Universal Mobile Telecommunications System (UMTS); Specific Absorption Rate (SAR) requirements and regulations in different regions
(3G TR 34.925 version 3.0.0 Release 1999)
Intellectual Property Rights

IPRs essential or potentially essential to the present document may have been declared to ETSI. The information pertaining to these essential IPRs, if any, is publicly available for ETSI members and non-members, and can be found in SR 000 314: "Intellectual Property Rights (IPRs): Essential, or potentially Essential, IPRs notified to ETSI in respect of ETSI standards", which is available from the ETSI Secretariat. Latest updates are available on the ETSI Web server (http://www.etsi.org/ipr).

Pursuant to the ETSI IPR Policy, no investigation, including IPR searches, has been carried out by ETSI. No guarantee can be given as to the existence of other IPRs not referenced in SR 000 314 (or the updates on the ETSI Web server) which are, or may be, or may become, essential to the present document.

Foreword

This Technical Report (TR) has been produced by the ETSI 3rd Generation Partnership Project (3GPP).

The present document may refer to technical specifications or reports using their 3GPP identities or GSM identities. These should be interpreted as being references to the corresponding ETSI deliverables. The mapping of document identities is as follows:

For 3GPP documents:

3G TS | TR nn.nnn "<title>" (with or without the prefix 3G)

is equivalent to

ETSI TS | TR 1nn nnn "[Digital cellular telecommunications system (Phase 2+) (GSM);] Universal Mobile Telecommunications System; <title>

For GSM document identities of type "GSM xx.yy", e.g. GSM 01.04, the corresponding ETSI document identity may be found in the Cross Reference List on www.etsi.org/key
Contents

Foreword 4

1 Scope... .. 5

2 References 5

3 Definitions and abbreviations ... 6
 3.1 Definitions 6
 3.2 Abbreviations 7

4 Summary of international RF exposure guidelines and standards 8
 4.1 ICNIRP exposure limits ... 8
 4.2 SAR test procedures ... 8
 4.2.1 Measurement methods ... 8
 4.2.2 Standardization activities ... 9

5 Comparison of regional and national standards and regulations 9
 5.1 Introduction .. 9
 5.2 Europe (EU) .. 9
 5.3 Japan ... 10
 5.4 USA .. 10
 5.5 Australia ... 11
 5.6 Canada ... 11
 5.7 Korea .. 11

History.. 12
Foreword

This Technical Report has been produced by the 3GPP.

The contents of the present document are subject to continuing work within the TSG and may change following formal TSG approval. Should the TSG modify the contents of this TR, it will be re-released by the TSG with an identifying change of release date and an increase in version number as follows:

Version 3.y.z

where:

x the first digit:
 1 presented to TSG for information;
 2 presented to TSG for approval;
 3 Indicates TSG approved document under change control.

y the second digit is incremented for all changes of substance, i.e. technical enhancements, corrections, updates, etc.

z the third digit is incremented when editorial only changes have been incorporated in the specification;
1 Scope

The present document, that will not be maintained, provides information describing the situation in May 1999.

The present document cover only terminal devices that are normally operated close to the user, approximately within 20 cm of any part of the body. For other IMT-2000 RF transmitting equipment, for example base stations, other RF exposure standards, limits and assessment methods than those described in the present document may be applied.

The present document does not define any new RF exposure limits or assessment methods. It refers to recommendations, standards and regulations that already exist or are under development. Like other existing mobile communication terminals, IMT-2000 terminals will be recommended or requested to comply with these guidelines.

2 References

The following documents contain provisions which, through reference in this text, constitute provisions of the present document.

3 Definitions and abbreviations

3.1 Definitions

For the purposes of the present document, the following definitions apply.

averaging time (t_{avg}): the appropriate time interval over which RF exposure is averaged for purposes of determining compliance with the exposure limits.

basic restrictions: restrictions on the effects of exposure that are based on established health effects. Depending of frequency, the basic restrictions on exposure to electromagnetic fields are current density, SAR and power density. In the frequency range of interest in this document, the basic restrictions are expressed as SAR values.

continuous exposure: exposure for a duration exceeding the corresponding averaging time. Exposure for less than the averaging time is called short-term exposure.

duty factor (duty cycle): the ratio of the pulse duration to the pulse period of a periodic pulse train. A duty factor of unity corresponds to continuous-wave operation.

electric field strength (E): the magnitude of a field vector at a point that represents the force (F) on a positive small charge (q) divided by the charge.

\[E = \frac{F}{q} \]

Electric field strength is expressed in units of volts per meter (V/m).

exposure: occurs whenever a person is subjected to external electric, magnetic or electromagnetic fields.

exposure level: the value of the quantity used when a person is exposed to electromagnetic fields.

exposure, partial-body (non uniform): partial-body exposure results when fields are substantially non-uniform over the body. Fields that are non-uniform over volumes comparable to the human body may occur due to for example near-field sources or highly directional sources.

far field region: the region where the field has a predominantly plane-wave character, i.e., locally uniform distributions of electric and magnetic field strengths in planes transverse to the direction of propagation.

IMT-2000 terminals: terminals intended for use in third generation mobile system.

NOTE: The term is used in order to indicate that SAR requirements are valid independent of 3G technology chosen.

near-field region: a region generally in the proximity of an antenna or other radiating structure, in which the electric and magnetic fields do not have a substantially plane-wave character. The near-field region is further subdivided into the reactive near-field region, which is closest to the radiating structure and that contains most or nearly all the stored energy, and the radiating near-field region, where the radiation field predominates over the reactive field but lacks substantial plane-wave character and is complicated in structure.

Radio Frequency (RF): the frequency range between 300 Hz and 300 GHz (ICNIRP definition).
root-mean-square (rms): the effective value or rms value is obtained by taking the square root of the average of the square of the value of the periodic function taken throughout one period.

short-term exposure: an exposure duration of less than the specified averaging time.

Specific Absorption Rate (SAR): the time derivative of the incremental energy \((dW)\) absorbed by an incremental mass \((dm)\) contained in a volume element \((dV)\) of given mass density \((\rho)\)

\[
SAR = \frac{d}{dt} \left(\frac{dW}{dm} \right) = \frac{d}{dt} \left(\frac{dW}{\rho dV} \right)
\]

SAR is expressed in units of watts per kilogram (W/kg).

SAR is usually calculated by:

\[
SAR = \frac{\sigma E^2}{\rho}
\]

where

- \(E\) : rms value of the electric field strength in the tissue in V/m
- \(\sigma\) : conductivity of body tissue in S/m
- \(\rho\) : density of body tissue in kg/m³

3.2 Abbreviations

For the purposes of the present document, the following abbreviations apply:

- ACA Australian Communications Authority
- ANSI American National Standards Institute (USA)
- ARIB Association of Radio Industries and Businesses (Japan)
- AS/NZS Australian Standard / New Zealand Standard
- CDMA Code-Division Multiple Access
- CENELEC European Committee for Electrotechnical Standardization
- CW Continuous wave
- DOC Declaration of Conformity
- E-field Electric field
- EMF Electromagnetic Field
- ES European Specification
- ETRI Electronics and Telecommunications Research Institute (Korea)
- FCC Federal Communications Commission (USA)
- ICNIRP International Commission on Non-Ionizing Radiation Protection
- IEC International Electrotechnical Commission
- IEEE Institute of Electrical and Electronics Engineers (USA)
- IMT-2000 International Mobile Telecommunications-2000
- KEES Korea Electromagnetic Engineering Society
- MIC Ministry of Information & Communication (Korea)
- MPT Ministry of Posts and Telecommunications (Japan)
- MTE Mobile Telecommunication Equipment
- NIR Non-Ionizing Radiation
- R&TTE radio equipment and telecommunications terminal equipment
- RF Radio Frequency (300 Hz – 300 GHz)
- RRL Radio Research Laboratory (Korea)
4 Summary of international RF exposure guidelines and standards

4.1 ICNIRP exposure limits

The independent scientific organisation ICNIRP, which is sponsored by WHO, investigates potential health effects of NIR and develops international guidelines on exposure limits [1]. These guidelines form the basis of many national standards and regulations. The ICNIRP guidelines are based on consensus of all the existing scientific results and provide protection against all established health effects of NIR exposure.

In the frequency range from 10 MHz to 10 GHz, the fundamental exposure limits, which are called basic restrictions, are expressed as SAR limits. SAR is a measure of the rate of absorption of electromagnetic energy in tissue during exposure. There are two sets of limits, one for general public exposure and another for occupational exposure. Furthermore, there are three different SAR limits; whole-body averaged SAR, localised SAR in the head and trunk, and localised SAR in the limbs. The averaging mass for the latter two limits is 10 g of tissue and these are primarily applied for partial-body and near-field exposure situations.

Table 1 below shows the ICNIRP general public SAR restrictions. The localized SAR limits are those applicable to low-power mobile communication terminals that are used close to the body by the general public, including IMT-2000 terminals. Most important is the limit for the head and trunk, 2 W/kg in a 10 g of tissue, since most devices are held close to these parts of the body. The whole-body averaged SAR limit can never be exceeded by this type of devices.

The averaging time is 6 minutes, which means that higher exposure levels are accepted for shorter exposure times than six minutes. Since mobile terminals can be used for periods longer than the averaging time (continuous exposure), the limits in Table 1 shall always be used.

The ICNIRP guidelines do also specify reference levels expressed as power density or field strength levels. These should however not be applied for IMT-2000 and other mobile communication terminals that are used close to the body.

<table>
<thead>
<tr>
<th>SAR limit (W/kg)</th>
<th>SAR limit (W/kg)</th>
<th>SAR limit (W/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Whole-body</td>
<td>10 g, head and trunk</td>
<td>10 g, limbs</td>
</tr>
<tr>
<td>0.08</td>
<td>2</td>
<td>4</td>
</tr>
</tbody>
</table>

4.2 SAR test procedures

4.2.1 Measurement methods

In order to show that a mobile communication terminal is in compliance with the ICNIRP exposure limits the maximum localized SAR has to be evaluated in a human body model. The only SAR evaluation method that provides sufficient accuracy, sensitivity and reproducibility is the E-field probe technique. With this method, a homogeneous human body model is exposed to the RF fields from the mobile terminal, and the internal electric field strength distribution is measured with a miniature probe. From the electric field strength data, the SAR distribution and the maximum localized SAR value are derived.

Complete and fully automatic SAR test systems are commercially available. Such systems are used by mobile terminal manufacturers, network operators, universities and test laboratories. The tests are performed using scientifically based procedures that slightly over-estimate the maximum localized SAR in a real human body.
4.2.2 Standardization activities

International standards that will specify SAR test procedures for mobile communication terminals are under development. IEC (TC85, WG15) is working on a general international standard that will define RF exposure evaluation methods in the frequency range from 9 kHz to 300 GHz. This standard, which is planned to be finalized in 2000, will also include a section about SAR testing of mobile communication terminals.

IEC will most probably also start developing an international product standard for mobile communication terminals in 1999. This standard will describe how SAR compliance testing shall be performed. The IEC activity will be harmonized with the work of CENELEC in Europe (see section 5). The standard will be applicable for IMT-2000 terminals.

In USA, IEEE is also developing a SAR test standard (see section 5) which is scheduled to be published in 2000-2001. This will be written as an international standard, and large parts of the information will probably be reused by IEC.

Based on the status of the activities in IEC and IEEE, it is clear that the final international SAR test standard will define a test method for handheld mobile telephones that is well in line with the measurement procedure that is used today. The most important characteristics of this procedure are:

- Automatic E-field probe measurements using isotropic miniature probe.
- Adult-sized and anatomically shaped plastic shell head model filled with a liquid that simulates human head tissue. Hand excluded.
- Test in a normal use position. Measurements at both left and right ear.
- Test with antenna both fully extended and fully retracted (if applicable).
- Measurements at maximum output power and at three frequencies (low, center, high) of all used bands and with all different antennas.
- Internal RF transmitter and power supply (no external connections).
- No time averaging unless the radio signal has a deterministic power variation (for example TDMA signals which have well defined duty factors). For CDMA a CW signal may be used.
- The total measurement uncertainty should be less than about 30%.
- The device is in compliance with the exposure guidelines if the measured maximum SAR value is less than localized SAR limit.

The international standard will also specify test procedures for other exposure situations.

5 Comparison of regional and national standards and regulations

5.1 Introduction

In some countries and regions RF exposure standards or regulations including SAR limits applicable for mobile telecommunication equipment have been published. A number of SAR test specifications have also been published. In a few countries SAR testing is required for type approval of mobile telephones. This section summarizes these regional and national standards and regulations.

5.2 Europe (EU)

SAR limits

In 1995 CENELEC published the European pre-standard ENV 50166-2 [2], which has been adopted as national standards in some countries. The localized SAR limits are the same as those in the ICNIRP guidelines, see table 1.
The ENV may be withdrawn in 1999, and it is planned to be replaced with a new document with reference to the ICNIRP guidelines. This document will presumably become an EN.

In 1999, an EU council recommendation will be issued, which is expected to recommend that the member states adopt the ICNIRP guidelines as national regulations. A new EU directive, R&TTE, 99/5/EC [10], has been published April 7, 1999. In this directive, it is required that radio terminal equipment complies with RF exposure standards.

SAR test procedures

In 1993, CENELEC received a mandate from the European Commission (DGXIII) to develop a European Standard with procedures for testing of mobile communication equipment compliance with RF exposure limits. In 1998, a general document was published as a European Specification, ES59005 [3]. In 1999, CENELEC (TC211) has started developing the ES into a standard with a well-defined test procedure. The work will be coordinated with the activities in IEC and IEEE.

Level of SAR test regulation

SAR testing is not yet mandatory in Europe, or in any of the member states. Manufacturers and network operators perform SAR testing on a voluntary basis.

5.3 Japan

SAR limits

MPT published national RF exposure guidelines in 1997 [4]. The SAR limits are the same as those in the ICNIRP guidelines, see table 1. The localized SAR limit for the head and trunk is **2.0 W/kg (10 g)**.

SAR test procedures

In 1998, ARIB published the standard STD-T56 [5], which describes methods and procedures for SAR testing of mobile telephones. This will be revised in 1999. When the international IEC SAR test standard is finalized, this will probably be adopted as a Japanese standard.

Level of SAR test regulation

SAR testing is not yet mandatory in Japan. Manufacturers and network operators perform SAR testing on a voluntary basis. Testing will become mandatory when the international SAR test standard is published.

5.4 USA

SAR limits

The FCC has adopted the SAR limits from the U.S. standard ANSI/IEEE C95.1-1992 [6] in its RF exposure rules [7]. The SAR limits are the same as the ICNIRP levels except for the limit for the head and trunk, which is slightly lower, **1.6 W/kg**. The averaging mass and time are also different, 1 g and 30 minutes, respectively. The current FCC rules were published in 1996 and SAR testing is required for mobile telephones.

A new version of C95.1 will be published in 1999. However, no changes of the SAR values are expected.

SAR test procedures

In 1997, IEEE (SCC34, SC-2) started to develop a standard that will define procedures for testing compliance with the localized SAR limits for mobile terminals. This standard will be completed in 2000, and adopted by the FCC.

As an interim standard, in 1997 the FCC published a document that provides information for evaluating compliance with the FCC SAR limits (OET Bulletin 65 Supplement C) [8]. This document will be updated in 1999 with the latest information from the IEEE activity.

Level of SAR test regulation

SAR testing is mandatory for mobile telephones (PCS and cellular) in USA. A SAR test report has to be submitted to the FCC before type approval.
5.5 Australia

SAR limits

The ACA adopted a new RF regulation framework in February 1999. Mobile terminals have to comply with the SAR limits from the interim Australian standard AS/NZS 2772.1-1998 [9]. The SAR limits are the same as the IEEE limits adopted by the FCC in USA; i.e. the localized SAR limit for the head and trunk is **1.6 W/kg (1g)**. SAR testing is required for mobile telephones.

Australia is considering adopting the international ICNIRP RF exposure limits. However, no final decision has yet been taken.

SAR test procedures

The ACA has published an interim SAR test standard, which is partly based on an IEC SAR test draft and on the FCC interim SAR test standard mentioned above. When an international standard is available, this will replace the current interim standard.

Level of SAR test regulation

SAR testing is mandatory for mobile telephones in Australia.

5.6 Canada

SAR limits

Health Canada has adopted the same SAR limits as the IEEE in its draft standard "Safety Code 6". The localized SAR limit for the head and trunk is thus **1.6 W/kg (1g)**.

SAR test procedures

Industry Canada is developing a new Radio Standards Specification regarding RF exposure from mobile radio transmitters (RSS-102), which will be finished in 1999. This document will define SAR limits (from Health Canada), SAR test conditions, and compliance criteria for certification of mobile transmitters.

Level of SAR test regulation

Today mobile transmitters type approved by the U.S. FCC are certified in Canada. With the new regulation, SAR testing will be mandatory and a DOC has to be submitted to Industry Canada for equipment certification.

5.7 Korea

SAR limits

The guidelines for limiting exposure to electromagnetic fields will be published by KEES in 1999.

The SAR limits are the same as those in the ICNIRP guidelines, see table 1. The localized SAR limit for the head and trunk is **2.0 W/kg (10 g)**.

SAR test procedures

RRL of MIC and ETRI are developing a SAR test standard, which is based on the SAR test draft of CENELEC and FCC. The draft will be published in 1999 or 2000. If the international SAR test standard is settled upon, this will probably be adopted as a Korean standard.

Level of SAR test regulation

SAR testing is not yet mandatory in Korea.
History

<table>
<thead>
<tr>
<th>Document history</th>
</tr>
</thead>
<tbody>
<tr>
<td>V3.0.0 January 2000 Publication</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>