The first mode is to use scheduled time and is signalled when the identifier_type is "00". In this case the receiver uses
its internal clock to control the start and end of recording based on the times indicated by the start_time and duration
fields. The start_time and duration fields offer the best estimate of when the content will be broadcast. Ideally, such CRI
data should be updated to reflect any changes shortly before or during broadcast to provide more accurate information.

To offer increased reliability of capture a receiver may employ guard intervals either side of the scheduled start_time
and implicit scheduled end time. In determining the size of these guard intervals the receiver may consider the
early_start_window and late_end_window, if provided by the broadcaster for the particular item of content to be
recorded. The intention is that the early_start_window and late_end_window fields should be considered an estimate of
the maximum by which the broadcast time may differ from the scheduled time.

The scheduled time information provided in CRI, including the early_start_window and late_end_window, does not
imply anything about previous and subsequent events. For example, the scheduled start of an event (from information
in the CRI data) does not imply that the previous event on this service has finished.

The second mode relies on detecting the presence of event_identifiers in the broadcast stream and is signalled when the
identifier_type is either "01" or "10". In its simplest form this mode relies on monitoring the presence of the relevant
event_id in the present event of EIT p/f. In a refinement of this mode the receiver may monitor for the presence of the
TVA_id, also carried in the present event of EIT p/f. The main advantage of the TVA_id over the event_id is that the
service provider is free to control the presence of a TVA_id in the broadcast stream independently of the flow of EIT
events. This allows the broadcaster to accurately identify when particular content is being delivered. In addition there
can be more than one active TVA_id at any instance, enabling nesting and overlapping of content.

NOTE: One of the issues for a receiver implementation in providing support for the this mode is the strategy for
how and when to look for the presence of the relevant event_identifier in the broadcast stream. An
obvious candidate is to use the scheduled start_time and duration to define a "monitoring window".
However, it should not be assumed that a service provider is always able to update an item of content's
scheduled start time and duration before changes to the actual start time and duration occur. In extreme
cases the programme may start before its scheduled start time or after it is scheduled to have finished.
Despite this, the broadcast of either event_id and/or TVA_id may still enable accurate recording.

ETSI

ETSI TS 102 323 V1.1.1 (2004-09) 83

It is possible that a broadcast may contain information apparently supporting more than one of these modes for a
particular event. For example, the service provider may provide start_time and duration even when signalling the use of
an event_identifier simply to support clash detection during booking. However, there is no requirement to ensure
consistency between this information and broadcast signalling should be used as a guide to the most reliable mode.

11.2 TVA_id descriptor
This clause defines the mechanism by which a TVA_id shall be carried in the broadcast stream, so creating an
association with content currently being transmitted. The advantages of the use of the TVA_id for identifying content to
record over the use of the EIT event_id are as follows:

• It allows the broadcaster to identify an item of content at a granularity that is finer than that of an EIT event.

• It allows broadcasters to indicate the actual transmission of an item of content more accurately than may be
possible using EIT event_id.

• Since multiple TVA_ids may be present for a single DVB service it allows broadcasters to indicate the start
and stop of a number of overlapping items of content.

The association of an item of content with a particular TVA_id is made within a DVB locator as carried in the CRI (see
clause 7.3.2.3.3). The association of the same TVA_id with some specific content, and so by inference the item of
content with this content, is made using the TVA_id_descriptor.

When carried, the TVA_id_descriptor shall be placed in the descriptor loop for the present event in the EIT
present/following. Specific values of TVA_id shall be carried by a TVA_id_descriptor placed in the EIT
present/following subtable for the DVB service in which the item of content is broadcast. Where a TVA_id is being
signalled, placement of an appropriate TVA_id_descriptor in EIT present/following actual TS is mandatory, whilst
placement of an appropriate TVA_id_descriptor in EIT present/following other TS is optional.

The TVA_id_descriptor allows a state to be associated with a specific value of TVA_id. This can be used by the
receiver as part of its strategy of managing the recording process.

More than one TVA_id can be carried in a single instance of the TVA_id_descriptor and more than one instance of the
TVA_id_descriptor can be placed in a single descriptor loop for the present event in EIT present/following. This
enables the signalling of overlapping or nested events.

The syntax of the TVA_id descriptor is defined by table 101.

Table 101: TVA_id descriptor

Syntax Number of bits Identifier
TVA_id_descriptor() {
 descriptor_tag 8 uimsbf
 descriptor_length 8 uimsbf
 for (i=0; i<N; i++) {
 TVA_id 16 uimsbf
 Reserved 5 uimsbf
 running_status 3 uimsbf
 }
}

descriptor_tag: This 8-bit field shall be set to the value 0x75.

descriptor_length: This 8-bit field specifies the total number of bytes of the data portion of the descriptor following the
byte defining the value of this field.

TVA_id: This 16-bit field shall be set to the value of TVA_id carried in the CRI locator that refers to an item of content
current being broadcast.

running_status: This 3-bit field indicates the status of the item of content associated with a particular value of TVA_id.
The possible values for this field are defined in table 102.

ETSI

ETSI TS 102 323 V1.1.1 (2004-09) 84

Table 102: Running status

Value Meaning Description
0 Reserved
1 Not yet running Receivers shall treat the item of content as not yet running.

This can be used when the item of content is still to be broadcast, but is unlikely to
start until some time after the most recently indicated scheduled start_time.

2 Starts (or restarts)
shortly

Receivers shall prepare for the change of running_status to "running" to occur
shortly.
This optional mode can be used to assist receivers in preparing their resources for
recording. If used this value should be signalled for 30 s before changing to
"Running".

3 Paused Receivers shall treat the item of content as paused.
This can be used when broadcast of the item of content has already started, but at
this time the content being broadcast is not a part it. It is assumed that the
transmission of relevant content will resume at a later time.
It is recommended that the paused state is only used for short interruptions not
appearing in the schedule.

4 Running Receivers shall treat the item of content as running.
This can be used to indicate that at this time the content being broadcast is part of
the item of content.

5 Cancelled Receivers shall treat the item of content as cancelled.
This can be used to indicate that the item of content has been pulled either before
commencement of, or part way through transmission.

6 to 7 Reserved

The relationship between the various states is illustrated by figure 19.

Item of Content not yet
broadcast.
Associated tva_id not
carried in EIT-present.

Item of Content either
successfully broadcast or
pulled from transmission

schedule.
Associated tva_id not
carried in EIT-present.

5
[Cancelled]

3
[Paused]

2
[Starts shortly]

1
[Not yet running]

4
[Running]

Figure 19: TVA_id UML state diagram

ETSI

ETSI TS 102 323 V1.1.1 (2004-09) 85

12 Extensions to DVB SI

12.1 Content identifier descriptor

12.1.1 Introduction

The content identifier descriptor allows a CRID to be assigned to an event entry in an EIT subtable, so providing a link
to CRI or to metadata for that event's content. One or more instance of this descriptor may be carried in the event
descriptor loop of an EIT schedule section or an EIT present/following section. There is no requirement for all EIT
events to have a CRID assigned to them.

NOTE 1: The selection of events for recording using event entries in an EIT subtable that do not contain a CRID is
not considered in the present document.

The content identifier descriptor supports two methods for defining the CRID to be associated, the CRID can be
explicitly included in the descriptor or the descriptor can refer to a CRID carried in a separate subtable (an "indirect
definition"). These methods of definition are interchangeable and each CRID included in a content identifier descriptor
may be defined using any of these methods.

The use of explicit CRID definition is recommended for interoperability.

NOTE 2: A CRID is simply an identifier. The encodings supported by the content identifier descriptor are only
provided to give the broadcaster some flexibility about how a particular CRID is defined. Once a receiver
has extracted the CRID from a particular encoding it should simply treat this, like any other CRID, as just
an identifier.

12.1.2 Explicit CRID definition

The first method is to explicitly carry the encoded CRID in the descriptor. The CRID may be encoded using the
abbreviated CRID rules (see clause 6.3.1). If the CRID authority part is omitted there shall be a default authority
defined for a scope encompassing the DVB service that the EIT relates to (see clause 6.3.2).

12.1.3 Indirect CRID definition

The second method is to refer to a CRID entry in a separate structure that is associated with the DVB service that the
event forms part of. In this case the descriptor carries an identifier that uniquely identifies the relevant CRID in a
subtable of the Content Identifier Table (CIT).

ETSI

ETSI TS 102 323 V1.1.1 (2004-09) 86

12.1.4 Syntax

The syntax of the content identifier descriptor is defined by table 103.

Table 103: Content identifier descriptor

Syntax Number of bits Identifier
content_identifier_descriptor() {
 descriptor_tag 8 uimsbf
 descriptor_length 8 uimsbf
 for (i=0;i<N;i++) {
 crid_type 6 uimsbf
 crid_location 2 uimsbf
 if (crid_location == "00") {
 crid_length 8 uimsbf
 for (j=0;j<crid_length;j++) {
 crid_byte 8 uimsbf
 }
 }
 if (crid_location == "01") {
 crid_ref 16 uimsbf
 }
 }
}

descriptor_tag: This field shall be set to 0x76.

descriptor_length: This field shall be set to the number of bytes in this descriptor following this field.

crid_type: This field defines the type of CRID that this content labelling descriptor describes. This field shall be
encoded according to table 104.

Table 104: CRID type

Value Semantics
0x00 No type defined
0x01 CRID references the item of content that this event is an instance of
0x02 CRID references a series that this event belongs to
0x03 CRID references a recommendation. This CRID can be a group or a single item of content

0x04 to 0x1F DVB reserved
0x20 to 0x3F User private

crid_location: This field describes the location of the CRID information. This field shall be encoded according to
table 105.

Table 105: CRID location

Value Semantics
"00" Carried explicitly within descriptor
"01" Carried in Content Identifier Table (CIT)
"10" DVB reserved
"11" DVB reserved

crid_length: This field shall be set to the number of crid_bytes that follow.

crid_byte: This field forms part of a sequence of bytes that defines an explicitly encoded CRID (see clause 12.1.2).

NOTE: When the CRID authority part of the CRID URL is not present the forward-slash character ("/")
immediately following the CRID authority part must be present.

This field may carry an IMI in addition to the CRID. In this case, the CRID is terminated by a "#" character which is
followed immediately by the IMI. The first four bytes of the IMI (i.e. "imi:") shall be omitted.

ETSI

ETSI TS 102 323 V1.1.1 (2004-09) 87

crid_ref: When crid_location is set to "01" this field defines the identifier by which the relevant CRID can be
discovered in the Content Identifier Table for this DVB service.

12.2 Content Identifier Table (CIT)
Event label data may be carried in CIT subtables comprised of content_identifier_sections. The format for this type of
section is derived from the standard private section syntax as defined in ISO/IEC 13818-1 [7].

A CIT subtable provides CRID labels for EIT schedule subtables relating to one DVB service. One CIT schedule
subtable is defined by a combination of service_id, transport_stream_id and original_network_id.

The semantics of the CIT are defined by table 106. Sections forming part of the CIT shall be carried in TS packets with
a PID value of 0x0012.

Table 106: Content identifier section

Syntax Number of bits Identifier
Content_identifier_section() {
 table_id 8 uimsbf
 section_syntax_indicator 1 bslbf
 private_indicator 1 bslbf
 reserved 2 bslbf
 section_length 12 uimsbf
 service_id 16 uimsbf
 reserved 2 bslbf
 version_number 5 uimsbf
 current_next_indicator 1 bslbf
 section_number 8 uimsbf
 last_section_number 8 uimsbf
 transport_stream_id 16 uimsbf
 original_network_id 16 uimsbf
 prepend_strings_length 8 uimsbf
 for (i=0; i< prepend_strings_length ; i++) {
 prepend_strings_byte 8 uimsbf
 }
 for (j=0; J<N; j++) {
 crid_ref 16 uimsbf
 prepend_string_index 8 uimsbf
 unique_string_length 8 uimsbf
 for (k=0; k<unique_string_length; k++) {
 unique_string_byte 8 uimsbf
 }
 }
 CRC32 32
}

table_id: This field shall be set to 0x77.

section_syntax_indicator: This shall be set to "1" to indicate that the private section follows the generic section syntax.

private_indicator: This flag shall be set to "1".

section_length: The number of remaining bytes in the private section immediately following the section_length field up
to the end of this event label map section.

service_id: This shall contain the container_id of the container carried by the table this section is part of.

version_number: The version of the table.

current_next_indicator: This field shall be set to "1" to indicate that the section is currently valid.

section_number: This field specifies the number of the section. This section_number will be incremented by 1 with
each additional section with the same service_id, transport_stream_id and original_network_id.

ETSI

ETSI TS 102 323 V1.1.1 (2004-09) 88

last_section_number: This specifies the number of the last section making up this table.

transport_stream_id: This field identifies the TS that carries the indicated DVB service.

original_network_id: This field identifies the network_id of the originating delivery system.

prepend_strings_length: This field gives the total number of bytes of prepend strings that follow this field.

prepend_strings_bytes: This field forms part of a sequence that is a concatenation of prepend strings. Each prepend
string contained with this partition shall be partitioned by a byte with value 0x00. Prepend strings are referenced by
index, the first prepend string having an index value of 0 and the second an index value of 1.

crid_ref: This field assigns a reference value for this CRID. This value is referenced from the content identifier
descriptor of the EIT. Only one CRID may be assigned this value of crid_ref in all CIT sections with the same
service_id and original_network_id.

prepend_string_index: This field gives the index of the relevant prepend_string in the list of prepend_strings carried in
this section. If this field is set to 0xFF then there is no prepend_string and the unique_string shall hold the complete
CRID string. The complete CRID string need not contain the first 7 characters common to every CRID (i.e. "CRID://"),
if this is the case then their presence is implied.

unique_string_length: This field gives the length, in bytes, of the unique_string immediately following this field.

unique_string_byte: This field forms part of a sequence that together forms the unique_string. The unique_string shall
not be null terminated. Concatenating the prepend_string for this entry with the unique_string gives a full CRID
reference which may include an IMI. When an IMI is included the CRID shall be terminated by a "#" character which is
followed immediately by the IMI. The first four bytes of the IMI ("imi:") are always omitted.

CRC32: This is a 32-bit field that contains the CRC value that gives a zero output of the registers in the decoder
defined in ETSI 300 468 annex B after processing the entire private section.

ETSI

ETSI TS 102 323 V1.1.1 (2004-09) 89

Annex A (informative):
Example recorder behaviour
Clause 11 specifies the different signalling that the broadcaster may provide for recording programme items based on
the identifier_type field of the result_data CRI structure. This informative annex does not form a normative part of the
present document but gives an illustrative example of a possible receiver implementation.

Figure A.1 shows these different modes of operation based on whether the identifier_type field is set to "not used",
event_id or TVA_id. A receiver needs to be able to deal with a mixture of signalling modes present in a network as
different broadcasters and programmes may support some modes and not others.

Identifier_type

Apply
early_start_window
to start point and
late_end_window

to end point

Has
time passed start

point?

Has
time passed

calculated end
point?

Retune if
necessary &

start recording

Stop recording

No

Yes

No

Yes

‘00’ event identifier not used

Is event_id
present in EIT p/f

actual?

Is
event_id present in

EIT actual?

No

No

Stop recording

Yes

Yes
State of

TVA_id in EIT p/f
actual?

Start recording

State
of TVA_id in EIT

actual?

paused/
not yet running

paused

Pause recording

running

running

Stop recording

id not present

‘01’ event_id

‘10’ TVA_id

Start recording

t im e-on ly m ode event _id m ode TVA_id m ode

Retune
if neccessary

Retune
if neccessary

scheduled_time_
reliability?

‘1’

‘0’

Prepare to
record

starts
shortly

 for next
programme to

record

cancelled

Cancel recording

Is the value of
event_identifer found in the

TVA_id descriptor of
EIT p/f actual?

No

Yes

cancelled

Figure A.1: Example strategy for controlling recording

ETSI

ETSI TS 102 323 V1.1.1 (2004-09) 90

However, this strategy does not represent the only solution. For example:

• If the actual programme transmission starts before the receiver has begun to monitor for a programme it will
not be completely recorded.

• If two programmes are to be recorded "back-to-back" it may not be possible to blindly apply the
early_start_window and late_end_window as provided by the broadcaster.

• In an alternative model a receiver may apply different adjustments to those suggested by the broadcaster or no
adjustments at all.

• The "starts shortly" state of TVA_id signals to a receiver that it should prepare resources to start recording, this
could also include increasing the rate of TVA_id monitoring.

• It does not indicate how the receiver should deal with an item in the list of programmes to record after the
monitoring for its event_identifier was terminated by the receiver before starting recording, e.g. because it was
time to record the next item in the list.

• This does not indicate what a receiver should do in the paused recording state, it may, for example, be able to
record a different programme during the pause.

From this it should be clear that a range of strategies may be implemented based on the structure and size of the
network, whether full cross-carriage of information is available and the physical resources of the receiver.

ETSI

ETSI TS 102 323 V1.1.1 (2004-09) 91

Annex B (informative):
Example BiM format for ScheduleEvent fragment

B.1 TVA schedule schema
The following is a portion of the TVA Schema as defined in TS 102 822-3-1 [4]. It defines the Schedule type used in
this example.

<element name="Schedule" type="tva:ScheduleType">

<complexType name="InstanceDescriptionType">
 <sequence>
 <element name="Title" type="mpeg7:TitleType" minOccurs="0"/>
 <element name="Synopsis" type="tva:SynopsisType" minOccurs="0"/>
 <element name="AVAttributes" type="tva:AVAttributesType" minOccurs="0"/>
 </sequence>
</complexType>

<complexType name="ScheduleEventType">
 <complexContent>
 <sequence>
 <element name="Program" type="tva:CRIDRefType"/>
 <element name="ProgramURL" type="anyURI" minOccurs="0"/>
 <element name="InstanceMetadataId" type="tva:InstanceMetadataIdType" minOccurs="0"/>
 <element name="InstanceDescription" type="tva:InstanceDescriptionType" minOccurs="0"/>
 <element name="PublishedStartTime" type="dateTime" minOccurs="0"/>
 <element name="PublishedEndTime" type="dateTime" minOccurs="0"/>
 <element name="PublishedDuration" type="duration" minOccurs="0"/>
 <element name="Live" type="tva:FlagType" minOccurs="0"/>
 <element name="Repeat" type="tva:FlagType" minOccurs="0"/>
 <element name="FirstShowing" type="tva:FlagType" minOccurs="0"/>
 <element name="LastShowing" type="tva:FlagType" minOccurs="0"/>
 <element name="Free" type="tva:FlagType" minOccurs="0"/>
 </sequence>
 </complexContent>
</complexType>

<attributeGroup name="fragmentIdentification">
 <attribute name="fragmentId" type="tva:TVAIDType" use="optional"/>
 <attribute name="fragmentVersion" type="unsignedLong" use="optional"/>
</attributeGroup>

<complexType name="ScheduleType">
 <sequence>
 <element name="ScheduleEvent" type="tva:ScheduleEventType" maxOccurs="unbounded"/>
 </sequence>
 <attribute name="serviceIDRef" type="tva:TVAIDRefType" use="required"/>
 <attribute name="start" type="dateTime" use="optional"/>
 <attribute name="end" type="dateTime" use="optional"/>
 <attributeGroup ref="tva:fragmentIdentification"/>
</complexType>

ETSI

ETSI TS 102 323 V1.1.1 (2004-09) 92

B.2 TVA dchedule instance: Textual coding
The following is a portion of a TV-Anytime instance document that describes a schedule fragment.

<Schedule serviceIDRef="dvb://1234..0001"
 start="2003-03-04T12:00"
 end="2003-03-04T17:00">
 <ScheduleEvent>
 <Program crid="crid://1a2b3c4d" />
 <ProgramURL>dvb://1234..0001;1001@2003-03-04T14:01:30Z/PT00H58M15S</ProgramURL>
 <InstanceDescription>
 <Title>Footie</Title>
 <Synopsis>Kicking around a pig's bladder.</Synopsis>
 </InstanceDescription>
 <PublishedStartTime>2003-03-04T14:00:00</PublishedStartTime>
 <PublishedDuration>PT01H00M00S</PublishedDuration>
 </ScheduleEvent>
</Schedule>

ETSI

ETSI TS 102 323 V1.1.1 (2004-09) 93

B.3 TVA schedule instance: Binary coding
Table B.1 is an example encoding of the schedule fragment given in clause B.2.

Table B.1: Binary encoding of example schedule instance

Syntax Value Notes
FragmentUpdatePayload(){
 DecodingModes(){
 lengthCodingMode 00 No element lengths are encoded
 hasDeferredNodes 0 No
 hasTypeCasting 0 No
 reservedBits 1111
 }
 Element(Schedule){ - PayloadTopLevelElement so no transition to encode
 Attributes(){
 Attr(End){ 1 Optional attribute encoded
 dvbDateTimeCodec() 10

0
[16 bits]
[11 bits]

a Published Time is encoded
don't reuse previous date
date
time (minutes since 00:00:00)

 }
 Attr(FragmentId) 0 Optional attribute not encoded
 Attr(FragmentVersion) 0 Optional attribute not encoded
 Attr(ServiceIDRef){ - Mandatory attribute
 dvbStringCodec() - see dvbStringCodec(); data taken from string buffer
 }
 Attr(Start){ 1 Optional attribute is encoded
 dvbDateTimeCodec() 10

1
[11 bits]

a Published Time is encoded
reuse previously encoded date
time (minutes since 00:00:00)

 }
 }
 Content(){ ComplexContent
 Sequence(){
 ScheduleEvent(){
 NumberOfOccurrences 0 0001 Unbounded in schema but only one in this instance
 Element(ScheduleEvent){
 Attributes() No attributes
 Content(){ ComplexContent
 Element(Program){ - Mandatory element
 Attributes(){
 Attr(crid){ Mandatory attribute

ETSI

ETSI TS 102 323 V1.1.1 (2004-09) 94

Syntax Value Notes
 dvbDVBLocatorCodec(){ dvbLocatorCodec used since CRIDs are of type any URI. Data encoded
 Optimized_codec_flag 0 CRID is encoded as a string
 dvbStringCodec() - see dvbStringCodec(); data taken from string buffer
 }
 }
 Content() no content
 }
 Element(ProgramURL){ 1 Optional element is encoded
 Attributes() - No attributes
 Content(){ SimpleType
 dvbDVBLocatorCodec(){ See dvbLocatorCodec
 Optimized_codec_flag 1 Use the OptimizedDVBLocator encoding
 1 DVBLocatorPrefix is encoded
 [16 bits] transport_stream_id
 [16 bits] original_network_id
 [16 bits] service_id
 0 No component_tag field encoded
 01 event_id is encoded
 [16 bits] event_id data
 1 Time and date are encoded
 1 day is encoded
 [16 bits] Date data
 [17 bits] time data
 [17 bits] duration data
 0 No path_segment data encoded
 }
 }
 }
 Element(InstMetadataId) 0 Optional element not encoded, i.e. shunt transition
 Element(InstDescription){ 1 Optional element is encoded
 Attributes() - No attributes
 Content(){ ComplexContent
 Sequence(){
 Element(Title){ 1 Optional element is encoded
 Attributes() No attributes
 Content(){ SimpleType
 dvbStringCodec() - see dvbStringCodec(); data taken from string buffer.
 }
 }
 Element(Synopsis){ 1 Optional element is encoded
 Attributes() No attributes
 Content(){ SimpleType
 dvbStringCodec() - see dvbStringCodec(); data taken from string buffer
 }

ETSI

ETSI TS 102 323 V1.1.1 (2004-09) 95

Syntax Value Notes
 }
 Element(Genre) 0 Optional element not encoded
 Element(AVAttributes) 0 Optional element not encoded
 Element(MemberOf) 0 Optional element not encoded
 }
 }
 Element(PublishedStartTime){ 1 Optional element is encoded
 Attributes() - No attributes
 Content(){ SimpleType
 dvbDateTimeCodec() 10

1
[11 bits]

a Published Time is encoded
reuse previously encoded date
time (minutes since 00:00:00)

 }
 }
 Element(PublishedEndTime) 0 Optional element not encoded
 Element(PublishedDuration){ 1 Optional element is encoded
 Attributes() - No attributes
 Content(){ SimpleType
 dvbDurationCodec() 1

[11 bits]
optimized encoding
number of minutes

 }
 }
 Element(Live) 0 Optional element not encoded
 Element(Repeat) 0 Optional element not encoded
 Element(FirstShowing) 0 Optional element not encoded
 Element(LastShowing) 0 Optional element not encoded
 Element(Free) 0 Optional element not encoded
 }
 }
 }
 }
 }
 }
}

ETSI

ETSI TS 102 323 V1.1.1 (2004-09) 96

The contents of the string buffer used by the dvbStringCodec for the above example is provided in table B.2. The
characters are encoded according to UTF-8 and strings are terminated by a null terminator.

Table B.2: Content of the string buffer used by the dvbStringCodec() (UTF-8 encoding assumed)

String buffer content String offset Notes
"dvb://1234..0001" 0 Value of the serviceIDRef
"crid://1a2b3c4d" 17 CRID of the Program
"Footie" 33 Title of the program
"Kicking around a pig"s bladder" 40 Synopsis of the program

ETSI

ETSI TS 102 323 V1.1.1 (2004-09) 97

Annex C (informative):
Example TVA-init and DecoderInit messages

C.1 Example TVA-init message
Table C.1 is an example TVA-init message that conforms to the profile specified in the present document.

Table C.1: Example TVA-init message

Field Number of bits Value Notes
TVA-init {
 EncodingVersion 8 '0xF0' DVB profile of BiM
 IndexingFlag 1 0 No indexing used in the current TVA stream
 reserved 7 1111111
 DecoderInitptr

8 5 Position of the decoderInit data from the
beginning of the TVA-init message

 { /* EncodingVersion == "0xF0"*/
 BufferSizeFlag 1 0 default buffer size for the ZlibCodec is used
 PositionCodeFlag 1 0 position codes are not used
 reserved 6 111111
 CharacterEncoding 8 '0x01' UTF-8 Character Encoding
 }
 Reserved 0 or 8+
 DecoderInit() 8+ [data] Decoder Initialization message
}

C.2 Example decoderInit message
Table C.2 is an example DecoderInit message that conforms to the profile specified in the present document.

Table C.2: Example decoderInit message

Field Number of
bits Value Semantic

DecoderInit {
 SystemsProfileLevelIndication 16 '0x80' arbitrary value
 UnitSizeCode 3 000 default unit size
 ReservedBits 5 11111
 NumberOfSchemas 8 '0x01' Only one schema used: TV-Anytime
 {
 SchemaURI_Length[0] 8 '0x15' 21 characters in the URI string
 SchemaURI [0] "urn:tva:metadata:2002"
 LocationHint_Length[0] 8 '0x00' no location hint is provided
 NumberOfTypeCodecs[0] 8 '0x00' Only default codecs are used
 }
 InitialDescription_Length 8 '0x00' The initial root description is

conveyed in the TVAMain fragment
}

ETSI

ETSI TS 102 323 V1.1.1 (2004-09) 98

Annex D (informative):
Example extension of the TVA Schema

D.1 Example extended schema
The following is an example schema that extends the TVA schema defined in TS 102 822-3-1 [4].

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema targetNamespace="urn:extended_schema:2003"
 xmlns:xs="http://www.w3.org/2001/XMLSchema"
 xmlns:mpeg7="urn:mpeg:mpeg7:schema:2001"
 xmlns:tva="urn:tva:metadata:2002"
 xmlns="urn:extended_schema:2003"
 elementFormDefault="qualified"
 attributeFormDefault="unqualified">
 <!-- ~~ -->
 <!-- imports -->
 <!-- ~~ -->
 <xs:import namespace="urn:mpeg:mpeg7:schema:2001"
 schemaLocation="mpeg7_tva.xsd"/>
 <xs:import namespace="urn:tva:metadata:2002"
 schemaLocation="tva_metadata_v13.xsd"/>

 <!-- ~~ -->
 <!-- TV-Anytime Extension -->
 <!-- .. -->
 <xs:complexType name="my_BasicContentDescriptionType">
 <xs:annotation>
 <xs:documentation>
 This is the extension of the tva:BasicContentDescriptionType
 which allows to provide the URL of a Logo for the program.
 </xs:documentation>
 </xs:annotation>
 <xs:complexContent>
 <xs:extension base="tva:BasicContentDescriptionType">
 <xs:sequence>
 <element name="ProgramLogoURL" type="xs:anyURI" minOccurs="0"/>
 </xs:sequence>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>
</xs:schema>

D.2 Example decoderInit message for the extended
schema

The main principle of forward compatibility is to use the namespace of the schemas, i.e. the schema URIs, as unique
version identifiers. The identifiers are generated on the basis of URIs conveyed in DecoderInit (see clause 9.4.2.2).

Table D.1 provides an example of DecoderInit message for the extended TV-Anytime schema.

ETSI

ETSI TS 102 323 V1.1.1 (2004-09) 99

Table D.1: Example decoderInit message for an extended schema

Field Number
of bits Value Semantic

DecoderInit {
 SystemsProfileLevelIndication 16 '0x80' arbitrary value
 UnitSizeCode 3 000 default unit size
 ReservedBits 5 11111
 NumberOfSchemas

8 '0x02'
Two schemas are used:
TV-Anytime schema, and the
extended schema

 {
 /* schema 0: TVA */
 SchemaURI_Length[0] 8 '0x15' 21 characters in the URI string
 SchemaURI [0] "urn:tva:metadata:2002"
 LocationHint_Length[0] 8 '0x00' no location hint is provided
 NumberOfTypeCodecs[0] 8 '0x00' Only default codecs are used
 /* schema 1: extension */
 SchemaURI_Length[1] 8 '0x18' 24 characters in the URI string
 SchemaURI [1]

 "urn:extended_schema:20
03"

 LocationHint_Length[1] 8 '0x00' no location hint is provided
 NumberOfTypeCodecs[1] 8 '0x00' Only default codecs are used
 }
 InitialDescription_Length 8 '0x00' The initial root description is

conveyed in the TVAMain
fragment

}

D.3 Example index XPaths for the extended schema
Clause 9.4.2.2 defines how the signalling of schemas shall be used to define namepace prefixes for use in index XPaths.

The following example XPath expressions describe an index of ProgramInformation fragments indexed by the element
ProgramLogoURL of the extended type my_BasicContentDescriptionType:

Example fragment Xpath:

/tva:TVAMain/tva:ProgramDescription/tva:ProgramInformationTable/tva:ProgramInformation

Example field Xpath:

/tva:BasicDescription/d1:ProgramLogoURL.text()

ETSI

ETSI TS 102 323 V1.1.1 (2004-09) 100

Annex E (informative):
Example Scenarios for encoding of TVA_id running_status
as carried in EIT-present

E.1 Introduction
The following examples illustrate possible usage of the running_status field for TVA_ids carried in a TVA_id
descriptor delivered in an EIT present/following subtable, as defined in clause 11.2.

E.2 Examples

E.2.1 Example 1
Figure E.1 illustrates a particular Item of Content (Y) has a TVA_id associated with it whilst running.

Item of Content: X
Associated TVA_Id: 0001

Item of Content: Y
Associated TVA_Id: 0002

4 [Running]TVA_id: 0002

Figure E.1: Example 1

E.2.2 Example 2
Figure E.2 illustrates a number of Items of Content have a TVA_id associated with them whilst running.

Item of Content: X
Associated TVA_Id: 0001

Item of Content: Y
Associated TVA_Id: 0002

4 [Running]TVA_id: 0002

4 [Running]TVA_id: 0001

Figure E.2: Example 2

E.2.3 Example 3
Figure E.3 illustrates where start of Item of Content Y is proceeded by associated TVA_id with state "Starts shortly".
This may or may not overlap with the previous Item of Content (X).

Item of Content: X
Associated TVA_Id: 0001

Item of Content: Y
Associated TVA_Id: 0002

4 [Running]TVA_id: 0002

4 [Running]TVA_id: 0001

2 [Starts shortly]

Figure E.3: Example 3

ETSI

ETSI TS 102 323 V1.1.1 (2004-09) 101

E.2.4 Example 4
In figure E.4, item of Content X overruns significantly compared to its scheduled start_time and duration. During the
overrun the adjusted start_time for Item of Content Y may not yet be known and hence it may not be possible to update
scheduled start_time. Transmitting the relevant TVA_id for Item of Content Y with the state "Not yet running"
indicates that this content is still scheduled to be broadcast.

Item of Content: X
Associated TVA_Id: 0001

Item of Content: Y
Associated TVA_Id: 0002

4 [Running]TVA_id: 0002

4 [Running]TVA_id: 0001

2 [Starts shortly]1 [Not yet running]

Actual start_time for
Item of Content Y

Most recent scheduled start_time
for Item of Content Y that has
been made available to the
receiver, e.g. as broadcast in the
relevant DVB locator.
At the time of overrun of Item of
Content X the adjusted start_time
for Item of Content Y may not be
known.

Figure E.4: Example 4

E.2.5 Example 5
In figure E.5, Item of Content X, e.g. a film, is split into two parts by Item of Content Y, e.g. a news flash.

Item of Content: X, Part 1
Associated TVA_Id: 0001

Item of Content: Y
Associated TVA_Id: 0002

4 [Running]TVA_id: 0002

4 [Running]TVA_id: 0001

2 [Starts shortly]

Item of Content: X, Part 2
Associated TVA_Id: 0001

4 [Running]2 [Restarts shortly]3 [Paused]

Figure E.5: Example 5

ETSI

ETSI TS 102 323 V1.1.1 (2004-09) 102

Annex F (normative):
Classification schemes

F.1 Encoding
This annex describes the implementation of and the use of the dvbControlledTermCodec codec defined in the present
document.

As described in clause 9.4.3.7, this codec encodes a reference to a term defined in a classification scheme by encoding
the ID of the classification scheme and the rank of the term within that scheme.

In the case of the TVARoleCS classification scheme, one should note that the definition of the scheme begins by
importing the terms of the RoleCS MPEG-7 classification scheme. This is equivalent to copying the definitions of all
the terms in RoleCS into the beginning of the TVARoleCS.

As a consequence, every term defined in the RoleCS, for example, is also defined in the TVARoleCS and can therefore
be referenced by two different URIs (one referencing the RoleCS and the other the TVARoleCS). Care must be taken
when identifying the rank of terms defined in TVARoleCS but not imported from RoleCS because the imported terms
must be enumerated first.

Table F.1 illustrates this by providing the correct ranks for some of these terms.

Table F.1: Rank of terms defined in TVARoleCS and RoleCS classification schemes

controlled term URI name Encoded
Classification

Scheme ID

Encoded
term rank

urn:mpeg:mpeg7:cs:RoleCS:2001:AUTHOR Author 0x0D 0
urn:mpeg:mpeg7:cs:RoleCS:2001:UNKNOWN Unknown 0x0D 54
urn:tva:metadata:cs:TVARoleCS:2002:AUTHOR (see note 1) Author 0x0E 0
urn:tva:metadata:cs:TVARoleCS:2002:UNKNOWN (see note 1) Unknown 0x0E 54
urn:tva:metadata:cs:TVARoleCS:2002:V708 (see note 2) Dubber 0x0E 55
urn:tva:metadata:cs:TVARoleCS:2002:V494 (see note 2) Production Secretary 0x0E 143
NOTE 1: These terms are imported from the RoleCS.
NOTE 2: These terms are defined in TVARoleCS but are ranked after imported terms.

F.2 Extension

F.2.1 Introduction
The definition of classification schemes extensions with new controlled terms shall be done by defining a new
classification with the new controlled term.

The URI of the new classification scheme is user defined.

The termID assigned to the new controlled terms should be given the same value as if the terms had be appended to the
actual classification scheme being extended.

Also this is perfectly valid since the extension has its own URI, no termIDs from the original classification scheme
should be re-used for the newly defined controlled terms.

ETSI

ETSI TS 102 323 V1.1.1 (2004-09) 103

F.2.2 Example extension
The following classification scheme is extending the classification whose URI is urn:tva:metadata:cs:ContentCS:2002
with two new controlled terms.

<ClassificationScheme uri="urn:broadcaster:ContentCSExtension">
 <!-- ## -->
 <!-- Extension to urn:tva:metadata:cs:ContentCS:2002 -->
 <!-- Definition: This classification scheme defines two types -->
 <!-- of programmes for the Leisure/Hobby categories (termID 3.3)-->
 <!-- ### -->
 <Term termID="3.3.35">
 <Name xml:lang="en">Internet/web</Name>
 <Definition xml:lang="en">Programme about subject on the
 world-wide-web and related technologies</Definition>
 </Term>
 <Term termID="3.3.36">
 <Name xml:lang="en">Cyberculture</Name>
 <Definition xml:lang="en">Programme about cyberculture (art,
 trends, people,...)</Definition>
 </Term>
</ClassificationScheme>

ETSI

ETSI TS 102 323 V1.1.1 (2004-09) 104

Annex G (informative):
Bibliography

• ETSI ETR 162: "Digital Video Broadcasting (DVB); Allocation of Service Information (SI) codes for DVB
systems".

• W3C Recommendation: "XML Schema Part 1: Structures". http://www.w3.org/TR/xmlschema-1/.

http://www.w3.org/TR/xmlschema-1/

ETSI

ETSI TS 102 323 V1.1.1 (2004-09) 105

History

Document history

V1.1.1 September 2004 Publication

	Intellectual Property Rights
	Foreword
	Introduction
	1 Scope
	2 References
	3 Definitions and abbreviations
	3.1 Definitions
	3.2 Abbreviations

	4 Overview
	5 TV-Anytime information discovery
	5.1 Introduction
	5.2 Resolution providers
	5.2.1 Discovering RARs
	5.2.2 Resolution provider notification table

	5.3 Descriptors
	5.3.1 Parsing of descriptors
	5.3.2 Descriptor identification and location
	5.3.3 Metadata pointer descriptor
	5.3.3.1 Usage
	5.3.3.2 Semantics

	5.3.4 Metadata descriptor
	5.3.4.1 Usage
	5.3.4.2 Semantics

	5.3.5 RAR over DVB stream descriptor
	5.3.6 RAR over IP descriptor
	5.3.7 RNT scan descriptor

	6 CRIDs and other URIs in DVB networks
	6.1 Introduction
	6.2 Encoding of URI strings and the use of non-Latin characters
	6.3 Default authority and abbreviated CRIDs
	6.3.1 Abbreviated CRID rules
	6.3.2 Scope of a default authority definition
	6.3.3 Default authority descriptor

	6.4 DVB locator extensions

	7 Content resolution
	7.1 Introduction
	7.2 Resolving CRIDs in a DVB network
	7.2.1 DVB transport stream resolution handler
	7.2.2 CRI data sets
	7.2.3 Complete and incomplete CRI data sets

	7.3 Delivery of content referencing information
	7.3.1 Container
	7.3.1.1 Description
	7.3.1.2 Classifications of CRI structures and containers
	7.3.1.3 Container format
	7.3.1.4 Container section
	7.3.1.5 Compression wrapper

	7.3.2 CRI results structures
	7.3.2.1 Description
	7.3.2.2 Results_list
	7.3.2.3 Result_data
	7.3.2.3.1 Usage
	7.3.2.3.2 Syntax
	7.3.2.3.3 DVB binary locator

	7.3.2.4 Services
	7.3.2.5 Data repository

	7.3.3 CRI index structures
	7.3.3.1 Description
	7.3.3.2 Cri_index
	7.3.3.3 Cri_prepend_index
	7.3.3.4 Cri_leaf_index
	7.3.3.5 Result_locator formats
	7.3.3.5.1 local_result_locator
	7.3.3.5.2 remote_result_locator

	8 Profile of TVA metadata over DVB transport streams
	8.1 Introduction
	8.2 Summary
	8.3 ProgramInformation fragment
	8.4 GroupInformation fragment
	8.5 Schedule fragment
	8.6 ServiceInformation fragment
	8.7 Other types

	9 Delivery of metadata
	9.1 Introduction
	9.2 Delivery of containers
	9.2.1 Delivery by MHP object carousel
	9.2.2 Container file names

	9.3 Fragment encapsulation
	9.3.1 Introduction
	9.3.2 Encapsulation structure
	9.3.3 DVB BiM fragment reference

	9.4 Fragment encoding
	9.4.1 Introduction
	9.4.2 Rules for BiM encoding
	9.4.2.1 DVB-TVA-init message
	9.4.2.2 DecoderInit and default TVAMain fragment
	9.4.2.3 DVB BiM access unit

	9.4.3 Codec definitions
	9.4.3.1 Introduction
	9.4.3.2 Classification scheme of DVB codecs
	9.4.3.3 dvbStringCodec
	9.4.3.3.1 Introduction
	9.4.3.3.2 Rationale and encoding process (informative)
	9.4.3.3.3 Decoding

	9.4.3.4 dvbLocatorCodec
	9.4.3.4.1 Usage
	9.4.3.4.2 Rationale and encoding process (informative)
	9.4.3.4.3 Decoding

	9.4.3.5 dvbDateTimeCodec
	9.4.3.5.1 Rationale and encoding process (informative)
	9.4.3.5.2 Decoding

	9.4.3.6 dvbDurationCodec
	9.4.3.6.1 Rationale and encoding process (informative)
	9.4.3.6.2 Decoding

	9.4.3.7 dvbControlledTermCodec
	9.4.3.7.1 Usage
	9.4.3.7.2 Rationale and encoding process (informative)
	9.4.3.7.3 Decoding

	9.4.4 Forward compatibility
	9.4.4.1 Use of forward compatible mode
	9.4.4.2 Overview (informative)
	9.4.4.3 Multiple version encoding of an element (informative)

	9.5 TV-Anytime structures
	9.5.1 Profiled index structures
	9.5.1.1 Introduction
	9.5.1.2 Field identifier values
	9.5.1.3 Index list
	9.5.1.4 GroupInformation index by CRID
	9.5.1.4.1 Index definition
	9.5.1.4.2 Index list entry
	9.5.1.4.3 Index structure
	9.5.1.4.4 Sub index structure

	9.5.1.5 GroupInformation index by title
	9.5.1.5.1 Index definition
	9.5.1.5.2 Index list entry
	9.5.1.5.3 Index structure
	9.5.1.5.4 Sub index structure

	9.5.1.6 ProgramInformation index by CRID
	9.5.1.6.1 Index definition
	9.5.1.6.2 Index list entry
	9.5.1.6.3 Index structure
	9.5.1.6.4 Sub index structure

	9.5.1.7 ProgramInformation index by title
	9.5.1.7.1 Index definition
	9.5.1.7.2 Index list entry
	9.5.1.7.3 Index structure
	9.5.1.7.4 Sub index structure

	9.5.1.8 Schedule index by time and DVB service
	9.5.1.8.1 Index definition
	9.5.1.8.2 Index list entry
	9.5.1.8.3 Index structure
	9.5.1.8.4 Sub index structure layer 1
	9.5.1.8.5 Sub index structure layer 2

	9.5.1.9 Schedule index by title
	9.5.1.9.1 Index definition
	9.5.1.9.2 Index list entry
	9.5.1.9.3 Index structure
	9.5.1.9.4 Sub index structure

	9.5.2 Additional structures
	9.5.2.1 Structure types
	9.5.2.2 Type list

	10 Promotional links
	10.1 Introduction
	10.2 Restriction of tva:ExtendedRelatedMaterialType
	10.3 Related content descriptor
	10.4 Related Content Table (RCT)
	10.4.1 Description
	10.4.2 Syntax
	10.4.3 Link info structure

	11 Accurate recording
	11.1 Modes of operation
	11.2 TVA_id descriptor

	12 Extensions to DVB SI
	12.1 Content identifier descriptor
	12.1.1 Introduction
	12.1.2 Explicit CRID definition
	12.1.3 Indirect CRID definition
	12.1.4 Syntax

	12.2 Content Identifier Table (CIT)

	Annex A (informative): Example recorder behaviour
	Annex B (informative): Example BiM format for ScheduleEvent fragment
	B.1 TVA schedule schema
	B.2 TVA dchedule instance: Textual coding
	B.3 TVA schedule instance: Binary coding

	Annex C (informative): Example TVA-init and DecoderInit messages
	C.1 Example TVA-init message
	C.2 Example decoderInit message

	Annex D (informative): Example extension of the TVA Schema
	D.1 Example extended schema
	D.2 Example decoderInit message for the extended schema
	D.3 Example index XPaths for the extended schema

	Annex E (informative): Example Scenarios for encoding of TVA_id running_status as carried in EIT-present
	E.1 Introduction
	E.2 Examples
	E.2.1 Example 1
	E.2.2 Example 2
	E.2.3 Example 3
	E.2.4 Example 4
	E.2.5 Example 5

	Annex F (normative): Classification schemes
	F.1 Encoding
	F.2 Extension
	F.2.1 Introduction
	F.2.2 Example extension

	Annex G (informative): Bibliography
	History

