Smart Cards;
Secured packet structure for UICC based applications
(Release 12)
Contents

Intellectual Property Rights ... 4
Foreword .. 4
Modal verbs terminology ... 4

1 Scope ... 5
2 References .. 5
2.1 Normative references ... 5
2.2 Informative references .. 6
3 Definitions and abbreviations ... 6
3.1 Definitions .. 6
3.2 Abbreviations .. 8

4 Overview of security system ... 9
4.1 Protocol for generalised secured packets .. 9
4.2 Protocol for secured messages based on HTTPS ... 10

5 Generalized secured packet structure ... 10
5.1 Command packet structure .. 10
5.1.1 Coding of the SPI ... 12
5.1.2 Coding of the KIc ... 13
5.1.3 Coding of the KID ... 13
5.1.3.1 Coding of the KID for Cryptographic Checksum .. 13
5.1.3.2 Coding of the KID for Redundancy Check .. 14
5.1.4 Counter Management ... 15
5.2 Response Packet structure ... 15

6 Implementation for CAT_TP ... 17
7 Implementation for TCP/IP .. 17
8 Secured message structure for HTTPS .. 18

Annex A (normative): Relation between security layer and GlobalPlatform security architecture 19
A.1 Key version - counter association within a Security Domain ... 19
A.2 Security keys KIc, KID ... 19

Annex B (informative): Example for CRC computation .. 20
Annex C (informative): Change history ... 21

History .. 22
Intellectual Property Rights

IPRs essential or potentially essential to the present document may have been declared to ETSI. The information pertaining to these essential IPRs, if any, is publicly available for **ETSI members and non-members**, and can be found in ETSI SR 000 314: "Intellectual Property Rights (IPRs): Essential, or potentially Essential, IPRs notified to ETSI in respect of ETSI standards", which is available from the ETSI Secretariat. Latest updates are available on the ETSI Web server (http://ipr.etsi.org).

Pursuant to the ETSI IPR Policy, no investigation, including IPR searches, has been carried out by ETSI. No guarantee can be given as to the existence of other IPRs not referenced in ETSI SR 000 314 (or the updates on the ETSI Web server) which are, or may be, or may become, essential to the present document.

Foreword

This Technical Specification (TS) has been produced by ETSI Technical Committee Smart Card Platform (SCP).

It is based on work originally done in the 3GPP in TSG-terminals WG3 and ETSI SMG.

The contents of the present document are subject to continuing work within TC SCP and may change following formal TC SCP approval. If TC SCP modifies the contents of the present document, it will then be republished by ETSI with an identifying change of release date and an increase in version number as follows:

Version x.y.z

where:

- **x**
 - the first digit:
 - 0 early working draft;
 - 1 presented to TC SCP for information;
 - 2 presented to TC SCP for approval;
 - 3 or greater indicates TC SCP approved document under change control.

- **y**
 - the second digit is incremented for all changes of substance, i.e. technical enhancements, corrections, updates, etc.

- **z**
 - the third digit is incremented when editorial only changes have been incorporated in the document.

Modal verbs terminology

In the present document "shall", "shall not", "should", "should not", "may", "may not", "need", "need not", "will", "will not", "can" and "cannot" are to be interpreted as described in clause 3.2 of the [ETSI Drafting Rules](http://ipr.etsi.org) (Verbal forms for the expression of provisions).

"**must**" and "**must not**" are **NOT** allowed in ETSI deliverables except when used in direct citation.
1 Scope

The present document specifies the structure of Secured Packets for different transport and security mechanisms.

It is applicable to the exchange of secured packets between an entity in a network and an entity in the UICC.

Secured Packets contain application messages to which certain mechanisms according to ETSI TS 102 224 [1] have been applied. Application messages are commands or data exchanged between an application resident in or behind the network and on the UICC. The Sending/Receiving Entity in the network and the UICC are responsible for applying the security mechanisms to the application messages and thus turning them into Secured Packets.

2 References

References are either specific (identified by date of publication and/or edition number or version number) or References are either specific (identified by date of publication and/or edition number or version number) or non-specific. For specific references, only the cited version applies. For non-specific references, the latest version of the reference document (including any amendments) applies.

- In the case of a reference to a TC SCP document, a non specific reference implicitly refers to the latest version of that document in the same Release as the present document.

Referenced documents which are not found to be publicly available in the expected location might be found at http://docbox.etsi.org/Reference.

NOTE: While any hyperlinks included in this clause were valid at the time of publication ETSI cannot guarantee their long term validity.

2.1 Normative references

The following referenced documents are necessary for the application of the present document.

[1] ETSI TS 102 224: "Smart Cards; Security mechanisms for UICC based Applications - Functional requirements".

[5] ETSI TS 131 115: "Digital cellular telecommunications system (Phase 2+); Universal Mobile Telecommunications System (UMTS); LTE; Secured packet structure for (Universal) Subscriber Identity Module (U)SIM Toolkit applications (3GPP TS 31.115)".

NOTE: See http://www.globalplatform.org/.

[8] ETSI TS 101 220: "Smart Cards; ETSI numbering system for telecommunication application providers".

[9] ETSI TS 102 226: "Smart Cards; Remote APDU structure for UICC based applications".

[10] ETSI TS 102 127: "Smart Cards; Transport protocol for CAT applications; Stage 2".
2.2 Informative references

The following referenced documents are not necessary for the application of the present document but they assist the user with regard to a particular subject area.

Not applicable.

3 Definitions and abbreviations

3.1 Definitions

For the purposes of the present document, the following terms and definitions apply:

Advanced Encryption Standard (AES): standard cryptographic algorithm specified in FIPS-197 [12]

application layer: layer above the Transport Layer on which the Application Messages are exchanged between the sending and receiving applications

application message: package of commands or data sent from the Sending Application to the Receiving Application, or vice versa, independently of the transport mechanism

NOTE: An Application Message is transformed with respect to a chosen Transport Layer and chosen level of security into one or more secured packets.

card manager: generic term for the 3 card management entities of a GlobalPlatform card i.e. the OPEN, Issuer Security Domain and the Cardholder Verification Method Services provider as defined in the GlobalPlatform Card Specification [6]

command header: security header of a command packet

NOTE: It includes all fields except the Secured Data.
command packet: secured packet transmitted by the Sending Entity to the Receiving Entity, containing a secured Application Message

counter: mechanism or data field used for keeping track of a message sequence

 NOTE: This could be realized as a sequence oriented or time stamp derived value, maintaining a level of synchronization between the Sending Entity and the Receiving Entity.

cryptographic checksum: string of bits derived from some secret information, (e.g. a secret key), part or all of the Application Message, and possible further information (e.g. part of the Security Header)

 NOTE: The secret key is known to the Sending Entity and to the Receiving Entity. The Cryptographic Checksum is often referred to as Message Authentication Code.

Data Encryption Standard (DES): standard cryptographic algorithm specified as DEA in ISO 16609 [3]

Data Encryption Key (DEK): key identifier for ciphering keys as defined in ETSI TS 102 226 [9]

digital signature: string of bits derived from some secret information, (e.g. a secret key), the complete Application Message, and possible further information (e.g. part of the Security Header)

 NOTE: The secret information is known only to the Sending Entity. Although the authenticity of the Digital Signature can be proved by the Receiving Entity, the Receiving Entity is not able to reproduce the Digital Signature without knowledge of the secret information owned by the Sending Entity.

issuer security domain: on-card entity providing support for the control, security, and communication requirements of the Card Issuer as defined in the GlobalPlatform Card Specification [6]

receiving application: entity to which the Application Message is destined

receiving entity: entity where the Secured Packet is received (e.g. SMS-SC, UICC, USSD entry point, or dedicated Toolkit Server) and where the security mechanisms are utilized

 NOTE: The Receiving Entity processes the Secured Packets.

redundancy check: string of bits derived from the Application Message and possible further information for the purpose of detecting accidental changes to the message, without the use of any secret information

response header: security header of a response packet

response packet: secured packet transmitted by the Receiving Entity to the Sending Entity, containing a secured response and possibly application data

secured data: this field contains the secured application message and possibly padding octets

secured packet: information flow on top of which the level of required security has been applied

 NOTE: An Application Message is transformed with respect to a chosen Transport Layer and chosen level of security into one or more Secured Packets.

security domain: on-card entity providing support for the control, security, and communication requirements of the Application Provider as defined in the GlobalPlatform Card Specification [6]

security header: that part of the secured packet which consists of all security information (e.g. counter, key identification, indication of security level, checksum or Digital Signature)

sender identification: simple verification of the identity of the Sending Entity by the Receiving Entity comparing the sender identity with an a priori stored identity of the sender at the Receiving Entity

sending application: entity generating an Application Message to be sent

sending entity: entity from which the Secured Packet originates (e.g. SMS-SC, UICC, USSD entry point, or dedicated Toolkit Server) and where the security mechanisms are invoked

 NOTE: The Sending Entity generates the Secured Packets to be sent.

status code: indication that a message has been received (correctly or incorrectly, indicating reason for failure)
transport layer: layer responsible for transporting Secured Packets through the network

NOTE: The transport layer implements one or more transport mechanisms, (e.g. SMS or USSD).

unsecured acknowledgement: status code included in a response message

3.2 Abbreviations

For the purpose of the present document, the following abbreviations apply:

- AES Advanced Encryption Standard
- API Application Programming Interface
- ARD Additional Response Data
- CBC Cipher Block Chaining
- CC Cryptographic Checksum
- CHI Command Header Identifier
- CHL Command Header Length
- CMAC Cipher-based Message Authentication Code
- CNTR Count
- CPI Command Packet Identifier
- CPL Command Packet Length
- CRC Cyclic Redundancy Check
- DEK Data Encryption Key
- DES Data Encryption Standard
- DS Digital Signature
- HTTP HyperText Transfer Protocol
- HTTPS HyperText Transfer Protocol Secure
- ISO International Organization for Standardization
- KIc Key and algorithm Identifier for ciphering
- KID Key and algorithm IDentifier for RC/CC/DS
- PCNTR Padding Counter
- PoR Proof of Receipt
- RC Redundancy Check
- RE Receiving Entity
- RHI Response Header Identifier
- RHL Response Header Length
- RPI Response Packet Identifier
- RPL Response Packet Length
- RSC Response Status Code
- SE Sending Entity
- SMG Special Mobile Group
- SMS Short Message Service
- SMS-CB Short Message Service - Cell Broadcast
- SMS-SC Short Message Service - Service Centre
- SPI Security Parameters Indication
- TAR Toolkit Application Reference
- TCP Transmission Control Protocol
- TLS Transport Layer Security
- TLV Tag/Length/Value (data structure)
- USSD Unstructured Supplementary Services Data
4 Overview of security system

An overview of the secure communication related to the Card Application Toolkit together with the required security mechanisms is given in ETSI TS 102 224 [1] (see figure 1).

![Figure 1: System overview](image)

4.1 Protocol for generalised secured packets

This clause applies if messages are protected using an implementation of the generalised secured packet format.

The Sending Application prepares an Application Message and forwards it to the Sending Entity, with an indication of the security to be applied to the message.

The Sending Entity prepends a Security Header (the Command Header) to the Application Message. It then applies the requested security to part of the Command Header and all of the Application Message, including any padding octets. The resulting structure is here referred to as the (Secured) Command Packet.

Under normal circumstances the Receiving Entity receives the Command Packet and unpacks it according to the security parameters indicated in the Command Header. Additional security conditions may apply (e.g. a Minimum Security Level as defined in ETSI TS 102 226 [9]) before unpacking it. The Receiving Entity subsequently forwards the Application Message to the Receiving Application indicating to the Receiving Application the security that was applied. The interface between the Sending Application and Sending Entity and the interface between the Receiving Entity and Receiving Application are proprietary and therefore outside the scope of the present document.

If so indicated in the Command Header, the Receiving Entity shall create a (Secured) Response Packet. The Response Packet consists of a Security Header (the Response Header) and optionally, application specific data supplied by the Receiving Application. Both the Response Header and the application specific data are secured using the security mechanisms indicated in the received Command Packet. The Response Packet will be returned to the Sending Entity, subject to constraints in the transport layer (e.g. timing).

Although in some cases there might be no direct acknowledgement mechanism (i.e. for SMS-CB) the Sending Application may have requested a response. In this case a (Secured) Response Packet could be sent using a different bearer by the Receiving Application.
In some circumstances a security related error may be detected at the Receiving Entity. In such circumstances the Receiving Entity shall react according to the following rules:

1) nothing shall be forwarded to the Receiving Application. i.e. no part of the Application Message, and no indication of the error;

2) if the Sending Entity does not request a response (in the Command Header) the Receiving Entity discards the Command Packet and no further action is taken;

3) if the Sending Entity requests a response and the Receiving Entity can authenticate the Sending Entity, the Receiving Entity shall create a Response Packet indicating the error cause. This Response Packet shall be secured according to the security indicated in the received Command Packet;

4) if the Sending Entity requests a response and the Receiving Entity cannot authenticate the Sending Entity, the Receiving Entity shall:
 - either send a Response Packet indicating the error cause without any security being applied to the Response Packet and the Counter (CNTR) field set to zero; or
 - not send any Response Packet and discard the Command Packet with no further action being taken;

 NOTE: The option to be adopted may depend on the bearer and the security policy of the UICC issuer.

5) if the Receiving Entity receives an unrecognizable Command Header (e.g. an inconsistency in the Command Header), the Command Packet shall be discarded and no further action taken.

4.2 Protocol for secured messages based on HTTPS

The security for data exchange over TCP is provided by TLS. The HTTP protocol is used on top of TLS to provide encapsulation of the data and information about the receiving entity.

The processing rules for messages that are protected using HTTPS are specified in Amendment B of the Global Platform Card Specification v 2.2 [19].

TCP/IP transport is provided by the Bearer Independent Protocol of ETSI TS 102 223 [18] or a direct IP connection as specified in ETSI TS 102 483 [17].

If a TLS connection with the receiving entity is not already established, the sending entity shall send a triggering message as specified in Amendment B of the Global Platform Card Specification v 2.2 [19] to the security domain handling the TLS connection for itself or for an associated application.

5 Generalized secured packet structure

Command and response packets have the same overall structure consisting of a variable length security header within a variable length shell. To model this, use is made of a double TLV -tag, length, value- structure.

5.1 Command packet structure

The Command Header precedes the Secured Data in the Command Packet, and is of variable length.

The Command Packet shall be structured according to table 1.
Table 1: Structure of the command packet

<table>
<thead>
<tr>
<th>Element</th>
<th>Length</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Command Packet Identifier (CPI)</td>
<td>1 octet</td>
<td>Identifies that the data block is the secured Command Packet.</td>
</tr>
<tr>
<td>Command Packet Length (CPL)</td>
<td>variable</td>
<td>This shall indicate the number of octets from and including the Command Header Identifier to the end of the Secured Data, including any padding octets required for ciphering.</td>
</tr>
<tr>
<td>Command Header Identifier (CHI)</td>
<td>1 octet</td>
<td>Identifies the Command Header.</td>
</tr>
<tr>
<td>Command Header Length (CHL)</td>
<td>variable</td>
<td>This shall indicate the number of octets from and including the SPI to the end of the RC/CC/DS.</td>
</tr>
<tr>
<td>Security Parameter Indicator (SPI)</td>
<td>2 octets</td>
<td>See detailed coding in clause 5.1.1.</td>
</tr>
<tr>
<td>Cryptering Key Identifier (Kic)</td>
<td>1 octet</td>
<td>Key and algorithm Identifier for ciphering.</td>
</tr>
<tr>
<td>Key Identifier (KID)</td>
<td>1 octet</td>
<td>Key and algorithm Identifier for RC/CC/DS.</td>
</tr>
<tr>
<td>Toolkit Application Reference (TAR)</td>
<td>3 octets</td>
<td>Coding is application dependent as defined in ETSI TS 101 220 [8].</td>
</tr>
<tr>
<td>Counter (CNTR)</td>
<td>5 octets</td>
<td>Replay detection and Sequence Integrity counter.</td>
</tr>
<tr>
<td>Padding Counter (PCNTR)</td>
<td>1 octet</td>
<td>This indicates the number of padding octets used for ciphering at the end of the secured data.</td>
</tr>
<tr>
<td>Redundancy Check (RC), Cryptographic Checksum (CC) or Digital Signature (DS)</td>
<td>variable</td>
<td>Length depends on the algorithm. A typical value is 8 octets if used, and for a DS could be 48 or more octets; the minimum should be 4 octets.</td>
</tr>
<tr>
<td>Secured data</td>
<td>variable</td>
<td>Contains the Secured Application Message and possibly padding octets used for ciphering.</td>
</tr>
</tbody>
</table>

Unless indicated otherwise, the CPL and the CHL shall be coded according to BER-TV’s coding of length in ETSI TS 101 220 [8].

Table 2: Linear representation of command packet

<table>
<thead>
<tr>
<th>CPI</th>
<th>CPL</th>
<th>CHI</th>
<th>CHL</th>
<th>SPI</th>
<th>Kic</th>
<th>KID</th>
<th>TAR</th>
<th>CNTR</th>
<th>PCNTR</th>
<th>RC/CC/DS</th>
<th>Secured data with padding</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>note 3</td>
<td>note 3</td>
<td>note 3</td>
<td>note 2</td>
<td>note 2</td>
<td>note 2</td>
<td>note 1</td>
<td>note 1</td>
</tr>
</tbody>
</table>

NOTE 1: These fields are included in the data to be ciphered if ciphering is indicated in the Security Header.
NOTE 2: These fields are included in the calculation of the RC/CC/DS.
NOTE 3: Part or all of these fields may also be included in the calculation of the RC/CC/DS, depending on implementation (e.g. SMS).

If ciphering is indicated, first the RC/CC/DS shall be calculated as indicated in note 2 of table 2, and then ciphering shall be applied, as indicated in note 1 of table 2.

If the SPI indicates that a specific field is unused, the Sending Entity shall set the contents of this field to zero, and the Receiving Entity shall ignore the contents.

If the SPI indicates that no RC, CC or DS is present in the Command Header, the RC/CC/DS field shall be of zero length.

Padding octets may consist of any plaintext value. If the Padding Counter content is zero, this shall indicate no padding octets, or no padding is necessary.
5.1.1 Coding of the SPI

The SPI is coded as below.

First Octet:

<table>
<thead>
<tr>
<th>b8</th>
<th>b7</th>
<th>b6</th>
<th>b5</th>
<th>b4</th>
<th>B3</th>
<th>b2</th>
<th>b1</th>
</tr>
</thead>
<tbody>
<tr>
<td>00: No RC, CC or DS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>01: Redundancy Check</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10: Cryptographic Checksum</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11: Reserved for Digital Signature</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0 : No Ciphering</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 : Ciphering</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

00: No counter available (note 1)
10: Process if and only if counter value is higher than the value in the RE (note 3)
11: Process if and only if counter value is one higher than the value in the RE (note 4)

Reserved (set to zero and ignored by RE)

NOTE 1: In this case the counter field is present in the message.

NOTE 2: In this case the counter value is used for information purposes only, (e.g. date or time stamp). If the Command Packet was successfully unpacked, the counter value can be forwarded from the Receiving Entity to the Receiving Application. This depends on proprietary implementations and happens in an application dependent way.

NOTE 3: The counter value is compared with the counter value of the last received Command Packet. This is tolerant to failures on the transport level (i.e. losses of Command Packets). A possible scenario is a global update.

NOTE 4: This provides strict control in addition to security indicated in note 3.

Second Octet:

<table>
<thead>
<tr>
<th>b8</th>
<th>b7</th>
<th>b6</th>
<th>b5</th>
<th>b4</th>
<th>B3</th>
<th>b2</th>
<th>b1</th>
</tr>
</thead>
<tbody>
<tr>
<td>00: No PoR reply to the Sending Entity (SE)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>01: PoR required to be sent to the SE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10: PoR required only when an error has occurred</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11: Reserved</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>00: No RC, CC or DS applied to PoR response to SE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>01: PoR response with simple RC applied to it</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10: PoR response with CC applied to it</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11: Reserved for PoR response with DS applied to it</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0 : PoR response shall not be ciphered</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 : PoR response shall be ciphered</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

00: No PoR reply to the Sending Entity (SE) is set to '0', then the RC or CC requested for the Response Packet, i.e. SPI2.b4b3, shall be the same as the Command Packet, i.e. SPI1.b2b1.

2) Ciphering of the Response Packet, i.e. SPI2.b5 set to '1', is only allowed if the Command Packet has been successfully authenticated (e.g. using CC) and if ciphering was applied to the Command Packet, i.e. SPI1.b3 is set to '1'.

If any violation of these rules for the security settings of Response Packets is detected at the Receiving Entity, the response shall be processed as defined for a security error where the Receiving Entity cannot authenticate the Sending Entity (see clause 4.1, item 4). In case a response is sent, the error cause shall be set to "Unidentified security error".
5.1.2 Coding of the KIc

The KIc is coded as below.

<table>
<thead>
<tr>
<th>b8</th>
<th>b7</th>
<th>b6</th>
<th>b5</th>
<th>b4</th>
<th>b3</th>
<th>b2</th>
<th>b1</th>
</tr>
</thead>
<tbody>
<tr>
<td>00: Algorithm known implicitly by both entities</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>01: DES</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10: AES</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11: proprietary Implementations</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

If b2 b1 = 01 (DES), b4 b3 shall be coded as follows:

- 00: modeReserved for DES as defined in previous releases
- 01: Triple DES in outer-CBC mode using two different keys
- 10: Triple DES in outer-CBC mode using three different keys
- 11: modeReserved for DES as defined in previous releases

If b2 b1 = 10 (AES), b4 b3 shall be coded as follows:

- 00: AES in CBC mode
- 01, 10, 11: Reserved

indication of Keys to be used
(keys implicitly agreed between both entities)

DES is the algorithm specified as DEA in ISO 16609 [3]. Triple DES in outer-CBC mode is described in clause 15.2 of [7].

The use of (single) DES is deprecated. However the coding is reserved for backwards compatibility with pre Release 8 versions of this specification.

AES is the block cipher algorithm specified in FIPS-197 [12]. AES in CBC mode is defined in NIST SP 800-38A [13]. The key length shall be known implicitly by both entities and shall be 128, 192 or 256 bits.

The initial chaining value for CBC modes shall be zero. AES shall be used together with counter settings (b5 and b4 of the first octet of SPI) 10 or 11.

For GlobalPlatform security architecture compliant cards see annex A.

5.1.3 Coding of the KID

5.1.3.1 Coding of the KID for Cryptographic Checksum

If b2b1= '10' (Cryptographic Checksum) in the first byte of SPI, KID shall be coded as following:

<table>
<thead>
<tr>
<th>b8</th>
<th>b7</th>
<th>b6</th>
<th>b5</th>
<th>b4</th>
<th>b3</th>
<th>b2</th>
<th>b1</th>
</tr>
</thead>
<tbody>
<tr>
<td>00: Algorithm known implicitly by both entities</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>01: DES</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10: AES</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11: proprietary Implementations</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

If b2 b1 = 01 (DES), b4 b3 shall be coded as follows:

- 00: Reserved for DES as defined in previous releases
- 01: Triple DES in outer-CBC mode using two different keys
- 10: Triple DES in outer-CBC mode using three different keys
- 11: Reserved

If b2 b1 = 10 (AES), b4 b3 shall be coded as follows:

- 00: AES in CMAC mode
- 01, 10, 11: Reserved

indication of Keys to be used
(keys implicitly agreed between both entities)
DES is the algorithm specified as DEA in ISO 16609 [3]. Triple DES in outer-CBC mode is described in clause 15.2 of [7].

In case of DES, the initial chaining value for CBC modes shall be zero. If padding is required, the padding octets shall be coded hexadecimal '00'. These octets shall not be included in the secured data.

The use of (single) DES is deprecated. However the coding is reserved for backwards compatibility with pre Release 8 versions of this specification.

AES is the block cipher algorithm specified in FIPS-197 [12]. AES in CMAC mode is defined in NIST SP 800-38B [14]. The key length shall be known implicitly by both entities and shall be 128, 192 or 256 bits. AES shall be used together with counter settings (b5 and b4 of the first octet of SPI) 10 or 11. Each CMAC key shall be configured to accept and generate only cryptographic checksums with one length as defined in ETSI TS 102 226 [9] for PUT KEY for AES; the length of the cryptographic checksum shall be 32 or 64 bits.

For GlobalPlatform security architecture compliant cards see annex A.

5.1.3.2 Coding of the KID for Redundancy Check

If b2b1 = '01' (Redundancy Check) in the first byte of SPI, KID shall be coded as follows:

<table>
<thead>
<tr>
<th>b8</th>
<th>b7</th>
<th>b6</th>
<th>b5</th>
<th>b4</th>
<th>b3</th>
<th>b2</th>
<th>b1</th>
</tr>
</thead>
<tbody>
<tr>
<td>00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>01</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>CRC</td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Reserved</td>
</tr>
<tr>
<td>11</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>proprietary Implementations</td>
</tr>
</tbody>
</table>

If b2b1 = 01 (CRC), b4b3 shall be coded as follows:

00	CRC 16
01	CRC 32
10 to 11	Reserved

If b2b1 = 10, b4 and b3 coding is reserved.

For Proprietary use or
For GlobalPlatform security architecture compliant cards: Key Version Number to be used.

The generator polynomial used for CRC 16 shall be \(X^{16} + X^{12} + X^5 + 1\).

The generator polynomial used for CRC 32 shall be
\[
X^{32} + X^{26} + X^{23} + X^{22} + X^{16} + X^{12} + X^{11} + X^{10} + X^8 + X^7 + X^5 + X^4 + X^2 + X + 1.
\]

The least significant bit of the first byte to be included in the checksum shall represent the most significant term of the input polynomial.

The least significant term of the output polynomial shall represent the most significant bit of the first byte of the RC/CC/DS field.

The initial value of the register shall be 'FFFF' for CRC 16 and 'FFFFFFFF' for CRC 32.

The CRC result is obtained after an XOR operation of the final register value with 'FFFFFFFF' for CRC 32 or 'FFFF' for CRC 16.

For GlobalPlatform security architecture compliant cards see annex A.
5.1.4 Counter Management

If in the first SPI byte b4b5 = 00 (No counter available) the counter field shall be ignored by the RE and the RE shall not update the counter.

If b5 of the first SPI byte is equal to 1 then the following rules shall apply to counter management, with the goal of preventing replay and synchronization attacks:

- The SE sets the counter value. It shall only be incremented.
- The RE shall update the counter to its next value upon receipt of a Command Packet after the corresponding security checks (i.e. RC/CC/DS and CNTR verification) have been passed successfully.
- The next counter value is the one received in the incoming message.
- When the counter value reaches its maximum value the counter is blocked.

If there is more than one SE, care has to be taken to ensure that the counter values remain synchronized between the SEs to what the RE is expecting, irrespective of the transport mechanism employed.

The level of security is indicated via the proprietary interface between the Sending/Receiving Application and Sending/Receiving Entity. Application designers should be aware that if the Sending Application requests "No RC/CC/DS" or "Redundancy Check" and "No Counter Available" from the SE, no security is applied to the Application Message and therefore there is an increased threat of malicious attack.

For GlobalPlatform security architecture compliant cards see annex A.

5.2 Response Packet structure

<table>
<thead>
<tr>
<th>Table 3: Structure of the response packet</th>
</tr>
</thead>
<tbody>
<tr>
<td>Element</td>
</tr>
<tr>
<td>Response Packet Identifier (RPI)</td>
</tr>
<tr>
<td>Response Packet Length (RPL)</td>
</tr>
<tr>
<td>Response Header Identifier (RHI)</td>
</tr>
<tr>
<td>Response Header Length (RHL)</td>
</tr>
<tr>
<td>Toolkit Application Reference (TAR)</td>
</tr>
<tr>
<td>Counter (CNTR)</td>
</tr>
<tr>
<td>Padding counter (PCNTR)</td>
</tr>
<tr>
<td>Response Status Code Octet</td>
</tr>
<tr>
<td>Redundancy Check (RC), Cryptographic Checksum (CC) or Digital Signature (DS)</td>
</tr>
<tr>
<td>Additional Response Data</td>
</tr>
</tbody>
</table>
Unless indicated otherwise, the RPL and RHL shall be coded according to BER-TV’s coding of length in ETSI TS 101 220 [8].

Table 4: Linear representation of response packet

<table>
<thead>
<tr>
<th>RPI</th>
<th>RPL</th>
<th>RHI</th>
<th>RHL</th>
<th>TAR</th>
<th>CNTR</th>
<th>PCNTR</th>
<th>Status Code</th>
<th>RC/CC/DS</th>
<th>Additional response data with padding</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>note 1</td>
<td>note 1</td>
<td>note 1</td>
<td>note 1</td>
<td>note 1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>note 2</td>
<td>note 2</td>
<td>note 2</td>
<td>note 2</td>
<td>note 2</td>
</tr>
</tbody>
</table>

NOTE 1: If ciphering is indicated in the Command Packet SPI then these fields shall be ciphered.
NOTE 2: These fields shall be included in the calculation of the RC/CC/DS.
NOTE 3: Part or all of these fields may also be included in the calculation of the RC/CC/DS, depending on implementation (e.g. SMS).

If ciphering is indicated, first the RC/CC/DS shall be calculated as indicated in note 2 of table 4, and then ciphering shall be applied, as indicated in note 1 of table 4.

If the SPI indicates that a specific field is unused, than its contents shall be set to zero, and ignored by the recipient of the Response Packet.

If the SPI in the Command Packet indicates that no RC, CC or DS is present in the Command Header, this field shall be of zero length.

Padding octets may consist of any plaintext value. If the Padding Counter content is zero, this shall indicate no padding octets are present, or no padding is necessary.

Table 5: Response status codes

<table>
<thead>
<tr>
<th>Status Code (hexadecimal)</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>'00'</td>
<td>PoR OK.</td>
</tr>
<tr>
<td>'01'</td>
<td>RC/CC/DS failed.</td>
</tr>
<tr>
<td>'02'</td>
<td>CNTR low.</td>
</tr>
<tr>
<td>'03'</td>
<td>CNTR high.</td>
</tr>
<tr>
<td>'04'</td>
<td>CNTR Blocked.</td>
</tr>
<tr>
<td>'05'</td>
<td>Ciphering error.</td>
</tr>
<tr>
<td>'06'</td>
<td>Unidentified security error. This code is for the case where the Receiving Entity cannot correctly interpret the Command Header and the Response Packet is sent unciphered with no RC/CC/DS.</td>
</tr>
<tr>
<td>'07'</td>
<td>Insufficient memory to process incoming message.</td>
</tr>
<tr>
<td>'08'</td>
<td>This status code "more time" should be used if the Receiving Entity/Application needs more time to process the Command Packet due to timing constraints. In this case a later Response Packet should be returned to the Sending Entity once processing has been completed.</td>
</tr>
<tr>
<td>'09'</td>
<td>TAR Unknown.</td>
</tr>
<tr>
<td>'0A'</td>
<td>Insufficient security level.</td>
</tr>
<tr>
<td>'0B'</td>
<td>Reserved for 3GPP (see ETSI TS 131 115 [5]).</td>
</tr>
<tr>
<td>'0C'</td>
<td>Reserved for 3GPP (see ETSI TS 131 115 [5]).</td>
</tr>
<tr>
<td>'0D' to 'BF'</td>
<td>Reserved for future use.</td>
</tr>
<tr>
<td>'C0' to 'FE'</td>
<td>Reserved for proprietary use.</td>
</tr>
<tr>
<td>'FF'</td>
<td>Reserved for future use.</td>
</tr>
</tbody>
</table>
6 Implementation for CAT_TP

The generic secured Command Packet and secured Response Packet are contained in the CAT_TP Packet Data as defined in ETSI TS 102 127 [10].

In the Command Packet, the Command Packet Identifier (CPI) value is '01' and the Command Header Identifier (CHI) is a Null field. CPI, CPL and CHL shall be included in the calculation of the RC/CC/DS.

In the Response Packet, the Response Packet Identifier (RPI) value is '02' and the Response Header Identifier (RHI) is a Null field. RPI, RPL and RHL shall be included in the calculation of the RC/CC/DS.

Packet Identifier values '00' to 'BF' and 'FF' are reserved for use in the present document. Values 'C0' to 'FE' are reserved for proprietary implementations.

The CAT_TP ports shall be used to address the applications running on top of CAT_TP, except when the CAT_TP link was opened by a PUSH command according to ETSI TS 102 226 [9] that was sent to Multiplexing application identified by its TAR defined in ETSI TS 101 220 [8]. In that case, incoming packets on that CAT_TP link shall be forwarded by TAR addressing.

The counter may be used also by an application to correlate Command Packets with Response Packets.

7 Implementation for TCP/IP

Before sending secured packets, the sending entity shall open a TCP/IP connection using the push mechanism defined in ETSI TS 102 226 [9]. The mechanisms to achieve this are provided by the Bearer Independent Protocol of ETSI TS 102 223 [18] or a direct IP connection as specified in ETSI TS 102 483 [17]. Optionally, this communication may be additionally secured using IPsec or TLS as detailed in ETSI TS 102 484 [16].

One or more generic secured command packets shall be transported from the sending entity as TCP application data. One or more generic secured response packets shall be transported from the receiving entity as TCP application data.

In the Command Packet, the Command Packet Identifier (CPI) value is '01' and the Command Header Identifier (CHI) is a Null field. CPI, CPL and CHL shall be included in the calculation of the RC/CC/DS.

In the Response Packet, the Response Packet Identifier (RPI) value is '02' and the Response Header Identifier (RHI) is a Null field. RPI, RPL and RHL shall be included in the calculation of the RC/CC/DS.

Packet Identifier values '00' to 'BF' and 'FF' are reserved for use in the present document. Values 'C0' to 'FE' are reserved for proprietary implementations.

Incoming secured packets shall be forwarded to the applications based on the TAR.

The counter may be used also by an application to correlate Command Packets with Response Packets.

In addition, an identification packet is defined that is used as defined in ETSI TS 102 226 [9]:

Format of the identification packet:

<table>
<thead>
<tr>
<th>Element</th>
<th>Length</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Identification Packet Identifier</td>
<td>1 octet</td>
<td>Identifies that this data block is an Identification Packet. Value: '03'</td>
</tr>
<tr>
<td>Identification Packet Length</td>
<td>variable</td>
<td>This shall indicate the number of octets of the following fields. Coded as defined for BER TLVs in ETSI TS 101 220 [8].</td>
</tr>
<tr>
<td>Length of identification data string</td>
<td>1 octet</td>
<td>Identification data as defined in ETSI TS 102 226 [9], coded as TLV object like Channel data specified in ETSI TS 102 223 [18].</td>
</tr>
<tr>
<td>Identification data string</td>
<td>N octets</td>
<td></td>
</tr>
</tbody>
</table>
Secure messages shall be sent in the body part of HTTP requests and responses as specified in Amendment B of the Global Platform Card Specification v 2.2 [19] with the modifications given below.

Unless defined otherwise for an application, the following header fields shall take the values below:

- The Content-Type header field of the HTTP POST request shall be set to
 `application/vnd.etsi.scp.response-data;version=1.0`

- The Content-Type header field of the HTTP POST response shall be set to
 `application/vnd.etsi.scp.command-data;version=1.0`

- The X-Admin-Targeted-Application header field of the HTTP POST response shall contain the AID of the targeted application formatted as defined in Amendment B of the Global Platform Card Specification v 2.2 [19] for the Security Domain AID.

For each command message, a corresponding response message shall be exchanged.

Switching to a different targeted application or to/from other receiving entities on the card shall be supported as specified in Amendment B of the Global Platform Card Specification v 2.2 [19].
Annex A (normative):
Relation between security layer and GlobalPlatform security architecture

This annex only applies to cards implementing the security architecture defined in the GlobalPlatform Card Specification [6].

At least one Security Domain shall be present on the card: the Issuer Security Domain.

The security of Application Messages (i.e. RC/CC/DS, ciphering/deciphering, counter management) shall be managed by a Security Domain as specified in the UICC Configuration [15].

A.1 Key version - counter association within a Security Domain

For each Security Domain, a dedicated counter shall be associated to each key version as described in table A.1.

Table A.1

<table>
<thead>
<tr>
<th>Key Version Number</th>
<th>Key Version Number</th>
<th>...</th>
<th>Key Version Number (maximum '0F')</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reserved</td>
<td>Counter 1</td>
<td></td>
<td>Counter n</td>
</tr>
<tr>
<td>Key Identifier 1</td>
<td>Reserved</td>
<td>Klc 1</td>
<td>Klc n</td>
</tr>
<tr>
<td>Key Identifier 2</td>
<td>Reserved</td>
<td>KID 1</td>
<td>KID n</td>
</tr>
<tr>
<td>Key Identifier 3</td>
<td>Reserved</td>
<td>DEK 1</td>
<td>DEK n</td>
</tr>
</tbody>
</table>

NOTE 1: The Key Version Number is defined in GlobalPlatform Card Specification [6]. The range from '01' to '0F' is used in the present document.

NOTE 2: The Key Identifier is defined in GlobalPlatform Card Specification [6]. The range from '01' to '03' is used in the present document.

A.2 Security keys KIc, KID

The indication of the key to be used in the KIc and KID fields shall refer to a GlobalPlatform key version number.

The algorithm to be used with the key shall be the algorithm associated with the key (as described in the GlobalPlatform Card Specification [6] as detailed in the UICC Configuration [15]).

The key version number indicated in the KIc and KID fields shall be identical when different from 0. If the key version numbers are different (and both different from 0) then the message shall be rejected with the "Unidentified security error” Response Status Code.
Example C code for calculating the CRC32:

```c
#include <stdio.h>

typedef unsigned char byte;

/* note that bit 0 from the CRC and the polynomial is the MSB of the implementation */
void CRC32(byte in[], int length, byte out[4]){
    unsigned long crc;
    int bit, byte, carry;
    crc = 0xFFFFFFFF; /* initialization */
    for (byte=0; byte<length; byte++){
        for (bit=0; bit<8; bit++){
            carry = crc & 1 ;
            crc >>=1;
            if (carry ^((in[byte] >> bit) & 1))
                crc ^= 0xedb88320 ; /* polynomial, bit X^32 is handled by the carry */
        }
    }
    crc = ~crc; /* invert CRC */
    out[0]=crc>>24;
    out[1]=crc>>16;
    out[2]=crc>>8;
    out[3]=crc;
}

int main(int argc, char* argv[])
{
    byte in[]={1,2,3,4,5};
    byte c[4];
    CRC32(in, sizeof(in), c);
    printf("crc = 0x%2.2X%2.2X%2.2X\n",c[0],c[1],c[2],c[3]);
    return 0;
}
```

EXAMPLE 1: If an input message is '01 02 03 04 05' where '01' is the first byte and '05' the last byte used for the computation, then the result of CRC 32 computation applied to the input message is '47 0B 99 F4', where '47' would represent the first byte and 'F4' the last byte of the RC/CC/DS field.

EXAMPLE 2: If an input message is '01 02 03 04 05' where '01' is the first byte and '05' the last byte used for the computation, then the result of CRC 16 computation applied to the input message is '22 EC', where '22' would represent the first byte and 'EC' the last byte of the RC/CC/DS field.
Annex C (informative):
Change history

This annex lists all Changes Requests (CR) applied to the present document.

<table>
<thead>
<tr>
<th>Date</th>
<th>Meeting</th>
<th>Tdoc</th>
<th>CR</th>
<th>Rv</th>
<th>Cat</th>
<th>Changes</th>
<th>Old</th>
<th>New</th>
</tr>
</thead>
<tbody>
<tr>
<td>2001-10</td>
<td>T3 API</td>
<td>SCP#7</td>
<td></td>
<td></td>
<td></td>
<td>Initial version is based on 3GPP TS 23.048 V5.1.0.</td>
<td></td>
<td>0.0.0</td>
</tr>
<tr>
<td>2001-11</td>
<td>T3#21: SCP#8</td>
<td>SCP#37</td>
<td></td>
<td></td>
<td></td>
<td>Submitted to 3GPP T3#21 - TC SCP#8. Editorial changes.</td>
<td>0.0.0</td>
<td>0.1.0</td>
</tr>
<tr>
<td>2001-11</td>
<td>SCP#6</td>
<td>SCP#64</td>
<td></td>
<td></td>
<td></td>
<td>Editorial and formatting enhancements. Version number raised to 1.0.0</td>
<td>0.1.0</td>
<td></td>
</tr>
<tr>
<td>2002-02</td>
<td>SCP2#2</td>
<td>SCP#20</td>
<td></td>
<td></td>
<td></td>
<td>Updated to include the results of TSG-T#14 and editorial changes.</td>
<td>1.0.0</td>
<td>1.1.0</td>
</tr>
<tr>
<td>2002-03</td>
<td>SCP#9</td>
<td>SCP#24</td>
<td></td>
<td></td>
<td></td>
<td>Updated to include the results of TSG-T#15. Submitted to SCP#9 for approval.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2002-03</td>
<td>SCP#9</td>
<td>SCP#24</td>
<td></td>
<td></td>
<td></td>
<td>Editorial changes after discussion at SCP#9. This version has been sent to the ETSI secretariat for publication in March 2002 as ETSI TS 102 225 V6.0.0. No technical changes compared to v2.0.0.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2003-01</td>
<td>SCP#12</td>
<td>SCP#30</td>
<td></td>
<td></td>
<td></td>
<td>Clarification on the RC/CC/DS coding in SPI2.</td>
<td>6.0.0</td>
<td>6.1.0</td>
</tr>
<tr>
<td>2003-05</td>
<td>SCP#13</td>
<td>SCP#36</td>
<td></td>
<td></td>
<td></td>
<td>Clarification of the description/usage of b3 b4 of Klc and KID.</td>
<td>6.1.0</td>
<td>6.2.0</td>
</tr>
<tr>
<td>2003-05</td>
<td>SCP#33</td>
<td>SCP#33</td>
<td></td>
<td></td>
<td></td>
<td>TAR coding clarification.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2003-12</td>
<td>SCP#15</td>
<td>SCP#20</td>
<td></td>
<td></td>
<td></td>
<td>Update of ETSI TS 102 225 to GlobalPlatform Card Specification V2.1.1.</td>
<td>6.2.0</td>
<td>6.3.0</td>
</tr>
<tr>
<td>2004-02</td>
<td>SCP#16</td>
<td>SCP#21</td>
<td></td>
<td></td>
<td></td>
<td>Implementation of Secure Packet on CAT_TP.</td>
<td>6.2.0</td>
<td>6.3.0</td>
</tr>
<tr>
<td>2004-02</td>
<td>SCP#16</td>
<td>SCP#21</td>
<td></td>
<td></td>
<td></td>
<td>Allow CPI, CH1, RPI and RHI to be included in Checksum Calculations.</td>
<td>6.2.0</td>
<td>6.3.0</td>
</tr>
<tr>
<td>2004-09</td>
<td>SCP#18</td>
<td>SCP#20</td>
<td></td>
<td></td>
<td></td>
<td>Reservation of a new RSC for 3GPP.</td>
<td>6.3.0</td>
<td>6.4.0</td>
</tr>
<tr>
<td>2004-09</td>
<td>SCP#18</td>
<td>SCP#20</td>
<td></td>
<td></td>
<td></td>
<td>Redundancy Check algorithms.</td>
<td>6.3.0</td>
<td>6.4.0</td>
</tr>
<tr>
<td>2004-11</td>
<td>SCP#19</td>
<td>SCP#20</td>
<td></td>
<td></td>
<td></td>
<td>Correction to the range of Key Version Number and Key Identifier according to GlobalPlatform Card specification.</td>
<td>6.4.0</td>
<td>6.5.0</td>
</tr>
<tr>
<td>2005-01</td>
<td>SCP#20</td>
<td>SCP#20</td>
<td></td>
<td></td>
<td></td>
<td>Clarification on the range of response status codes.</td>
<td>6.6.0</td>
<td>7.0.0</td>
</tr>
<tr>
<td>2005-10</td>
<td>SCP#22</td>
<td>SCP#20</td>
<td></td>
<td></td>
<td></td>
<td>Addition of examples of result of CRC 16 computation.</td>
<td>7.0.0</td>
<td>7.1.0</td>
</tr>
<tr>
<td>2005-12</td>
<td>SCP#23</td>
<td>SCP#20</td>
<td></td>
<td></td>
<td></td>
<td>Reservation of Response Status Code value "0C" for 3GPP.</td>
<td>7.1.0</td>
<td>7.2.0</td>
</tr>
<tr>
<td>2006-03</td>
<td>SCP#25</td>
<td>SCP#20</td>
<td></td>
<td></td>
<td></td>
<td>Correction to ISO standard references.</td>
<td>7.2.0</td>
<td>7.3.0</td>
</tr>
<tr>
<td>2006-10</td>
<td>SCP#33</td>
<td>SCP#20</td>
<td></td>
<td></td>
<td></td>
<td>Clarity of the description of CAT_TP in BIP session.</td>
<td>7.3.0</td>
<td>8.0.0</td>
</tr>
<tr>
<td>2008-10</td>
<td>SCP#39</td>
<td>SCP#20</td>
<td></td>
<td></td>
<td></td>
<td>Addition of AES for encryption/decryption and cryptographic checksum</td>
<td>8.0.0</td>
<td>8.1.0</td>
</tr>
<tr>
<td>2008-10</td>
<td>SCP#39</td>
<td>SCP#20</td>
<td></td>
<td></td>
<td></td>
<td>Clarification of the description of AES for encryption/decryption and cryptographic checksum</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2009-01</td>
<td>SCP#40</td>
<td>SCP#20</td>
<td></td>
<td></td>
<td></td>
<td>Correction of the description of AES for encryption/decryption and cryptographic checksum</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2009-01</td>
<td>SCP#40</td>
<td>SCP#20</td>
<td></td>
<td></td>
<td></td>
<td>Clarity of presence of ARD.</td>
<td>8.1.0</td>
<td>8.2.0</td>
</tr>
<tr>
<td>2009-01</td>
<td>SCP#40</td>
<td>SCP#20</td>
<td></td>
<td></td>
<td></td>
<td>Update to GlobalPlatform Card Specification v2.2 (CR renumbered to 027)</td>
<td>8.1.0</td>
<td>8.2.0</td>
</tr>
<tr>
<td>2009-10</td>
<td>SCP#43</td>
<td>SCP#20</td>
<td></td>
<td></td>
<td></td>
<td>Precision of packet handling for TCP</td>
<td>8.2.0</td>
<td>9.0.0</td>
</tr>
<tr>
<td>2009-10</td>
<td>SCP#43</td>
<td>SCP#20</td>
<td></td>
<td></td>
<td></td>
<td>Addition of HTTPS</td>
<td>8.2.0</td>
<td>9.0.0</td>
</tr>
<tr>
<td>2010-04</td>
<td>SCP#44</td>
<td>SCP#20</td>
<td></td>
<td></td>
<td></td>
<td>Correction of duplicate status code allocation due to CR implementation error</td>
<td>8.2.0</td>
<td>9.0.0</td>
</tr>
<tr>
<td>2010-04</td>
<td>SCP#44</td>
<td>SCP#20</td>
<td></td>
<td></td>
<td></td>
<td>Clarification of network mechanisms for TCP</td>
<td>8.2.0</td>
<td>9.0.0</td>
</tr>
<tr>
<td>2011-05</td>
<td>SCP#49</td>
<td>SCP#20</td>
<td></td>
<td></td>
<td></td>
<td>Correction of reference to NIST SP 800-38B</td>
<td>9.0.0</td>
<td>9.1.0</td>
</tr>
<tr>
<td>2011-12</td>
<td>SCP#53</td>
<td>SCP#20</td>
<td></td>
<td></td>
<td></td>
<td>Clarification key configuration mechanism for AES keys</td>
<td>9.1.0</td>
<td>9.2.0</td>
</tr>
<tr>
<td>2012-02</td>
<td>SCP#53</td>
<td>SCP#20</td>
<td></td>
<td></td>
<td></td>
<td>Rel-10 of the specification is created as a step in creation of Rel-11.</td>
<td>9.2.0</td>
<td>10.0.0</td>
</tr>
<tr>
<td>2012-02</td>
<td>SCP#53</td>
<td>SCP#20</td>
<td></td>
<td></td>
<td></td>
<td>No changes in the technical content compared to V9.2.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2013-10</td>
<td>SCP#61</td>
<td>SCP#20</td>
<td></td>
<td></td>
<td></td>
<td>Update of reference to GlobalPlatform Amendment B</td>
<td>11.0.0</td>
<td>12.0.0</td>
</tr>
<tr>
<td>2014-04</td>
<td>SCP#63</td>
<td>SCP#20</td>
<td></td>
<td></td>
<td></td>
<td>Update of references to GlobalPlatform specifications</td>
<td>10.0.0</td>
<td>11.0.0</td>
</tr>
<tr>
<td>2014-06</td>
<td>SCP#64</td>
<td>SCP#20</td>
<td></td>
<td></td>
<td></td>
<td>Update of the implementation of the SPI - Byte 2</td>
<td>12.0.0</td>
<td>12.1.0</td>
</tr>
</tbody>
</table>
History

<table>
<thead>
<tr>
<th>Version</th>
<th>Date</th>
<th>Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>V12.0.0</td>
<td>June 2014</td>
<td>Publication</td>
</tr>
<tr>
<td>V12.1.0</td>
<td>October 2014</td>
<td>Publication</td>
</tr>
</tbody>
</table>