
 

 

 

 

 
ETSI TR 129 998-4-4 V5.0.3 (2004-06)

Technical Report 

Universal Mobile Telecommunications System (UMTS);
Open Service Access (OSA)

Application Programming Interface (API)
Mapping for Open Service Access;

Part 4: Call Control Service Mapping;
Subpart 4: Multiparty Call Control ISC

(3GPP TR 29.998-04-4 version 5.0.3 Release 5)

 

 

 



 

ETSI 

ETSI TR 129 998-4-4 V5.0.3 (2004-06) 1 3GPP TR 29.998-04-4 version 5.0.3 Release 5 

 

 

 

Reference 
RTR/TSGN-0529998-04-4v503 

Keywords 
UMTS 

ETSI 

650 Route des Lucioles 
F-06921 Sophia Antipolis Cedex - FRANCE 

 
Tel.: +33 4 92 94 42 00   Fax: +33 4 93 65 47 16 

 
Siret N° 348 623 562 00017 - NAF 742 C 

Association à but non lucratif enregistrée à la 
Sous-Préfecture de Grasse (06) N° 7803/88 

 

Important notice 

Individual copies of the present document can be downloaded from: 
http://www.etsi.org 

The present document may be made available in more than one electronic version or in print. In any case of existing or 
perceived difference in contents between such versions, the reference version is the Portable Document Format (PDF). 

In case of dispute, the reference shall be the printing on ETSI printers of the PDF version kept on a specific network drive 
within ETSI Secretariat. 

Users of the present document should be aware that the document may be subject to revision or change of status. 
Information on the current status of this and other ETSI documents is available at 

http://portal.etsi.org/tb/status/status.asp 

If you find errors in the present document, send your comment to: 
editor@etsi.org 

Copyright Notification 

No part may be reproduced except as authorized by written permission. 
The copyright and the foregoing restriction extend to reproduction in all media. 

 
© European Telecommunications Standards Institute 2004. 

All rights reserved. 
 

DECTTM, PLUGTESTSTM and UMTSTM are Trade Marks of ETSI registered for the benefit of its Members. 
TIPHONTM and the TIPHON logo are Trade Marks currently being registered by ETSI for the benefit of its Members. 
3GPPTM is a Trade Mark of ETSI registered for the benefit of its Members and of the 3GPP Organizational Partners. 

http://www.etsi.org/
http://portal.etsi.org/tb/status/status.asp
mailto:editor@etsi.org


 

ETSI 

ETSI TR 129 998-4-4 V5.0.3 (2004-06) 2 3GPP TR 29.998-04-4 version 5.0.3 Release 5 

Intellectual Property Rights 
IPRs essential or potentially essential to the present document may have been declared to ETSI. The information 
pertaining to these essential IPRs, if any, is publicly available for ETSI members and non-members, and can be found 
in ETSI SR 000 314: "Intellectual Property Rights (IPRs); Essential, or potentially Essential, IPRs notified to ETSI in 
respect of ETSI standards", which is available from the ETSI Secretariat. Latest updates are available on the ETSI Web 
server (http://webapp.etsi.org/IPR/home.asp). 

Pursuant to the ETSI IPR Policy, no investigation, including IPR searches, has been carried out by ETSI. No guarantee 
can be given as to the existence of other IPRs not referenced in ETSI SR 000 314 (or the updates on the ETSI Web 
server) which are, or may be, or may become, essential to the present document. 

Foreword 
This Technical Report (TR) has been produced by ETSI 3rd Generation Partnership Project (3GPP). 

The present document may refer to technical specifications or reports using their 3GPP identities, UMTS identities or 
GSM identities. These should be interpreted as being references to the corresponding ETSI deliverables.  

The cross reference between GSM, UMTS, 3GPP and ETSI identities can be found under 
http://webapp.etsi.org/key/queryform.asp . 

http://webapp.etsi.org/IPR/home.asp
http://webapp.etsi.org/key/queryform.asp


 

ETSI 

ETSI TR 129 998-4-4 V5.0.3 (2004-06) 3 3GPP TR 29.998-04-4 version 5.0.3 Release 5 

Contents 

Intellectual Property Rights ................................................................................................................................2 

Foreword.............................................................................................................................................................2 

Foreword.............................................................................................................................................................6 

Introduction ........................................................................................................................................................6 

1 Scope ........................................................................................................................................................8 

2 References ................................................................................................................................................8 

3 Definitions and abbreviations...................................................................................................................9 
3.1 Definitions..........................................................................................................................................................9 
3.2 Abbreviations ...................................................................................................................................................11 

4 Mapping OSA Call and Call Leg to SIP ................................................................................................11 
4.1 Introduction ......................................................................................................................................................11 
4.2 SIP Call-id &dialog vs. OSA Call & Call Leg Session ID...............................................................................11 
4.2.1 OSA Call and SIP Dialogue Correlation Tables .........................................................................................12 

5 Multi Party Call Control Flows ..............................................................................................................14 
5.1 Call Manager Service Interface ........................................................................................................................14 
5.1.1 CreateCall ...................................................................................................................................................14 
5.1.2 CreateNotification.......................................................................................................................................15 
5.1.3 changeNotification......................................................................................................................................16 
5.1.4 destroyNotification .....................................................................................................................................17 
5.1.5 getNotification ............................................................................................................................................18 
5.1.6 setCallLoadControl.....................................................................................................................................19 
5.2 Call Manager Application Interface .................................................................................................................20 
5.2.1 managerInterrupted.....................................................................................................................................20 
5.2.2 managerResumed........................................................................................................................................20 
5.2.3 reportNotification .......................................................................................................................................21 
5.2.4 callAborted .................................................................................................................................................22 
5.2.5 callOverloadEncountered............................................................................................................................23 
5.2.6 callOverloadCeased ....................................................................................................................................24 
5.3 Multi-Party Call Service Interface....................................................................................................................25 
5.3.1 GetCallLegs ................................................................................................................................................25 
5.3.2 createCallLeg..............................................................................................................................................25 
5.3.3 createAndRouteCallLegReq .......................................................................................................................26 
5.3.4 release .........................................................................................................................................................29 
5.3.5 deassignCall ................................................................................................................................................31 
5.3.6 getInfoReq ..................................................................................................................................................32 
5.3.7 superviseReq...............................................................................................................................................33 
5.3.8 setAdviceOfCharge.....................................................................................................................................34 
5.3.9 SetChargePlan.............................................................................................................................................35 
5.4 Multi-Party Call Application Interface.............................................................................................................36 
5.4.1 createAndRouteCallLegErr.........................................................................................................................36 
5.4.2 callEnded ....................................................................................................................................................37 
5.4.3 getInfoRes...................................................................................................................................................37 
5.4.4 getInfoErr....................................................................................................................................................38 
5.4.5 superviseErr ................................................................................................................................................39 
5.4.6 superviseRes ...............................................................................................................................................40 
5.5 CallLeg Service Interface .................................................................................................................................41 
5.5.1 routeReq......................................................................................................................................................41 
5.5.1.1 Case 1 UA mode operation ...................................................................................................................41 
5.5.1.2 Case 2 Proxy mode operation................................................................................................................42 
5.5.2 eventReportReq ..........................................................................................................................................43 
5.5.3 release .........................................................................................................................................................44 
5.5.4 getInfoReq ..................................................................................................................................................47 



 

ETSI 

ETSI TR 129 998-4-4 V5.0.3 (2004-06) 4 3GPP TR 29.998-04-4 version 5.0.3 Release 5 

5.5.5 getCall.........................................................................................................................................................48 
5.5.6 continueProcessing .....................................................................................................................................48 
5.5.7 attachMediaReq ..........................................................................................................................................49 
5.5.8 detachMediaReq .........................................................................................................................................51 
5.5.9 deassign ......................................................................................................................................................53 
5.5.10 getCurrentDestinationAddress....................................................................................................................53 
5.6 CallLeg Application Interface ..........................................................................................................................54 
5.6.1 routeErr .......................................................................................................................................................54 
5.6.2 eventReportRes...........................................................................................................................................55 
5.6.3 eventReportErr............................................................................................................................................56 
5.6.4 callLegEnded ..............................................................................................................................................57 
5.6.5 getInfoRes...................................................................................................................................................58 
5.6.6 getInfoErr....................................................................................................................................................59 
5.6.7 superviseErr ................................................................................................................................................60 
5.6.8 superviseRes ...............................................................................................................................................61 
5.6.9 attachMediaErr ...........................................................................................................................................62 
5.6.10 attachMediaRes...........................................................................................................................................63 
5.6.11 detachMediaErr...........................................................................................................................................64 
5.6.12 detachMediaRes..........................................................................................................................................64 

6 Detailed parameter mappings.................................................................................................................66 
6.1 TpAdditionalCallEventCriteria ........................................................................................................................66 
6.2 TpAddress ........................................................................................................................................................67 
6.3 TpAddressRange ..............................................................................................................................................68 
6.4 TpCallAppInfo .................................................................................................................................................69 
6.5 TpCallError ......................................................................................................................................................70 
6.6 TpCallErrorType ..............................................................................................................................................70 
6.7 TpCallEventInfo...............................................................................................................................................71 
6.8 TpCallEventRequest.........................................................................................................................................71 
6.9 TpCallEventType .............................................................................................................................................72 
6.10 TpCallInfoType ................................................................................................................................................73 
6.11 TpCallLegInfoType..........................................................................................................................................73 
6.12 TpCallLegConnectionProperties ......................................................................................................................74 
6.13 TpCallMonitorMode ........................................................................................................................................74 
6.14 TpCallNotificationReportScope .......................................................................................................................74 
6.15 TpCallNotifiationRequest ................................................................................................................................75 
6.16 TpCallTreatmentType ......................................................................................................................................75 
6.17 TpReleaseCause, mapping to SIP response......................................................................................................76 
6.18 TpReleaseCause, mapping from SIP ................................................................................................................77 
6.19 TpAoCInfo .......................................................................................................................................................77 
6.20 TpAoCOrder.....................................................................................................................................................78 

Annex A: Introduction to API Mapping for OSA MPCCS................................................................79 

A.1 OSA Service Provision for MPCCS in IMS...........................................................................................79 

A.2 MPCCS...................................................................................................................................................80 
A.2.1 Introduction ......................................................................................................................................................80 
A.2.2 SIP Server Roles in OSA SCS..........................................................................................................................80 
A.2.2.1 Introduction.................................................................................................................................................80 
A.2.2.2 OSA SCS acting as a SIP Proxy server.......................................................................................................81 
A.2.2.3 OSA SCS acting as Redirect server ............................................................................................................82 
A.2.2.4 OSA SCS acting as UA ..............................................................................................................................82 
A.2.2.5 OSA SCS acting as a B2BUA ....................................................................................................................84 
A.2.2.6 OSA SCS acting as a 3rd Party Controller .................................................................................................84 
A.2.3 SIP Server Role Mode Transitions ...................................................................................................................85 

Annex B: SDP in SIP at application controlled calls for OSA MPCCS API....................................87 

B.1 Introduction ............................................................................................................................................87 

B.2 OSA SCS and Application based Call and Media Control ....................................................................87 

B.3 Example OSA SCS Application initiated One-Party Call......................................................................88 



 

ETSI 

ETSI TR 129 998-4-4 V5.0.3 (2004-06) 5 3GPP TR 29.998-04-4 version 5.0.3 Release 5 

B.4 Example OSA SCS Application initiated Two-Party Call .....................................................................89 

B.5 Example OSA SCS control of User initiated Two-Party Call................................................................93 

B.6 Example OSA SCS control of User initiated Two-Party Call with announcement ...............................94 

B.7 Example OSA SCS Application initiated Multi-Party Call ...................................................................99 

Annex C: OSA call forwarding presentation.....................................................................................100 

C.1 Introduction ..........................................................................................................................................100 

C.2 Call Forwarding presentation in OSA: mapping to SIP .......................................................................100 

Annex D: Change history ....................................................................................................................102 

History ............................................................................................................................................................103 
 



 

ETSI 

ETSI TR 129 998-4-4 V5.0.3 (2004-06) 6 3GPP TR 29.998-04-4 version 5.0.3 Release 5 

Foreword 
This Technical Report has been produced by the 3rd Generation Partnership Project (3GPP). 

The contents of the present document are subject to continuing work within the TSG and may change following formal 
TSG approval. Should the TSG modify the contents of the present document, it will be re-released by the TSG with an 
identifying change of release date and an increase in version number as follows: 

Version x.y.z 

where: 

x the first digit: 

1 presented to TSG for information; 

2 presented to TSG for approval; 

3 or greater indicates TSG approved document under change control. 

y the second digit is incremented for all changes of substance, i.e. technical enhancements, corrections, 
updates, etc. 

z the third digit is incremented when editorial only changes have been incorporated in the document. 

Introduction 
Structure of the OSA API Mapping (3GPP TR 29.998) 

The Technical Report 3GPP TR 29.998 consists of a series of parts and subparts.  An effort has been made to ensure 
that the part numbers used in the mapping TR correspond to the part numbers of the base OSA specification in 
3GPP TS 29.198. For this reason, certain parts, for which no suitable mapping could be suggested, have not been 
delivered. At a later stage a mapping to a new protocol may become evident, in which case these missing parts will be 
developed. 

The OSA documentation was defined jointly between 3GPP TSG CN WG5, ETSI SPAN 12 and the Parlay Consortium, 
in co-operation with the JAIN consortium. The 3GPP TR 29.998 is based on a mapping document with a wider scope, 
developed as part of this co-operation. Certain mappings defined in the course of this joint development are not 
applicable for the present 3GPP Release, which is why not all sub-parts have been delivered as part of the present 3GPP 
Release. However, it is expected that some may become applicable within the scope of later 3GPP Releases, which is 
why a common sub-part numbering is being retained, albeit with gaps for the present 3GPP Release. 

If mapping for a certain Part is "Not Applicable" it can either indicate that a mapping does not exist (e.g. Part 2: 
Common Data), or the API is considered to be implemented directly on a physical entity, or via a proprietary 
mechanism.  

The present document is part 4, subpart 4, of a multi-part deliverable covering the 3rd Generation Partnership Project: 
Technical Specification Group Core Network; Open Service Access (OSA); Application Programming Interface (API) 
Mapping for OSA. 



 

ETSI 

ETSI TR 129 998-4-4 V5.0.3 (2004-06) 7 3GPP TR 29.998-04-4 version 5.0.3 Release 5 

Table: Overview of the OSA APIs & Protocol Mappings 29.198 & 29.998-family 

OSA API specifications 29.198-family OSA API Mapping -  29.998-family 
29.198-01 Overview 29.998-01 Overview 
29.198-02 Common Data Definitions 29.998-02 Not Applicable 
29.198-03 Framework 29.998-03 Not Applicable 

29.998-04-1 Generic Call Control – CAP mapping 
29.998-04-2 Generic Call Control – INAP mapping 
29.998-04-3 Generic Call Control – Megaco mapping 

Call 
Control 
(CC)  
SCF 

29.198-
04-1 
Common 
CC data 
definitions 

29.198-
04-2 
Generic 
CC SCF 

29.198-
04-3 
Multi-
Party CC 
SCF 

29.198-
04-4 
Multi-
media CC 
SCF 

29.998-04-4 Multiparty Call Control – SIP mapping 

29.998-05-1 User Interaction – CAP mapping 
29.998-05-2 User Interaction – INAP mapping 
29.998-05-3 User Interaction – Megaco mapping 

29.198-05 User Interaction SCF 

29.998-05-4 User Interaction – SMS mapping 
29.198-06 Mobility SCF 29.998-06 User Status and User Location – MAP mapping 
29.198-07 Terminal Capabilities SCF 29.998-07 Not Applicable 
29.198-08 Data Session Control SCF 29.998-08 Data Session Control – CAP mapping 
29.198-09 Generic Messaging SCF 29.998-09 Not Applicable 
29.198-10 Connectivity Manager SCF 29.998-10 Not Applicable 
29.198-11 Account Management SCF 29.998-11 Not Applicable 
29.198-12 Charging SCF 29.998-12 Not Applicable 
29.198-13 Policy Management SCF 29.998-13 Not Applicable 
29.198-14 Presence & Availability Management SCF 29.998-14 Not Applicable 
 



 

ETSI 

ETSI TR 129 998-4-4 V5.0.3 (2004-06) 8 3GPP TR 29.998-04-4 version 5.0.3 Release 5 

1 Scope 
The present document investigates how the OSA Call Control Interface Class methods defined in 3GPP TS 29.198-4 [5] 
can be mapped onto SIP methods.  
The mapping of the OSA API to the SIP is considered informative, and not normative. An overview of the mapping TR 
is contained in the introduction of the present document as well as in 3GPP TR 29.998-1 [10]. 

The OSA specifications define an architecture that enables application developers to make use of network functionality 
through an open standardised interface, i.e. the OSA APIs. The API specification is contained in the 3GPP TS 29.198 
series of specifications. An overview of these is available in the introduction of the present document as well as in 
3GPP TS 29.198-1 [1]. The concepts and the functional architecture for the Open Service Access (OSA) are described 
by 3GPP TS 22.121 [3]. The requirements for OSA are defined in 3GPP TS 22.127 [2].  

The present document has been defined jointly between 3GPP TSG CN WG5, ETSI SPAN 12 and the Parlay 
Consortium, in co-operation with the JAIN consortium.  

2 References 
The following documents contain provisions which, through reference in this text, constitute provisions of the present 
document. 

•  References are either specific (identified by date of publication, edition number, version number, etc.) or 
non-specific. 

•  For a specific reference, subsequent revisions do not apply. 

•  For a non-specific reference, the latest version applies.  In the case of a reference to a 3GPP document (including 
a GSM document), a non-specific reference implicitly refers to the latest version of that document in the same 
Release as the present document. 

[1] 3GPP TS 29.198-1: "Open Service Access (OSA); Application Programming Interface (API); 
Part 1: Overview". 

[2] 3GPP TS 22.127: " Service Requirement for the Open Service Access (OSA); Stage 1". 

[3] 3GPP TS 22.121: "Service aspects; The Virtual Home Environment; Stage 1".  

[4] 3GPP TR 21.905: "Vocabulary for 3GPP specifications". 

[5] 3GPP TS 29.198-4: "Open Service Access (OSA); Application Programming Interface (API); 
Part 4: Call control". 

[6] 3GPP TS 23.218: "IP Multimedia (IM) session handling; IP Multimedia (IM) call model; Stage 2". 

[7] 3GPP TS 22.101: "Service aspects; Service principles". 

[8] 3GPP TS 29.228 " IP Multimedia (IM) Subsystem Cx and Dx Interfaces; Signalling flows and 
message contents". 

[9] 3GPP TR 29.998-1: " Open Service Access (OSA); Application Programming Interface (API) 
Mapping for Open Service Access; Part 1: General Issues on API Mapping". 

[10] IETF RFC 2806: "URLs for Telephone Calls". 

[11] 3GPP TS 23.228: "IP Multimedia Subsystem (IMS); Stage 2".  

[12] 3GPP TS 24.229: "IP Multimedia Call Control Protocol based on SIP and SDP; Stage 3". 

[13] 3GPP TS 24.228: "Signalling flows for the IP multimedia call control based on SIP and SDP; 
Stage 3". 

[14] RFC 3261: "SIP: Session Initiation Protocol". 



 

ETSI 

ETSI TR 129 998-4-4 V5.0.3 (2004-06) 9 3GPP TR 29.998-04-4 version 5.0.3 Release 5 

[15] 3GPP TS 29.328: "IP Multimedia Subsystem (IMS) Sh Interface signalling flows and message 
contents". 

[16] RFC 3725: "Best Current Practices for Third Party Call Control (3pcc) in the Session Initiation 
Protocol (SIP)". 

3 Definitions and abbreviations 

3.1 Definitions 
For the purposes of the present document, the terms and definitions given in TS 29.198-1 [1], TS 23.228 [11] and 
TS 24.228 [13] and the following apply: 

back-to-back user agent (B2BUA): logical entity that receives a request, and processes it as a UAS 
In order to determine how the request should be answered, it acts as a UAC and generates requests. Unlike a proxy 
server, it maintains dialog state, and must participate in all requests sent on the dialogs it has established. Since it is a 
concatenation of a UAC and UAS, no explicit definitions are needed for its behaviour. 

call: informal term that refers to a dialog between peers, generally set up for the purposes of a multimedia conversation 

call leg: another name for a dialogue in a SIP context 
In an OSA context the communication path as seen from an application to an addressable entity/call party in the 
network. 

call stateful: proxy which retains state for a dialog from the initiating INVITE to the terminating BYE request 

client: any network element that sends SIP requests, and receives SIP responses 
Clients may or may not interact directly with a human user. User agent clients and proxies are clients. 

dialog: peer-to-peer SIP relationship between a UAC and UAS that persists for some time 
A dialog is established by SIP messages, such as a 2xx response to an INVITE request. A dialog is identified by a call 
identifier, local address, and remote address.  

downstream: direction of message forwarding within a transaction which refers to the direction that requests flow from 
the user agent client to user agent server 

final response: response that terminates a SIP transaction, as opposed to a provisional response that does not 
All 2xx, 3xx, 4xx, 5xx and 6xx responses are final. 

informational response: provisional response 

initiator, calling party, caller: The party initiating a session with an INVITE request. A caller retains this role from the 
time it sends the INVITE until the termination of any dialogs established by the INVITE. 

invitation: INVITE request. 

invitee, invited user, called party, callee: party that receives an INVITE request for the purposes of establishing a new 
session. A callee retains this role from the time it receives the INVITE until the termination of the dialog established by 
that INVITE. 

location server: See location service. 

location service: service is used by a SIP redirect or proxy server to obtain information about a callee's possible 
location(s) 
It is an abstract database, sometimes referred to as a location server. The contents of the database can be populated in 
many ways, including being written by registrars. 

method: primary function that a request is meant to invoke on a server 
The method is carried in the request message itself. Example methods are INVITE and BYE. 

outbound proxy: proxy that receives all requests from a client, even though it is not the server resolved by the Request-
URI 



 

ETSI 

ETSI TR 129 998-4-4 V5.0.3 (2004-06) 103GPP TR 29.998-04-4 version 5.0.3 Release 5 

The outbound proxy sends these requests, after any local processing, to the address indicated in the Request-URI, or to 
another outbound proxy. 

parallel search: In a parallel search, a proxy issues several requests to possible user locations upon receiving an 
incoming request. Rather than issuing one request and then waiting for the final response before issuing the next request 
as in a sequential search , a parallel search issues requests without waiting for the result of previous requests. 

provisional response: response used by the server to indicate progress, but that does not terminate a SIP transaction 
1xx responses are provisional, other responses are considered final. 

proxy, proxy server: intermediary entity that acts as both a server and a client for the purpose of making requests on 
behalf of other clients 
A proxy server primarily plays to role of routing, which means its job is to ensure that a request is passed on to another 
entity that can further process the request. Proxies are also useful for enforcing policy and for firewall traversal. A 
proxy interprets, and, if necessary, rewrites parts of a request message before forwarding it. 

redirect server: server that accepts a SIP request, maps the address into zero or more new addresses and returns these 
addresses to the client 
Unlike a proxy server, it does not initiate its own SIP request. Unlike a user agent server, it does not accept calls. 

registrar: server that accepts REGISTER requests, and places the information it receives in those requests into the 
location service for the domain it handles 

sequential search: in a sequential search, a proxy server attempts each contact address in sequence, proceeding to the 
next one only after the previous has generated a non-2xx final response 

server: network element that receives requests in order to service them, and sends back responses to those requests 
Examples of servers are proxies, user agent servers, redirect servers, and registrars. 

session: From the SDP specification: "A multimedia session is a set of multimedia senders and receivers and the data 
streams flowing from senders to receivers. A multimedia conference is an example of a multimedia session." (see 
RFC 2327 [6]) (A session as defined for SDP can comprise one or more RTP sessions.) As defined, a callee can be 
invited several times, by different calls, to the same session. If SDP is used, a session is defined by the concatenation of 
the user name , session id , network type , address type and address elements in the origin field. 

(SIP) transaction: transaction which occurs between a client and a server and comprises all messages from the first 
request sent from the client to the server up to a final (non-1xx) response sent from the server to the client, and the ACK 
for the response in the case the response was a 2xx 
The ACK for a 2xx response is a separate transaction. 

spiral: SIP request which is routed to a proxy, forwarded onwards, and arrives once again at that proxy, but this time, 
differs in a way which will result in a different processing decision than the original request 
Typically, this means that it has a Request-URI that differs from the previous arrival. A spiral is not an error condition, 
unlike a loop. 

stateless proxy: logical entity that does not maintain the client or server transaction state machines defined in this 
specification when it processes requests 
A stateless proxy forwards every request it receives downstream and every response it receives upstream. 

stateful proxy: logical entity that maintains the client and server transaction state machines defined by this 
specification during the processing of a request 
Also known as a transaction stateful proxy.. A stateful proxy is not the same as a call stateful proxy. 

upstream: direction of message forwarding within a transaction which refers to the direction that responses flow from 
the user agent server to user agent client 

user agent client (UAC): A user agent client is a logical entity that creates a new request, and then uses the client 
transaction state machinery to send it. The role of UAC lasts only for the duration of that transaction. In other words, if 
a piece of software initiates a request, it acts as a UAC for the duration of that transaction. If it receives a request later 
on, it takes on the role of a User Agent Server for the processing of that transaction. 

user agent server (UAS): logical entity that generates a response to a SIP request 
The response accepts, rejects or redirects the request. This role lasts only for the duration of that transaction. In other 
words, if a piece of software responds to a request, it acts as a UAS for the duration of that transaction. If it generates a 
request later on, it takes on the role of a User agent client for the processing of that transaction. 



 

ETSI 

ETSI TR 129 998-4-4 V5.0.3 (2004-06) 113GPP TR 29.998-04-4 version 5.0.3 Release 5 

user agent (UA): logical entity which can act as both a user agent client and user agent server for the duration of a 
dialog 

user: logical, identifiable entity which uses services 
In a SIP context it encompasses a User Agent (UA). 

3.2 Abbreviations 
For the purposes of the present document, the abbreviations given in TS 29.198-1 [1] apply. 

4 Mapping OSA Call and Call Leg to SIP 

4.1 Introduction 
In the MPCCS the CallSessionID designates the call as seen from the application, i.e. the ID used to identify a call 
session. The MPCC API uses this callSessionID to identify a call session. 

In SIP, a SIP dialogue (or call) is identified at each UA with a dialog ID, which consists of a Call-ID value, a local tag 
and a remote tag. by a globally unique call-id. The call-id is created when a user agent sends an INVITE request tries to 
initiate a dialog. For a UAC, the Call-ID value of the dialog ID is set to the Call-ID of the message, the remote tag is set 
to the tag in the To field of the message, and the local tag is set to the tag in the From field of the message (these rules 
apply to both requests and responses). For a UAS, the Call-ID value of the dialog ID is set to the Call-ID of the 
message, the remote tag is set to the tag in the From field of the message, and the local tag is set to the tag in the To 
field of the message. This INVITE request may generate multiple acceptances, each of which are part of the 
same call.  

However, the semantics of SIP Call-ID is somewhat different from traditional telephony. It identifies an invitation of a 
particular client. This means that a conference in SIP may raise several calls with different Call-IDs. In traditional 
telephony and in MPCCS this would always be the same call. 

In MPCCS a call leg designates the association between a call and an address as seen from the application and is 
identified by a callLegSessionID, i.e. the ID used to identify a call leg session. It represents an addressable user in the 
call. The MPCC API uses this callLegSessionID to identify a call leg session. 

In SIP, a dialogue is defined as the pair wise signalling relationship between two SIP user agents (see [13]). It is 
identified by the Call_ID, the tags in theTo and From header Fields. The Call-ID identifies the call in the network. It 
is a global unique identifier. The To header field contains the information regarding the endpoint who will receive the 
SIP request, e.g. INVITE or BYE message. The From header field represents the originator of the SIP request.  

4.2 SIP Call-id &dialog vs. OSA Call & Call Leg Session ID 
There is a correspondence between the concepts Call and Call Leg in OSA and call-ID and dialog in SIP. The 
correlation applicable depends on the mode (e.g. Proxy, B2BUA, UA) in which the controller (e.g. OSA SCS) operates. 
When the controller operates in UA mode there can be a simple 1:1 correlation between OSA callLeg and SIP call-ID, 
in other cases (e.g. when operating in Proxy mode) a somewhat more complex correlation applies that demands 
supplementary information such as TO and From header fields in SIP to be correlated with the OSA leg identifiers 
("callLeg sessionID).  

The Call-ID, the From and To header fields define an association between the call (Call-ID) and the address (To, From). 
Thus we can map the call and call leg concepts in OSA to SIP. However, there is no easy mapping between SIP and 
OSA MPCCS call and call leg concepts because of the definition of a SIP dialog always include TWO user agents 
(UAs). Therefore, the mapping depends on the SIP server role that OSA SCS plays in a SIP session. For example, if SIP 
server in OSA SCS acts as a proxy server then the 2-party call has only one dialog in SIP (between the 2 UAs), while 
OSA MPCCS expects 2 legs (one from the calling party to OSA SCS and another from OSA SCS to the called party). 
Where an application demands full leg control in SIP the SIP server in OSA SCS should always act as UA (UA or 
B2BUA) or 3rd party controller . Only the latter modes of operation in SCS realises a direct 1:1 correlation between SIP 
dialog and OSA SCS MPCCS call leg. 



 

ETSI 

ETSI TR 129 998-4-4 V5.0.3 (2004-06) 123GPP TR 29.998-04-4 version 5.0.3 Release 5 

4.2.1 OSA Call and SIP Dialogue Correlation Tables 

Table 4-1: Parameter Correlation Proxy Mode, 2-party call 

SIP Headers  OSA API Leg CALL 
call-ID(1)    

local tag in 
From header(1) 

  callLegSessionID(1), 
 
MPCCS 
Originating Call Leg (1) 
object 

remote tag in To 
header(1) 

  
 

 
SIP 
Dialog 
#1 

Request-URI(1)   
targetAddress(1) 

callLegSessionID(2), 
 
MPCCS 
Terminating Call Leg (2) 
object 

callSessionID(1), 
 
MPCCS 
Call Object 

Note 1: The SIP server in OSA SCS is here acting as a stateful Proxy server. However, forking is NOT supported 
by current OSA API. 

Note 2: The MPCCS callSessionID is assigned by the SCS and represents a correlation to the SIP call-id in the 
SIP INVITE request message. There should be no direct mapping as it would contradict SIP operation 
principles, i.e. the generation of a SIP call-ID for a particular invitation is the task of the inviting UA and the 
creation of a unique callSeesionID for an OSA application is the task of the SCS.  

Note 3: The Call-ID identifies the call in the network. It is a global unique identifier.  
The Request-URI is a SIP URL that indicates the user or service to which the request is being addresses 
and is used for routeing purpose. 
The correlation shown corresponds to the case of an INVITE initial invitation from caller. 

 

Table 4-2: Parameter Correlation B2BUA Mode, 2-party call 

SIP Headers  OSA API Leg CALL 
call-ID(1)    

local tag in 
From header(1) 

  CallLegSessionID(1) 
 
MPCCS 
Originating Call Leg (1) 
Object 

remote tag in To 
header(1) 

  

 
SIP 

Dialog 
#1 

Request-URI(1)  targetAddress(1) 

 

call-ID(2)    
local tag in 

From header(1) 
   

 
SIP 

Dialog 
#2 remote tag in To 

header(1) 
  

 Request-URI(1)  targetAddress(1/2) 
- may be changed by 
application. 

CallLegSessionID(2), 
MPCCS 
Terminating Call Leg (2) 
object 

callSessionID(1), 
 
MPCCS 
Call Object 

Note 1: The B2BUA mode is comprised in the OSA SCS SIP server by two User Agents, acting as a User Agent 
Originating and a User Agent Terminating. It is a difficult implementation in SIP to shift from proxy mode 
into B2BUA mode and it is not possible in SIP to shift from B2BUA mode to proxy mode. Therefore where 
an application demands this mode of operation it has to be secured that it is established already at 
invitation request (INVITE).  
Notice: It is possible that only the call_ID(2) will be changed for the new SIP dialog #2 compared to SIP 
dialog #1as the incoming INVITE is "proxied". If a call forwarding application is invoked the targetAddress 
may be changed for routeing to the desired destination (Request URI). 

Note 2: The MPCCS callSessionID is assigned by the SCS and represents a correlation to the SIP call-id in the 
SIP INVITE request message. There should be no direct mapping as it would contradict SIP operation 
principles, i.e. the generation of a SIP call-ID for a particular invitation is the task of the inviting UA and the 
creation of a unique callSeesionID for an OSA application is the task of the SCS.  

Note 3: The Call-ID identifies the call in the network. It is a global unique identifier.  
The To header field contains the information regarding the endpoint who will receive the SIP request, e.g. 
INVITE or BYE message. The From header field represents the originator of the SIP request (e.g. the 
controller OSA SCS for SIP dialog #2). The Request-URI is a SIP URL that indicates the user or service to 
which the request is being addresses and is used for routeing purpose. 
The correlation shown corresponds to the case an INVITE initial invitation. 

 



 

ETSI 

ETSI TR 129 998-4-4 V5.0.3 (2004-06) 133GPP TR 29.998-04-4 version 5.0.3 Release 5 

Table 4-3: Parameter Correlation Originating UA Mode, 1-party call 

SIP Headers  OSA API Leg CALL 
call-ID(1)    

local tag in 
From header(1) 

 value provided by 
OSA SCS) 

 

remote tag in To 
header(1) 

  
 

 
SIP 

Dialog 
#1 

Request-URI(1)   
targetAddress(1) 

CallLegSessionID(1) 
 
MPCCS 
Terminating Call Leg (2) object 
 

callSessionID(1), 
 
MPCCS 
Call Object 

Note 1: The SIP server in OSA SCS is here acting as an User Agent Originating.  
The MPCCS callSessionID is assigned by the SCS and represents a correlation to the SIP call-id applied 
in the SIP dialogue. There should be no direct mapping as it would contradict SIP operation principles, i.e. 
the generation of a SIP call-ID for a particular invitation is the task of the inviting UA and the creation of a 
unique callSessionID for an OSA application is the task of the SCS. 

Note 2: The Call-ID identifies the call in the network. It is a global unique identifier.  
The To header field contains the information regarding the endpoint who will receive the SIP request, e.g. 
INVITE or BYE message. The From header field represents the originator of the SIP request (e.g. the 
controller OSA SCS). The Request-URI is a SIP URL that indicates the user or service to which the 
request is being addresses and is used for routeing purpose. 
The correlation shown corresponds to the case of an INVITE initial invitation. 

 

Table 4-4: Parameter Correlation Terminating UA / Redirection Mode, 1-party call 

SIP Headers  OSA API Leg CALL 
call-ID(1)    

local tag in 
From header(1) 

  CallLegSessionID(1). 
MPCCS 
Originating Call Leg (1) object 

remote tag in To 
header(1) 

 (value provided by 
OSA SCS) 

 
SIP 

Dialog 
#1 

Request-URI(1)  address(1) 

 

callSessionID(1), 
 
MPCCS 
Call Object 

Note 1: The SIP server in OSA SCS is acting as a User Agent Terminating. 
The OSA MPCCS API allows the application to instruct the return of a final SIP response (2xx, 3xx, 4xx, 
5xx, 6xx) to a received SIP request (INVITE) .Note1: The MPCCS callSessionID is assigned by the SCS 
and represents a correlation to the SIP call-id applied in the SIP dialogue. There should be no direct 
mapping as it would contradict SIP operation principles, i.e. the generation of a SIP call-ID for a particular 
invitation is the task of the inviting UA and the creation of a unique callSeesionID for an OSA application is 
the task of the SCS. 

Note 2: The Call-ID identifies the call in the network. It is a global unique identifier.  
The To header field contains the information regarding the endpoint who will receive the SIP request, e.g. 
INVITE or BYE message. The From header field represents the originator of the SIP request. The 
Request-URI is a SIP URL that indicates the user or service to which the request is being addresses and 
is used for routeing purpose. 
The correlation shown corresponds to the case of an INVITE initial invitation. 

 



 

ETSI 

ETSI TR 129 998-4-4 V5.0.3 (2004-06) 143GPP TR 29.998-04-4 version 5.0.3 Release 5 

Table 4-5: Parameter Correlation 3rd party controller Mode, 2-party call 

SIP Headers  OSA API Parameters Leg CALL 
call-ID(1)  -  

local tag in 
From header(1) 

 (provided by 
OSA SCS may be used) 

 

Remote tag in 
To header(1) 

  

 
SIP 

Dialog 
#1 

Request-URI(1)  targetAddress(1) 

callLegSessionID(1) 
 
MPCCS 
Terminating Call Leg (1) object. 

call-ID(2)  -  
local tag in 

From header(1) 
 (value provided by 

OSA SCS may be used) 
 

 
SIP 

Dialog 
#2 To header(2)   

 Request-URI(2)  targetAddress (2) 
callLegSessionID(2), 
MPCCS 
Terminating Call Leg (2) object 

callSessionID(1
) 
See Note1. 
 
MPCCS 
Call Object 
 

NOTE 1: The 3.rd party controller mode is comprised in the OSA SCS SIP server by two or more User Agents , in 
this example by two User Agents Originating.  
Not possible in SIP to shift from proxy mode into 3rd party controller mode. Therefore where an application 
demands this mode of operation it has to be secured that it is established already at invitation request 
(INVITE).  

NOTE 2: Same callSessionID(1) used by the application in the creation of both the OSA Call Leg objects as both 
legs are to be part of the same call.  

NOTE 3: The Call-ID identifies the call in the network. It is a global unique identifier.  
The To header field contains the information regarding the endpoint who will receive the SIP request, e.g. 
INVITE or BYE message. The From header field represents the originator of the SIP request. The 
Request-URI is a SIP URL that indicates the user or service to which the request is being addresses and 
is used for routeing purpose. 
The correlation shown corresponds to the case of an INVITE initial invitation. 

 

5 Multi Party Call Control Flows 
NOTE:  The Call Flows in the following are to be regarded as example flows. They are merely intended to 

illustrate theSIP mapping from/to OSA APIs and do not necessary provide complete SIP call/session 
flows. More detailed SIP call flows are defined in [13].  
Additional information including the different SIP server modes of operation for OSA SCS in relation to 
MPCCS mapping is found in Annex A "Introduction to API Mapping for OSA MPCCS".  

5.1 Call Manager Service Interface 
The call manager interface class provides the management functions to the multi-party call Service Capability Features. 
The application programmer can use this interface to create call objects and to enable or disable call-related event 
notifications. 

5.1.1 CreateCall 

createCall (appCall : in IpAppMultiPartyCallRef) : TpMultiPartyCallIdentifier 

This method is used to create a new Call object in the SCS. 



 

ETSI 

ETSI TR 129 998-4-4 V5.0.3 (2004-06) 153GPP TR 29.998-04-4 version 5.0.3 Release 5 

 

Application 

createCall   

OSA SCS 

SIP 
server 

SCF 

 

Figure 5-1: Call flow for createCall() 

Table 5-1: Normal operation 

SIP Server Mode 
for the OSA SCS: 

UA mode  

Pre-conditions: An agreement is established between the network operator and the service provider to 
enable the application to create call object.  

1 A new Multi-party Call object is created in the SCS and the application gets a reference to the call 
object. 

 

Table 5-2: Parameter Mapping 

From: createCall To: SIP  Remark 
appCall (IpAppMultiPartyCallRef) N/A No mapping. 
Returns: 
TpMultiPartyCallIdentifier: 
 - CallReference (IpMultiPartyCallRef) 
 - CallSessionID (TpSessionID) 

N/A Not mapped. 
However, the call Session ID returned in this 
method will later on be correlated to the 
applied SIP call-Id 

 

5.1.2 CreateNotification 

createNotification (appCallControlManager : in IpAppMultiPartyCallControlManagerRef, notificationRequest: 
in TpCallNotificationRequest) : TpAssignmentID 

This method is used to enable call notifications so that events can be sent to the application. The interface between DB 
(HSS) and OSA SCS is Sh interface, for detail see 3GPP TS 29.328 [15]. 

 

 DB 
 (e.g HSS) 

Application 

createNotification  SIP Server set to observe for 
call events to be notified. 

OSA SCS 

SIP 
server 

SCF 

 

Figure 5-2: Call flow for createNotification() 



 

ETSI 

ETSI TR 129 998-4-4 V5.0.3 (2004-06) 163GPP TR 29.998-04-4 version 5.0.3 Release 5 

Table 5-3: Normal Operation 

SIP Server Mode 
for the OSA SCS: 

Proxy, Redirect, UA, B2BUA, 3rd Party controller. 
 
Note: The applicable mode will depend on the behaviour of the application invoked on the 
call. 

Pre-conditions: An agreement is established between the network operator and the service provider for the 
event notification to be enabled 

1 The application invokes the createNotification method 
2 The SCS requests the controlled SIP server to observe for certain SIP call events to be notified to 

the application.  
Initial filtering information will be uploaded to the DB ( Data Base e.g. HSS) and from here to 
controlled entity (e.g. S-CSCF), e.g. when the user gets registered.  

NOTE: The createNotification represents the first step an application has to do to get initial notifications of calls 
happening in the network. When such an event happens, the application will be informed by reportNotification 
However, createNotification() is not applicable if the call is set-up from the network by the application. 

 

Table 5-4: Parameter Mapping 

From: createNotification To: SIP Remark 
appCallControlManager 
(IpAppMultiPartyCallControlManagerRef) 

N/A If set it specifies a reference to the application 
interface, which is used for call-backs.  

notificationRequest 
(TpCallNotificationRequest) : 

See table 6-15: 
TpCallNotificationRequest 
for the mapping from SIP. 

Specifies the event specific criteria used by 
the application to define the event required. 
Not mapped to SIP. 
However, the parameter has to be verified for 
SIP validity of parameter values.  

Returns: 
TpAssignmemtID 

N/A Returns assignmentID to application, which 
specifies the ID assigned by the multi party 
call control manager interface for this newly 
enabled event notification. 

NOTE: No direct mapping to SIP. However, the SIP server responsible for event filtering (e.g. S-CSCF) is to monitor for 
SIP events requested to be notified to the application if encountered and conditions (filter criteria) for reporting 
are fulfilled.  

 

5.1.3 changeNotification 

changeNotification (assignmentID : in TpAssignmentID, notificationRequest : in TpCallNotificationRequest) : 
void 

This method is used by the application to change the call notifications previously set by createNotification . 

 

  DB 
 (e.g. HSS) 

Application 

changeNotification 

 NOTE: Controlled SIP Server 
(e.g. S-CSCF) will be  set to  
observe for call events to be 
notified for the application, when 
user becomes registered. 

OSA SCS 

SIP 
server 

SCF 

 

Figure 5-3: Call flow for changeNotification() 



 

ETSI 

ETSI TR 129 998-4-4 V5.0.3 (2004-06) 173GPP TR 29.998-04-4 version 5.0.3 Release 5 

Table 5-5: Normal Operation 

SIP Server Mode 
for the OSA SCS: 

Proxy, Redirect, UA, B2BUA, 3rd Party controller. 
 
Note: The applicable mode will depend on the behaviour of the application on the call. 

Pre-conditions: An agreement is established between the network operator and the service provider for the 
event notification to be enabled. Notifications have been enabled by the application 

1 The application invokes the changeNotification method 
2 The SCS requests a change in the set of initial notifications, i.e. initial filtering information is 

changed. 
 
Note: Updated initial filtering information will be uploaded to the DB (Data Base e.g. HSS) and 
from here to the controlled entity (e.g. S-CSCF), e.g. when the user gets registered. 

 

Table 5-6: Parameter mapping 

From: changeNotification To: SIP  Remark 
assignmentID (TpAssignmentID) N/A Specifies the ID assigned by the multi party 

call control manager interface for the event 
notification.  

notificationRequest 
(TpCallNotificationRequest) : 

See table 6-15: 
TpCallNotificationRequest for 
the mapping from SIP. 

Not mapped directly to SIP. However, the 
parameter has to be verified for SIP validity of 
parameter values.  

NOTE: No direct mapping to SIP. However, the SIP server responsible for event filtering (e.g. S-CSCF) is to monitor for 
SIP events requested to be notified to the application if encountered and conditions (filter criteria) for reporting 
are fulfilled.  

 

5.1.4 destroyNotification 

destroyNotification (assignmentID : in TpAssignmentID) : void  

This method is used by the application to disable call notifications. 

 

  DB 
 (e.g. HSS) 

Application 

destroyNotification 

Note: Controlled SIP Serverwill be 
set to stop the observation for call 
events to be notified to the 
application,for registrated user.. 

OSA SCS 

SIP 
server 

SCF 

 

Figure 5-4: Call flow for destroyNotification() 



 

ETSI 

ETSI TR 129 998-4-4 V5.0.3 (2004-06) 183GPP TR 29.998-04-4 version 5.0.3 Release 5 

Table 5-7: Normal operation 

SIP Server Mode 
for the OSA SCS: 

Proxy, Redirect, UA, B2BUA, 3rd Party controller. 
 
Note: The applicable mode will depend on the behaviour of the application on the call. 

Pre-conditions: An agreement is established between the network operator and the service provider for the 
event notification to be disabled. 

1 The application invokes the destroyNotification method 
2 The SCS requests to de-activate the active call notification. 

 
Note: Destroyed notifications (initial filtering) information will be uploaded to the DB (Data Base e.g. HSS) and from 

here to the controlled entity (e.g. S-CSCF), if the user has been registered. 
 

Table 5-8: Parameter Mapping 

From: destroyNotification To: SIP  Remark 
assignmentID 
(TpAssignmentID) 

N/A Specifies the ID assigned by the multi party call control manager interface for 
the event notification.  

 

5.1.5 getNotification 

getNotification () : TpNotificationRequestedSet  

This method is used by the application to query the event criteria set previously using createNotification and possibly 
changeNotification. 

 

Application 

getNotification 

OSA SCS 

SIP 
server 

SCF 

 

Figure 5-5: Call flow for getNotification() 

Table 5-9: Normal operation 

SIP Server Mode 
for the OSA SCS: 

Proxy, Redirect, UA, B2BUA, 3rd. Party controller 
 
Note: The applicable mode will depend on the behaviour of the application on the call. 

Pre-conditions: An agreement is established between the network operator and the service provider for the 
event notification. Notifications have been enabled by the application. 

1 The application invokes the getNotification method. 
2 The OSA SCS returns the criteria as set for event notification.  
 



 

ETSI 

ETSI TR 129 998-4-4 V5.0.3 (2004-06) 193GPP TR 29.998-04-4 version 5.0.3 Release 5 

Table 5-10: Parameter mapping 

From: getNotification To: SIP  Remark 
Returns: 
TpNotificationRequestedSet: 
A set of TpNotificationRequested: 

- No SIP mapping. 

- AppCallNotificationRequest 
(TpCallNotificationRequest) 

N/A Returns information as previously set in 
createNotification and changeNotification. 

- AssignmentID (TpInt32) N/A  

NOTE: The set of all previously requested notification events are returned. No mapping to SIP.  
The method getNotification contains no parameter – only a return parameter exists. 

 

5.1.6 setCallLoadControl 

setCallLoadControl (duration : in TpDuration, mechanism : in TpCallLoadControlMechanism, treatment : in 
TpCallTreatment, addressRange : in TpAddressRange) : TpAssignmentID 

This method is used to impose or remove load control on calls made to a specific address within the call control service. 

 

Application 

setCallLoadcontrol Activate load 
control 

OSA SCS 

SIP 
server 

SCF 

 

Figure 5-6: Flow for setCallLoadControl() 

Table 5-11: Normal operation 

SIP Server Mode 
for the OSA SCS: 

Proxy, Redirect, UA, B2BUA, 3rd. Party controller. 
 
Note: The applicable mode will depend on the behaviour of the application invoked on the 
call. 

Pre-conditions: An agreement is established between the network operator and the service provider for the 
set call load control.  

1 The application invokes the setCallLoadControl method to remove or set load control on calls 
made to a specific address or address range.  

2 The SCS requests the SIP server to activate or remove call load control 
 

Table 5-12: Parameter Mapping 

From: setCallLoadControl To: SIP Remark 
duration (TpDuration) N/A - 
mechanism 
(TpCallLoadControlMechanism) 

N/A 
 

Specifies the applied load control mechanism and 
defines the call admission rate (e.g. allow one call 
per interval). 

treatment (TpCallTreatment) 
TpCallTreatment sequence of: 
 - TpCallTreatmentType, 
 - TpReleaseCause 

See Table 6-16 
TpCallTreatment Type 
 
and Table 6-18 
TpReleaseCause 
 for the mapping to SIP 

Specifies how to treat (e.g. deny) new invitations if 
overload prevails. 

addressRange (TpAddressRange) See Table 6-3: 
TpAddressRange for the 
"mapping" from SIP. 

Specifies the address or address range to which 
overload control should be applied or removed. 
Not mapped directly but has to be verified for 
application with SIP URL.  

 



 

ETSI 

ETSI TR 129 998-4-4 V5.0.3 (2004-06) 203GPP TR 29.998-04-4 version 5.0.3 Release 5 

5.2 Call Manager Application Interface 

5.2.1 managerInterrupted 

managerInterrupted () : void  

This method is used to indicate to the application that all event notifications and method invocations have been 
temporarily interrupted, for example due to network resources unavailable. 

 

Application 

mangerInterrupted  Fault 
detected 

OSA SCS 

SIP 
server 

SCF 

 

Figure 5-7: Call flow for managerInterrupted() 

Table 5-13: Normal operation 

SIP Server Mode 
for the OSA SCS: 

Proxy, Redirect, UA, B2BUA, 3rd Party controller 
 
Note: The applicable mode will depend on the behaviour of the application invoked on the 
call. 

Pre-conditions: An agreement is established between the network operator and the service provider for the 
call notification. Call notifications have been enabled using the createNotification method on 
the Call Manager interface. 

1 The SCS has detected, or has been informed of a fault which prevents further events from being 
notified to the application. 

2 The SCS invokes the managerInterrupted method. 
 

Table 5-14: Parameter Mapping 

From: managerInterrupted To: SIP Remark 
- N/A No parameters in this method. 
 

5.2.2 managerResumed 

managerResumed () : void  

This method is used to indicate to the application that all event notifications are possible and method invocations are 
enabled after having previously been interrupted.  

 

Application 

managerResumed  Fault 
ceased 

OSA SCS 

SIP 
server 

SCF 

 

Figure 5-8 Call Flow for managerResumed() 



 

ETSI 

ETSI TR 129 998-4-4 V5.0.3 (2004-06) 213GPP TR 29.998-04-4 version 5.0.3 Release 5 

Table 5-15: Normal Operation 

SIP Server Mode 
for the OSA SCS: 

Proxy, Redirect, UA, B2BUA, 3rd. Party controller 
 
Note: The applicable mode will depend on the behaviour of the application invoked on the 
call. 

Pre-conditions: An agreement is established between the network operator and the service provider for the 
call notification. Call notifications have been interrupted and managerInterrupted method 
has been invoked. 

1 The SCS detects that call notifications are again possible. 
2 The SCS invokes the managerResumed method.  
 

Table 5-16: Parameter Mapping 

From: managerInterrupted To: SIP Remark 
- N/A No parameters in the method. 
 

5.2.3 reportNotification 

reportNotification (callReference : in TpMultiPartyCallIdentifier, callLegReferenceSet : in 
TpCallLegIdentifierSet, notificationInfo : in TpCallNotificationInfo, assignmentID : in TpAssignmentID) : 
TpAppMultiPartyCallBack 

This method is used to notify the application of the arrival of a call-related event. It is sent in response to the 
createNotification() method. 

 

 User Application 

2a.  reportNotification 
  1a.  ISC:   INVITE, CANCEL, Re-INVITE, BYE 
 

PRACK, UPDATE 

OSA SCS 

SIP 
server 

SCF 

 

Figure 5-9: Call flow for reportNotification, triggered by SIP requests 

 

 User Application 

2b.  reportNotification 
  1b.ISC:   1xx, 200, 3xx, 4xx, 5xx, 6xx 

OSA SCS 

SIP 
server 

SCF 

 

Figure 5-10: Call flow for reportNotification, triggered by SIP Reponses 



 

ETSI 

ETSI TR 129 998-4-4 V5.0.3 (2004-06) 223GPP TR 29.998-04-4 version 5.0.3 Release 5 

Table 5-17: Normal operation 

SIP Server Mode 
for the OSA SCS: 

Proxy, Redirect, UA, B2BUA,3rd Party controller 
 
Note: The applicable mode will depend on the behaviour of the application invoked on the 
call. 

Pre-conditions: Call notifications have been enabled using the createNotification method on the Call 
Manager interface. 
 

1 A call arrives from a call party or terminates to a call party or a call party decides to issue a mid-call 
event or terminate the involvement in an established call. This request is detected by the SIP server 
and the criteria for an initial notification to be reported is checked. 

2 When the criteria for an initial notification is met, the SCS identifies the application responsible for 
handling the call and invokes the reportNotification method.  

 

Table 5-18: Parameter Mapping 

To: reportNotification From: SIP Remark 
callReference 
(TpMultiPartiCallIdentifier) 
TpMultiPartyCallIdentifier: 
 - CallReference 
(IpMultiPartyCallRef) 
 - CallSessionID (TpSessionID) 

See "OSA Call and SIP Dialogue 
Correlation Tables" 
Table 4-1 to 4-5. 

The SCS will create a new call object and 
associated call leg object and pass them to the 
application.  
A correlation between SIP call-ID and call 
session ID is created. 

callLegReferenceSet 
(TpCallIdentifierSet). 
A set of TpCallIdentifier:  

-  

- CallLegreference (IpCallLegRef) N/A This element specifies the interface for the  
Call Leg object. 

 - CallLegSessionID (TpSessionID) See "OSA Call and SIP Dialogue 
Correlation Tables". 
Table 4-1 to 4-5. 

This element specifies the call leg session ID.  
No direct mapping to SIP – but a correlation is 
created. 

notificationInfo 
(TpCallNotificationInfo): 

-  

 -TpCallNotificationReportScope See Table 6-14 : 
TpCallNotificationReportScope 

 

 - CallAppInfo (TpCallAppInfoSet) 
 
 Note: A set of TpCallAppInfo 

See Table 6-4: TpCallAppInfo  

 - CallEventInfo (TpCallEventInfo) See Table 6-7: TpCallEventInfo  
assignmentID (TpAssignmentID) N/A  

See note: 
 

Specifies the assignment id which was 
returned by the createNotification() method. 
The application can use assignment id to 
associate events with specific criteria and to 
act accordingly. 

NOTE: Indeed the assignmentiD does not involve SIP mapping, it could be stored in the OSA SCS. . 
 

5.2.4 callAborted 

callAborted (callReference : in TpSessionID) : void 

This method is used to indicate to the application that the call object has aborted or terminated abnormally. No further 
communication will be possible between the call and the application. 



 

ETSI 

ETSI TR 129 998-4-4 V5.0.3 (2004-06) 233GPP TR 29.998-04-4 version 5.0.3 Release 5 

 

 User Application 

callAborted 

ISC: 481 Call Leg/transaction 
Does  Not Exist; 5xx Responses; 
BYE to refuse an offer, CANCEL, 
INVITE timeout 

OSA SCS 

SIP 
server 

SCF 

 

Figure 5-11: Call flow for callAborted() 

Table 5-19: Normal operation 

SIP Server Mode 
for the OSA SCS: 

Proxy, Redirect, UA, B2BUA, 3rd. Party controller 
 
Note: The applicable mode will depend on the behaviour of the application invoked on the 
call. 

Pre-conditions: The SCS detect a failure in its communication with the SIP server 
1 The SCS, invokes the callAborted method. Since the SIP server reflects the call running in the 

network, the call could also have been aborted in the network. 
 

Table 5-20: Parameter Mapping 

From: callAborted To: SIP Remark 
callReference 
(TpSessionID) 

See "OSA Call and SIP Dialogue 
Correlation Tables"  
Table 4-1 to 4-5. 

Specifies the sessionID of the call that has aborted or 
terminated abnormally. 
No direct mapping to SIP – but a correlation is created. 

 

5.2.5 callOverloadEncountered 

callOverloadEncountered (assignmentID : in TpAssignmentID) : void 

This method is used to indicate that the network has detected overload and may have automatically imposed load 
control on calls requested to a particular address range or calls made to a particular destination within the call control 
service. 

 

Application 

callOverLoadEncountered 

OSA SCS 

SCF SIP Server 

 

Figure 5-12: Call flow for callOverLoadEncountered() 



 

ETSI 

ETSI TR 129 998-4-4 V5.0.3 (2004-06) 243GPP TR 29.998-04-4 version 5.0.3 Release 5 

Table 5-21: Normal operation 

SIP Server Mode 
for the OSA SCS: 

Proxy, Redirect, UA, B2BUA, 3rd. Party controller 
 
Note: The applicable mode will depend on the behaviour of the application invoked on the 
call. 

Pre-conditions: Call overload control have been enabled using the setCallOverloadControl method on the 
Call Manager interface. 

1 The SCS detect a call overload situation in its communication with the SIP server of the OSA SCS. 
2 The SCS, invokes the callOverLoadEncountered method. The call running in the network may 

continue or not depending on the requested treatment at overload (defined by 
setCallOverloadControl method received previously). 

 

Table 5-22: Parameter Mapping 

From: callOverloadEncountered To: SIP Remark 
assignmentID (TpAssignmentID) N/A. Specifies the assignmentID corresponding to the associated 

setCallLoadControl method. This implies the address or address 
range within which the overload has been encountered (the SIP 
URL(s)). 

 

5.2.6 callOverloadCeased 

callOverloadCeased (assignmentID : in TpAssignmentID) : void 

This method is used to indicate that the network has detected that the overload has ceased and has automatically 
removed any load controls on calls requested to a particular address range or calls made to a particular destination 
within the call control service. 

 
 

SIP Server SCF Application 

callOverLoadCeased 

 

 

OSA SCS 

 

Figure 5-13: Call flow for callOverLoadCeased() 

Table 5-23: Normal operation 

SIP Server Mode 
for the OSA SCS: 

Proxy, Redirect, UA, B2BUA, 3rd. Party controller. 
 
Note: The applicable mode will depend on the behaviour of the application invoked on the 
call. 

Pre-conditions: The network has detected overload and may have automatically imposed load control on 
calls requested to a particular address or address range. 

1 The SCS detect that an overload situation has ceased in its communication with the SIP server 
2 The SCS, invokes the callOverLoadCeased method.  
 



 

ETSI 

ETSI TR 129 998-4-4 V5.0.3 (2004-06) 253GPP TR 29.998-04-4 version 5.0.3 Release 5 

Table 5-24: Parameter Mapping 

From: callOverloadEncountered To: SIP Remark 
assignmentID (TpAssignmentID) N/A. Specifies the assignmentID corresponding to the associated 

setCallLoadControl method. This implies the address or address range 
within which cease of overload has been encountered (the SIP URL(s)). 
No mapping to SIP – but an association is created, see mapping for 
setCallOverloadControl. 

 

5.3 Multi-Party Call Service Interface 
The multi-party call interface class represents the interface to the multi-party call Service Capability Feature. It provides 
a structure to allow simple and complex call behaviour. 

5.3.1 GetCallLegs 

getCallLegs (callSessionID : in TpSessionID) : TpCallLegIdentifierSet 

This method is used to obtain references to the current Call Leg objects, associated to the Multi-party call object. 

 

 User Application 

getCallLegs   

OSA SCS 

SIP 
server 

SCF 

 

Figure 5-14: Call flow for getCallLegs() 

Table 5-25: Normal operation 

SIP Server Mode 
for the OSA SCS: 

Proxy, Redirect, UA, B2BUA, 3rd. Party controller 
 
Note: The applicable mode will depend on the behaviour of the application invoked on the 
call. 

Pre-conditions: The application has a reference to a Multi-party Call object. 
1 The application invokes the getCallLegs method 
2 The SCS returns information about the involved call leg objects 
 

Table 5-26: Parameter mapping 

From: callOverloadEncountered To: SIP Remark 
callSessionID (TpSessionID) See "OSA Call and SIP Dialogue 

Correlation Tables" 
Table 4-1 to 4-5. 

Specifies the call session ID of the call. 
No direct mapping to SIP – but a 
correlation is created. 

 

5.3.2 createCallLeg 

createCallLeg (callSessionID : in TpSessionID, appCallLeg : in IpAppCallLegRef) : TpCallLegIdentifier 

This method is used to create a new CallLeg object in the SCS. 



 

ETSI 

ETSI TR 129 998-4-4 V5.0.3 (2004-06) 263GPP TR 29.998-04-4 version 5.0.3 Release 5 

 

 User Application 

createCallLeg   

OSA SCS 

SIP 
server 

SCF 

  

Figure 5-15: Call flow for createCallLeg() 

Table 5-27: Normal operation 

SIP Server Mode 
for the OSA SCS: 

Proxy, UA, B2BUA or 3rd party controller. 
(Any, except Redirect). 
 

Pre-conditions: The application has a reference to a Multi-party Call object. 
1 The application invokes the createCallLeg method 
2 The SCS creates the requested call leg object 
 

Table 5-28: Parameter mapping 

From: callOverloadEncountered To: SIP Remark 
callSessionID (TpSessionID) See "OSA Call and SIP Dialogue 

Correlation Tables" 
Table 4-1 to 4-5. 

Specifies the call session ID of the call. 
No direct mapping to SIP – but a correlation is 
created. 

appCallLeg (IpAppCallLegRef N/A Specifies the application interface for call-
backs from the call leg created 

Returns: 
TpCallLegIdentifier: 
 - CallLegReference (IpCallLegRef) 
 - CallLegSessionID (TpSessionID) 

See "OSA Call and SIP Dialogue 
Correlation Tables"  
Table 4-1 to 4-5. 

The SCS will create a new call leg object to be 
associated with the existing call object and 
pass it to the application.  

Note: The correlation to SIP will be created when set-up of a connection associated with the created call leg occurs. 
 

5.3.3 createAndRouteCallLegReq 

createAndRouteCallLegReq (callSessionID : in TpSessionID, eventsRequested : in TpCallEventRequestSet, 
targetAddress : in TpAddress, originatingAddress : in TpAddress, appInfo : in TpCallAppInfoSet, 
appLegInterface : in IpAppCallLegRef) : TpCallLegIdentifier 

This method is an asynchronous method used to request the creation of a new Call Leg and the set-up of a connection to 
the indicated address. 



 

ETSI 

ETSI TR 129 998-4-4 V5.0.3 (2004-06) 273GPP TR 29.998-04-4 version 5.0.3 Release 5 

 

 3c. ISC:   183 Progress (SDP) 

 3a. ISC:   100 Trying 

 User Application 

ISC: 200 OK 

                 2. ISC:   INVITE 
                  ( no SDP) 

1. createAndRouteCallLegReq 

ISC :PRACK (SDP) 

OSA SCS 

ISC: UPDATE 

ISC: 180 Ringing 

ISC: 200 OK 

SIP 
server 

SCF 

 

Figure 5-16: Call flow for createAndRouteCallLegReq(), OSA SCS acting as UA Client 

 

 3c. ISC:   PRACK 

 3a. ISC:   183Progress 

Application 

 4. ISC:  PRACK 

                 2. ISC:   INVITE 

1. createAndRouteCallLegReq 

3. ISC : 183Progress 

OSA SCS 

ISC: 100 Trying 

B       A 

 User 

 ISC: INVITE 

SIP 
server 

SCF 

 

Figure 5-17: Call flow for createAndRouteCallLegReq(), OSA SCS acting as Proxy server 



 

ETSI 

ETSI TR 129 998-4-4 V5.0.3 (2004-06) 283GPP TR 29.998-04-4 version 5.0.3 Release 5 

Table 5-29: Normal operation, case a: UA mode  

SIP Server Mode 
for the OSA SCS: 

UA (or 3rd party controller, B2BUA). 
 

Pre-conditions: The application has a reference to a Multi-party Call object. 
1 The application invokes the createAndRouteCallLegReq method. The SCS creates an call Leg 

object and instructs the SIP server of the OSA SCS to generates a SIP INVITE message. 
2 The SIP server acting in a UA mode sends the SIP INVITE to the corresponding party. 

Note: It may happen that the destination address leads to the generation of more than one INVITE 
being sent by the SIP server (Forking). 

3 The SIP server acting as UA acknowledge the incoming SIP response message. 
Note 1: The application has no control of the SIP server forking functionality. 

Assuming the UA ("surrogate UAC") of the OSA SCS does not posses any media resource, the INVITE is sent 
with "no SDP". This results in a SIP dialog with no media (e.g. no RTP stream) stream set-up, i.e. a plain 
session control dialog created by the application.  
The possible handling of media by "UA" within the OSA SCS for application initiated calls is outside the scope 
of standardisation.  

Note 2: See also Annex B for supplementary information and flow examples (B2- B5)  
(CreateAndRouteCallLegReq may hereby be viewed as a concatenation the methods createCallLeg, 
eventReportReq and routeReq). 

 

Table 5-30: Parameter mapping, UA mode 

From: createAndRouteCallLegReq  To: SIP INVITE  Remark 
callSessionID (TpSessionID) See "OSA Call and SIP Dialogue 

Correlation Tables" for Originating UA 
mode. 
Table 4-2 to 4-5. 

No direct mapping, merely a correlation 
is created. 

eventsRequested 
(TpCallEventRequestSet) 
 
Note: A set of TpCallEventRequest 

See Table 6-8: 
TpCallEventRequest 
for mapping to SIP. 

Start observation in SIP server for 
occurrence of requested events to be 
notified to the application. 

targetAddress (TpAddress) SIP URL in the TO header and  
Request-URI 
 
See Table 6-2: 
TpAddress 
mapping to SIP. 
 

 

originatingAddress (TpAddress) SIP URL in the From header. 
 
See Table 6-2: 
TpAddress 
mapping to SIP. 

The originating address may e.g. be the 
application server SIP address 
(third party call set up) or the SCS 
server when the the SCS is the 
endpoint (UAC) which initiates the 
INVITE. 
If originatingAddress not present a 
default value could be provided by the 
OSA SCS. 

appInfo (TpCallAppInfoSet) 
 
Note: A set of TpCallAppInfo 

See Table 6-4: TpCallAppInfo 
for mapping to SIP. 

 

appLegtInterface (IpAppCallLegRef) N/A Defines a reference to data type 
IPCallLeg 

Returns: 
TpCallLegIdentifier: 
 - CallLegReference (IpCallLegRef) 
 - CallLegSessionID (TpSessionID) 

See "OSA Call and SIP Dialogue 
Correlation Tables" 
Table 4-2 to 4-5. 
 

A correlation to SIP is created. 
The SCS will create a new call leg 
object to be associated with the existing 
call object and pass it to the application.  
Note: The correlation to SIP is created 
when set-up of a connection associated 
with the created call leg occurs.. 

NOTE: See also Annex B and Annex C . 
 



 

ETSI 

ETSI TR 129 998-4-4 V5.0.3 (2004-06) 293GPP TR 29.998-04-4 version 5.0.3 Release 5 

Table 5-31: Normal operation, case b: Proxy mode  

SIP Server Mode 
for the OSA SCS: 

Proxy. 
 

Pre-conditions: The application has a reference to a Multi-party Call object. 
1 The application invokes the createAndRouteCallLegReq method. The SCS creates an call Leg 

object, and forwards the received SIP INVITE message to the indicated target address. 
2 The SIP server forwards the SIP INVITE to the corresponding party. 

Note: It may happen that the destination address leads to the generation of more than one INVITE 
being sent by the SIP server (Forking). 

3 The SIP server forwards the incoming SIP response message to the SCS. 
Note: The application has no control of the SIP server forking functionality. 
 

Table 5-32: Parameter mapping, Proxy mode 

From: 
createAndRouteCallLegReq  

To: SIP INVITE  Remark 

callSessionID (TpSessionID) See "OSA Call and SIP 
Dialogue Correlation 
Tables" for Proxy mode. 
Table 4-1. 

No direct mapping of CallSessionID onto SIP Call-ID to 
ensure the SIP Call-ID uniqueness, merely a correlation is 
needed. A SIP call ID must be unique and not be reused 
for later calls.  
Acting as a UA (or B2BUA) a new call_ID is created for the 
new originating SIP leg for which a correlation with 
callSessionID is created. 

eventsRequested 
(TpCallEventRequestSet) 
 
Note: A set of 
TpCallEventRequest 

See Table 6-8: 
TpCallEventRequest 
for mapping to SIP 

Start observation in SIP server of the OSA SCS for 
occurrence of requested events to be notified to the 
application. 

targetAddress (TpAddress) SIP URL in the 
Request URI header. 
See Table 6-2: 
TpAddress 
mapping to SIP. 

If present, the targetAddress is used for routeing using 
Request-URI  

originatingAddress 
(TpAddress) 

N/A FROM header containf the originator address (caller) of the 
invitation. 
This must not be changed. 

appInfo (TpCallAppInfoSet) 
Note: A set of TpCallAppInfo 

See Table 6-4: 
TpCallAppInfo 
for mapping to SIP. 

 

appLegtInterface 
(IpAppCallLegRef) 

N/A Defines a reference to data type IPCallLeg 

Returns: 
TpCallLegIdentifier: 
 - CallLegReference 
(IpCallLegRef) 
 - CallLegSessionID 
(TpSessionID) 

See "OSA Call and SIP 
Dialogue Correlation 
Tables" 
Table 4-1. 

A correlation to SIP is created. 
The SCS will create a new call leg object to be associated 
with the existing call object and pass it to the application.  
Note: The correlation to SIP is created when set-up of a 
connection associated with the created call leg occurs.. 

NOTE: See also Annex B and Annex C. 
 

5.3.4 release  

release (callSessionID : in TpSessionID, cause : in TpReleaseCause) : void 

This method used to request the release of the call and associated objects.  

Remarks: If several legs are connected, this method will also release each of the call legs, i.e. the complete call is 
released. The flow example below indicates the release of a single user (call party), it is however applicable for the 
release of any user, i.e. BYE is to be sent for each user (SIP dialog) that take part in the call.  



 

ETSI 

ETSI TR 129 998-4-4 V5.0.3 (2004-06) 303GPP TR 29.998-04-4 version 5.0.3 Release 5 

 

: 3. ISC:   200 OK 

 User(s) SIP 
server 

SCF Application 

 

                 2. ISC:  ( n x) BYE 
1. release 

OSA SCS 

 

Figure 5-18: Call flow for release, acting as UA (incl. B2BUA, 3rd. Party Controller) 

 

 3a. ISC 200 OK 

Application 

                 2a. ISC:   BYE 

1. Release 

3. ISC : 200 OK 

OSA SCS 

2. ISC: BYE 

B       A 

 User 
SIP 
server 

SCF 

 

Figure 5-18a: Call flow for release, acting as proxy 

Table 5-33: Normal operation, UA mode  

SIP Server Mode 
for the OSA SCS: 

UA (or 3rd party controller, B2BUA). 
 
For call release from application, UA mode of operation is demanded. 

Pre-conditions: Call is in progress. 
The application has a reference to a Multi-party Call object. 

1 The application invokes the release method. For all legs associated to the call, the SCS will act as 
if a release() method was received for each present leg(s). 

2 If the application has requested some reports at the end of the call (e.g., getInfoReq(), 
superviseReq()) these reports will be sent to the application 

3  
Note 1: The SIP server of the SCS gateway is to be capable to issue the SIP BYE to release the call participant(s) on 

request from the application - and therefore it demands to play the role of a UA. 
Note 2: Release may be sent any time from the application e.g. resulting in creation of a SIP response (e.g. 4xx, 5xx) to 

an incoming INVITE request or the termination of an establishment session (BYE) or the cancellation of a 
pending request (CANCEL) after the application has issued an INVITE request. 

 



 

ETSI 

ETSI TR 129 998-4-4 V5.0.3 (2004-06) 313GPP TR 29.998-04-4 version 5.0.3 Release 5 

Table 5-33a: Normal operation, proxy mode  

SIP Server Mode 
for the OSA SCS: 

Proxy 
 

Pre-conditions: Call is in progress. 
The application has a reference to a Multi-party Call object. 

1 The application invokes the release method. For all legs associated to the call, the SCS will act as 
if a release() method was received for each present leg(s). 

2 If the application has requested some reports at the end of the call (e.g., getInfoReq(), 
superviseReq()) these reports will be sent to the application 

3  
Note 1: The SIP server of the SCS gateway is to be capable to issue the SIP BYEs to multiple call participants on 

request from the application - and therefore it acts as a transparent B2BUA which remembers the sequence 
number of the requests sent by the call participants. 

Note 2: Release may be sent any time from the application e.g. resulting in creation of a SIP response (e.g. 4xx, 5xx) 
to an incoming INVITE request or the termination of an establishment session (BYE) or the cancellation of a 
pending request (CANCEL) after the application has issued an INVITE request. 

 

Table 5-34: Parameter mapping 

From: release  To: SIP BYE, 4xx, 5xx, 
Cancel (if any pending 
INVITE requests from 

application)  

Remark 

callSessionID (TpSessionID) See "OSA Call and SIP 
Dialogue Correlation 
Tables" 
Table 4-2 to 4-5. 

No direct mapping, merely a correlation is 
created.  

cause (TpReleaseCause) : See table 6-17: 
TpReleaseCause for 
mapping to SIP response 
codes  

See also note below 

Note: The release() method may be sent any time from the application e.g. resulting in  
a) creation of a SIP response (e.g. 4xx, 5xx) to an incoming INVITE request or  
b) the termination of an established session (BYE) or  
c) the cancellation of pending requests (CANCEL) when the application has issued an INVITE request. 

 

5.3.5 deassignCall 

deassignCall (callSessionID : in TpSessionID) : void 

This method is used to request that the relationship between the application and the call and associated objects be de-
assigned. It leaves the call in progress, however, it purges the specified call object so that the application has no further 
control of call processing. If a call is de-assigned that has event reports or call information reports requested, then these 
reports will be disabled and any related information discarded.  

 

 User Application 

deassignCall   

OSA SCS 

SIP 
server 

SCF 

 

Figure 5-19: Call flow for deassignCall() 



 

ETSI 

ETSI TR 129 998-4-4 V5.0.3 (2004-06) 323GPP TR 29.998-04-4 version 5.0.3 Release 5 

Table 5-35: Normal operation  

SIP Server Mode 
for the OSA SCS: 

Proxy, UA, B2BUA or 3rd party controller, Redirect 
 

Pre-conditions: A relationship between the application and the call including associated objects exists. 
1 The application invokes the deassignCall method 
2 The SCS terminates the relationship between the application and the call and its associated 

objects and notifies the SIP server of the OSA SCS.  
3 The SIP server of the OSA SCS is to continue call processing autonomously, i.e. without any 

control from the application. Any possible interrupted call processing is to be resumed. 
Note: If the application was the only one to control the session, the SIP server of the OSA SCS may remove itself 

from the route-request. 
 

Table 5-36: Parameter mapping 

From: release  To: SIP  Remark 
callSessionID 
(TpSessionID) 

See "OSA Call and SIP Dialogue Correlation Tables" 
Table 4-1 to 4-5. 

No direct mapping, merely a 
correlation is created.  

 

5.3.6 getInfoReq 

getInfoReq (callSessionID : in TpSessionID, callInfoRequested : in TpCallInfoType) : void 

This method is an asynchronous method that requests information associated with the call to be provided at the 
appropriate time (for example, to calculate charging).  

 

 User Application 

getInfoReq   

OSA SCS 

SIP 
server 

SCF 

 

Figure 5-20: Call flow for getInfoReq() 

Table 5-37: Normal operation  

SIP Server Mode 
for the OSA SCS: 

Proxy, UA, B2BUA or 3rd party controller 
(Any, except Redirect mode) 

Pre-conditions: A relationship between the application and the call including associated objects exists. 
The getInfoReq method must be invoked before the call is routed to a target address. 

1 The application invokes the getInfoReq method. The SCS monitors the call to be capable to 
collect the requested information. 

2 The OSA SCS will later on send the corresponding getInfoRes() or getInfoErr() based on the 
messages received from the SIP server of the OSA SCS. 

3  
NOTE: The getInfoReq() method is not related to SIP signalling, it is sent by the application to request information 

associated to the call.  
Restriction: The getInfoReq method is only applicable on call level for a plain user initiated call between a caller and a 

callee, where a report is demanded when the destination leg or party (callee) terminates or when the call ends. 
(For application initiated calls and multiparty calls the method should instead be applied on a per destination 
leg (per callee)). 

 



 

ETSI 

ETSI TR 129 998-4-4 V5.0.3 (2004-06) 333GPP TR 29.998-04-4 version 5.0.3 Release 5 

Table 5-38: Parameter mapping 

From: getInfoReq  To: SIP  Remark 
callSessionID (TpSessionID) See "OSA Call and SIP Dialogue Correlation Tables" 

Table 4-1 to 4-5. 
No direct mapping, merely a 
correlation is created.  

callInfoRequested 
(TpCallInfoType) : 

See table 6-10: TpCallInfoType mapping to SIP  

NOTE: There is no direct mapping to SIP. The getInfoReq() method results in supervision of the following SIP events 
via the SIP server of the OSA SCS:  
a) receipt of a SIP response ("answer" 200 OK/ACK) to an incoming INVITE request or  
b) the termination of an establishment dialog session (BYE)  

 

5.3.7 superviseReq 

superviseReq (callSessionID : in TpSessionID, time : in TpDuration, treatment : in TpCallSuperviseTreatment) : 
void 

This method is called by the application to supervise a call.  
The application can set a granted connection time for this call. If an application calls this method before it routes a call 
the time measurement will start as soon as the call is confirmed (answered) by the called party.  

 

 User Application 

superviseReq   

OSA SCS 

SIP 
server 

SCF 

 

Figure 5-21: Call flow for superviseReq() 

Table 5-39: Normal operation  

SIP Server Mode 
for the OSA SCS: 

Proxy, UA, B2BUA or 3rd party controller 
(Any, except Redirect mode). 
However, if treatment (TpCallSuperviseTreatment) implies call release, then a UA mode of 
operation is demanded (UA, B2BUA, 3rd party controller). For this treatment, if the SCS is 
acting as a proxy, the only SIP message the SCS can generate after receiving 
superviseRes() in the call leg is BYE.  

Pre-conditions: A relationship between the application and the call including associated objects exists. 
The superviseReq method must be invoked before the call is confirmed, i.e. before 
answered. 

1 The application invokes the superviseReq method. The SCS monitors the call to be capable to 
collect the requested information. 

2 The OSA SCS will later on send the corresponding superviseRes() or superviseErr() based on 
the messages received from the SIP server of the OSA SCS. 

Note: The SIP server of the OSA SCS should use the messages received by the SIP server during the call session in 
order to sent the corresponding superviseRes() or superviseErr() method.  

 



 

ETSI 

ETSI TR 129 998-4-4 V5.0.3 (2004-06) 343GPP TR 29.998-04-4 version 5.0.3 Release 5 

Table 5-40: Parameter mapping 

From: getInfoReq  To: SIP  Remark 
callSessionID (TpSessionID) See "OSA Call and SIP Dialogue 

Correlation Tables". 
Table 4-1 to 4-5. 

No direct mapping – a correlation. 

time (TpDuration) ACK (confirmation of "answer" SIP 
200 OK)  

No direct mapping , but specified call 
supervision timer is to start upon the 
confirmation of answer event. 

treatment (TpCallSuperviseTreatment) : N/A 
 
See note: 

No direct mapping. 
Defines the treatment of the call by 
the call control service when the call 
supervision timer expires, e.g. 
release call (BYE) and /or send 
warning tone to calling party. 

NOTE: There is no direct mapping to SIP. However, the expiry of the call supervistion timer during the active call 
initiates the action as specified in TpCallSuperviseTreatment.  

 

5.3.8 setAdviceOfCharge 

setAdviceOfCharge (callSessionID : in TpSessionID, aOCInfo : in TpAoCInfo, tariffSwitch : in TpDuration) : 
void 

This method allows the application to determine the charging information that will be send to the end-users terminal. 

 User Application 

setAdviceOfCharge 

OSA SCS 

SIP 
server 

SCF 

INVITE/200 OK/ACK 

Media server: £1 per min, press 
#1 to continue or hang up 

INVITE 

reportNotification 

DTMF: #1 
INVITE 

 

Figure 5-22: Call flow for setAdviceOfCharge() 



 

ETSI 

ETSI TR 129 998-4-4 V5.0.3 (2004-06) 353GPP TR 29.998-04-4 version 5.0.3 Release 5 

Table 5-41: Normal operation  

SIP Server Mode 
for the OSA SCS: 

UA mode 
 
The generation of a SIP message on request from the application demands the SIP server of 
the OSA to operate in a UA mode (e.g. UAC, B2BUA, 3rd party controller). 
 
The SCS's behaviour on receiving setAdviceOfCharge is not standardized, the diagram 
above is just shown as an example on how this can be done.    

Pre-conditions: A relationship between the application and the call including associated objects exists. 
The setAdviseOfCharge method must be invoked before the call is confirmed, i.e. before 
answered. 

1 The application invokes the setAdviceOfCharge method. The SCS enables the call to be capable 
to send the requested information to the end-user. 

2  
Note: How the SIP server of the OSA SCS sent the information to the calling party is not standardized in this release. 
 

Table 5-42: Parameter mapping 

From: setAdviceOfCharge  To: SIP  Remark 
callSessionID (TpSessionID) See "OSA Call and SIP Dialogue Correlation Tables". 

Table 4-2 to 4-5. 
No direct mapping – a 
correlation. 

aOCInfo (TpAoCInfo): 
 - ChargeOrder (TpAoCOrder) 
 - Currency (TpString)  

See Table 6-19 
TpAoCInfo 
mapping to SIP. 

Currency unit according 
to ISO-4217:1995 [8] 

tariffSwitch (TpDuration) N/A  

 

5.3.9 SetChargePlan 

setChargePlan (callSessionID : in TpSessionID, callChargePlan : in TpCallChargePlan) : void 

This is a method that allows the application to set an operator specific charge plan for the call enabling to include 
charging information in network generated CDR.  

 

 User Application 

setChargePlan  SIP Server set to create CDR ?? 

OSA SCS 

SIP 
server 

SCF 

 

Figure 5-23: Call flow for setChargePlan() 

Table 5-43: Normal operation  

SIP Server Mode 
for the OSA SCS: 

Any mode. 
 
For details on application server handling IMS charging, see 3GPP TS 23.218 [6]. 

Pre-conditions: A relationship between the application and the call including associated objects exists. 
The setChargePlan method may have to be invoked before the call is confirmed, i.e. before 
answered . 

1 The application invokes the setChargePlan method. The SCS enables the call to be capable to be 
charged according to defined plan . 

2  
NOTE: The SIP server of the OSA SCS should invoke the requested charge plan. Information relevant to application 

and SCS not to SIP signalling. 
 



 

ETSI 

ETSI TR 129 998-4-4 V5.0.3 (2004-06) 363GPP TR 29.998-04-4 version 5.0.3 Release 5 

Table 5-44: Parameter mapping 

From: setChargePlan  To: SIP Remark 
callSessionID (TpSessionID) See "OSA Call and SIP Dialogue Correlation Tables". 

Table 4-1 to 4-5. 
No direct mapping – a 
correlation. 

callChargePlan 
(TpCallChargePlan) 

N/A Information relevant to 
application and SCS not to 
signalling 

 

5.4 Multi-Party Call Application Interface 

5.4.1 createAndRouteCallLegErr 

createAndRouteCallLegErr (callSessionID : in TpSessionID, callLegReference : in TpCallLegIdentifier, 
errorIndication : in TpCallError) : void 

This method is an asynchronous method which indicates that the request to route the call to the destination party was 
unsuccessful – the call could not be routed to the destination party (for example, parameters were incorrect, invalid 
address, the request was refused, etc). 

 

 User SIP 
server 

SCF Application 

createAndRouteCallLegErr 

 ISC: 4xx, 5xx and 6xx responses (*) 
 

ACK 

OSA SCS 

(*) For valid error see 
table 6.6 
TpCallErrorType 

 

Figure 5-24: Call flow for createAndRouteCallLegErr() 

Table 5-45: Normal operation  

SIP Server Mode 
for the OSA SCS: 

Proxy, UA, B2BUA or 3rd party controller 
(Any, except Redirect mode.) 

Pre-conditions: Application has sent createAndRouteCallLegReq() , a request to route the call to the 
destination party. 

1 The request is refused e.g. the SIP server in the core network detects an error and notifies the SIP 
server of the SCS.  

2 The SCS invokes the createAndRouteCallLegErr method 
Note: The SIP server of the OSA SCS should detect the denial. 
 

Table 5-46: Parameter mapping 

To: createAndRouteCallLegErr  From: SIP  Remark 
callSessionID (TpSessionID) See "OSA Call and SIP Dialogue Correlation Tables". 

Table 4-1 to 4-5. 
No direct mapping – a 
correlation .  

callLegReference 
(TpCallLegIdentifier)  

See "OSA Call and SIP Dialogue Correlation Tables". 
Table 4-1 to 4-5. 

 

errorIndication (TpCallError) See table 6-5: 
TpCallError 
mapping from SIP 

 

 



 

ETSI 

ETSI TR 129 998-4-4 V5.0.3 (2004-06) 373GPP TR 29.998-04-4 version 5.0.3 Release 5 

5.4.2 callEnded 

callEnded (callSessionID : in TpSessionID, report : in TpCallEndedReport) : void 

This method is invoked when the call has terminated in the network. Furthermore, the operation contains an indication 
on the reason why the call has been ended. The method will always be invoked when the call is ended. 

 

 

ISC:  BYE etc. 

 User SIP 
server 

SCF Application 

   The SIP server of the SCS detects 
that call has been released or the 
call in terminated in the 
network(e.g., last leg released or 
disconnected)     callEnded 

 

OSA SCS 

 

Figure 5-25: Call flow for callEnded()  

Table 5-47: Normal operation  

SIP Server Mode 
for the OSA SCS: 

Proxy, UA, B2BUA or 3rd party controller, Redirect. 
(Any) 

Pre-conditions: There is an application monitoring the call in some way. 
1 The SCS detects that there is no leg connected to the call or the call has been released.  

The SCS invokes the callEnded method. 
  
Note: The callEnded() method is sent to the application when the last leg has released or the call itself was released 

or no party has answered the call. This method does not require any SIP mapping. It reflects the call state in 
the SCS.  

 

Table 5-48: Parameter mapping 

To: callEnded  From: SIP: BYE, 3xx, 4xx, 5xx, 6xx Remark 
callSessionID (TpSessionID) See "OSA Call and SIP Dialogue Correlation Tables" 

Table 4-1 to 4-5. 
No direct mapping – a 
correlation.  

report (TpCallEndedReport) : -  
 - CallLegSessionID 
 (TpSessionID) 

See "OSA Call and SIP Dialogue Correlation Tables" 
Table 4-1 to 4-5. 

 

 - Cause 
(TpReleaseCause) 

See table 6-18: 
TpReleaseCause  
for the mapping from SIP  

 

 

5.4.3 getInfoRes 

getInfoRes (callSessionID : in TpSessionID, callInfoReport : in TpCallInfoReport) : void 

This is an asynchronous method that reports all the necessary information requested by the application, for example to 
calculate charging. 



 

ETSI 

ETSI TR 129 998-4-4 V5.0.3 (2004-06) 383GPP TR 29.998-04-4 version 5.0.3 Release 5 

 

 User Application 

getInfoRes   

OSA SCS 

SIP 
server 

SCF 

  

Figure 5-26: Call flow for getInfoRes() 

Table 5-49: Normal operation  

SIP Server Mode 
for the OSA SCS: 

(Proxy, UA, B2BUA or 3rd party controller) 
(Any, except Redirect mode) 

Pre-conditions: Call is in progress. The application has requested information associated with a call via the 
getInfoReq method 

1 The OSA SCS detects that the call is terminated. The SCS invokes the getInfoRes() method 
 

Table 5-50: Parameter mapping 

To: getInfoRes From: SIP: BYE, 3xx, 4xx, 5xx, 
6xx 

Remark 

callSessionID (TpSessionID) See "OSA Call and SIP Dialogue 
Correlation Tables". 
 Table 4-1 to 4-5. 

No direct mapping – a correlation. 
 

callInfoReport (TpCallInfoReport): -  
 - CallInfoType (TpCallInfoType) See Table 6-10: 

TpCallInfoType 
Defines the type of call information 
requested and reported 

 - CallInitiationStartTime  
 (TpDateAndTime) 

N/A The time when the SIP server of the OSA 
SCS sent the SIP INVITE message. 

 - CallConnectedToResourceTime 
 (TpDateAndTime) 

N/A  

 - CallConnectedToDestinationTime 
 (TpTpDateAndTime) 

N/A The moment the party received the ACK 
message for the INVITE. This information 
may be provided by the OSA SCS. 

 - CallEndTime (TpDateAndTime) N/A Moment when SIP BYE message is sent 
to participant or received from the 
participant.. 
This information may be provided by the 
OSA SCS. 

 - Cause (TpReleaseCause) See Table 6-18 
TpReleasecause for the mapping 
from SIP 

 

 

5.4.4 getInfoErr 

getInfoErr (callSessionID : in TpSessionID, errorIndication : in TpCallError) : void 

This method is an asynchronous method that reports that the original request was erroneous, or resulted in an error 
condition. 



 

ETSI 

ETSI TR 129 998-4-4 V5.0.3 (2004-06) 393GPP TR 29.998-04-4 version 5.0.3 Release 5 

 

 User Application 

getInfoErr   

OSA SCS 

SIP 
server 

SCF 

 

Figure 5-27: Call flow for getInfoErr() 

Table 5-51: Normal operation  

SIP Server Mode 
for the OSA SCS: 

Proxy, UA, B2BUA or 3rd party controller. 
(Any, except Redirect) 

Pre-conditions: Call is in progress. The application has requested information associated with a call via the 
getInfoReq method 

1 The original request getInfoReq is erroneous or cannot be accepted due to e.g. call terminates 
abnormally. 

2 The SCS identifies the correct applications that requested the call information and invokes the 
getInfoErr method. 

 

Table 5-52: Parameter mapping 

To: getInfoErr  From: SIP 4xx Remark 
callSessionID (TpSessionID) See "OSA Call and SIP Dialogue Correlation Tables". 

Table 4-1 to 4-5. 
No direct mapping – a correlation. 

errorIndication (TpCallError) See Table 6-5: 
TpCallError mapping table from SIP. 

 

 

5.4.5 superviseErr 

superviseErr (callSessionID : in TpSessionID, errorIndication : in TpCallError) : void 

This is an asynchronous method that reports a call supervision error to the application. 

 

 User Application 

superviseErr   

OSA SCS 

SIP 
server 

SCF 

 

Figure 5-28: Call flow for superviseErr() 



 

ETSI 

ETSI TR 129 998-4-4 V5.0.3 (2004-06) 403GPP TR 29.998-04-4 version 5.0.3 Release 5 

Table 5-53: Normal operation  

SIP Server Mode 
for the OSA SCS: 

Proxy, UA, B2BUA or 3rd party controller 
(Any, except Redirect mode). 
 
However, if treatment (TpCallSuperviseTreatment) implies call release, then UA mode of 
operation is demanded. For this treatment, if the SCS is acting as a proxy, the only SIP 
message the SCS can generate after sending superviseErr() in the call leg is BYE. 

Pre-conditions: Call is in progress. The application has requested information associated with a call via the 
superviseReq method. 

1 The SCS detects an error that can affect call supervision, e.g. call routing error.  
2 The SCS identifies the correct applications that requested the call information and invokes the 

superviseErr method. 
 

Table 5-54: Parameter mapping 

To: 
createAndRouteCallLegErr  

From: SIP 4xx Remark 

callSessionID (TpSessionID) See "OSA Call and SIP Dialogue Correlation Tables". 
Table 4-1 to 4-5. 

No direct mapping – a 
correlation. 

errorIndication (TpCallError) See Table 6-5:  
TpCallError  
mapping from SIP 

 

 

5.4.6 superviseRes 

superviseRes (callSessionID : in TpSessionID, report : in TpCallSuperviseReport, usedTime : in TpDuration) : 
void 

This is an asynchronous method that reports a call supervision event to the application. 

 

 User Application 

superviseRes   

OSA SCS 

SIP 
server 

SCF 

 

Figure 5-29: Call flow for superviseRes() 

Table 5-55: Normal operation  

SIP Server Mode 
for the OSA SCS: 

Proxy, UA, B2BUA or 3rd party controller 
(Any, except Redirect mode). 
 
However, if treatment (TpCallSuperviseTreatment) implies call release, then UA mode of 
operation is demanded. For this treatment, if the SCS is acting as a proxy, the only SIP 
message the SCS can generate after sending superviseErr() in the call leg is BYE. 

Pre-conditions: Call is in progress. The application has requested information associated with a call via the 
superviseReq method. The specified call supervision timer expires. 

1 The OSA SCS detects that the supervision time is expired and acts according to the requested 
treatment (e.g. release call sending BYE) in superviseReq The OSA SCS identifies the correct 
application and invokes the superviseRes method. 

 



 

ETSI 

ETSI TR 129 998-4-4 V5.0.3 (2004-06) 413GPP TR 29.998-04-4 version 5.0.3 Release 5 

Table 5-56: Parameter mapping 

To: superviseRes From: SIP Remark 
callSessionID 
(TpSessionID) 

See "OSA Call and SIP 
Dialogue Correlation Tables". 
Table 4-1 to 4-5. 

No direct mapping – a correlation .  

report 
(TpCallSuperviseReport) 

N/A  Defines the response(s) from the call control service for calls 
that have been supervised, (e.g. timeout, call-ended, tone-
applied, UI-finished).  

usedTime (TpDuration) N/A No direct mapping to SIP: 
 

5.5 CallLeg Service Interface  
The call leg interface class represents the logical call leg associating a call with an address. 
The leg represents the signalling relationship between the call and an address. 

5.5.1 routeReq 

routeReq (callLegSessionID : in TpSessionID, targetAddess : in TpAddress, originatingAddress : in TpAddress, 
appInfo : in TpCallAppInfoSet, connectionProperties : in TpCallLegConnectionProperties) : void 

This method is an asynchronous method used to request routing of the call leg to the remote party indicated by the 
target address. 

 

1. routeReq  
  

 User SIP 
server 

SCF Application 

                 2. ISC:   INVITE 

 

Figure 5-30: Call flow for routeReq(), UA mode  

5.5.1.1 Case 1 UA mode operation 

Table 5-57: Normal operation, UA operation mode  

SIP Server Mode 
for the OSA SCS: 

UA mode  
 
The generation of a SIP message (INVITE) on request from the application demands the SIP 
server of the OSA to operate in a UA mode (e.g. UAC, B2BUA, 3rd party controller). 

Pre-conditions: A relationship between the application and the call including associated objects exists. 
For the routeReq() method, the SCS does not create any new call or call leg objects since 
the method is called on the existing Terminating Call Leg object 

1 The application invokes the routeReq method. The SCS enables the call to be set-up by issuing 
an invitation (INVITE) for the end-user to be called. 

2  
Note 1: The routeReq method is applicable only for the terminating leg in the MPCC call leg STD. 

The SIP server of the OSA SCS should sent the INVITE for request thee routing to remote party. 
Forking is not supported by the OSA API.  
The call flow for this method is the equivalent to the createCallAndRouteReq() method. 

Note 2: When operation in B2BUA mode the flow is similar to UA mode, but behaviour reflects a specialisation of a proxy 
server comprising the split of the SIP dialogue between the end-users into two dialogues – one for each call 
party 
enabling the application to gain full session control.  

Note 3: See also Annex B and the flow examples B2-B5. 
 



 

ETSI 

ETSI TR 129 998-4-4 V5.0.3 (2004-06) 423GPP TR 29.998-04-4 version 5.0.3 Release 5 

Table 5-58: Parameter mapping, UA mode operation 

From: routeReq  To: SIP INVITE Remark 
callLegSessionID (TpSessionID) See "OSA Call and SIP Dialogue Correlation Tables". 

Table 4-2 to 4-5. 
No direct mapping – a 
correlation is created.  

targetAddress (TpAddress) Request-URI 
 
See Table 6-2: 
TpAddress 
mapping to SIP. 

 

originatingAddress (TpAddress) FROM header: 
SIP URL 
 
See Table 6-2: 
TpAddress 
mapping to SIP. 

 

appInfo (TpCallAppInfoSet) See Table 6-4:  
TpCallAppInfo 
mapping to SIP. 

 

ConnectionProperties 
(TpCallLegConnectionProperties): 

See Table 6-12 
TpCallLegConnectionProperties  
mapping to SIP. 

 

Note: See also Annex B and Annex C. 
 

5.5.1.2 Case 2 Proxy mode operation 

 

3. routeReq  

SIP 
server 

SCF Application 

2. eventReportRes 

                 4. ISC:   INVITE 

1. ISC :INVITE 
A B 

 User 

 

Figure 5-31: Call flow for routeReq(), Proxy mode  

Table 5-59: Normal operation, Proxy operation mode  

SIP Server Mode 
for the OSA SCS: 

Proxy mode 
 
The routeReq is used to forward a call (SIP message (INVITE)) on request from the 
application: The SIP server of the OSA SCS operates in proxy mode. 

Pre-conditions: A relationship between the application and the call including associated objects exists. 
For the routeReq() method, the SCS does not create any new call or call leg objects since 
the method is called on the terminating call leg object 

1 The application invokes the routeReq method. The SCS enables the call to be set-up by proxying 
the invitation (INVITE) for the end-user to be called. 

Note: The routeReq method is applicable only for the terminating leg in the MPCC call leg STD. 
The SIP server of the OSA SCS should forward sent the INVITE for request the routing to remote party. 
Forking is not supported by the OSA API.  
The call flow for this method is equivalent to createCallAndRouteReq() method. 

 



 

ETSI 

ETSI TR 129 998-4-4 V5.0.3 (2004-06) 433GPP TR 29.998-04-4 version 5.0.3 Release 5 

Table 5-60: Parameter mapping, Proxy mode operation 

From: routeReq  To: SIP INVITE Remark 
callLegSessionID (TpSessionID) See "OSA Call and SIP Dialogue 

Correlation Tables". 
Table 4-2. 

No direct mapping – a correlation is 
created. 

targetAddress (TpAddress) Request-URI Header or P-Called-
Party-ID [19] 
See Table 6-2: 
TpAddress 
mapping to SIP. 

When the SCS receives an INVITE (flow 
1 in figure 5-31), if the P-Called-Party-ID 
header is present, then uses this 
header to identify the target address in 
the  outgoing INVITE (flow 4 in figure 5-
31). If not, then uses the Request-URI 
instead. 

originatingAddress (TpAddress) N/A FROM header: not to be changed  
appInfo (TpCallAppInfoSet) See Table 6-4:  

TpCallAppInfo 
mapping to SIP 

 

ConnectionProperties 
(TpCallLegConnectionProperties): 

See Table 6-12: 
TpCallLegConnectionProperties 

 

NOTE: See also Annex B and Annex C. 
 

5.5.2 eventReportReq 

eventReportReq (callLegSessionID : in TpSessionID, eventsRequested : in TpCallEventRequestSet) : void 

This method is an asynchronous method used to set, clear or change criteria for the events that the Call Leg object will 
observe. 

 

Application 

eventReportReq 

OSA SCS 

SIP 
server 

SCF 

 

Figure 5-32: Call flow for eventReportReq() 

Table 5-61: Normal operation  

SIP Server Mode 
for the OSA SCS: 

Proxy, UA, B2BUA or 3rd party controller. 
(Any mode, except Redirection.) 

Pre-conditions: A relationship between the application and the call including associated leg objects exists. 
The eventReportReq method must be invoked before call set-up (e.g. routeReq method) if to 
monitor events reporting the results of the call set-up request (invitation). 

1 The application invokes the eventReportReq method. The OSA SCS enables the call to be 
monitored for subsequent events to be reported. 

2 The SCS monitors the call and will later on send the corresponding eventReportRes() or 
eventReportErr() based on the messages received for the controlling entity, i.e. the SIP server of 
the OSA SCS. 

Note: The eventReportReq method is applicable for any leg created leg being part of the MPCC call leg STD. 
 



 

ETSI 

ETSI TR 129 998-4-4 V5.0.3 (2004-06) 443GPP TR 29.998-04-4 version 5.0.3 Release 5 

Table 5-62: Parameter mapping 

From: eventReportReq  From: SIP Remark 
callLegSessionID See "OSA Call and SIP Dialogue Correlation Tables". 

Table 4-1 to 4-5. 
A correlation - no direct 
mapping 

eventsRequested 
(TpCallEventRequestSet) 

See Table 6-8: 
TpCallEventRequest 
mapping from SIP. 

 

 

5.5.3 release  

release (callLegSessionID : in TpSessionID, cause : in TpReleaseCause) : void 

This method is used to request the release of a single call leg.  

 

 3a. ISC 200 OK 

Application 

                 2a. ISC:   BYE 

1. Release 

3. ISC : 200 OK 

OSA SCS 

2. ISC: BYE 

B       A 

 User 
SIP 
server 

SCF 

 

Figure 5-18a: Call flow for release, acting as proxy 

 

 Note: The participant is already 
 connected:  SIP:   200 OK - ACK   
messages have been   exchanged 

: 3. ISC:   200 OK 

 User Application 

                 2a. ISC:   BYE 
1a. release 

 ISC:   ACK 

ISC:   200 OK 

OSA SCS 

SCF SIP 
server 

 

Figure 5-33: Scenario a: Call flow for release(), participant connected, UA mode 



 

ETSI 

ETSI TR 129 998-4-4 V5.0.3 (2004-06) 453GPP TR 29.998-04-4 version 5.0.3 Release 5 

 

 Note: The participant is not yet 
 connected:  SIP:   INVITE has been 
sent, but 200 OK - ACK   
messages have not  been   exchanged 

: 3. SIP:   200 OK 

 User Application 

                 2b. SIP:   CANCEL 
1b. release 

 SIP:   1xx 

SIP:   INVITE 

OSA SCS 

SIP 
server 

SCF 

 

Figure 5-34: Scenario b: Call Flow for release(),  
pending call attempt toward participant, UA mode 

 

 Note: The participant is not yet 
   conneced. 
  SIP: Invite has been sent  
  A negative response is received. 

: 3c. ISC:   ACK 

 User Application 

                  ISC: 1xx 

4c.  CallEnded() 

 2c. ISC:   3xx, 4xx, 5xx, 6xx 

ISC:   INVITE 

3c. eventReportRes() 

OSA SCS 

SIP 
server 

SCF 

 

Figure 5-35: Scenario c: Call flow for release(),  
call (invite) to participant not accepted 



 

ETSI 

ETSI TR 129 998-4-4 V5.0.3 (2004-06) 463GPP TR 29.998-04-4 version 5.0.3 Release 5 

 

 Note: The participant is not yet 
   conneced. 
  SIP: Invite has been received  
  A negative final response  
  is provided by the application 
 (e.g.call barring). 

:  

 User Application 

                  ISC: INVITE 

1.  release 

 2d. ISC:   3xx, 4xx, 5xx, 6xx 

ISC: ACK 

 

OSA SCS 

SIP 
server 

SCF 

 

Figure 5-36: Scenario d: Call flow for release(),  
call (invite) from participant not accepted 

Table 5-63: Normal operation  

SIP Server Mode 
for the OSA SCS: 

Proxy and UA mode 
 
The generation of a SIP message (BYE) on request from the application to release 
participants in the call demands the SIP server of the OSA to operate in a proxy or UA mode 
(e.g. UAC, B2BUA, 3rd party controller). 

Pre-conditions: Call is in progress 
1 The application or the SCS invokes the release method. The SCS generates the SIP message to 

release the requested parties (call leg) from the call 
2a Scenario 2a: SIP BYE is sent. The SIP server sends the BYE Message toward the participant 

connected to the call.  
2b Scenario 2b: SIP CANCEL is sent to terminate a pending leg. The SIP server sends the CANCEL 

message toward the participants associated to the call but not connected yet. 
Note: CANCEL secures in case of SIP forking that all with the OSA leg possible associated 
pending SIP legs will be released. CANCEL cannot be sent when SCS is acting as a proxy. 

2c Scenario 2c: The invitation to a participant is not accepted. The application sends a Release to 
terminate its leg. 
Note: It could also send a continueProcessing() or deassign() to terminate it logical call leg 
object representing the connection (SIP leg) in the network. !! 

2d  
Note: For scenario 2c the application could instead of release() send a continueProcessing() or deassign() to 

terminate it logical call leg object representing the connection (SIP leg) in the network. !!  
When operating in B2BUA mode the decision whether a release from one participant will cause the release of 
any other participant can be controlled by the application.  

 



 

ETSI 

ETSI TR 129 998-4-4 V5.0.3 (2004-06) 473GPP TR 29.998-04-4 version 5.0.3 Release 5 

Table 5-64: Parameter mapping 

From: release  To: SIP BYE, 4xx, 5xx, 
Cancel (if any pending 
INVITE requests from 

application)  

Remark 

callLegSessionID (TpSessionID) See "OSA Call and SIP 
Dialogue Correlation 
Tables". 
Table 4-2 to 4-5. 

A correlation - no direct mapping 

cause (TpReleaseCause) See table 6-17: 
TpReleaseCause for 
mapping to SIP 

See table for TpReleaseCause for mapping 
to SIP response codes 

Note: The release() method may be sent any time from the application e.g. resulting in  
a) the termination of an establishment session (BYE) or  
b) the cancellation of a pending request (CANCEL) after the application has issued an INVITE request. 
c) the termination of an unsuccesful call attempt (e.g. meeting busy, not reachable etc.) or 
d) creation of a SIP response (e.g. 4xx, 5xx) to an incoming INVITE request. 

 

5.5.4 getInfoReq 

getInfoReq (callLegSessionID : in TpSessionID, callLegInfoRequested : in TpCallLegInfoType) : void 

This method is an asynchronous method that requests information associated with the call to be provided at the 
appropriate time (for example, to calculate charging).  

 

 User Application 

getInfoReq   

OSA SCS 

SIP 
server 

SCF 

 

Figure 5-37: Call flow for getInfoReq() 

Table 5-65: Normal operation  

SIP Server Mode 
for the OSA SCS: 

Proxy, UA, B2BUA or 3rd party controller. 
(Any, except Redirect mode.) 

Pre-conditions: A relationship between the application and the call including associated call leg objects 
exists. 
The getInfoReq method must be invoked on a call leg before the call leg is routed to a target 
address. 

1 The application invokes the getInfoReq method. The SCS monitors the call leg to be capable to 
collect the requested information. 

2 The OSA SCS will later on send the corresponding getInfoRes() or getInfoErr() based on the 
messages received from the SIP server of the OSA SCS. 

3  
Note 1: The getInfoReq() method is not related to SIP signalling, it is sent by the application to request information 

associated to the call. Indeed the method does not involve SIP mapping.  
Note 2: The OSA SCS should use the messages received by the SIP server during the call session in order to sent the 

corresponding getInfoRes() or getInfoErr() method.  
 



 

ETSI 

ETSI TR 129 998-4-4 V5.0.3 (2004-06) 483GPP TR 29.998-04-4 version 5.0.3 Release 5 

Table 5-66: Parameter mapping 

From: getInfoReq  To: SIP Remark 
callLegSessionID (TpSessionID) See "OSA Call and SIP Dialogue Correlation Tables". 

Table 4-1 to 4-5. 
No direct mapping – a 
correlation. 

callLegInfoRequested 
(TpCallLegInfoType) : 

See table 6-11: TpCallLegInfoType   

NOTE: There is no direct mapping to SIP. The getInfoReq() method results in supervision of the following SIP events:  
a) receipt of a SIP response (200 OK/ACK) to an incoming INVITE request or  
b) the termination of an establishment session (BYE).  

 

5.5.5 getCall 

getCall (callLegSessionID : in TpSessionID) : TpMultiPartyCallIdentifier 

This method used to retrieve the reference of the Call object associated with the Call leg object. 

 

 User Application 

getCall   

OSA SCS 

SIP 
server 

SCF 

 

Figure 5-38: Call flow for getCall() 

Table 5-67: Normal operation  

SIP Server Mode 
for the OSA SCS: 

Proxy, UA, B2BUA or 3rd party controller, Redirect. 
(Any) 

Pre-conditions: A relationship between the application and the call including associated call leg object(s) 
exists. The getCall method can be invoked on any existing call leg object. 

1 The application invokes the getCall method. The SCS return the associated call object reference 
to the application.  

Note: The getCallLeg() method is not related to SIP signalling, it is sent by the application to request information 
about the associated logical call object in the SCS. Indeed the method does not involve any SIP mapping.  

 

Table 5-68: Parameter mapping 

From: getInfoReq  To: SIP  Remark 
callLegSessionID (TpSessionID) See "OSA Call and SIP Dialogue Correlation 

Tables". 
Table 4-1 to 4-5. 

No direct mapping, merely 
a correlation is created.  

Returns: 
TpMultiPartyCallIdentifier 
 - CallReference (IpMultiPartyCallRef) 
 - CallSessionID (TpSessionID) 

N/A  

 

5.5.6 continueProcessing 

continueProcessing (callLegSessionID : in TpSessionID) : void 

This method used to continue processing of the call. 



 

ETSI 

ETSI TR 129 998-4-4 V5.0.3 (2004-06) 493GPP TR 29.998-04-4 version 5.0.3 Release 5 

 

 User Application 

continueProcessing  SIP call processing resumed 
 -  processing of any interupted 
  SIP message is resumed. 
-  

OSA SCS 

SIP 
server 

SCF 

 

Figure 5-39: Call flow for continueProcessing() 

Table 5-69: Normal operation  

SIP Server Mode 
for the OSA SCS: 

Proxy, UA, B2BUA or 3rd party controller 
(Any, except Redirection.)  

Pre-conditions: A relationship between the application and the call including associated call leg object(s) 
exists. Call processing is suspended and the application is informed of call related events 
in interrupt mode. 

1 The application invokes the continueProcessing method requesting processing for the call leg 
object to be resumed.  

2 The SCS requests the SIP server of the OSA SCS to resume SIP processing, when the call is to 
be resumed. That is the necessary response(s) from the application to resume call processing has 
been determined. 

Note: The continueProcessing method is addressed to a single leg object.  
Resumption of SIP call processing occurs when all the MPCCS leg objects STDs are in processing state (not 
suspended). 
The continueProcessing method can be invoked on any existing call leg object to resume processing. 

 

Table 5-70: Parameter mapping 

From: continueProcessing  To: SIP  Remark 
callLegSessionID 
(TpSessionID) 

See "OSA Call and SIP Dialogue Correlation Tables". 
Table 4-1 to 4-5. 

No direct mapping, merely a 
correlation is created.  

 

5.5.7 attachMediaReq 

attachMediaReq (callLegSessionID : in TpSessionID) : void 

This asynchronous method used to request that the call leg be attached to its call object. This will allow transmission on 
all associated bearer connections or media streams to and from other parties in the call. The call leg must be in the 
connected state for this method to complete successfully. However, the request may be sent as soon as the call leg 
object exists. 



 

ETSI 

ETSI TR 129 998-4-4 V5.0.3 (2004-06) 503GPP TR 29.998-04-4 version 5.0.3 Release 5 

 

 Note: The applicationrequests e.g. in  
  routeReq(connectionproperties)  
 the media to be detached implying initial 
invite with  SDP but all the media are put on 
hold, and user responds with its SDP in 200 
OK. . 
The media is enabled by using UPDATE   

eventReportRes 

 ISC:   ACK 

 User Application 

                  ISC: 200  OK (SDP user) 

  attachMediaReq 
  ISC:   UPDATE 
 (cancel media on hold ) 

ISC:   INVITE (with SDP, 
media put on hold) 

 e.g. routeReq (detach media)  

OSA SCS 

SIP 
server 

SCF 

                  ISC: 200  OK (SDP user) 

                 Media Exchange 

Communication Peer 
Note: This can either be a 
media resource server 
assigned by the application or 
other user terminals. 

 

Figure 5-40: Scenario a: Call flow for attachMediaReq(), UA/B2BUA mode 

 

 Note: The application may in 
  deachMedia request the media to be 
detached, i.e. to put  the media for the 
participant on hold (disconnected) 
See detachMediaReq method   
  

detackMediaRes 
: 3c. ISC:   ACK 

 User Application 

                  ISC: 200  OK  

4c.  attachMediaReq 
 2c. ISC:   UPDATE (media is 
active) 

ISC: UPDATE (media on hold) 

3c.detachMediaReq (detach media)  

OSA SCS 

SIP 
server 

SCF 

 

Figure 5-41: Scenario b: Call flow for attachMediaReq(), UA/B2BUA mode 



 

ETSI 

ETSI TR 129 998-4-4 V5.0.3 (2004-06) 513GPP TR 29.998-04-4 version 5.0.3 Release 5 

Table 5-71: Normal operation  

SIP Server Mode 
for the OSA SCS: 

UA, B2BUA, 3rd. party controller mode 
 
The generation of a SIP message (UPDATE [12]) on request from the application to attach 
media channels of a single user in the call demands the SIP server of the OSA SCS to 
operate in a UA mode (e.g. UAC, B2BUA, 3rd party controller). 

Pre-conditions: Call is processing. A relationship between the application and the call including associated 
call leg object(s) exists. The leg is in a connection state and has a media connection 
established with the others legs in the call. 
AttachMedia is not executed until the connected state is reached (200 OK /ACK) , i.e. if 
received before the SCS should buffer the request until it can be executed.. 

1 The application invokes the attachMediaReq method requesting the media stream(s) for the call 
leg object to be attached, i.e. enabling media communication fie the call party. Application request 
the media attachment for this leg. 

2 The SCS requests the SIP server of the OSA SCS to attach the media when the call enables this.. 
The SCS generates a new SIP UPDATE message to be sent to the participant, i.e. in this case the 
attachMediaReq() method is mapped onto the UPDATE message. 

Note 1: The new UPDATE sent to the participant does not affect a SIP dialog, it is only updating the previous SIP 
session since the SIP call-ID will be the same, only the SIP CSEQ will be higher to indicate that the media 
description has changed.  

Note 2: The attachMediaReq method can be invoked on any existing call leg object to request the media attachment. If 
SIP processing is in the call set-up phase, the request is buffered until it can be executed, i.e. it is not executed 
until the phase in call procession where it is applicable to connect media. Note: no error is reported in case 
media is already attached. 

Note 3: In SIP, the natural behaviour is to establish the media session once the signalling is established. In OSA a 
party can be disconnected (detachMediaReq) and re-connected (attachMediaReq) to a call. A way to map this 
functionality in SIP is to use the SDP on hold feature enabling putting the media streams on hold (detach 
media) while the session is established or after the establishment. When the application will request to attach 
the media, a new UPDATE will be sent to the participant with the media session description.  

Note 4: See also Annex B and flow example B6. 
 

Table 5-72: Parameter mapping 

From: continueProcessing  To: SIP  Remark 
callLegSessionID 
(TpSessionID) 

See "OSA Call and SIP Dialogue Correlation Tables". 
Table 4-2 to 4-5. 

No direct mapping – a 
correlation.  

 

5.5.8 detachMediaReq 

detachMedia (callLegSessionID : in TpSessionID) : void 

This asynchronous method is used to detach the call leg from its call, i.e., this will prevent transmission on any 
associated bearer connections or media streams to and from other parties in the call. The call leg must be in the 
connected state for this method to complete successfully.  



 

ETSI 

ETSI TR 129 998-4-4 V5.0.3 (2004-06) 523GPP TR 29.998-04-4 version 5.0.3 Release 5 

 

 Note: The application may in 
  deachMedia request the media to be 
detached, i.e. to put  the media for the 
participant on hold (disconnected) 
  

 User Application 

 

ISC:   UPDATE (media is on hold))

1.detachMediaReq  

OSA SCS 

SIP 
server 

SCF 

 

Figure 5-42: Call flow for detachMediaReq(), UA/B2BUA mode 

Table 5-73: Normal operation  

SIP Server Mode 
for the OSA SCS. 

UA, B2BUA, 3rd. party controller mode 
 
The generation of a SIP message (UPDATE) on request from the application to detach media 
channels of a single user in the call demands the SIP server of the OSA SCS to operate in a 
UA mode (e.g. UAC, B2BUA, 3rd party controller). 

Pre-conditions: Call is processing. A relationship between the application and the call including associated 
call leg object(s) exists. The leg is in a connection state and has a media connection 
established with the others legs in the call. 
DetachMedia is not executed until the connected state is reached (200 OK /ACK) , i.e. if 
received before the SCS should buffer the request until it can be executed. 

1 The application invokes the detachMediaReq method requesting the media stream(s) for the call 
leg object to be de-attached, i.e. enabling to put the media communication on hold for the call 
party. Application request the media de-attachment for this leg. The application prevents the 
transmission of media connection to this leg by calling the detachMediaReq(). 

2 The SCS requests the SIP server of the OSA SCS to de-attach the media when the call enables 
this.. 
The SCS generates a new SIP UPDATE message to be sent to the participant, i.e. in this case the 
detachMediaReq() method is mapped onto a SIP UPDATE message with an SDP on hold. 

Note 1: The new UPDATE sent to the participant does not affect a SIP dialog, it is only updating the previous SIP 
session since the SIP call-ID will be the same, only the SIP CSEQ will be higher to indicate that the media 
description has changed.  
The detachMediaReq method can be invoked on any existing call leg object to request the media attachment. 
If SIP processing is in the call set-up phase, the request is buffered until it can be executed, i.e. it is not 
executed until the phase in call procession where it is applicable to connect media. Note: no error is reported in 
case media is already detached. 
In SIP, the natural behaviour is to establish the media session once the signalling is established. In OSA a 
party can be disconnected (detachMedia) and re-connected (attachMedia) to a call.  
A way to map this functionality in SIP is to use the SDP on hold feature enabling putting the media streams on 
hold (detach media) while the session is established or after the establishment. When the application will 
request to attach the media, a new UPDATE will be sent to the participant with the media session description. 

Note 2: See also Annex B and flow example B6. 
 

Table 5-74: Parameter mapping 

From: continueProcessing  To: SIP  Remark 
callLegSessionID 
(TpSessionID) 

See "OSA Call and SIP Dialogue Correlation Tables". 
Table 4-2 to 4-5. 

No direct mapping – a 
correlation.  

 



 

ETSI 

ETSI TR 129 998-4-4 V5.0.3 (2004-06) 533GPP TR 29.998-04-4 version 5.0.3 Release 5 

5.5.9 deassign 

deassignCall (callLegSessionID : in TpSessionID) : void 

This method is used to request that the relationship between the application and the call leg and associated objects be 
de-assigned. It leaves the call in progress, however, it purges the specified call leg object so that the application has no 
further control of call leg processing. If a call leg is de-assigned that has event reports or call information reports 
requested, then these reports will be disabled and any related information discarded.  

 

 User Application 

deassign   

OSA SCS 

SIP 
server 

SCF 

 

Figure 5-43: Call flow for deassign() 

Table 5-75: Normal operation  

SIP Server Mode 
for the OSA SCS: 

Proxy, UA, B2BUA or 3rd party controller, Redirect. 
(Any) 

Pre-conditions: A relationship between the application and the call leg including associated objects exists. 
1 The application invokes the deassign method on a leg 
2 The SCS terminates the relationship between the application and the call leg and its associated 

objects and notifies the SIP server of the OSA SCS.  
3 The SIP server of the OSA SCS is to continue call processing autonomously, i.e. without any 

control from the application related to the call leg object. Any possible interrupted call processing 
related to the leg that has been deassigned control is to be resumed. 

Note: If the application was the only one to control the session, the SIP server of the OSA SCS may remove itself 
from the route-request. 

 

Table 5-76: Parameter mapping 

From: continueProcessing  To: SIP xx Remark 
callLegSessionID 
(TpSessionID) 

See "OSA Call and SIP Dialogue Correlation Tables". 
Table 4-1 to 4-5. 

No direct mapping, merely a 
correlation is created.  

 

5.5.10 getCurrentDestinationAddress 

getCurrentDestinationAddress (callLegSessionID : in TpSessionID) : TpAddress 

This method is sent by the application to the leg to get the current address of the destination the leg has been directed to.  



 

ETSI 

ETSI TR 129 998-4-4 V5.0.3 (2004-06) 543GPP TR 29.998-04-4 version 5.0.3 Release 5 

 

 Note: Returns the address of the 
destination point towards which the 
call leg has been routed. 
 

User Application 

 

 

1. getCurrentDestinationAddress 

OSA SCS 

SIP 
server 

SCF 

 

Figure 5-44: Call flow for getCurrentDestinationAddress() 

Table 5-77: Normal operation  

SIP Server Mode 
for the OSA SCS: 

Proxy, UA, B2BUA or 3rd party controller. 
(Any, except Redirect) 

Pre-conditions: A relationship between the application and the call including associated call leg object(s) 
exists. The leg is in a connection and is a terminating leg in the MPCCS STD. 

1 The application invokes the getCurrentDestinationAddress method requesting information for the 
call leg object regarding the address of current destination point..  

2 The SCS returns the address of the destination point towards which the call leg has been routed in 
the method return parameter. 

Note: The getCurrentDestinationAddress method can be invoked on any OSA MPCCS Terminating Call Leg 
object. 

 

Table 5-78: Parameter mapping 

From: 
getLastRedirectedAddress  

To: SIP  Remark 

callLegSessionID 
(TpSessionID) 

See "OSA Call and SIP Dialogue Correlation Tables". 
Table 4-1 to 4-5. 

No direct mapping, merely 
a correlation is created..  

Returns: 
TpAddress 

See Table 6-2: 
TpAddress 
mapping to SIP. 

Specifies the last address 
where the call leg was 
directed to. 

 

5.6 CallLeg Application Interface  

5.6.1 routeErr 

routeErr (callLegSessionID : in TpSessionID, errorIndication : in TpCallError) : void 

This method is an asynchronous method which indicates that the request to route the call to the destination party was 
unsuccessful – the call could not be routed to the destination party (for example, parameters were incorrect, invalid 
address, the request was refused, etc). 



 

ETSI 

ETSI TR 129 998-4-4 V5.0.3 (2004-06) 553GPP TR 29.998-04-4 version 5.0.3 Release 5 

 

 User Application 

routeErr 

 ISC: 400, 404, 413, 414, 416, 484, 485 
 (response to previous sent INVITE) 

ACK 

OSA SCS  

SIP 
server 

SCF 

 

Figure 5-45: Call flow for routeErr() 

Table 5-79: Normal operation  

SIP Server Mode 
for the OSA SCS: 

Proxy, UA, B2BUA or 3rd party controller. 
(Any , except Redirect mode.) 

Pre-conditions: Application has sent routeReq() , a request to route the call to the destination party. 
1 The request is refused e.g. the SIP server in the core network detects an error and notifies the SIP 

server of the SCS.  
2 The SCS invokes the routeErr method 
Note: The SIP server of the OSA SCS could detect the denial.  
 

Table 5-80: Parameter mapping 

To: routeErr  From: SIP  Remark 
callLegSessionID 
(TpSessionID) 

See "OSA Call and SIP Dialogue Correlation Tables". 
Table 4-1 to 4-5. 

No direct mapping – a 
correlation. 

errorIndication (TpCallError) See Table 6-5: 
TpCallError 
for mapping from SIP. 

 

 

5.6.2 eventReportRes 

eventReportRes (callLegSessionID : in TpSessionID, eventInfo : in TpCallEventInfo) : void 

This asynchronous method is used to report that an event has occurred on the call leg that was requested to be reported 
(for example , a mid-call event from the party; the party has requested to disconnect; etc.). 

 

 User Application 

2.  eventReportRes 1. ISC: Any SIP message which 
meets the filter criteria of the 
application 
 

OSA SCS 

SIP 
server 

SCF 

 

Figure 5-46: Call flow for eventReportRes() 



 

ETSI 

ETSI TR 129 998-4-4 V5.0.3 (2004-06) 563GPP TR 29.998-04-4 version 5.0.3 Release 5 

Table 5-81: Normal operation  

SIP Server Mode 
for the OSA SCS: 

Proxy, UA, B2BUA or 3rd party controller. 
 

Pre-conditions: A relationship between the application and the call including associated call leg object(s) 
exists. The application requested to be notified of the event with e.g. eventReportReq and 
this specific event has occurred in the network.  

1 The SIP server of the OSA SCS detects a SIP message (response or request) that corresponds to 
a requested call event to be reported to the application. 

2 The OSA SCS invokes the eventReportRes() method. 
 

Table 5-82: Parameter mapping 

To: eventReportRes  From: SIP (any SIP message) Remark 
callLegSessionID 
(TpSessionID) 

See "OSA Call and SIP Dialogue Correlation Tables". 
Table 4-1 to 4-5. 

No direct mapping – a 
correlation.  

eventInfo (TpCallEventInfo) See Table 6-7: 
TpCallEventInfo 
mapping from SIP. 

 

 

5.6.3 eventReportErr 

eventReportErr (callLegSessionID : in TpSessionID, errorIndication : in TpCallError) : void 

This method is an asynchronous method used to indicate that the request to manage call leg event reports was 
unsuccessful (for example, parameters were incorrect, the request was refused, etc). 

 

 User Application 

eventReportErr   

OSA SCS 

SIP 
server 

SCF 

 

Figure 5-47: Call flow for eventReportErr() 

Table 5-83: Normal operation  

SIP Server Mode 
for the OSA SCS: 

Proxy, UA, B2BUA or 3rd party controller. 
(Any, except Redirect) 

Pre-conditions: Call is in progress. The application has requested information associated with a call via the 
eventReportReq method 

1 The original request eventReportReq is erroneous - or cannot be accepted due to e.g. call 
terminates abnormally.  

2 The SCS identifies the correct applications that requested the event report information and invokes 
the eventReportErr method. 

 



 

ETSI 

ETSI TR 129 998-4-4 V5.0.3 (2004-06) 573GPP TR 29.998-04-4 version 5.0.3 Release 5 

Table 5-84: Parameter mapping 

To: eventReportErr  From: SIP 4xx Remark 
callLegSessionID 
(TpSessionID) 

See "OSA Call and SIP Dialogue Correlation Tables". 
Table 4-1 to 4-5. 

No direct mapping – a 
correlation. 

errorIndication (TpCallError) See Table 6-5: 
TpCallError 
for mapping 
from SIP. 

 

 

5.6.4 callLegEnded 

callLegEnded (callLegSessionID : in TpSessionID, cause : in TpReleaseCause) : void 

This method is used to indicate to the application that the leg has terminated in the network. The application has 
received all requested results (e.g., getInfoRes) related to the call leg. The call leg will be destroyed after returning from 
this method. Furthermore, the operation contains an indication on the reason why the call leg has been ended. The 
method will always be invoked when the call leg is ended. 

 

 

ISC:  BYE etc. 

 User Application 

   The SIP server of the OSA  SCS 
detects that call leg (OSA leg) has 
been released               

   callLegEnded 

 

OSA SCS 

SIP 
server 

SCF 

 

Figure 5-48: Call flow for callLegEnded() 

Table 5-85: Normal operation  

SIP Server Mode 
for the OSA SCS: 

Proxy, UA, B2BUA or 3rd party controller, Redirect 
 

Pre-conditions: There is an application monitoring the call in some way. 
1 The SCS detects that the OSA call leg object connected to the call is destroyed, i.e. the call has 

been released.  
The SCS invokes the callLegEnded method. 

Note: The callLegEnd() method is sent to the application when the party associated with the leg has released or the 
call itself was released to connection to the party .  

 

Table 5-86: Parameter mapping 

To: callLegEnded  From: SIP Remark 
callLegSessionID 
(TpSessionID) 

See "OSA Call and SIP Dialogue Correlation Tables". 
Table 4-1 to 4-5. 

No direct mapping, merely a 
correlation is created  

cause (TpReleaseCause) See Table 6-18; 
TpReleaseCause Mapping from SIP  

 

 



 

ETSI 

ETSI TR 129 998-4-4 V5.0.3 (2004-06) 583GPP TR 29.998-04-4 version 5.0.3 Release 5 

5.6.5 getInfoRes 

getInfoRes (callLegSessionID : in TpSessionID, callLegInfoReport : in TpCallLegInfoReport) : void 

This is an asynchronous method that is used to report all the necessary information requested by the application, for 
example to calculate charging. 

 

 User Application 

getInfoRes   

OSA SCS 

SIP 
server 

SCF 

  

Figure 5-49: Call flow for getInfoRes() 

Table 5-87: Normal operation  

SIP Server Mode 
for the OSA SCS: 

Proxy, UA, B2BUA or 3rd party controller, Redirect 
(Any) 

Pre-conditions: Call is in progress. The application has requested call leg information with the getInfoReq method.  
 

1 The SCS detects that the OSA call leg is terminated. The SCS invokes the getInfoRes() method. 
The OSA SCS has via its SIP Server collected the requested call related information which is 
reported to the application.  

 



 

ETSI 

ETSI TR 129 998-4-4 V5.0.3 (2004-06) 593GPP TR 29.998-04-4 version 5.0.3 Release 5 

Table 5-88: Parameter mapping 

To: getInfoRes From: SIP:  Remark 
callLegSessionID (TpSessionID) See "OSA Call and SIP Dialogue 

Correlation Tables". 
Table 4-1 to 4-5. 

No direct mapping – a correlation.  

callLegInfoReport 
(TpCallLegInfoReport): 

-  

 -CallLegInfoType 
(TpCallLegInfoType) 

N/A Indicates the type of the call leg information 
being reported. 

 - CallLegStartTime 
(TpDateAndTime) 

Date header in INVITE The time and date when the call leg was 
started (i.e. the leg was routed).When the 
SCS received/ sent the SIP INVITE message 
to initiate the call, if the Date header is not 
present, the OSA SCS should make a time 
stamp to be used as this parameter value. 

- 
CallLegConnectedToResourceTime 
 (TpDateAndTime) 
 

N/A The date and time when the call leg was 
connected to the resource. If no resource 
was connected the time is set to an empty 
string. 
Either this element is valid or the 
CallConnectedToAddressTime is valid, 
depending on whether the report is sent as a 
result of user interaction. 

- CallLegConnectedToAddressTime 
 (TpDateAndTime) 

ACK message for the INVITE 
(answer confirmed). 

The date and time when the party received 
the ACK message for the INVITE (answer 
confirmed). This information may be provided 
by the SIP server. 
It tells when the call leg was connected to the 
destination (i.e. when the destination 
answered the call). If the destination did not 
answer, the time is set to an empty string. 
 

- CallLegEndTime 
 (TpDateAndTime) 

SIP BYE Date and time when the call leg was 
released (e.g. SIP BYE message is sent to 
participant or received from the participant). 

- ConnectedAddress (TpAddress) FROM header URL (OSA 
terminating call leg) 
or 
Request-URI (OSA 
originating call leg)See Table 6-
2: 
TpAddress 
for mapping from SIP 

The address of the party associated with the 
leg. If during the call the connected address 
was received from the party (SIP Contact 
header ?) then this is returned, otherwise the 
destination address (for legs connected to a 
destination) or the originating address (for 
legs connected to the origination) is returned 

- CallLegReleaseCause 
(TpReleaseCause) 

See Table 6-18: 
TpReleaseCause 
for mapping from SIP 

The cause of the termination. May be 
present with 
P_CALL_LEG_INFO_RELEASE_CAUSE 
was specified 

- CallAppInfo (TpCallAppInfoSet) 
 
 

See Table 6-4: 
TpCallAppInfo 
for mapping from SIP  

Additional information for the leg. May be 
present with P_CALL_LEG_INFO_APPINFO 
was specified. 

NOTE: A set of TpCallAppInfo. 
 

5.6.6 getInfoErr 

getInfoErr (callLegSessionID : in TpSessionID, errorIndication : in TpCallError) : void 

This method is an asynchronous method that reports that the original request was erroneous, or resulted in an error 
condition. 



 

ETSI 

ETSI TR 129 998-4-4 V5.0.3 (2004-06) 603GPP TR 29.998-04-4 version 5.0.3 Release 5 

 

 User Application 

getInfoErr   

OSA SCS 

SIP 
server 

SCF 

 

Figure 5-50: Call flow for getInfoErr() 

Table 5-89: Normal operation  

SIP Server Mode 
for the OSA SCS: 

Proxy, UA, B2BUA or 3rd party controller, Redirect. 
 

Pre-conditions: Call is in progress. The application has requested information associated with a call leg via 
the getInfoReq method 

1 The original request getInfoReq is erroneous or cannot be accepted due to e.g. call leg terminates 
abnormally. 

2 The SCS identifies the correct applications that requested the call leg information and invokes the 
getInfoErr method. 

 

Table 5-90: Parameter mapping 

To: getInfoErr  From: SIP  Remark 
callLegSessionID 
(TpSessionID) 

See "OSA Call and SIP Dialogue Correlation Tables". 
Table 4-1 to 4-5. 

No direct mapping – a 
correlation.  

errorIndication (TpCallError): See Table 6-5: 
TpCallError for mapping from SIP. 

 

 

5.6.7 superviseErr 

superviseErr (callLegSessionID : in TpSessionID, errorIndication : in TpCallError) : void 

This is an asynchronous method that reports a call leg supervision error to the application. 

 

 User Application 

superviseErr   

OSA SCS 

SIP 
server 

SCF 

 

Figure 5-51: Call flow for superviseErr() 



 

ETSI 

ETSI TR 129 998-4-4 V5.0.3 (2004-06) 613GPP TR 29.998-04-4 version 5.0.3 Release 5 

Table 5-91: Normal operation  

SIP Server Mode 
for the OSA SCS: 

Proxy, UA, B2BUA or 3rd party controller. 
(Any, except Redirect mode.) 
 
However, if treatment (TpCallSuperviseTreatment) implies call release, then UA mode of 
operation is demanded. For this treatment, if the SCS is acting as a proxy, the only SIP 
message the SCS can generate after receiving superviseRes() in the call leg is BYE. 

Pre-conditions: Call is in progress. The application has requested information associated with a call via the 
superviseReq method. 

1 The SCS detects an error that can affect call supervision, e.g. call routing error.  
2 The SCS identifies the correct applications that requested the call information and invokes the 

superviseErr method. 
 

Table 5-92: Parameter mapping 

To: superviseErr  From: SIP 4xx Remark 
callLegSessionID 
(TpSessionID) 

See "OSA Call and SIP Dialogue Correlation Tables". 
Table 4-1 to 4-5. 

No direct mapping – a 
correlation. 

errorIndication (TpCallError) See Table 6-5:  
TpCallError 
mapping from SIP 

 

 

5.6.8 superviseRes 

superviseRes (callLegSessionID : in TpSessionID, report : in TpCallSuperviseReport, usedTime : in 
TpDuration): void 

This is an asynchronous method that reports a call leg supervision event to the application. 

 

 User Application 

superviseRes   

OSA SCS 

SIP 
server 

SCF 

 

Figure 5-52: Call flow for superviseRes() 

Table 5-93: Normal operation  

SIP Server Mode 
for the OSA SCS: 

Proxy, UA, B2BUA or 3rd party controller. 
(Any, except Redirect mode.) 
 
However, if treatment (TpCallSuperviseTreatment) implies call leg release, then UA mode of 
operation is demanded. For this treatment, if the SCS is acting as a proxy, the only SIP 
message the SCS can generate after receiving superviseRes() in the call leg is BYE. 

Pre-conditions: Call is in progress. The application has requested information associated with a call leg via 
the superviseReq method. The specified call leg supervision timer expires. 

1 The SCS detects that the supervision time is expired and acts according to the requested 
treatment (e.g. release call sending BYE) in superviseReq . 
The SCS identifies the correct application and invokes the superviseRes method. 

 



 

ETSI 

ETSI TR 129 998-4-4 V5.0.3 (2004-06) 623GPP TR 29.998-04-4 version 5.0.3 Release 5 

Table 5-94: Parameter mapping 

To: superviseRes From: SIP 4xx Remark 
callLegSessionID 
(TpSessionID) 

See "OSA Call and SIP 
Dialogue Correlation Tables". 
Table 4-1 to 4-5. 

No direct mapping – a correlation.  

report 
(TpCallSuperviseReport) 

N/A Defines the response(s) from the call control service for 
calls that have been supervised, (e.g. timeout, call-ended, 
tone-applied, UI-finished).  

usedTime (TpDuration) BYE (release call) 
 

No direct mapping to SIP: 
TpCallSuperviseTreatment in superviseReq defines the 
treatment of the call by the call control service when the 
call supervision timer expires. It may be a request to 
release (P_CALL_SUPERVISE_RELEASE ) the call and /or 
a request to send a warning tone 
(P_CALL_SUPERVISE_TONE_APPLIED) to the caller and/or to 
notify the application  
The OSA SCS to issue BYE in SIP. 

NOTE: The OSA SCS to issue BYE in SIP when the call supervise treatment request is to release the call. 
 

5.6.9 attachMediaErr 

attachMediaErr (callLegSessionID : in TpSessionID, errorIndication : in TpCallError) : void 

This asynchronous method reports that the original request was erroneous, or resulted in an error condition. 

 

 User Application 

attachMediaErr   

OSA SCS 

SIP 
server 

SCF 

 

Figure 5-53: Call flow for attachMediaErr() 

Table 5-95: Normal operation  

SIP Server Mode 
for the OSA SCS: 

UA, B2BUA or 3rd party controller. 
 

Pre-conditions: Call is in progress. The application has requested attach media associated with a call leg 
via the attachMediaReq method. 

1 The SCS detects an error that can affect the call, e.g. call routing error.  
2 The SCS identifies the correct applications that requested the attach media and invokes the 

attachMediaErr method. 
Note: A standard User (SIP user agent) should be controllable in the mechanism described here. 

The mechanism relies on the support of Re-invites by user agent servers.  
 

Table 5-96: Parameter mapping 

To: superviseErr  From: SIP 4xx Remark 
callLegSessionID 
(TpSessionID) 

See "OSA Call and SIP Dialogue Correlation Tables". 
Table 4-2 to 4-5. 

No direct mapping – a 
correlation.  

errorIndication (TpCallError) See Table 6-5:  
TpCallError 
mapping from SIP 

 

 



 

ETSI 

ETSI TR 129 998-4-4 V5.0.3 (2004-06) 633GPP TR 29.998-04-4 version 5.0.3 Release 5 

5.6.10 attachMediaRes 

attachMediaRes (callLegSessionID : in TpSessionID) : void 

This asynchronous method reports the attachment of a call leg to a call has succeeded. The media channels or bearer 
connections to this leg are now available. 

 

 Note: It is anticipated that  
 the media for the user is 
 not connected.   

 User Application 

4c.  attachMediaReq 

 2c. ISC:  UPDATE (media is 
set to active) 

 

 ISC: 200 OK 

OSA SCS 

SIP 
server 

SCF 

  3.  attachMediaRes 

 

Figure 5-54: Scenario a: Call flow for attachMediaRes(), UA/B2BUA mode 

Table 5-97: Normal operation  

SIP Server Mode 
for the OSA SCS: 

UA mode 
 
The generation of a SIP message (UPDATE [12]) on request from the application to attach 
media channels of a single user in the call demands the SIP server of the OSA SCS to 
operate in a UA mode (e.g. UAC, B2BUA, 3rd party controller). 

Pre-conditions: A relationship between the application and the call including associated call leg object(s) 
exists. The leg is in a connection state and the media communication is on-hold for the call 
party in its communication with the other legs in the call. 
AttachMedia has bee requested (not executed until the connected state is reached (200 OK 
/ACK) , i.e. if received before the SCS should buffer the request until it can be executed). 

1 The OSA SCS has requested the media stream(s) for the call leg object to be attached when the 
call/session state enables this. 
(The SCS generates a new SIP UPDATE message to be sent toward the user, i.e. in this case the 
attachMediaReq() method is mapped onto a SIP UPDATE message with an SDP on hold.) 
 

2 The OSA SCS confirms the attach media (200 OK /ACK) and notifies the application about the 
successful attachment of the media stream(s) for the user with the attachMediaRes() 

NOTE 1: The media connection is established when application receives the attachMediaRes() method. 
A standard User (SIP user agent) should be controllable in the mechanism described here. 
The mechanism relies on the support of UPDATE by user agent servers.  

 
NOTE 2: See also Annex B and flow example B6. 
 



 

ETSI 

ETSI TR 129 998-4-4 V5.0.3 (2004-06) 643GPP TR 29.998-04-4 version 5.0.3 Release 5 

Table 5-98: Parameter mapping 

From: attachMediaRes  To: SIP  Remark 
callLegSessionID 
(TpSessionID) 

See "OSA Call and SIP Dialogue Correlation Tables". 
Table 4-2 to 4-5. 

No direct mapping – a 
correlation.  

 

5.6.11 detachMediaErr 

detachMediaErr (callLegSessionID : in TpSessionID, errorIndication : in TpCallError) : void 

This asynchronous method reports that the original request was erroneous, or resulted in an error condition. 

 

 User Application 

detachMediaErr   

OSA SCS 

SIP 
server 

SCF 

 

Figure 5-55 Call Flow for detachMediaErr() 

Table 5-99: Normal operation  

SIP Server Mode 
for the OSA SCS: 

UA, B2BUA or 3rd party controller. 
 

Pre-conditions: Call is in progress. The application has requested detach media associated with a call leg 
via the detachMediaReq method. 

1 The SCS detects an error that can affect the call, e.g. call routing error.  
2 The SCS identifies the correct applications that requested the detach media and invokes the 

detachMediaErr method. 
NOTE: A standard User (SIP user agent) should be controllable in the mechanism described here. 

The mechanism relies on the support of Re-invites by user agent servers.  
 

Table 5-100: Parameter mapping 

To: detachMediaErr  From: SIP 4xx Remark 
callLegSessionID 
(TpSessionID) 

See "OSA Call and SIP Dialogue Correlation Tables". 
Table 4-2 to 4-5. 

No direct mapping – a 
correlation. 

errorIndication 
(TpCallError) 

See Table 6-5:  
TpCallError 
mapping from SIP 

 

 

5.6.12 detachMediaRes 

detachMediaRes (callLegSessionID : in TpSessionID) : void 

This asynchronous method reports the detachment of a call leg from a call has succeeded. The media channels or bearer 
connections to this leg are no longer available. 



 

ETSI 

ETSI TR 129 998-4-4 V5.0.3 (2004-06) 653GPP TR 29.998-04-4 version 5.0.3 Release 5 

 

 Note: The application may in 
  deachMedia request the media to be 
detached, i.e. to put  the media for the 
participant on hold (disconnected) 
  

 User Application 

                  ISC: 200  OK 

 

2.detachMediaRes 

ISC:   UPDATE (media is set 
to on hold) 

1.detachMediaReq  

OSA SCS 

SIP 
server 

SCF 

 

Figure 5-56: Call flow for detachMediaReq/Res(), UA/B2BUA mode 

Table 5-101: Normal operation  

SIP Server Mode 
for the OSA SCS. 

UA mode 
 
The generation of a SIP message (UPDATE [12]) on request from the application to detach 
media channels of a single user in the call demands the SIP server of the OSA SCS to 
operate in a UA mode (e.g. UAC, B2BUA, 3rd party controller). 

Pre-conditions: A relationship between the application and the call including associated call leg object(s) 
exists. The leg is in a connection state and has a media connection established with the 
others legs in the call. 
The application has requested to put the media communication on hold for the call party 
(detach media), by e.g. invoking the detachMediaReq method. 
 
DetachMedia is not executed until the connected state is reached (200 OK /ACK) , i.e. if 
received before the OSA SCS should buffer the request until it can be executed. 

1 The OSA SCS has requested the SIP server of the OSA SCS to de-attach the media when the 
call/session state enables this. 
(The SCS generates a new SIP UPDATE message to be sent toward the user, i.e. in this case the 
detachMediaReq() method is mapped onto a SIP UPDATE message with an SDP on hold.) 

2 The OSA SCS confirms the detach media (200 OK /ACK) and notifies the application about the 
successful detach media with the detachMediaRes()  

Note 1: The media on-hold (disconnection) is established when application receives the detachMediaRes() method. 
A way to map this functionality in SIP is to use the SDP on hold feature enabling putting the media streams on 
hold (detach media) while the session is established or after the establishment.  
A standard User (SIP user agent) should be controllable in the mechanism described here. 
The mechanism relies on the support of UPDATE by user agent servers.  

Note 2: See also Annex B and flow example B6. 
 

Table 5-102: Parameter mapping 

From: continueProcessing  To: SIP  Remark 
callLegSessionID 
(TpSessionID) 

See "OSA Call and SIP Dialogue Correlation Tables". 
Table 4-2 to 4-5. 

No direct mapping – a 
correlation.  

 



 

ETSI 

ETSI TR 129 998-4-4 V5.0.3 (2004-06) 663GPP TR 29.998-04-4 version 5.0.3 Release 5 

6 Detailed parameter mappings 
This clause contains detailed parameter mappings for data types that are used in the parameter mapping tables in the 
previous clauses. 

6.1 TpAdditionalCallEventCriteria 

Table 6-1:TpAddtionalCallEventCriteria Table mapping 

TpAdditionalCallEventCriteria 
(TpCallEventType) 

From SIP 
(observe for requested  

additional info) 

Remark 

Undefined (NULL) 
(P_CALL_EVENT_UNDEFINED) 

N/A  

Undefined (NULL) 
P_CALL_EVENT_ORIGINATING_CALL_ATTEMPT 

N/A  

Undefined (NULL) 
P_CALL_EVENT_ORIGINATING_CALL_ATTEMPT_AUTHORISED 

N/A  

MinAddresslength (TpINT32) 
P_CALL_EVENT_ADDRESS_COLLECTED 

N/A  

Undefined (NULL) 
P_CALL_EVENT_ADDRESS_ANALYSED 

N/A  

OriginatingServiceCode 
(TpCallServiceCode) 
P_CALL_EVENT_ORIGINATING_SERVICE_CODE 

N/A  

OriginatingReleaseCauseSet 
(TpReleaseCauseSet) 
P_CALL_EVENT_ORIGINATING_RELEASE 

CANCEL or BYE  

Undefined (NULL) 
P_CALL_EVENT_TERMINATING_CALL_ATTEMPT  

N/A  

Undefined (NULL) 
P_CALL_EVENT_TERMINATING_CALL_ATTEMPT_AUTHORISED 

N/A  

Undefined (NULL) 
P_CALL_EVENT_ALERTING 

N/A  

Undefined (NULL) 
P_CALL_EVENT_ANSWER 

N/A  

TerminatingReleaseCauseSet 
(TpReleaseCauseSet) 
P_CALL_EVENT_TERMINATING_RELEASE 

CANCEL, BYE or 4xx, 5xx and 
6xx responses 

 

Undefined (NULL) 
P_CALL_EVENT_REDIRECTED 

N/A  

TerminatingServiceCode 
(TpCallServiceCode) 
P_CALL_EVENT_TERMINATING_SERVICE_CODE 

N/A  

QueueStatus (TpString)P_CALL_EVENT_QUEUED SIP 182reason phrase. 
(See note 1) 

Reason phrase is 
mapped to TpString 

Note 1: The 182 informational response may be sent several times (e.g. indicating the poison of the calling user in a 
queue. Furthermore, the message body in the SIP 182 informational response can also be used to carry e.g. 
music on hold or other media.  

 



 

ETSI 

ETSI TR 129 998-4-4 V5.0.3 (2004-06) 673GPP TR 29.998-04-4 version 5.0.3 Release 5 

6.2 TpAddress 

Table 6-2: TpAddress Table mapping 

From: TpAddressRange To: SIP Remark 
Plan (TpAddressPlan) SIP Specifies the address plan in force. 

Here only all the address schemes which are 
allowed in SIP are applicable. 
 

AddrString (TpString) Any URL schemes 
allowed by RFC 3261 

Contains a valid SIP address string. 
 
A few examples of SIP URLs:  
- A user of an online service: 
 "sip:user@xxx.org"  
 "sip:alice@10.1.1.1" 
 - A PSTN phone number at a gateway service: 
"sip:1212@gateway.com", 
"sip: +1-212-555-1212:1234@gateway.com; user 
=phone" 
An example of tel URL: 
tel: +1-212-555-1212 
Notice: For SIP addresses, wildcards are allowed 
between the 'sip:' and the '@' in the AddrString, e.g. 
"sip:*@sales.org" matches all SIP addresses at 
sales.org:5060. 
 

Name (TpString) N/A  
Presentation 
(TpAddressPresentation) 

N/A 
  

Defines whether an address can be presented to an 
end user (presentation allowed or restriced or 
address not available for presentation) . 

Screening (TpAddressScreening) N/A 
 

Defines whether an address can be presented to an 
end user. E.g. "user provided address 
verified and passed" or "Network provided address" 

SubAddressString (TpString) N/A  
Note 1: The AddrString defines the actual address information and the structure of the string depends on the Plan. 

Further information can be found in the OSA API part covering common data definitions [1]. 
Note 2: It should be noted that two SIP addresses will be regarded as equivalent by a gateway if they correspond to 

the same user at the same network address. The textual form of the two addresses need not be the same. For 
example, sip:enquiries@yyy.org will be deemed to match 
<sip:Enquiries@1.2.3.4:5060>Enquiries (if yyy.org resolves to 1.2.3.4). 

 



 

ETSI 

ETSI TR 129 998-4-4 V5.0.3 (2004-06) 683GPP TR 29.998-04-4 version 5.0.3 Release 5 

6.3 TpAddressRange 

Table 6-3: TpAddressRange Table mapping 

From: TpAddressRange To: SIP Remark 
Plan (TpAddressPlan) SIP Specifies the address plan in force. 

Here only SIP URL is applicable. 
 

AddrString (TpString) Any URL schemes 
allowed by RFC 3261 

Contains a valid SIP address string. 
 
A few examples of SIP URLs:  
- A user of an online service: 
 "sip:user@xxx.org"  
 "sip:alice@10.1.1.1" 
 - A PSTN phone number at a gateway service: 
"sip:1212@gateway.com", 
"sip: +1-212-555-1212:1234@gateway.com; user 
=phone" 
 
An example of tel URL: 
tel: +1-212-555-1212 
 
Notice: For SIP addresses, wildcards are allowed 
between the 'sip:' and the '@' in the AddrString, e.g. 
"sip:*@sales.org" matches all SIP addresses at 
sales.org:5060. 

Name (TpString) N/A  
SubAddressString (TpString) N/A  
Note 1: The AddrString defines the actual address information and the structure of the string depends on the Plan. 

Further information can be found in the OSA API part covering common data definitions [1]. 
Note 2: It should be noted that two SIP addresses will be regarded as equivalent by a gateway if they correspond to 

the same user at the same network address. The textual form of the two addresses need not be the same. For 
example, sip:enquiries@yyy.org will be deemed to match 
<sip:Enquiries@1.2.3.4:5060>Enquiries (if yyy.org resolves to 1.2.3.4). 

 



 

ETSI 

ETSI TR 129 998-4-4 V5.0.3 (2004-06) 693GPP TR 29.998-04-4 version 5.0.3 Release 5 

6.4 TpCallAppInfo 

Table 6-4: TpCallAppInfo Table mapping 

To: TpCallAppInfo From: SIP Remark 
CallAppAlertingMechanism 
(TpCallAlertingMechanism) 

Alert-Info Indicates the alerting mechanism or pattern to 
use. 
When present in an INVITE request, the Alert-
Info header field specifies an alternative ring 
tone to the UAS. When present in a 180 
(Ringing) response, the Alert-Info header field 
specifies an alternative ring back tone to the 
UAC.  

CallAppNetworkAccessType 
(TpCallNetworkAccessType) 

N/A Indicates the network access type (e.g. ISDN)  
Not mapped. No valid value for SIP in this 
parameter  

CallAppTeleService 
(TpCallTeleService) 

SDP  
 
 

Indicates the tele service (e.g. telephony). 
Specifies the type of media indicated in the 
incoming SDP e.g. data, audio, video, 
messaging. 

CallAppBearerService 
(TpCallBearerService) 

SDP Indicates the bearer services (e.g. 64kbit/s 
unrestricted data), this information is carried in 
SDP under each media type e.g. codec, 
bandwidth, interleaving…. 

CallAppPartyCategory 
(TpCallPartyCategory) 

N/A The category of the calling party. 
Not mapped.  
Not defined in SIP  

CallAppPresentationAddress 
(TpAddress) 

May be SIP From header 
field ? 
This may also be the 
optional STRING 
associated to the URI 
(similar to the name you 
can associate to an e-mail 
address) 

The address to be presented to other call 
parties. 
In case the SIP From header and SIP Contact 
are different, The From header field may be 
seen as presentation Address since the UA will 
only use the contact or via address to decide 
the routing destination.  

CallAppGenericInfo 
(TpString) 

""N/A 
 

Carries unspecified service-service information 
Service related information transferred over 
ISC from SCS to S-CSCF is not allowed in 
3GPP Release 5.  

CallAppAdditionalAddress 
(TpAddress) 

N/A Indicates an additional address. 
No mapping: Not fined in SIP  

CallAppOriginalDestinationAddress 
(TpAddress) 

Request-URI or P-Called-
Party-ID 

Contains the original address specified by the 
originating user when launching the call. 
When the SCS receives an INVITE, if the P-
Called-Party-ID header is present, then the 
SCS uses this header to identify the target 
address in the resulting outgoing INVITE. If not, 
then the SCS uses the Request-URI instead. 

CallAppRedirectingAddress N/A 
 

Contains the address of the user from which 
the call is diverting. 

 



 

ETSI 

ETSI TR 129 998-4-4 V5.0.3 (2004-06) 703GPP TR 29.998-04-4 version 5.0.3 Release 5 

6.5 TpCallError 

Table 6-5: TpCallError Table mapping 

To TpCallError From SIP Remarks 
ErrorTime (TpDateAndTime) N/A Time should be provided locally by the OSA 

SCS. 
 
Note: 
In order to have the accurate time, the 
Timestamp header field may be added to the 
SIP send by the participant or the SIP server.  
However, it is not possible to rely on 
timestamp to be received in message. 

ErrorType (TpCallErrorType) See Table 6-6: 
TpCallErrorType mapping 
table from SIP 

 

AdditionnalErrorInfo 
(TpCallAdditionalErrorInfo) 

N/A See also TpCallErrorType 
 

 

6.6 TpCallErrorType 

Table 6-6: TpCallErrorType Table mapping 

To: TpCallErrorType From: SIP Remark 
P_CALL_ERROR_UNDEFINED Undefined Undefined; the method failed or was refused, 

but no specific reason can be given. 
P_CALL_ERROR_INVALID_STATE 481 Call/ 

Transaction Does 
Not Exist 
491 Request Pending 

The call was not in a valid state for the 
requested operation 

P_CALL_ERROR_INVALID_ADDRESS 404 Not Found, 
413 Request Entity 
Too Large 
414 Request URI Too 
Long 
416 Unsupported URI 
Scheme 
484 Address 
Incomplete 
485 Ambigous 
488 Not Acceptable 
Here 
604 Does Not Exist 
Anywhere 

The operation failed because an invalid 
address was given 

P_CALL_ERROR_RESOURCE_UNAVAILABLE 503 Service 
Unavailable 
606 Not Acceptable 

There are not enough resources to complete 
the request successfully 

 



 

ETSI 

ETSI TR 129 998-4-4 V5.0.3 (2004-06) 713GPP TR 29.998-04-4 version 5.0.3 Release 5 

6.7 TpCallEventInfo 

Table 6-7: TpCallEventInfo Table mapping 

To: TpCallEventInfo From: SIP Remark 
CallEventType 
(TpCallEventType) 

See Table 6-9: 
TpCallEventType 
mapping from SIP. 

 

AdditionalCallEventInfo 
(TpCallAdditionalEventInfo) 

See Table 6-9: 
TpCallEventType mapping from SIP. 

 

CallMonitorMode 
(TpCallMonitorMode) 

See Table 6-13: 
TpCallMonitorMode mapping from 
SIP. 

 

CallEventTime 
(TpDateAndTime) 

N/A Timestamp provided by OSA SCS at 
event reporting. 

 

6.8 TpCallEventRequest 

Table 6-8: TpCallEventRequest Table mapping 

To TpCallEventRequest From SIP Remark 
CallEventType (TpCallEventType) See Table 6-9: 

TpCallEventType 
mapping from SIP 

. 

AdditionalCallEventCriteria 
(TpAdditionalCallEventCriteria) 

See Table 6-1: 
TpAdditionalCallEventCriteria 
mapping from SIP 

 

CallMonitorMode (TpCallMonitorMode) See Table 6-13: 
TpCallMonitorMode mapping 
from SIP 

 

 



 

ETSI 

ETSI TR 129 998-4-4 V5.0.3 (2004-06) 723GPP TR 29.998-04-4 version 5.0.3 Release 5 

6.9 TpCallEventType 

Table 6-9: TpCallEventType Table mapping 

To TpCallEventType From SIP Remark 
P_CALL_EVENT_UNDEFINED N/A No mapping from SIP. 
P_CALL_EVENT_ORIGINATING_CALL_ATTEMPT INVITE Originating Call Leg event. 

Not applicable to SIP; would mean 
an empty To: header. 

P_CALL_EVENT_ORIGINATING_CALL_ATTEMPT_AUTHORISED INVITE Originating Call Leg event. 
 

P_CALL_EVENT_ADDRESS_COLLECTED INVITE Originating Call Leg event. 
No direct mapping to any SIP 
Method/Response. 
Correspond to the point in 
processing where INVITE is 
received and no location service 
lookup performed yet, i.e. before 
destination address determined. 

P_CALL_EVENT_ADDRESS_ANALYSED INVITE  Originating Call Leg event. 
No direct mapping to any SIP 
Method/Response. 
Correspond to the point in 
processing where INVITE is 
received and destination address is 
determined after location service 
lookup has been performed. 

P_CALL_EVENT_ORIGINATING_SERVICE_CODE INVITE Originating Call Leg event. 
RE-INVITE case - mapping ffs. 

P_CALL_EVENT_ORIGINATING_RELEASE BYE, CANCEL 
See 
corresponding 
Table for 
details 

Originating Call Leg event. 
Request for termination of session 
from calling party.   

P_CALL_EVENT_TERMINATING_CALL_ATTEMPT INVITE Terminating Call Leg event. 
Incoming INVITE received at 
destination requesting the 
termination of the session (i.e. 
dialogue invitation request) for 
callee. 

P_CALL_EVENT_TERMINATING_CALL_ATTEMPT_AUTHORISED INVITE Terminating Call Leg event. 
Incoming INVITE received at 
destination requesting the 
establishment of the terminating 
session for the callee 

P_CALL_EVENT_ALERTING SIP: 180 
Ringing 

Terminating Call Leg event. 
The user agent receiving the INVITE 
is trying to alert the callee. This 
response may be used to initiate 
local ring-back for the caller. 
Note: Implies that the corresponding 
INVITE request passed through the 
OSA SCS 

P_CALL_EVENT_ANSWER 200 OK for 
INVITE 

Terminating or Originating Call Leg 
event. 
  A 200 OK for INVITE means the 
call is answered by called user. 
Note: Implies that the corresponding 
INVITE request passed through the 
OSA SCS.  

P_CALL_EVENT_TERMINATING_RELEASE BYE,  
4xx, 5xx, 6xx 
See 
corresponding 
Table for 
details 

Terminating Call Leg event. 
Request for termination of session 
(i.e. release of dialogue) from called 
party/destination. 
  



 

ETSI 

ETSI TR 129 998-4-4 V5.0.3 (2004-06) 733GPP TR 29.998-04-4 version 5.0.3 Release 5 

P_CALL_EVENT_REDIRECTED 3xx responses Terminating Call Leg event. 
This status codes are used to 
indicate that the call is being 
redirected to a different (set of) 
destination(s). 
The redirection address contained in 
the responseContact header in the 
3xx response is to be reported in the 
CALL_EVENT_REDIRECTED event 
( ForwardAddress field additional 
event info) to the application. 

P_CALL_EVENT_TERMINATING_SERVICE_CODE N/A Terminating Call Leg event.  
P_CALL_EVENT_QUEUED SIP:182 

Queued 
Terminating Call Leg event. 
 
In case of ISC, implies that the 
corresponding INVITE request 
passed through the OSA SCS. 
"" 

 

6.10 TpCallInfoType 

Table 6-10: TpCallInfoType Table mapping 

From: TpCallInfoType From: SIP Remark 
P_CALL_INFO_UNDEFINED N/A -Undefined 
P_CALL_INFO_TIMES N/A - Relevant call time 
P_CALL_INFO_RELEASE_CAUSE See Table 6-17, 6-18:  

TpReleaseCause 
for mapping from / to SIP 

- Call release cause 

P_CALL_INFO_INTERMEDIATE N/A - Send only intermediate reports.  
When this is not specified the information 
report will only be sent to the application when 
the call has ended. 
When intermediate reports are requested a 
report will be sent between follow-on calls, i.e. 
when a party leaves the call. 

NOTE: Defines the type of call information requested and reported. The values may be combined (logical 'OR'). 
 

6.11 TpCallLegInfoType  

Table 6-11: TpCallLegInfoType Table mapping 

From: TpCallLegInfoType From: SIP Remark 
P_CALL_LEG_INFO_UNDEFINED N/A Undefined 
P_CALL_LEG_INFO_TIMES N/A Relevant call times 
P_CALL_LEG_INFO_RELEASE_CAUSE See Table 6-17 Call leg release cause 
P_CALL_LEG_INFO_ADDRESS See Table 6-2 Call leg connected address. 
P_CALL_LEG_INFO_APPINFO N/A Call leg application related information 
NOTE: Defines the type of call leg information requested and reported. The values may be combined by a logical 'OR' 

function. 
 



 

ETSI 

ETSI TR 129 998-4-4 V5.0.3 (2004-06) 743GPP TR 29.998-04-4 version 5.0.3 Release 5 

6.12 TpCallLegConnectionProperties  

Table 6-12: TpCallLegConnectiomProperties Table mapping 

From: TpCallLegConnectionProperties To: SIP Remark 
P_CALLLEG_ATTACH_IMPLICITLY N/A SIP 200 OK message directly sent. 

It means that the callLeg should be implicitly 
attached to the call. In this case, the mapping 
to SIP is done naturally since in SIP, the 
natural behaviour is to start media session with 
others parties in the call once the signalling is 
established (INVITE, 200 OK, ACK) 

P_CALLLEG_ATTACH_EXPLICITLY Putting media stream in 
SDP inactive. 

It means that the callLeg should be explicitly 
attached to the call. In this case, the mapping 
to SIP is done so as to start media session with 
putting the media stream inactiveonce the 
dialog is established (INVITE with SDP "on 
hold", 200 OK, ACK) 
Attach method need to be called by the 
application to establish the media connection. 
See description for attachMedia().  

 

6.13 TpCallMonitorMode 

Table 6-13: TpCallMonitorMode Table mapping 

From TpCallMonitorMode To SIP Remarks 
P_CALL_MONITOR_MODE_INTERRUPT N/A 

Processing 
interrupted  

SIP Server set to observe for SIP event as requested 
and if encountered interrupt SIP processing, notify the 
application and await a request to resume processing.  

P_CALL_MONITOR_MODE_NOTIFY N/A 
Processing 
Notify And 
Continue  

SIP server set to observe for SIP event as requested 
and if encountered notify the application.; SIP 
Processing continues.  

P_CALL_MONITOR_MODE_DO_NOT_MONITOR N/A 
Processing 
transparent  

SIP server set not to observe for SIP event –no 
application interest. 
It implies there is no initial filtering for the associated 
indicated event 

 

6.14 TpCallNotificationReportScope 

Table 6-14: TpCallNotificationReportScope Table mapping 

To: TpCallNotificationReportScope From SIP Remark 
DestinationAddress (TpAddressRange) 
If transaction issued from caller (e.g. 
INVITE)  
OR 
OriginatingAddress, if transaction from 
callee (e.g. Re-INVITE, BYE) 

SIP Request-URI header 
field  
for originating case 
or P-Called-Party-ID 
header for terminating 
case 

UEs can put anything into From and To header 
which is untrustful, so From and To header can 
not be used to identify the originating address 
or destination address.' 

OriginatingAddress 
(TpAddressRange) 
If transaction from caller (e.g. INVITE) 
OR 
DestinationAddress , if transaction issued 
from caller (e.g. Re-INVITE, BYE)  

SIP From header field 
URL 

Depends on applied filtering criteria 

NotificationCallType 
(TpNotificationCallType) 

N/A Indicates if the notification was reported  

 



 

ETSI 

ETSI TR 129 998-4-4 V5.0.3 (2004-06) 753GPP TR 29.998-04-4 version 5.0.3 Release 5 

6.15 TpCallNotifiationRequest 

Table 6-15: TpCallNotificationRequest Table mapping 

From: TpCallLegInfoType To: SIP Remark 
CallNotificationScope 
(TpCallNotificationScope): 

  

 DestinationAddress 
(TpAddressRange) 

URL schemes allowed in 
RFC 3261 
(see NOTE) 

Parameter specific to filtering criteria (event 
triggering) of destination address information. 
Address plan that can only be accepted are 
SIP URLs or tel URLs. 

 OriginatingAddress 
(TpAddressRange) 

SIP URL 
(see NOTE) 

Parameter specific to filtering criteria (event 
triggering) of originating address information 
(like e.g. in From header Field in SIP 
messaging). Address plan can be any, which is 
allowed in RFC 3261. 

CallEventsRequested (set): 
(TpCallEventsRequest (set) 
Note: A set of 
TpCallEventRequest  

See Table 6-8: 
TpCallEventRequest 
mapping from SIP 

 

NOTE: The SIP server responsible for event filtering (e.g. S-CSCF) is to monitor for SIP events requested to be 
notified if encountered to the application. 

 

6.16 TpCallTreatmentType 

Table 6-16: TpCallTreatmentType mapping 

TpCallTreatmentType To SIP Remark 
P_CALL_TREATMENT_DEFAULT undefined Depends on any applied default 
P_CALL_TREATMENT_RELEASE SIP: 503 Service 

Unavailable 
Service Unavailable response sent to deny invite 
request for a new session .Already established call 
sessions are not affected 

P_CALL_TREATMENT_SIAR SIP: 503 Service 
Unavailable  
or 
BYE 

BYE only after user interaction if it implies and 
established session (e.g. to MRF) Service 
Unavailable response sent to deny invite request 
for a new session.  

NOTE: Already established call sessions should not be affected by the overload call treatment. 
 



 

ETSI 

ETSI TR 129 998-4-4 V5.0.3 (2004-06) 763GPP TR 29.998-04-4 version 5.0.3 Release 5 

6.17 TpReleaseCause, mapping to SIP response 

Table 6-17: TpReleaseCause Table mapping to SIP 

From: TpReleaseCause To: SIP Remark 
P_UNDEFINED N/A 

See Note 3 
 

P_USER_NOT_ AVAILABLE 480 Temporarily 
Unavailable 

The callee is currently unavailable. 
Normal call clearing, unspecified reason. 
 
Note: No support for inclusion of additional 
information in the Retry-After header. 
This header in the response may indicate a 
better time to call.  

P_BUSY 486 Busy Here The callee is currently not willing or able to take 
additional calls (user busy). 
 
Note: No support for include additional 
information in the Retry-After header. 
This header in the response may indicate a 
better time to call. 

P_NO_ANSWER 603 Decline The callee explicitly does not wish to or cannot 
participate in the call. 
Note: No support for include additional 
information in the Retry-After header. 
This header in the response may indicate a 
better time to call. 

P_NOT_REACHABLE 480 Temporarily 
Unavailable 
 

The callee is currently unavailable. 
The user is absent or not reachable e.g. MS 
turned off or out of coverage area. 

P_ROUTING_FAILURE 404 Not Found The user does not exist at the domain specified 
in the Request-URI. This status is also returned 
if the domain in the Request-URI does not 
match any of the domains handled by the 
recipient of the request. 

P_PREMATURE_DISCONNECT N/A 
See Note 3  

 

P_DISCONNECTED N/A  
See Note2. 
See Note 3 

Normal call clearing. 
 
Recommended value when an established 
session is to be released. 

P_CALL_RESTRICTED 403 Forbidden  
P_UNAVAILABLE_RESOURCE 503 Service Unavailable  
P_GENERAL_FAILURE 500 Server Internal Error  
P_TIMER_EXPIRY 408 Request Timeout   
NOTE 1: SIP CANCEL will be sent if any pending invitations (INVITE) to be cancelled in response to the release() 

method independent of TpReleaseCause value 
NOTE 2: SIP BYE will be sent if an established session (SIP leg) is to be released in response to the release() method 

independent of TpReleaseCause value. However, the recommended value is in this case 
P_DISCONNECTED.  

NOTE 3: Where no mapping is defined, a default mapping to 480 Temporarily Unavailable is recommended. 
 



 

ETSI 

ETSI TR 129 998-4-4 V5.0.3 (2004-06) 773GPP TR 29.998-04-4 version 5.0.3 Release 5 

6.18 TpReleaseCause, mapping from SIP 

Table 6-18: TpReleaseCause Table mapping 

From: TpReleaseCause To: SIP Remark 
P_UNDEFINED N/A No mapping 
P_USER_NOT_AVAILBLE 404 Not Found 

410 Gone 
604 Does Not Exist 
Anywhere 

The callee is unavailable. 
e.g. the address of callee might have been 
changed. 

P_BUSY 486 Busy Here 
600 Busy EveryWhere 

The callee is not able or not willing to accept 
additional call 

P_NO_ANSWER 603 Decline The callee explicitly does not wish to or cannot 
participate in the call. 

P_NOT_REACHABLE 480 Temporarily 
Unavailable 

User is not logged in or user's terminal is out of 
radio coverage. 

P_ROUTING_FAILURE 400 Bad Request, 
420 Bad Extension, 
482 Loop Detected, 
483 Too Many Hops  
484 Address Incomplete 
485 Ambiguous, 

 

P_PREMATURE_DISCONNECT SIP CANCEL  
480 Temporarily 
Unavailable 

Pending invitation (INVITE) abandoned by 
caller before answer (i.e. before the request 
has been acknowledged (ACK)) or user's 
terminal is out of radio coverage. 

P_DISCONNECTED SIP BYE  Normal call clearing 
P_CALL_RESTRICTED 403 Forbidden  
P_UNAVAILABLE_RESOURCE 503 Service Unavailable  
P_GENERAL_FAILURE 500 Server Internal Error, 

501 Not Implemented, 
502 Bad Gateway, 
505 Version Not 
Supported 

 

P_TIMER_EXPIRY 408 Request Timeout, 
504 Gateway Timeout 

  

 

6.19 TpAoCInfo 

Table 6-19: TpAoCInfo Table mapping 

From: TpAoCOrder To: SIP Remark 
ChargeOrder (TpAoCOrder) See Table 6-20: 

TpAocOrder 
 

Currency (TpString) N/A Currency unit according to ISO-4217:1995 
NOTE: Defines the Sequence of Data Elements that specify the Advice Of Charge information to be sent to the 

terminal. 
 



 

ETSI 

ETSI TR 129 998-4-4 V5.0.3 (2004-06) 783GPP TR 29.998-04-4 version 5.0.3 Release 5 

6.20 TpAoCOrder 

Table 6-20: TpAoCOrder Table mapping 

From: TpAoCOrder To: SIP Remark 
TpAoCOrderCategory: -  
P_CHARGE_ADVICE_INFO 
(TpChargeAdviceInfo) 

N/A  

P_CHARGE_PER_TIME 
(TpChargePerTime) 

N/A  

P_CHARGE_NETWORK 
(TpString) 

N/A  

NOTE: In release 5, how to transmit AoC information to UE using ISC is not addressed, it maybe addressed in future 
release. 

 



 

ETSI 

ETSI TR 129 998-4-4 V5.0.3 (2004-06) 793GPP TR 29.998-04-4 version 5.0.3 Release 5 

Annex A: 
Introduction to API Mapping for OSA MPCCS 

A.1 OSA Service Provision for MPCCS in IMS 
The figure below depicts an overall view of how MPCC services can be provided.  

S-CSCFS-CSCF

MRFMRF

OSA 
Application 

Server

OSA 
Application 

Server

Cx

SIP ISC

Mr

OSA
MPCCS
API

Sh

SIP
server

SCFUser

OSA SCS

HSS

Scope of 
OSA –MPCCS
API mapping

 

Figure A-1: Functional architecture for support of MPCCS Service Provision 
for IP Multimedia subsystem  

The OSA Service Capability Server (OSA SCS) is the "controlling entity" and the Serving-Call Session Control 
Function (S-CSCF) is the "controlled entity" .The MRF is the Media Resource Function. (MRF).  

ISC: This reference point is the Internal Service Control Interface, used between the S- CSCF and the OSA SCS.  
The ISC interface is based on Session Initiation Protocol (SIP), which is specified in 3GPP TS 24.229[12]. 

Cx: The Cx reference point supports information transfer between CSCF and HSS. 
The protocol used between the S-CSCF and HSS (Cx Interface) is specified in 3GPP TS 29.228[8]. 

Sh: The Sh reference point supports information transfer between OSA SCS and HSS. 
The protocol used between the OSA SCS and HSS (Sh Interface) is defined in 3GPP TS 29.328 [15]. 

Mr: This reference point allows interaction between an S-CSCF and an MRF ( i.e. the Media Resource Function 
controller, MRFC). The protocol used for the Mr reference point is based on SIP, which is specified in 3GPP TS 
24.229[12]. 

Filtering is done in the S-CSCF on SIP initial request messages only. It can e.g. be based upon: 

- Any initial known or unknown SIP method (e.g. REGISTER, INVITE, SUBSCRIBE, MESSAGE); 



 

ETSI 

ETSI TR 129 998-4-4 V5.0.3 (2004-06) 803GPP TR 29.998-04-4 version 5.0.3 Release 5 

- Direction of the request is with respect to the served user – either mobile originated (MO) or mobile terminated 
(MT) to registered user; or mobile terminated to unregistered user; 

- Session description information; 

- The present/absent content of a particular SIP header. 

Filter Criteria (FC) is the information the S-CSCF receives from the HSS that defines the criteria based on which the S-
CSCF shall send the SIP initial request to the OSA SCS. Then the application can decide whether to be in the path of all 
the subsequent SIP messages of this dialog or not. For more detail on initial filter criteria and triggering mechanisms in 
the S-CSCF, see 3GPP TS 23.218 [6]. 

Initial Filter Criteria (iFC) are filter criteria that are stored in the HSS as part of the user profile and are downloaded 
together with addresses of the assigned application servers (e.g., OSA SCS addresses) via the Cx interface to the S-
CSCF upon user registration or upon a terminating initial request for an unregistered user if unavailable. They represent 
a provisioned subscription of a user to an application. Application server specific data is also exchanged between HSS 
and the OSA SCS during registration via Sh interface. 
After downloading the User Profile from the HSS, the S-CSCF accesses the filter criteria. Initial Filter Criteria are valid 
throughout the registration lifetime of a user or until the User Profile is changed.  

A.2 MPCCS 

A.2.1 Introduction 
The MPCCS allows an application to establish multi-party calls where several legs can simultaneously be connected.. In 
fact, the MPCCS as defined, allows application to create a leg and to route it. In SIP, to establish a session it requires at 
least two SIP endpoints (UAs). 
MPCCS which beside 2-party call encompasses application initiated 1 party and multi-party calls can be mapped to SIP 
implying the OSA SCS behaves as a SIP application server on the ISC interface. 

A.2.2 SIP Server Roles in OSA SCS 

A.2.2.1 Introduction 

The OSA SCS behaves as a SIP server toward the ISC interface. 
The SIP application server hereby may act in different roles or modes The role of UAC and UAS as well as proxy and 
redirect servers are defined on a transaction-by-transaction basis. 
For example, the user agent initiating a call acts as a UAC when sending the initial INVITE request and as a UAS when 
receiving a BYE request from the callee. 

Similarly, the same software can act as a proxy server for one request and as a redirect server for the next request. 

However, besides these modes of operation for more advanced service application demands also the Back-to-Back User 
Agent (B2BUA) and 3rd Party controller modes have been defined.  

The OSA SCS possible different modes of SIP server operation is described in the following.  



 

ETSI 

ETSI TR 129 998-4-4 V5.0.3 (2004-06) 813GPP TR 29.998-04-4 version 5.0.3 Release 5 

A.2.2.2 OSA SCS acting as a SIP Proxy server 

In this mode of operation the incoming SIP Request is proxied by the S-CSCF to the OSA SCS, which then acts as a 
SIP proxy server proxying the Request back to the S-CSCF which then proxies it towards the destination.  

 

       SCF 

  SIP server:  Proxy Mode 

OSA-API 

proxy proxy 

S-CSCF 

1. INVITE 

2. INVITE 

3. INVITE 

4. INVITE 

 5. 200 OK 

 6. 200 OK 

 7. 200 OK 

 8. 200 OK 

 
SIP dialog #1  

SIP dialog#1 

From: X 
To: Y 
Call-ID: Z 

From: X 
To: Y 
Call-ID: Z 

 
SIP 

dialog 
#1  

SIP 
dialog

#1 

From: X 
To: Y 
Call-ID: Z 

From: X 
To: Y 
Call-ID: Z 

  Proxy Mode 

Service logic 

OSA-AS 

OSA SCS 

User 
User 

 

Figure A-2: Example OSA SCS Proxy Server Mode operation 

- Scope: 

Service applications that need to manipulate data conveyed in the SIP signalling between a UAC and a UAS, like 
changing destination address (call forwarding services), but do not demand to intervene on the call as such. 

During the proxy operation the OSA SCS may add, remove or modify the header contents contained in the SIP request 
according to the Proxy rules specified in [14].  
Applicable for 2-party calls. However, forking may occur resulting in more SIP dialogues being established between the 
Caller) UAC and 2 or more callees (UASs). 

- Constrains: 

The control and visibility of forking in the application is not currently covered by the OSA API MPCCS. 



 

ETSI 

ETSI TR 129 998-4-4 V5.0.3 (2004-06) 823GPP TR 29.998-04-4 version 5.0.3 Release 5 

A.2.2.3 OSA SCS acting as Redirect server 

In this mode of operation the incoming SIP Request is proxied by the S-CSCF to the OSA SCS which then acts as a 
Redirect Server as specified in [14]. 

  

 OSA SCS 

Sip server: redirect mode 

proxy 
1. INVITE 

2. INVITE 

3. 3o1/ 
    302 

5. INVITE from user  to 
   new  destination 

4.  301/302 

Service logic 

 
SIP 

dialog 
#1  

SIP dialog #1 

From: X 
To: Y 
Call-ID: Z From: X 

To: Y 
Call-ID: Z 

         SCF 

 OSA AS 

  S-CSCF 

 Redirect Mode: 
OSA API 

User 

 

Figure A-3: Example OSA SCS Redirect Server Mode operation 

- Scope: 

Service applications that need to request a redirection of a call by the network to a new destination, e.g. due to number 
changed (callee moved). Hereby the application is to provide the new contact address(es) and leave the call. 

During the Redirect operation the OSA SCS may terminate the dialog by requesting a call redirection given a list of 1 or 
more possible new addresses to contact contained in the redirection response request according to the Redirect rules 
specified in [14]. 

- Constrains: 

NOTE: The control and possibility of requesting a redirection (3xx response) is not currently supported by the 
OSA MPCCS API. 

A.2.2.4 OSA SCS acting as UA 

•  SIP User Agent Terminating (UAt) 
In this mode of operation the incoming SIP Request is proxied by the S-CSCF to the OSA SCS which then acts 
as a terminating UA (UAS) as specified in [14]. 

•  SIP User Agent Originating (UAo)  
In this mode of operation the OSA SCS acts as an originating UA (UAC) as specified in [14] and generates a SIP 
Request which it sends to the S-CSCF which then proxies it towards the destination. 



 

ETSI 

ETSI TR 129 998-4-4 V5.0.3 (2004-06) 833GPP TR 29.998-04-4 version 5.0.3 Release 5 

  

 OSA SCS 

Sip server: redirect mode 

proxy 
1. INVITE 

2. INVITE 

3. 3o1/ 
    302 

5. INVITE from user  to 
   new  destination 

4.  301/302 

Service logic 

 
SIP 

dialog 
#1  

SIP dialog #1 

From: X 
To: Y 
Call-ID: Z From: X 

To: Y 
Call-ID: Z 

         SCF 

 OSA AS 

  S-CSCF 

 Redirect Mode: 
OSA API 

User 

 

Figure A-4: Example OSA SCS User Agent Server Mode operation 

- Constrains: 

NOTE: Any direct control of media resources by the OSA SCS when acting as UA is outside the scope of this 
specification. 



 

ETSI 

ETSI TR 129 998-4-4 V5.0.3 (2004-06) 843GPP TR 29.998-04-4 version 5.0.3 Release 5 

A.2.2.5 OSA SCS acting as a B2BUA 

In this case the controller, i.e. the OSA SCS, takes over the ownership of the call set-up by a different party by acting as 
a Back-to-Back User Agent (B2BUA). The OSA SCS looks deceptively like a proxy, but it is not. The OSA SCS acts as 
a UAS for the INVITE received from caller (UAC), and then as a UAC when it initiates a call to the callee (UAS). 

In this case the incoming SIP Request is proxied by the S-CSCF to the OSA SCS which then generates a new SIP 
Request for a different SIP dialog which it sends to the S-CSCF which then proxies it towards the destination.  
In this mode the OSA SCS behaves as a B2BUA for the multiple SIP dialogs as specified in [14]. 

  

 OSA SCS 

Sip server: redirect mode 

proxy 
1. INVITE 

2. INVITE 

3. 3o1/ 
    302 

5. INVITE from user  to 
   new  destination 

4.  301/302 

Service logic 

 
SIP 

dialog 
#1  

SIP dialog #1 

From: X 
To: Y 
Call-ID: Z From: X 

To: Y 
Call-ID: Z 

         SCF 

 OSA AS 

  S-CSCF 

 Redirect Mode: 
OSA API 

User 

 

Figure A-5: Example OSA SCS B2BUA Server Mode operation 

- Usage: 

Service applications that need advanced signalling control, i.e. the capability to intervene on a call. 
Some examples may be applications that needs to release a call (e.g. prepaid service) or a single user, or add or replace 
a user (follow-on call), or needs to generate messages during the call or act on mid-call events from a call party (e.g. re-
INVITE).  

EXAMPLE: Pre-Paid card service runs out of money: the application may generate some message to the user 
and/or release the user. 

- Constrains: 

The mode B2BUA is to be determined based on SIP requests messages. It is not allowed in this release that a proxy can 
change to a B2BUA in the middle of a dialog, unless the purpose of doing this is to release a dialog. Where it cannot be 
known in advance if the application demands Proxy mode or B2BUA mode, the default should for the OSA SCS be to 
act as a B2BUA.  

NOTE: Notice that the end-to-end call (SIP dialogue) between caller and callee will become divided t into a 
multitude of different "end-to-end" calls (SIP dialogues) , where the B2BUA concept is applied. 

A.2.2.6 OSA SCS acting as a 3rd Party Controller 

In this mode the OSA SCS generates a new SIP Request for a different SIP dialog and sends it to the S-CSCF which 
then proxies it towards the destination. The OSA SCS may generate one or more different SIP dialogues in this way. 



 

ETSI 

ETSI TR 129 998-4-4 V5.0.3 (2004-06) 853GPP TR 29.998-04-4 version 5.0.3 Release 5 

This may be combined with the OSA SCS behaviour as a B2BUA for the multiple SIP dialogs as specified in RFC3261 
[14], i.e. when more than 2 parties are involved in the call. 

  

 OSA SCS 

SIP  UA-
Terminating 

SIP  UA-
Originating 

Proxy 

S-CSCF 

2. BYE 

Proxy 

Service logic 

1. BYE 

3. 200 OK 

4. 200 OK 

SIP  UA-
Originating 

Proxy 
10. INVITE 
11. 200 OK 

5. INVITE 9. INVITE 

12. 200 OK 

6. INVITE 

7. 200 OK 

8. 200 OK 

 
SIP dialog #1 

 
SIP dialog #3 

 
SIP dialog #2 

 
SIP 

dialog 
#2 

 
SIP 

dialog 
#3 

From: X 
To: Y 
Call-ID: Z 

From: X 
To: Y 
Call-ID: Z 

From: P 
To: Q 
Call-ID: R 

From: P 
To: B 
Call-ID: W From: P 

To: B 
Call-ID: W 

From: P 
To: Q 
Call-ID: R 

 B2BUA 
 end-to-end 
session 
 split into 
 two SIP  
 dialogues 
- terminating and  
  originating.  

 UA client 
- originating 3rd party 
SIP dialog 

 
SIP 

dialog 
#1 

SCF 

 OSA   AS 

 3rd Party Controler Mode: 
OSA API 

User 

User 

User 

 

Figure A-6: Example OSA SCS 3rd Party Controller Server Mode operation 

- Usage: 

Application initiated one party , two-party and multi-party calls. 
It may also be associated with B2BUA mode of operation, e.g. where the application demands to invite a 3rd part into a 
2-party. 

- Constrains: 

The control of media resources for application initiated calls is outside the scope of this specification. 

A.2.3 SIP Server Role Mode Transitions 
Figure 5 provides an overview of the states and transitions of the FSM for Call Control Signalling Terminations. These 
states and transitions are more precisely defined in the following clauses. 

 

UA 

 
3rd PARTY 
Controller 

 

 

  B2BUA 

E3 

  

 E2 

E4 

 

E5 

 

E7 

E6 
  E1 

PROXY 

 

E9 

 
REDIRECT E8 

 

Figure A-7: Operation Mode for the OSA SCS  



 

ETSI 

ETSI TR 129 998-4-4 V5.0.3 (2004-06) 863GPP TR 29.998-04-4 version 5.0.3 Release 5 

The server mode diagram above for the OSA SCS shows the possible mode transitions. It contains the following 
transitions (events): 

E1 Incoming Invite received from the network (caller) or 
request received from the application to initiate a call "out of the blue". detected 

E2 Application request to act as B2BUA on call received from the network 
E3 Application request to act as Redirect server on call received from the network 
E4 Application request to act as Proxy server on call received from the network 
E5 Application request to act as single UA on call received from the network 
E6 Application request to act as 3rd Party controller on call received from the network 
E7 Application request to act as B2BUA on call received from the network 
E8 Application request to act as 3rd Party controller on call initiated from application 
E7 Application request to act as single UA. 



 

ETSI 

ETSI TR 129 998-4-4 V5.0.3 (2004-06) 873GPP TR 29.998-04-4 version 5.0.3 Release 5 

Annex B: 
SDP in SIP at application controlled calls for OSA MPCCS 
API 

B.1 Introduction 
A mechanism is needed that allows a controller like OSA SCS to create, modify, and terminate calls with other entities.. 
Third party call control refers to the ability of one entity, in this case the OSA SCS to create a call in which 
communications are actually between other parties. A SIP mechanism for accomplishing third party call control that 
does not require any extensions or changes to SIP is presented. It is merely an application of the tools enabled through 
the SIP specification RFC 3261 [14]. It enables a controller like the OSA SCS to create calls/sessions with any entity 
that contains a normal SIP User Agent. Annex B is based upon the principles described in "Third Party Call Control in 
SIP" [16]. 

B.2 OSA SCS and Application based Call and Media 
Control 

Third party call control is a set of good design patterns for how to implement a service that needs to be in control of a 
session. The B2BUA mechanism is just one pattern that the 3rd party call controller can use to get control of a session. 
A B2BUA is a mechanism that allows a controller to take over the control of a session initiated by another party. Once 
in control it can control the session by generating requests and responses on the different call-legs. OSA SCS can of 
course also at all times initiate a session or a new transaction within a given SIP dialogue hereby acting as a User Agent 
or 3rd party call controller.  

The basic principle behind the third party mechanism applied for OSA MPCCS application initiated calls is simple.  
The OSA SCS acting as a controller on request from the OSA application first calls one of the users, A, and presents the 
INVITE without any media. When this call is complete, the OSA SCS has the SDP needed to communicate with user A. 
The OSA SCS can then, if so requested by the OSA application, use SDP A to establish a call to user B. When this call 
is completed, the OSA SCS has the SDP needed to communicate with user B. This information is then passed to user A. 
The result is that there is on request from the application established an OSA call leg (SIP dialogue) between the OSA 
SCS and user A, and a call leg (SIP dialogue) between the OSA SCS and user B, but media between user A and user B.  

The aim here is to keep the OSA application based session control for MPCCS as simple as possible, but also generally 
useable, and avoid SDP awareness in the OSA SCS acting as the controller.. 

In the following some example scenarios for illustrating a possible handling of SDP in SIP at OSA MPCCS application 
controlled call sessions are given. 

Note 1:  A user may herein be presented by any entity that contains a normal SIP User Agent. For example a user 
could be represented by an ordinary call party (e.g. SIP enabled phone/PC), a gateway or a network entity 
like e.g. a Conference Server or MRF.  

Note 2: Where an OSA application demands to control (e.g. restrict call to a given media type (e.g. voice),) which 
media types should be allowed on a call, it can also use the Multimedia Call Control Service (MMCCS), 
which enhances the MPCCS with multimedia control capabilities (allows e.g. the application to bar 
certain media type(s)). 



 

ETSI 

ETSI TR 129 998-4-4 V5.0.3 (2004-06) 883GPP TR 29.998-04-4 version 5.0.3 Release 5 

B.3 Example OSA SCS Application initiated One-Party 
Call 

An example of an application initiated One-Party Call could be a booked "wake-up call" or "reminder call", i.e. a call 
that is to be set-up at a predefined time and date from the network initiated by an OSA application using the MPCCS. 

The recommended flow is as follows: The application requests a call to be set-up to user A. 
The OSA SCS sends an INVITE to the user A, without any SDP (it means that the OSA SCS does not need to assume 
anything about the media of the devices). User A responds with its SDP a1, in a 200 OK, which is immediately ACK'ed 
with an on-hold SDP generated by the OSA SCS. 

A flow example for a One Party call set-up from application is illustrated in the figure below: 

 

4a. routeReq (user A) 

6b.  SIP:ACK 
(SDP held) 

5a.SIP: 200 OK 
(SDP a1) 

OSA AS S-CSCF 

4b. ISC: INVITE 
(no SDP) 4c.  SIP: INVITE (no SDP) 

 User A User B  OSA SCS 
S 
C 
F 

UAo1 

SIP 
UAo 

 6c. eventReportRes (user A) 

1. createCall 

2. createCallLeg 

3. eventReportReq 

5b.. ISC: 200 OK 
 (SDP a1) 

6a. ISC: ACK 
 (SDP held) 

User Agent mode 

 

Figure B-1 Example Initiating OSA SCS Flow for One Party call Set-up  

A description for the flow is given below: 

1: This message requests the OSA SCS to create a call object ( an object implementing the IpMultiPartyCall 
interface). Assuming that the criteria for creating a call object implementing the IpMultiPartyCall interface (e.g. 
load control values not exceeded) is met it is created.  

2: This message instructs the OSA SCS to create a call leg (the object implementing the IpMultiPartyCall interface) 
for user A.  

3: This message requests the call leg for user A to inform the application when the call leg answers the call.  

4a: The created OSA terminating call leg is requested to route the call/session to the specified destination for user A.  

4b: The OSA SCS acting as a logical UAo1 generates an INVITE request message with no SDP on the ISC interface 
to S-CSCF providing the destination address of user A.  
The OSA SCS SIP server is in SIP UA Originating Endpoint mode. 

4c: The S-CSCF proxies the INVITE request toward user A. 



 

ETSI 

ETSI TR 129 998-4-4 V5.0.3 (2004-06) 893GPP TR 29.998-04-4 version 5.0.3 Release 5 

5a: User A answers the call and responds with its SDP (SIP 200 OK including SDP a1) 
Note: It is here only shown that the call is answered by user A, e.g. user A accepting the incoming call and 
sending a 180(Ringing) back to the UAo1 on OSA SCS is omitted for simplicity reasons !.. 

5b: The S-CSCF proxies the SIP 200 OK including SDP a1 to the originating UAo1 in the OSA SCS via the ISC 
interface. 

6a: The OSA SCS being the controller immediately generates an ACK with an on-hold SDP being send on the ISC 
interface to the S-CSCF. It hereby takes SDP a1, and generates another SDP which has the same media 
composition, but is on hold.  

6b: The S-CSCF proxies the ACK with SDP on hold toward user A. 

6c: The leg object (implementing user A's IpCallLeg interface) in OSA SCS passes the result of the call being 
answered back to the application in OSA AS.  

General Remarks: 

The OSA SCS operation in User Agent mode provides a central point for signalling control, as the application hereby is 
offered complete control over the call. 

B.4 Example OSA SCS Application initiated Two-Party 
Call 

An example of an application initiated Two-Party Call could be a Click-to dial service, that allows a user to click on a 
web page when wished to speak to a customer service representative. The web-server then via some "stimuli" causes the 
OSA application to be invoked in order to establish a call between the user and a customer service representative. The 
call being set-up can be between different entities like between two phones, a phone and an IP host, or two IP hosts. 

The recommended flow is as follows: First a call object is created. Then user A's call leg is created before events are 
requested on it for answer and then call set-up to user A is initiated as described in the application initiated One-Party 
call example. On answer from user A, the call is being set up to user B. On answer from Party B the media 
communication between user A and user B is established.. 

A flow example for a Two Party call set-up from the OSA application is illustrated in the figure below: 



 

ETSI 

ETSI TR 129 998-4-4 V5.0.3 (2004-06) 903GPP TR 29.998-04-4 version 5.0.3 Release 5 

 

4a. routeReq (user A) 

6b. SIP:ACK 
(SDP held) 

13c. ISC: ACK 
(SDP a2’) 

9c.SIP: INVITE (no SDP) 

5a..SIP: 200 OK 
(SDP a1) 

OSA AS S-CSCF 

4b. ISC: INVITE(no SDP) 
 4c. SIP: INVITE (no SDP) 

 User A User B  OSA SCS 
S 
C 
F 

UAo2 

User Agent mode 

UAo1 

SIP 
UAo 

SIP  
UAo 

11a. ISC: INVITE (SDP b1’) 

 12a. SIP: 200 OK (SDP a2) 

 13a. ISC: ACK 

 6c. eventReportRes (user A) 

1.createCall 

2. createCallLeg 

3. eventReportReq 

 7. createCallLeg 

 8. eventReportReq 

 9a. routeReq (user B) 

5b. ISC: 200 OK (SDP a1) 

6a. ISC: ACK 
 (SDP held) 

9b. ISC: INVITE (no SDP) 

10a. SIP: 200 OK 
(SDP b1) 10b: ISC: 200 OK (SDP b1) 

 13e. eventReportRes (user B) 

11b. SIP: INVITE (SDP b1’) 

12b. ISC: 200 OK (SDP a2) 

13b. SIP: ACK 

13d. SIP: ACK (SDP a2’) 

14.  RTP 

 3rd party controller  mode 

 

Figure B-2. Example application Initiating OSA SCS Flow for Two Party call Set-up 

A description for the flow is given below: 

1: through 6. Call set-up to user A. The flow is exactly the same as described in the previous example for 
Application initiated One-Party Call for user A. 

7: This message instructs the OSA SCS (the object implementing the IpMultiPartyCall interface) to create a call leg 
for user B.  

8: This message requests the call leg for user B to inform the application when the call leg answers the call.  

9a: The created OSA terminating call leg for user B is requested to route the call/session to the specified destination 
for user B.  



 

ETSI 

ETSI TR 129 998-4-4 V5.0.3 (2004-06) 913GPP TR 29.998-04-4 version 5.0.3 Release 5 

9b: The OSA SCS acting as a logical UAo2 generates an INVITE message with no SDP on the ISC interface to S-
CSCF providing the destination address of user B.  
The OSA SCS SIP server is now in SIP 3rd Party Controller mode (encompassing two UA Originating Endpoints, 
one associated with the call leg for User A and another with the call leg for user B). 

9c: The S-CSCF proxies the INVITE request toward user B. 

10a: User B answers the call and responds with its SDP (SIP 200 OK including SDP b1) 

NOTE: It is here for simplicity assumed that the call is answered directly by user B, i.e. user B accepting the 
incoming call and sending a 180(Ringing) back to the UAo2 on OSA SCS is not shown. 

10b: The S-CSCF proxies the SIP 200 OK including SDP b1 to the originating UAo2 in the OSA SCS via the ISC 
interface. 

11a: The OSA SCS being the controller uses the SDP b1 in the 200 OK to generate an INVITE (re-INVITE) to the 
first user A. The re-INVITE is based on SDP b1, but may need to be reorganised to match up media lines with 
those previously applied for "SDP on hold", therefore denoted as SDP b1' when SDP is here send on the ISC 
interface to the S-CSCF for user A. 

11b: The S-CSCF proxies the INVITE (re-INVITE with SDP b1') toward user A. 

12a: User A responds in a 200 OK with its SDP (SIP 200 OK including SDP a2) 
Note: SDP a2 may be different from SDP a1 reported initially from user A.  

12b: The S-CSCF proxies the SIP 200 OK including SDP a2 to the originating UAo1 in the OSA SCS via the ISC 
interface. 

13a: The OSA SCS being the controller immediately generates an ACK for user A being send on the ISC interface 
to the S-CSCF. 

13b: The S-CSCF proxies the ACK toward user A. 

13c: The SDP a2 received in 200 OK from user A is to be passed immediately to user B. It may also need 
reorganization to match up media lines, i.e. therefore here denoted a2'. The OSA SCS being the controller 
generate an ACK with SDP a2' for user B being send on the ISC interface to the S-CSCF. 

13d: The S-CSCF proxies the ACK with SDP a2' toward user B. 

13e: The leg object (implementing user B's IpCallLeg interface) for user B in OSA SCS passes the result of the 
call being answered back to the application.  

14: The media communication between user A and user B has been established based on exchanged SDP 
information. 

General Remarks: 

This first part of the flow is exactly as the one described previously for a One-Party Call. 

The call flow is somewhat complicated as the OSA SCS acting as controller needs to perform some SDP manipulation 
as the call is requested to be set-up to B. The OSA SCS needs to perform some SDP manipulations. Specifically, it must 
take some SDP, and generate another SDPwhich has the same media composition, but is on hold. Secondly, it may need 
to reorder an SDP x, so that its media lines match up with those in some other SDP y. 

However, still the OSA SCS does not need to assume anything about the supported media of the terminals. There 
should be no problem with timers as it must be expected that a re-INVITE will be answered quickly. As we make a re-
INVITE we cannot assume anything about the SDP that will be send back in the 200 OK, that is also why no SDP is 
used in the initiating INVITE for user B.  

Once the two party call has been established, the OSA SCS operation in 3rd party controller mode is still a central point 
for signalling control, it now has complete control over the call. It can e.g. on request from the application disconnect 
one user, disconnect all users (i.e. the call), reconnect one user to another user (e.g. a follow-on call) or connect a user 
to another user being e.g. a media server for an announcement or conference call.  



 

ETSI 

ETSI TR 129 998-4-4 V5.0.3 (2004-06) 923GPP TR 29.998-04-4 version 5.0.3 Release 5 

NOTE:  One issue worth mentioning is the case of a follow on call where the leg for the new callee is ringing 
(180) or is rejected e.g. busy (e.g. 486 "Busy Here") and the application wants this information to be 
conveyed to the caller. Since the OSA application initiated the call set-up this information cannot be 
propagated by the OSA SCS toward the caller. However, one way to inform the caller could be by 
connection of the user (caller) to a media server for e.g. an announcement or tone sending. 

Once the calls are established, both user A and user B believe they are in a single point-to-point call with some control 
system (assuming the OSA SCS has identified itself as the controller in the From field of the INVITE). However, they 
are exchanging media directly with each other, rather than with the controller, here the OSA SCS. The result is that the 
OSA application has set up a call between user A and user B. 



 

ETSI 

ETSI TR 129 998-4-4 V5.0.3 (2004-06) 933GPP TR 29.998-04-4 version 5.0.3 Release 5 

B.5 Example OSA SCS control of User initiated Two-
Party Call 

An example of an application controlled user initiated Two-Party Call could be a Call Forwarding service. The call 
being set-up can be between different entities like between two phones, a phone and an IP host, or two IP hosts.  

An example flow for a user initiated Two Party call set-up controlled from the OSA application is depicted in the figure 
below: 

 

4a. routeReq (user B) 

5d. SIP: 200 OK 
(SDP b1) 

5a.SIP: 200 OK 
(SDP b1) 

OSA AS S-CSCF 

4b. ISC: INVITE 
(SDP a1)  4c. SIP: INVITE ( SDP a1) 

User A User B  OSA SCS 
S 
C 
F 

UAo1 

B2BUA mode 

UAt1 

SIP 
UAt 

SIP  
UAo 

    6c. ISC: ACK  6e. eventReportRes (user B) 

1c.  .reportNotification 

2. createCallLeg 

3. eventReportReq 

5b. ISC: 200 OK (SDP b1) 

5c. ISC: 200 OK 
(SDP b1) 

6b. ISC: ACK 
6a. SIP: ACK 

6d. SIP: ACK  

7.  RTP 
  B2BUA  mode 

1a SIP: INVITE 
(SDP a1)  1b ISC: INVITE 

(SDP a1) 

 

Figure B-3: Example user Initiating OSA SCS Flow for Two Party call Set-up 

A description for the flow is given below: 

1a: The S-CSCF receives the incoming invitation (INVITE) from user A for a dialog. As the initial filtering 
identifies the need to invoke an application, the S-CSCF proxies the INVITE to the OSA SCS via the ISC 
interface.  

1b: The OSA SCS receives the incoming INVITE via the ISC interface. As the application to be invoked demands 
B2BUA mode of operation (i.e. to secure full call/session control), the OSA SCS is acting as a logical User 
Agent (UAt1) for the incoming INVITE message received from the S-CSCF. The OSA SCS creates an OSA call 
object (the object implementing the IpMultiPartyCall interface) and a leg object (implementing user A's 



 

ETSI 

ETSI TR 129 998-4-4 V5.0.3 (2004-06) 943GPP TR 29.998-04-4 version 5.0.3 Release 5 

IpCallLeg interface). The leg object represents the OSA originating call leg for user A, i.e. the leg defined by the 
OSA MPCCS API on which the dialog invitation is received (i.e. the initial INVITE). 

1c: The OSA SCS identifies the application responsible for handling the call .The application is invoked with this 
message to the OSA AS. The created call object and call leg object are passed to the application. 

2: This message instructs the OSA SCS (e.g. the object implementing the IpMultiPartyCall interface) to create a 
call leg for user B.  

3: This message requests the call leg for user B to inform the application when the call leg answers the call.  

4a: The created terminating call leg for user B is requested to route the call/session to the specified destination for 
user B.  

4b: The OSA SCS acting as a logical User Agent (UAo1) proxies (after some modification) the received INVITE 
message on the ISC interface to S-CSCF providing the destination address for user B.  
The OSA SCS SIP server is now in Back-to-Back User Agent (B2BUA )mode (hereby encompassing a UA 
Terminating Endpoint associated with the call leg (SIP dialog) for User A and another UA Originating Endpoint 
associated with the call leg (SIP dialog) for user B). 

4c: The S-CSCF proxies the INVITE request toward user B. 

5a: User B answers the call and responds with its SDP (SIP 200 OK including SDP b1) 
Note: It is here for simplicity assumed that the call is answered directly by user B, i.e. user B accepting the 
incoming call and sending a 180(Ringing) back to the UAo1 in OSA SCS is not shown. 

5b: The S-CSCF proxies the SIP 200 OK including SDP b1 to the originating UAo1 in the OSA SCS via the ISC 
interface. 

5c: The OSA SCS being the controller "proxies" via its terminating UAt1 the SIP 200 OK including SDP b1 on the 
ISC interface to the S-CSCF. 

5d: The S-CSCF proxies the 200 OK (with SDP b1) toward user A. 

6a: User A responds with an ACK 

6b: The S-CSCF proxies the ACK to the terminating UAt1 in the OSA SCS via the ISC interface. 

6c: The OSA SCS "proxies" via its originating UAo1 the ACK on the ISC interface to the S-CSCF. 

6d: The S-CSCF proxies the ACK toward user B. 

6e: The leg object (implementing party B's IpCallLeg interface) for user B in OSA SCS passes the result of the call 
being answered back to the application.  

7: The media communication between user A and user B has been established based on exchanged SDP 
information. 

General Remarks: 

Once the two party call has been established, the OSA SCS as the controller is exactly in the same state as if it had 
initiated the call on request from the OSA application as described in a previous flow example.  
The OSA SCS operation in B2BUA (or 3rd party controller) mode provides a central point for signalling control, as the 
application hereby is offered complete control over the call. The application can e.g. disconnect one user, disconnect all 
users (i.e. the call), reconnect one user to another user (e.g. a follow-on call) or connect a user to a specialised user (e.g. 
a user representing media server for an announcement or call conference).  

B.6 Example OSA SCS control of User initiated Two-
Party Call with announcement 

The flow for a two –party call may also be extended so that an announcement could also be played e.g. to user A after 
the call with user B has been established. The announcement can be accomplished by setting up a SIP call session to a 



 

ETSI 

ETSI TR 129 998-4-4 V5.0.3 (2004-06) 953GPP TR 29.998-04-4 version 5.0.3 Release 5 

user C (e.g. being an IP host representing a media server (MRF)). 
While the announcement is being played, user B's media stream is put on hold. After the announcement has been played 
(e.g. determined by a predefined timeout) the application may cancel the announcement and release user C (the media 
server represented by the MRF) and re-establish the call between user A and user B including the media communication 
(exchange of SDP information). 

An example of an application controlled possible connection of a media server to a user on an already established Two-
Party Call is depicted in the flow below: 



 

ETSI 

ETSI TR 129 998-4-4 V5.0.3 (2004-06) 963GPP TR 29.998-04-4 version 5.0.3 Release 5 

 

 3a. ISC: ACK 

1c.SIP: INVITE ( SDP hold) 

OSA AS S-CSCF User 
A 

User 
B 

 OSA SCS 
S 
C 
F 

UAo2 
B 

B2BUA mode OR 

UAt/o1 
A 

SIP 
UAt 

SIP  
UAo 

 1b. ISC: INVITE (SDP hold) 

 2a. SIP: 200 OK (SDP b2) 

 1a. detachMediaReq (user B) 

 5. createCallLeg  (user  C) 

 2b: ISC: 200 OK (SDP b2) 

 3c. detachMediaRes (user B) 

8b. ISC: 200 OK (SDP c1) 

.  RTP 
 3rd party controller  mode 

3b. SIP: ACK  

media 
server 

User 
C 

UAo3 
C 

SIP 
UAo 

9b. SIP:INVITE (SDP c1’) 
9a: ISC: INVITE (SDP c1’) 

8a. SIP: 200 OK (SDP c1) 

6. eventReportReq 

 7a. routeReq (user C) 

 4. on hold 

10b. ISC: 200 OK (SDP a2) 

11a. ISC: ACK 

11e. eventReportRes 
11c. ISC: ACK   (SDP a2’) 

11b. SIP: ACK 

11d. SIP: ACK (SDP a2)’ 13a. release (user C) 

13b. ISC: BYE 
13c. SIP: BYE 

16a. attachMediaReq 
16b. ISC: INVITE (no SDP) 

14a. SIP: 200 OK 
14b. ISC: 200 OK 

16c. SIP: INVITE (no SDP) 

17a. SIP: 200 OK  (SDP b2) 

7b. SIP: INVITE (no SDP) 
7c. SIP: INVITE (no SDP) 

17b. ISC: 200 OK (SDP b2) 

18a. ISC: INVITE (SDP b2’) 
18b. SIP: INVITE (SDP b2’) 

19a. SIP: 200 OK (SDP a3) 
19b. ISC: 200 OK (SDP a 3) 

20a. ISC: ACK 

20b. SIP: ACK 

20c. ISC: ACK (SDP a3’) 

20d. ISC: (SDP a3’) 

20e. attachMediaRes 

 21. RTP 

12.     RTP 

15 

10a. SIP 200 OK (SDP a2) 

 

Figure B-4. Example application Initiating call to media server on a Two Party call 



 

ETSI 

ETSI TR 129 998-4-4 V5.0.3 (2004-06) 973GPP TR 29.998-04-4 version 5.0.3 Release 5 

A description for the flow is given below: 

1a: This message instructs the leg object (implementing party B's IpCallLeg interface) for user B in OSA SCS to 
detach the call leg from the call, i.e. prevent transmission for user B of any media streams to and from other 
parties in the call. 

1b: The OSA SCS acting as a logical User Agent (UAo2) generates an INVITE (re-INVITE) with "SDP on hold" for 
user B. The re-INVITE is sent on the ISC interface to the S-CSCF. 

1c: The S-CSCF proxies the INVITE (re-INVITE with SDP on hold) toward user B. 

2a: User B responds in a 200 OK with its SDP (SDP b2). 

NOTE: SDP b2 may be different from SDP b1 reported initially from user B during call establishment.  

2b: The S-CSCF proxies the SIP 200 OK (including SDP b2) to the originating UAo2 in the OSA SCS via the ISC 
interface. 

3a: The OSA SCS being the controller immediately generates from UAo2 an ACK for user B being send on the ISC 
interface to the S-CSCF. 

3b: The S-CSCF proxies the ACK toward user B. 

3c: The leg object (implementing party B's IpCallLeg interface) for user B in OSA SCS passes the result of the call 
leg being detached back to the application.  

4: The media communication for user B is on hold. 

5: This message instructs the OSA SCS (e.g. the object implementing the IpMultiPartyCall interface) to create a 
call leg for user C.  

6: This message requests the call leg for user C to inform the application when the call leg answers the call.  

7a: The created OSA terminating call leg for user C is requested to route the call/session to the specified destination 
for user C.  

7b: The OSA SCS acting as a logical UAo3creates an INVITE message (with no SDP) on the ISC interface to S-
CSCF providing the destination address of user C.  
The OSA SCS SIP server is now in SIP 3rd Party Controller mode (encompassing three UAs). 

7c: The S-CSCF proxies the INVITE request toward user C. 

8a: User C answers the call and responds with its SDP (SIP 200 OK including SDP c1). 

NOTE: It is here for simplicity assumed that the call is answered directly by user C, i.e. user C accepting the 
incoming call and sending a 180(Ringing) back to the UAo3 in OSA SCS is not shown. 

8b: The S-CSCF proxies the SIP 200 OK including SDP c1 to the originating UAo3 in the OSA SCS via the ISC 
interface. 

9a: The OSA SCS being the controller uses the SDP c1 in the 200 OK to generate an INVITE (re-INVITE) to user 
A. The re-INVITE is based on SDP c1, but may need to be reorganised to match up media lines with those 
previously applied, therefore denoted as SDP c1' when SDP is send on the ISC interface to the S-CSCF for user 
A. 

9b: The S-CSCF proxies the INVITE (re-INVITE with SDP c1') toward user A. 

10a: User A responds in a 200 OK with its SDP (SIP 200 OK including SDP a2). 

NOTE:  SDP a2 may be different from SDP a1 reported initially from user A during call establishment.  

10b: The S-CSCF proxies the SIP 200 OK( including SDP a2) to the originating/terminating UAo1/UAt1 in the 
OSA SCS via the ISC interface. 

11a: The OSA SCS being the controller immediately generates an ACK for user A being send on the ISC interface 
to the S-CSCF. 



 

ETSI 

ETSI TR 129 998-4-4 V5.0.3 (2004-06) 983GPP TR 29.998-04-4 version 5.0.3 Release 5 

11b: The S-CSCF proxies the ACK toward user A. 

11c: The SDP a2 received in 200 OK from user A is to be passed immediately to user C. It may also need 
reorganization to match up m lines, i.e. therefore here denoted a2'. The OSA SCS being the controller generate 
an ACK with SDP a2' for user C being send on the ISC interface to the S-CSCF (response to 200 OK in 8b). 

11d: The S-CSCF proxies the ACK with SDP a2' toward user C. 

11e: The leg object (implementing party C's IpCallLeg interface) for user C in OSA SCS passes the result of the 
call being answered back to the application.  

12: The media communication between user A and user C has been established based on exchanged SDP 
information. 

13a: This message instructs the leg object (implementing party C's IpCallLeg interface) for user C in OSA SCS to 
release the call leg from the call. 

13b: The OSA SCS acting as a logical UAo3 issues the BYE message on the ISC interface to S-CSCF for the 
release of user C. 

14a: User C responds in a 200 OK.  

14b: The S-CSCF proxies the SIP 200 OK to the originating UAo3 in the OSA SCS via the ISC interface. 
The UAo3 and the call leg object for C is terminated (destroyed).  

15: The media communication between user A and user C is terminated. 

16a: This message instructs the leg object (implementing party B's IpCallLeg interface) for user B in OSA SCS to 
attach the call leg for user B to the call to enable any media streams to and from other parties in the call. 

16b: The OSA SCS acting as a logical User Agent (UAo2) generates an INVITE (re-INVITE with no SDP) for 
user B. The re-INVITE is sent on the ISC interface to the S-CSCF. 

16c: The S-CSCF proxies the INVITE (re-INVITE with no SDP) toward user B. 

17a: User B responds in a 200 OK with its SDP (SDP b2). 

NOTE: SDP b2 may be different from SDP b1 reported initially from user B during call establishment.  

17b: The S-CSCF proxies the SIP 200 OK (including SDP b2) to the originating UAo2 in the OSA SCS via the 
ISC interface. 

18a: The OSA SCS being the controller uses the SDP b2 in the 200 OK from user B to generate an INVITE (re-
INVITE) from UAo1/UAt1 to user A. The re-INVITE is based on SDP b2, but may need to be reorganised to 
match up media lines with those previously applied , therefore denoted as SDP b2' when SDP is send on the ISC 
interface to the S-CSCF for user A. 

18b: The S-CSCF proxies the re-INVITE toward user A. 

19a: User A responds in a 200 OK with its SDP (SDP a3). 

NOTE: SDP a3 may be different from SDP a1 reported initially from user A during call establishment.  

19b: The S-CSCF proxies the SIP 200 OK (including SDP a3) to the UAo1/UAt1 in the OSA SCS via the ISC 
interface. 

20a: The OSA SCS being the controller immediately generates an ACK for user A being send on the ISC interface 
to the S-CSCF. 

20b: The S-CSCF proxies the ACK toward user A. 

20c: The SDP a3 received in 200 OK from user A is to be passed immediately to user B. It may also need 
reorganization to match up m lines, i.e. therefore here denoted a3'. The OSA SCS being the controller generate 
an ACK with SDP a3' for user B being send from UAo2 on the ISC interface to the S-CSCF (response to 200 
OK in 17b). 

20d: The S-CSCF proxies the ACK with SDP a3' toward user B. 



 

ETSI 

ETSI TR 129 998-4-4 V5.0.3 (2004-06) 993GPP TR 29.998-04-4 version 5.0.3 Release 5 

20e: The leg object (implementing party B's IpCallLeg interface) for user B in OSA SCS passes the result of the 
call leg being attached back to the application.  

21: The media communication between user A and user B has been re-established based on exchanged SDP 
information. 

General Remarks: 

The flow 5- 12 for call set-up to C party is exactly the same as for the call set-up to B-party.  

Flow 1-4 and 16-21: Different implementation options may apply for attach/detach media; in the flow example above it 
is anticipated that the OSA SCS would not re-use (store) any SDP information previously received from the users, but 
always fetch it when needed, i.e. for detachMediaReq / attachMediaReq always retrieve the actual SDP information 
from the user (with SDP in 200 OK in response to re-INVITE). 
Another option could also be to preference re-INVITE with no SDP and so for attach media provide the SDP within the 
ACK (instead of including the SDP in the re-INVITE itself as shown in the flow).  

B.7 Example OSA SCS Application initiated Multi-Party 
Call 

The capability to control multiple call legs is supported by the MPCCS. The OSA SCS when acting as 3rd. party 
controller can create and control multiple call-legs (i.e. more than two parties involved in a call). 

The 2-party call may as a variation be extended to include 3 parties (or more). After a two party call is established, the 
application can create a new leg and request to route it to a new destination address in order to establish a 3 party call. 

The event that causes this to happen could for example be the report of answer event from B-party or controlled by the 
A-party by entering a service code (mid-call event) or some other stimuli. 

Furthermore conference call may be established by connection each user to a "specialized" user, i.e. a conference device 
represented by a MRF entity, but addressed like any other user via SIP. Hereby a conference call could be established as 
a set of two party calls where each call is termination at the same "user", i.e. the user (MRF) constituting the conference 
device in the network. 

NOTE: Recommended call flows for such a 3-party call scenarios etc. should be provided in this section to 
especially describe the handling of SDP in case of multiple parties in a call session. This is for further 
study. 

 



 

ETSI 

ETSI TR 129 998-4-4 V5.0.3 (2004-06) 1003GPP TR 29.998-04-4 version 5.0.3 Release 5 

Annex C: 
OSA call forwarding presentation 

C.1 Introduction 
The application can request a call forwarding causing a SIP session being forwarded to a new destination. The applied 
methods for this (createAndRouteCallLegReq and routeReq) specifies that in case the application wants the call to be 
presented in the network as a redirection (call forwarding) it should include the Original Destination Address. The same 
should apply for the presence of field REDIRECTING_ADDRESS in AppInfo. 

The question raised is how to present this to callee and caller, i.e. make the call visible in the network as a redirected or 
forwarded call. 

When the application instructs a call redirection containing beside the targetAddress (SIP URL) parameter also the 
Original Destination Address (field in TpCallAppInfo) and / or Redirecting Address the call is to be presented in the 
network as being a redirection, e.g. in case of any call forwarding service.  

C.2 Call Forwarding presentation in OSA: mapping to SIP 
The following mappings to SIP applies: 

Toward callee:  

Call redirection information is to be given to the callee (forwarded-to- party) so that this callee may respond to the 
caller appropriately. In these situations, the party receiving a redirected call needs an answer to the questions: 

Q1: From whom was the request diverted? 

Q2: Why was the request diverted? 

The SIP Diversion header is used to answer these questions for the party receiving the diverted call. 

First the reply to Q1 is given: 

Original Destination Address: 
In response to createAndRouteCallLegReq and routeReq if the Original Destination Address is present there shall be 
a map of the redirecting address to the Diversion header being added to the SIP INVITE. 
As the INVITE request may contain information about the first and subsequent redirections  
the Original Destination Address, when present, should be used to set the bottom-most Diversion header to present the 
original called address (if not already inserted here). 

Redirecting address: 
How to map the presence of field REDIRECTING_ADDRESS in appInfo in response to createAndRouteCallLegReq 
and routeReq. This field contains the address of the user from which the call is redirected /diverted 

Here the top-most Diversion header is to be used to set the Redirecting address.  

reply to Q2:  

Information regarding why the call request was diverted is given by filling in the "reason" tag into the Diversion header 
(by the OSA SCS). Here a default value "unknown" is recommended as "diversion-reason". 

NOTE 1: Currently there is no MPCCS API support allowing the application to indicate "diversion-reason". The 
diversion-reason should be used to set the Redirecting Reason corresponding to the associated redirecting 
addressinserted into the SIP Diversion header field.  

NOTE 2: A Diversion header is added when features such as call forwarding change the Request-URI. 
The proposal herein is in alignment with how redirection numbers are mapped between ISUP and SIP. 



 

ETSI 

ETSI TR 129 998-4-4 V5.0.3 (2004-06) 1013GPP TR 29.998-04-4 version 5.0.3 Release 5 

Toward caller:  
To make the call visible as a forwarded call in the network the provisional response 181  ""CCaallll  IIss  BBeeiinngg  FFoorrwwaarrddeedd 
"should be sent upstream by the SIP proxy (e.g. the OSA SCS gateway). This response is to indicate to the caller that 
the call is being forwarded to a different (set of) destination(s).  

targetAddress : 
The targetAddress received in createAndRouteCallLegReq and routeReq should be included in the 181 provisional 
response as to enable the presentation of the "forwarded to" address to the caller, i.e. the current destination address. 
redirected address. 

NOTE 3: If the call is a call redirection, i.e. the appInfo should include at least one of the fields: 
ORIGINAL_DESTINATION_ADDRESS and/or REDIRECTING_ADDRESS as to identify the routing 
request to be a request for a call redirection. In this case the OSA SCS should store the targetAddress as 
to enable the application to use getCurrentDestinationAddress to read the address where the call was 
directed to. This address is also to be sent upstream in a 181 provisional response to enable previous 
invoked applications as well as the caller to be notified. 

NOTE 4: A previous invoked application (further upstream) should then be notified of the call being forwarded if it 
has subscribed to the event CALL_EVENT_REDIRECTED including the redirected address 
(forwardAddress). 

NOTE 5: The redirected address (i.e. the current address of the termination point) is to be stored in the OSA SCS so 
that the application can request this information anytime with the getCurrentDestinationAddress. 



 

ETSI 

ETSI TR 129 998-4-4 V5.0.3 (2004-06) 1023GPP TR 29.998-04-4 version 5.0.3 Release 5 

Annex D: 
Change history 

Change history 
Date TSG # TSG Doc. CR Rev Subject/Comment Old New 
April 2002 -- -- -- -- Draft v100 submitted to TSG CN email list for Information -- 1.0.0 
Jun 2002 CN_16 NP-020197 -- -- Draft v200 submitted to TSG CN#16 for Approval 2.0.0 5.0.0 
Mar 2004 -- -- -- -- Updated references to IETF ([14], [16]) 5.0.0 5.0.1 
Apr 2004 -- -- -- -- Updated reference [16]. Reason: RFC# allocated by IETF (Musa). 5.0.1 5.0.2 
Jun 2004 -- -- -- -- Updated reference [16]. Reason: RFC agreed by IETF (John-Luc) 5.0.2 5.0.3 
        
        
        

 



 

ETSI 

ETSI TR 129 998-4-4 V5.0.3 (2004-06) 1033GPP TR 29.998-04-4 version 5.0.3 Release 5 

History 

Document history 

V5.0.0 June 2002 Publication (Withdrawn) 

V5.0.2 April 2004 Publication (Withdrawn) 

V5.0.3 June 2004 Publication 

   

   

 


	Intellectual Property Rights
	Foreword
	Foreword
	Introduction
	1 Scope
	2 References
	3 Definitions and abbreviations
	3.1 Definitions
	3.2 Abbreviations

	4 Mapping OSA Call and Call Leg to SIP
	4.1 Introduction
	4.2 SIP Call-id &dialog vs. OSA Call & Call Leg Session ID
	4.2.1 OSA Call and SIP Dialogue Correlation Tables


	5 Multi Party Call Control Flows
	5.1 Call Manager Service Interface
	5.1.1 CreateCall
	5.1.2 CreateNotification
	5.1.3 changeNotification
	5.1.4 destroyNotification
	5.1.5 getNotification
	5.1.6 setCallLoadControl

	5.2 Call Manager Application Interface
	5.2.1 managerInterrupted
	5.2.2 managerResumed
	5.2.3 reportNotification
	5.2.4 callAborted
	5.2.5 callOverloadEncountered
	5.2.6 callOverloadCeased

	5.3 Multi-Party Call Service Interface
	5.3.1 GetCallLegs
	5.3.2 createCallLeg
	5.3.3 createAndRouteCallLegReq
	5.3.4 release
	5.3.5 deassignCall
	5.3.6 getInfoReq
	5.3.7 superviseReq
	5.3.8 setAdviceOfCharge
	5.3.9 SetChargePlan

	5.4 Multi-Party Call Application Interface
	5.4.1 createAndRouteCallLegErr
	5.4.2 callEnded
	5.4.3 getInfoRes
	5.4.4 getInfoErr
	5.4.5 superviseErr
	5.4.6 superviseRes

	5.5 CallLeg Service Interface
	5.5.1 routeReq
	5.5.1.1 Case 1 UA mode operation
	5.5.1.2 Case 2 Proxy mode operation

	5.5.2 eventReportReq
	5.5.3 release
	5.5.4 getInfoReq
	5.5.5 getCall
	5.5.6 continueProcessing
	5.5.7 attachMediaReq
	5.5.8 detachMediaReq
	5.5.9 deassign
	5.5.10 getCurrentDestinationAddress

	5.6 CallLeg Application Interface
	5.6.1 routeErr
	5.6.2 eventReportRes
	5.6.3 eventReportErr
	5.6.4 callLegEnded
	5.6.5 getInfoRes
	5.6.6 getInfoErr
	5.6.7 superviseErr
	5.6.8 superviseRes
	5.6.9 attachMediaErr
	5.6.10 attachMediaRes
	5.6.11 detachMediaErr
	5.6.12 detachMediaRes


	6 Detailed parameter mappings
	6.1 TpAdditionalCallEventCriteria
	6.2 TpAddress
	6.3 TpAddressRange
	6.4 TpCallAppInfo
	6.5 TpCallError
	6.6 TpCallErrorType
	6.7 TpCallEventInfo
	6.8 TpCallEventRequest
	6.9 TpCallEventType
	6.10 TpCallInfoType
	6.11 TpCallLegInfoType
	6.12 TpCallLegConnectionProperties
	6.13 TpCallMonitorMode
	6.14 TpCallNotificationReportScope
	6.15 TpCallNotifiationRequest
	6.16 TpCallTreatmentType
	6.17 TpReleaseCause, mapping to SIP response
	6.18 TpReleaseCause, mapping from SIP
	6.19 TpAoCInfo
	6.20 TpAoCOrder

	Annex A: Introduction to API Mapping for OSA MPCCS
	A.1 OSA Service Provision for MPCCS in IMS
	A.2 MPCCS
	A.2.1 Introduction
	A.2.2 SIP Server Roles in OSA SCS
	A.2.2.1 Introduction
	A.2.2.2 OSA SCS acting as a SIP Proxy server
	A.2.2.3 OSA SCS acting as Redirect server
	A.2.2.4 OSA SCS acting as UA
	A.2.2.5 OSA SCS acting as a B2BUA
	A.2.2.6 OSA SCS acting as a 3rd Party Controller

	A.2.3 SIP Server Role Mode Transitions


	Annex B: SDP in SIP at application controlled calls for OSA MPCCS API
	B.1 Introduction
	B.2 OSA SCS and Application based Call and Media Control
	B.3 Example OSA SCS Application initiated One-Party Call
	B.4 Example OSA SCS Application initiated Two-Party Call
	B.5 Example OSA SCS control of User initiated Two-Party Call
	B.6 Example OSA SCS control of User initiated Two-Party Call with announcement
	B.7 Example OSA SCS Application initiated Multi-Party Call

	Annex C: OSA call forwarding presentation
	C.1 Introduction
	C.2 Call Forwarding presentation in OSA: mapping to SIP

	Annex D: Change history
	History

