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Intellectual Property Rights

Essential patents

IPRs essential or potentially essential to normative deliverables may have been declared to ETSI. The information
pertaining to these essential |PRs, if any, ispublicly available for ETSI member s and non-member s, and can be found
in ETSI SR 000 314: "Intellectual Property Rights (IPRs); Essential, or potentially Essential, IPRs notified to ETS in
respect of ETS standards', which is available from the ETSI Secretariat. Latest updates are available on the ETSI Web
server (https://ipr.etsi.org/).

Pursuant to the ETSI IPR Policy, no investigation, including I PR searches, has been carried out by ETSI. No guarantee
can be given asto the existence of other IPRs not referenced in ETSI SR 000 314 (or the updates on the ETSI Web
server) which are, or may be, or may become, essential to the present document.

Trademarks

The present document may include trademarks and/or tradenames which are asserted and/or registered by their owners.
ETSI claims no ownership of these except for any which are indicated as being the property of ETSI, and conveys no
right to use or reproduce any trademark and/or tradename. Mention of those trademarks in the present document does
not constitute an endorsement by ETSI of products, services or organizations associated with those trademarks.

Foreword

This Technical Report (TR) has been produced by ETSI Technical Committee Smart Machine-to-Machine
communications (SmartM2M).

Modal verbs terminology

In the present document "should", "should not", "may", "need not", "will", "will not", "can" and "cannot" areto be
interpreted as described in clause 3.2 of the ETSI Drafting Rules (Verbal forms for the expression of provisions).

"must” and "must not" are NOT alowed in ETSI deliverables except when used in direct citation.

Introduction

In addition to interoperability and security that are two recognized key enablers to the development of large 10T
systems, a new one is emerging as another key condition of success: virtualization. The deployment of 10T systems will
occur not just within closed and secure administrative domains but also over architectures that support the dynamic
usage of resources that are provided by virtualization techniques over cloud back-ends.

This new challenge for 10T requires that the elements of an IoT system can work in afully interoperable, secure and
dynamically configurable manner with other elements (devices, gateways, storage, etc.) that are deployed in different
operational and contractual conditions. To this extent, the current architectures of 10T will have to be aligned with those
that support the deployment of cloud-based systems (private, public, etc.).

Moreover, these architectures will have to support very diverse and often stringent non-functional requirements such as
scalability, reliability, fault tolerance, massive data, security. Thiswill require very flexible architectures for the
elements (e.g. the application servers) that will support the virtualized 10T services, as well as very efficient and highly
modular implementations that will make a massive usage of Open Source components.

These architectures and these implementations form a new approach to 0T systems and the solutions that the present
document investigates also should be validated: to this extent, a Proof-of-Concept implementation involving a massive
number of virtualized elements has been made.

ETSI


https://ipr.etsi.org/
https://portal.etsi.org/Services/editHelp!/Howtostart/ETSIDraftingRules.aspx

7 ETSI TR 103 527 V1.1.1 (2018-07)

The present document is one of three Technical Reports addressing this issue:

. ETSI TR 103 527 (the present document): "Virtualized 10T Architectures with Cloud Back-ends" (the present
document);

o ETSI TR 103 528 [i.1]: "Landscape for open source and standards for cloud native software for a Virtualized
loT service layer";

. ETSI TR 103 529 [i.2]: "Virtualized loT over Cloud back-ends: A Proof of Concept”.

ETSI



8 ETSI TR 103 527 V1.1.1 (2018-07)

1 Scope

The present document:

. makes a description of some use cases that benefit from virtualization and outlines which one will be used for
the Proof-of-Concept that is described in depthin ETSI TR 103 529 [i.2];

. addresses the rationale and requirements for the use of virtualization - and of the cloud in general - in support
of 10T systems. It also introduces some features that will be key for the definition and further implementation
of virtualized 0T systems such as microservices;

. provides the identification of new architectural elements (components, mappings, Application Programming
Interfaces (API), etc.) that are required to address 10T on a cloud back-end. In particular, one objective of the
present document is to describe how current 10T nodes e.g. the oneM2M CSE, can be modified and improved
by the introduction of micro-services.

2 References

2.1 Normative references

Normative references are not applicable in the present document.

2.2 Informative references

References are either specific (identified by date of publication and/or edition number or version number) or non-
specific. For specific references, only the cited version applies. For non-specific references, the latest version of the
referenced document (including any amendments) applies.

NOTE: While any hyperlinksincluded in this clause were valid at the time of publication, ETSI cannot guarantee
their long-term validity.

The following referenced documents are not necessary for the application of the present document but they assist the
user with regard to a particular subject area.

[i.1] ETSI TR 103 528: "SmartM2M; Landscape for open source and standards for cloud native
software applicable for aVirtualized 10T service layer", 2018.

[i.2] ETSlI TR 103 529: "SmartM2M; 10T over Cloud back-ends: a Proof of Concept”, 2018.

[i.3] ITU-T News: "What is ‘cloud-native 10T" and why does it matter?’, October 2017.

NOTE: Available at http://news.itu.int/what-is-cloud-native-iot-why-does-it-matter/.

[i.4] Amazon Web Services: "What is Auto-scaling”.

NOTE: Available at http://docs.aws.amazon.com/autoscaling/| atest/userquide/\Whatl sAutoScaling.html.

[i.5] Regulation (EU) 2016/679 of the European Parliament and of the Council of 27 April 2016 on the
protection of natural persons with regard to the processing of personal data and on the free
movement of such data, and repealing Directive 95/46/EC (General Data Protection Regulation).

NOTE: Available at https://eur-lex.europa.eu/legal -content/EN/AL L/?uri=cel ex%3A 32016R0679.

[i.6] Deloitte: "Data Privacy in the cloud", 2016.

NOTE: Available at https://www?2.del oitte.com/content/dam/Del oitte/calDocuments/risk/ca-en-risk-privacy-in-
the-cloud-pov.PDF.

[i.7] ETSI TS118 101 (V2.10.0): "oneM2M; Functional Architecture (oneM2M TS-0001
version 2.10.0 Release 2)".
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[1.8] Recommendation ITU-T Y.3600: "Big data - Cloud computing-based requirements and
capabilities’, 2015.
[i.9] ETSI GSNFV 002: "Network Functions Virtualisation (NFV); Architectural Framework”.
[i.10] ETSI GS NFV-INF 001: "Network Functions Virtualisation (NFV); Infrastructure Overview".
3 Definitions and abbreviations

3.1 Definitions

For the purposes of the present document, the following terms and definitions apply:
Open Sour ce Software (OSS): computer software that is available in source code form

NOTE: The source code and certain other rights normally reserved for copyright holders are provided under an
open-source license that permits usersto study, change, improve and at times also to distribute the
software.

source code: any collection of computer instructions written using some human-readable computer language, usually as
text

standard: output from an SSO

Standards Setting Organization (SSO): any entity whose primary activities are developing, coordinating,
promulgating, revising, amending, reissuing, interpreting or otherwise maintaining standards that address the interests
of awide base of_users outside the standards devel opment organization

NOTE: Inthe present document, SSO is used equally for both Standards Setting Organization or Standards
Developing Organization (SDO).

3.2 Abbreviations

For the purposes of the present document, the following abbreviations apply:

AE Application Entity (in oneM2M)
AMQP Advanced Message Queuing Protocol
API Application Programming Interface
ARM Acorn RISC Machine architecture
BCP Best Common Practices

CAPEX Capital Expenditure

CEP Complex Event Processing

CoAP Constrained Application Protocol

CPU Central Processing Unit

CsC Cloud Service Customer

CSE Common Services Entity (in oneM2M)
CSF Common Service Function

CsP Cloud Service Provider

DDoS Distributed Denial of Service

EU European Union

GDPR Global Data Protection Regulation
HLA High Level Architecture

HTTP HyperText Transfer Protocol

laaS Infrastructure as a Service

IAM | dentity and Access Management

ICT Information and Communication Technology
loT Internet of Things

IP Internet Protocol

IPC I nter-Process Communication

IPE Interworking Proxy Entity (in oneM2M)
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ISG Industry Specification Group

IT Information Technology

MANO MANagement and Organization (in NFV)

MQTT Message Queuing Telemetry Transport

NFV Network Function Virtualisation

NFVI NFV Infrastructure

ONAP Open Network Automation Platform

OsM Open Source Mano (in ETSI)

0ss Open Source Software

PaaS Platform as a Service

PoC Proof-of-Concept

PoP Point of Presence

SaaS Software as a Service

SDO Standards Devel opment Organization

SE Service Entity (in oneM2M)

SPOF Single Point Of Failure

SSO Standards Setting Organization

ucC Use Case

URI Uniform Resource Identifier

VM Virtual Machine

VNF Virtualized Network Function
4 Rationale for 10T Virtualization
4.1 loT: towards massive deployments

The focus of 10T in the recent years has been on connecting devices and applications. To this extent, a number of
standards, frameworks, solutions have been developed. Now that the maturation of the industry is progressing rapidly,
loT isfacing to mgjor challenges.

On the one hand, connected devices as well as applications have to be integrated with existing, evolving or entirely new
business processes: this creates the need for very adaptive frameworks that offer the possibility to easily introduce new
applications and to ensure that they are properly connected to the existing enterprise systems, and to process enormous
quantity of data.

One the other hand, I0T systems are transitioning from proof-of-concept deployments or new projects with limited size
and scope towards full-fledge systems. These new systems may require extremely high numbers of connected devices
(thus generating needs for scalability or deployment automation) as well as stringent non-functional requirements (such
as low latency).

In both cases, new |oT systems will require a high degree of availability, adaptability and flexibility. In particular, the
resources used by those systems may have to be very dynamic, both in terms of configuration and run-time flexibility.
The models provided by Cloud Computing, which have been designed upfront with these two requirements in mind,
seem very attractive in this context.

4.2 Cloud Computing and Virtualization

Cloud computing is alowing the provision of very sophisticated capabilities; for computing, storage, analytics, etc.; to
very dynamic and potentially massive number of users. Those capabilities are provided as services
(Platform-as-a-Service, Infrastructure-as-a-Service; Software-as-a-Service; etc.) that provides functional and also non-
functional support (e.g. low latency fault-tolerance, horizontal scalability, cost-optimization, or geo-optimization
together with Service Level Agreements (SLAS), and security.

The technical capabilities of cloud computing technology made it possible to provide the most demanding information
and communication technology (ICT) infrastructures, such as communication networks, from specialized hardware and
software to new software paradigms, referred to as ‘cloud-native'.
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Figure 1: Options for adoption of Cloud Native solutions
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The expectation of Cloud-Native applicationsisto benefit from offerings from Cloud Service Providers (CSP) that may
cover partsor al of the layers of Virtualized application, via Infrastructure as a Service (laaS), Platform as a Service
(PaaS) or Software as a Service (SaaS). Figure 1 presents the possible usages of such offeringsin delegating more and
more important parts of the underlying layersto athird-party in charge of hiding complexity, resource usage, etc.

4.3 The new challenge: combining IoT and Cloud Computing

TheloT industry starts to understand the potential benefits of combining the strengths of both 10T and Cloud industries
in anew value proposition (see [i.3] for example). |oT virtuaization - i.e. 10T built on cloud-native principles - isto loT
platforms as what Network Function Virtualisation (NFV) is to communication networks.

When applied to 10T, virtualization is expected to provide technical benefits such as more flexibility on assigning loT
virtualized objects and functions to physical resources. Moreover, virtualization should bring as well financial benefits
(e.g. greater CAPEX efficiency) or operational benefits (e.g. improvement of automation and operating procedures)
atogether resulting in boosted service innovation.

The scope of 10T standards and protocols has so far focused on interface specifications and related data models.
Developing 10T platforms that use cloud-native principles will benefit from guidelines and Best Common Practices
(BCP) in building operational grade IT applications using cloud technologies.

The convergence of cloud and 10T is of major important to those (e.g. architects) aiming at building 10T solutions that
can dynamically reach massive scale in support of large 10T deployments, e.g. in Smart Cities. It is of great importance
for technical actors of 10T to benefit from guidelines for |oT virtualization, in particular regarding the 'containerisation'
of 10T applications.

4.4 Content of the report

Clause 5 provides a number of Use Cases (UC) that could benefit from virtualization of 10T. Each UC is described from
afunctional standpoint, together with the expectations towards virtualization. Finally, one UC is highlighted since it is
the one that will be selected for implementation (asit is described in ETSI TR 103 529 [i.2]).

Clause 6 of the present document presents the Cloud Computing features that are relevant in the context of 10T
Virtualization. First, some functional requirements are introduced that correspond to specific functionalities that are
(better) supported by Virtualization. Similarly, some non-functional requirements are presented that are expected to be
specially supported through Virtualization. Finaly, two key features that will play akey role in architectures and
implementations: microservices and inter-process communications.

Clause 7 investigates the main dimensions that will be addressed in order to define layered architectures supported by
microservices. A reference model for such an architecture isintroduced that also serves as a basis for the description of
the ""Landscape of Open Source and Standards' that is developed in ETSI TR 103 528 [i.1].

ETSI
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Clause 8 summarizes the main finding of the present document and provides a set of recommendations for architects
and developersin charge of potential 10T virtualization projects.

Annex A is addressing the relationship of 10T with Big Data and, in particular, regarding the question of Data Quality
and some potential solutions.

5 Some use cases for IoT Virtualization

5.1 Introduction

This clause introduces a (limited) number of generic Use Cases (UCs) that areillustrative of the expected benefits and
potential challenges of 10T virtualization. Thereis probably alarge number of Use Cases for which a "traditional”

(i.e. non-virtualized) approach can and will apply. However, the introduction of 10T Virtualization is expected to make
some UCs more effective: it would generally improve the efficiency of their implementation or support interoperability
at amore fine-grained level (or both).

For the presentation of UCs, rather than present them based on the needs of a given business domain (akaa"vertical"),
the approach taken is to present the major features outlined by a class of applicationsin different "verticals'. The name
of the UC will refer to the magjor underlying feature involved (e.g. fault-tolerance, data privacy, etc.).

5.2 Horizontal up and down Auto-Scaling

The amount and type of data transmitted by 10T devices may vary drastically in time depending on some events that can
beinternal or external to the virtualized 10T system (e.g. road traffic increase during holiday departure).

A cloud-native 10T platform shall be able to continuously monitor its resources, scale-up its capabilities when needed,
then scale-down to an optimized state to avoid wasting resources. This capability is referred to as " Auto-Scaling" (see
[i.4] for example).

The main objective of Auto Scaling is to ensure that the number of Virtual Machine (VM) instances available for and
used by the virtualized application are optimal at a given time. Practically, a minimum number of VM instancesis
defined (lower threshold for the auto-scaling down) as well as a maximum number (upper threshold for the auto-scaling
up). When needed, additional VMs are added (with an increment that can be predefined), used as long as needed and
released when the usage is no longer needed.

ThisUC can beillustrated by a number of examples taken from various verticals:
o Intelligent Transport Systems with a sudden increase in traffic (e.g. vacations).
. Electrical (Smart) Grids with burst reconnection of 10T devices after a power cut.
. Smart Metering with burst transmission of intelligent meters data at given time slots.
. And many more, etc.
The benefits of Auto Scaling are largely related to the non-functional support it provides to the virtualized applications:

o Improved availability: the virtualized application has, at any time, the best adjusted capacity to deal with the
most complex and hard to predict traffic patterns.

. Improved fault tolerance: when an instance (or a group of) VM(s) does not function properly, Auto-Scaling
allowsto quickly terminate it and launch an adequate replacement.

. More effective cost management: thanks to the dynamic increase and decrease of the needed capacity, the
usage is constantly adjusted to reduce the consumption, hence the cost, of the computing resources.
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5.3 No single point of failure

Like every other ICT systems, |oT systems can be built with one or more Single Point(s) Of Failure (SPOF). A SPOF is
the results of aflaw in the design, implementation or configuration of the system. It introduces a potentially very high
risk since one fault or malfunction may cause the entire system to stop operating. As an example, |oT servers and
gateways can be a SPOF in an |oT system: in apoorly designed architecture, when a server or a gateway goes down,
critical functions may stop.

Preventing that catastrophic outcome is possible, aslong as the architects and designers can identify the SPOFs that
appear in the system's design and implement corrective measures - aslong as this is both feasible and cost-effective.
The techniques that make this possible are largely based on clustering and replication. In principle, such techniques are
supported by a cloud-native |0T architecture and supported by the major cloud infrastructure providers.

Consequently, the possibility of providing this kind of support will be a major support for alarge number of Use Cases
inavery large array of vertical domains. Some examples of such verticals and related UCs and related are shown
below:

. Health Care: remote patient examination, monitoring and surgery.

o Emergency Services:. alowing Emergency Management Teams to access patient records while on the road.
. Railway systems: improved signalling with reliable communications and better integration with system.

. And many more, etc.

Cloud Compuiting is often seen as away to avoid the single points of failure with built-in redundancy or clustering
services. It isimportant to note that Auto-Scaling is adding to the effectiveness of redundancy (by allowing to quickly
terminate malfunctioning VM s and launch an adequate replacement, as noted above) and is an important element in the
process of fixing the SPOFsin the cloud.

However, 10T Virtualization is not an absol ute panacea, in the sense that there are still SPOFs that may be associated to
the use of Cloud Computing resources. An example of such SPOF is a centralized (and not replicated) monitoring
function that may be compromised in case of malicious attack (e.g. DDoS). Similarly, the possibility of the failure of
one cloud provider is another example of SPOF. So, architects and developers of Virtualized |oT systems will still have
to ensure that all SPOFs are identified and corrected, but it is expected that their number will be lower than in
"traditional" (non-virtualized) 10T systems.

54 Data privacy

Potentially, a wide range of 10T applications are impacted by data privacy and the need for Data Protection. The amount
of datathat 0T devices can generate is enormous (with billions of data points created every day) and isleaving alot of
thisinformation vulnerable and susceptible to malicious usage (by hackers in the extreme case, but also by unauthorized
competitors).

loT virtualization is aso impacted by the question of data privacy. For instance, when a Cloud Service Provider (CSP)
isused, it isimportant to ensure that the data belonging to the Cloud Service Customer (CSC) iswell protected by the
CSP that provides the Cloud service used by the CSC. In general, the inability to address these problems may create a
lack of trust that, in turn, may reduce the consumers' appetite for purchasing connected products, and prevent the loT
from fulfilling its true potential.

The data privacy Use Case can be illustrated by a number of examples taken from various verticals:
. Electrical Smart Grids: collection of user data and anonymization.
e  Agriculture: exchange of data between equipment, private storage of field information (crop, etc.).
. Connected cars. security coming together with guaranteed privacy policies.

. And many more, etc.
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Thereliance of 10T systems on the use of data and the potential issues associated to its management (and protection)
have increased the need for ensuring that information is well protected by guaranteed safeguards with a good level of
transparency. The question of privacy is going to be shaped by the General Data Protection Regulation (GDPR [i.5])
that is about to enter in force in Europe. GDPR is harmonising the current data protection regulations across EU
member states, with strict data compliance stipulations and potential huge financia penalties for those when the rules
are breached.

GDPR isnot dealing specifically with Cloud Service Providers, but it hasimplications for organizations that use cloud
services to store data. As stated in[i.6], "[...], the adoption of cloud computing raises challenges in the face of new, and
often competing, privacy regulations across various jurisdictions, as well as evolving cybersecurity threats. For
example, organizations that rely on multiple cloud service providers may have little or no control over the movement of
their data through different data centres around the world. Smilarly, it is not always clear whether the data custodian
or the third-party service provider is accountable to protect the data, or which sets of data protection laws apply”.

GDPR will have a significant impact on the Cloud Computing industry, especially on Cloud Service Providers who will
have to provide a significantly higher level of transparency about the elements of their internal sub-structures that have
legal significance (e.g. vis-a-vis Third-Party subcontractors).

As such, the consequences of the introduction of GDPR [i.5] on the architectures of 10T systems are not yet fully
understood. At this stage, it is not clear yet whether or not virtualization (and the use of microservicesin particular) will
improve the way privacy is currently handled. An example of such questions is multi-tenancy: on the one hand,
virtualization can help by providing different |P addresses to access the data of different tenants (thus better protecting
one tenant's data against - potentially malevolent - access to data from other tenants) whereas, on the other hand, multi-
tenancy can be provided without separating the databases of two different tenants. Overall, the answer to the question
will depend on the architecture choices and, even more importantly, on the implementation. Altogether, though the
impact of GDPR is expected to be significant on 10T virtualization, it is probably too early to assess it, specially viaa
PoC.

5.5 The use case selected as a proof-of-concept

A Proof-of-concept (PoC) of 10T Virtualization isdeveloped in ETSI TR 103 529 [i.2]. This PoC is an implementation
of the "Horizontal Up and Down Auto-Scaling” Use Case described above.

The main reason for the choice of this UC isthat it demonstrates the feasibility of 10T Virtualization on a"red-life" Use
Case applicable to alarge number of "verticals'. Auto-Scaling has been seen, in the examples above, as a very critical
featurein virtualized 10T the PoC is also away to validate its applicability to 10T systems. In addition, it also makes
use of a great number of the Open Source Software components that are described in ETSI TR 103 528 [i.1].

It can be noted that the use of Auto-Scaling may not always be necessary in dealing with burst situations. However,
indications to developers on the concrete use of thistechnique in areal implementation is useful, and it is an additional
rational for its selection in the Proof-of-Concept (see ETSI TR 103 529 [i.2]).

Beyond the validation of the basic concepts that are implemented in the PoC (e.g. microservices based architecture,
layered architectural model), it isimportant to consider that - in a"real-life" implementation context - the auto-scaling
decision mechanism itself may be a differentiating factor, and therefore the possibility to implement Artificial
Intelligence-based "auto-scaling”. To this extent, though the "auto-scaling” featuresin the PoC are implemented with a
"traditional" a gorithmic approach where decisions are cal culated on the basis of (more or less) hard-coded rules, the
description of the PoC architecture makes room for the possible usage of:

. Monitoring functions that may allow human to use additional rules; or

o Artificia Intelligence systems (e.g. Q-learning) with more refined sets of rules.
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6 Cloud Computing features for IoT Virtualization

6.1 Introduction

There are many requirements to be filled to get afull-fledge 10T system. The 0T community has developed a very large
number of architectures, platforms, solutions and standards to deal with these requirements. The current clauseis not
going to address them extensively: it will rather focus on specific 10T requirements that can be effectively addressed by
Virtualization and on specific features of Cloud Computing that can benefit to 10T systems.

Some of the requirements identified are regarding the functionalities that the Virtualization of 10T is expected to bring.
In addition, a number of non-functional requirements (e.g. high availability) are described in details since they may be
those for which Virtualization may bring the most effective solutions.

The Virtualization of 10T will also make use of microservices, akey feature of Cloud Computing. Microservices have
been massively used in Cloud Computing in support of the implementation of open Cloud architectures. This clause
will introduce them as an element for the definition of virtualized 10T systems.

6.2 Functional requirements

6.2.1 Introduction

The functional requirements for 10T systems are extremely varied and most of them will apply to I0T Virtualization
unchanged. The purpose of this clauseisto address only a few of the functional requirements that are specific to loT
Virtualization.

6.2.2 Multi-tenancy

6.2.2.1 Definition

Multi-tenancy is an architecture principle that allows a single instance of a software application to serve multiple
customers. Within a multitenant architecture, a software application is designed to provide every customer with a
dedicated portion of the software instance including data, configuration, user management, etc. All multi-tenant
architectures work on the same principle: al customers will benefit from a given solution through a common
infrastructure. When all of customer datais handled using the same software resources, the architecture design should
be extremely rigorous and prevent from data leakage: client A will have no access to the data of the client B (and
vice-versa). Thisis essential requirement of multi-tenancy: the data models should be designed in order to be filterable
by aclient identifier.

A multitenant application architecture helps optimize the use of hardware, software, and human capital. Itsvalueis
related to resource usage optimization and therefore to cost reduction. An additional advantage of multitenant
applications is in software lifecycle management: the software upgrade of a given software instance can be done for any
customer of the tenant instead of being applied to all software for all customers.

6.2.2.2 Comparison with multi-instance architectures

The choice of multi tenancy vs. multi instance architecture depends on a number of criteria such as: cost, customer
expectations, extensibility needs, security challenges, etc. With the provision of multi-tenancy, configuration and
management of datais more complex since it hasto apply a specific method to prevent the leakage of data (using a
single database) between the tenants. A Multitenant application should be put in place carefully to avoid major
problems. For instance, it is very important to:

. separate the persistence of data from each tenant and its users,
. separate the configuration of each tenant;

. do not let the data pass between the tenants.
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6.2.3 Massive Data processing

InloT systems, high-volume and high-velocity datais produced, analysed, and used to trigger action. There are two
ways to process data: streaming data processing and batch data processing.

Under the streaming model, the processing is usualy done in real time. By building data streams, one can feed data into
analyticstools as soon asit is generated and get near-instant analytics results. Complex event processing (CEP) is used
for streaming data processing with the goal to identify significant events and respond fast.

Under the batch processing model, a set of datais collected over time, then fed into an analytics system. Batch
processing is most often used when dealing with extremely large amounts of data, and/or when data sources are legacy
systems that are not capable of delivering datain streams. Batch processing is adequate in situations where
non-real-time analytics results is needed, and when it is more important to process large volumes of information than to
get fast analytics results.

Figure 2: Batch and Streaming data processing

The management of huge amount of data is one of the challenges of Big Data, and the necessity to address
simultaneously the "4V" properties. Volume, Velocity, Variety and Veracity. 10T is one of the many domainsthat is
making use of Big Datais solutions, in particular when it comesto three first "V"s. The question of Veracity iskey in
loT and some solutions need to be provided to address specific issues of Data Quality. This point is addressed in
Annex A where some potential solutions are outlined regarding Fault Detection and | solation.

6.3 Non-functional requirements

6.3.1 High-throughput

High throughput isin general associated with the use of many and parallel computing capabilitiesto accomplish a
computational task. An efficient use of all available computing resourcesisthe key to achieving high throughput.
However, the quest for high throughput is not concerned about the number of operations per second, but rather by the
number of operations over alonger period of time, typically days or months. In essence, high throughput is more
interested in how many jobs can be completed over along period of time instead of how fast.

Some |oT applications require processing large data-sets and need to use cloud computing capabilities to be able to
process these data sets with a high throughput. For instance, in Industrial 10T, time series are generated very frequently
by a substantially large number of devices and processed using high-throughput capabilities. In other scenarios,
gateways generate alarge quantity of logs (not 10T data per se) which need to be processed at high throughput for the
purpose of e.g. preventive maintenance.
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There is no single technique to achieve high throughput. Messaging (as described in clause 6.4.2) combined with
parallelism provides an important enabler to high throughput.
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Figure 3: Achieving high throughput processing of data sets

Figure 3 depicts a producer of data, that needs processing which sends data sets using round robin strategy to multiple
broker instances. The processing servers are consumers of the brokers, they subscribe to a specific topic they need to
process. This figure shows how both processing and communication can be scaled horizontally in order to cope with
high data throughput.

6.3.2 High-availability

High-availability embodies the idea of accessto services, tools and data anywhere and at any time.

High-availability combines software with industry-standard hardware to minimize downtime by quickly restoring
essential services when a system, component, or application fails. While not instantaneoudly, services are restored
rapidly, often (and preferably) in less than a minute.

For highly-available applications, a service needs to be resilient to failures and able to restart on another machine. The
problems of failures (and the challenge for resiliency support) are observed during various scenarios, such as:

. Failures occurring when the machine where the service is running fails.
. Failures occurrence due to a service-internal hard problem.

. Failures occurring during an application upgrade. The running service should determine whether it can
continue to move forward to the newer version or to roll back to a previous stable version to maintain a
consistent state. In this case, one hasto consider the following points. are enough machines available to keep
moving service upgrade, and how to recover previous versions of the service.

The service should be designed so that the process can be restarted at any time with no data loss.

The easiest way to make a serviceresilient isto have multiple hosts running the service instance and managed by aload
balancer. The service consumers have no knowledge of whether there is one or multiple service instances. The load
balancer is capable of:

. Distributing requests between service instances based on algorithms (e.g. round-robin).
. Shutting down remote service instances when failures are detected.
. Adding service instances.

Running multiple service instances gives the capability to handle higher load and to avoid single point of failure.
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6.3.3 Low latency

6.3.3.1 Requirements

Low latency is essential to time-critical applications such as autonomous driving or industrial automation. This feature
should be supported by system architecture and design. However, there is no single mechanism to achieve low latency -
programmers and system architects need a toolbox so that they can mix-and-match tools to meet the different
requirements and traffic patterns associated with applications.

Examples of such tools include brokers capable of routing 10T application messagesin (near) real-time. Another
example is MapReduce which may make use of massive in-memory databases capable of meeting low-latency
requirements.

The use of Edge Computing allows to reduce network latency by moving computing resources closer to the field
domain where an action takes place.

6.3.3.2 MapReduce

MapReduce is a computer development architecture, invented by Google, in which parallel processing of large data sets
is performed over distributed computing resources with an objective to provide low latency to answer requests.

MapReduce allows to manipul ate large amounts of data by distributing them in a cluster of machines to be processed.
The terms "map" and "reduce”, and the underlying concepts, are borrowed from the functional programming languages
used for their construction (map and reduction of functional programming and table programming languages).

As the name MapReduce suggests, the "reduce" phase takes place after the completion of the "mapper" phase:

e  Thefirst step isthe mapping, where ablock of datais read and processed to produce key-value pairs as
intermediate outputs. The node analyses a problem, splitsit into sub-problems, and delegates them to other
(children) nodes (which can do the same recursively). The sub-problems are then processed by the different
nodes using the Map function.

e  The output of the Mapper or map job (key-value pairs) is an input to the Reducer.

. The Reducer receives the key-value pair from multiple map jobs. The children nodes return their results to the
parent node that solicited them. This calculates a partial result using the Reduce function which associates all
the corresponding values to the same key.

. Then, the Reducer aggregates those intermediate data tuples (intermediate key-value pair) into a smaller set of
tuples or key-value pairs which is the final output.

An important concept of MapReduce is that, instead of transferring data to the processing resource, the processing is
moved close to the data and only results are returned back.

Map Tasks Reduce Tasks

Figure 4: The MapReduce Concept
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Several frameworks have emerged to implement the MapReduce concept. The most famous one is Hadoop, which is
developed by the Apache Software Foundation.

6.3.3.3 In Memory Databases

In-Memory Databases use (in-)memory for data storage. Thisisin contrast to databases that use hard disks to store data.
Memory databases are faster than disk-based ones because disk accessis substantially faster, and internal optimization
algorithms are simpler to execute and require fewer CPU instructions.

In-Memory databases are gaining traction as memory costs are reducing. Application that increasingly require
in-memory databases are in particular those for which low latency is required. Examples include real-time data
analytics.

6.3.3.4 Edge Computing

loT Virtualization is expected to benefit from Cloud Computing technologies and solutions. However, there are some
limitations of Cloud Computing that hinder the fully effective implementation of some of the promising 0T
virtualization use cases (e.g. the "Horizontal up and down auto-scaling” use case discussed in clause 6.2).

Recently, Edge Computing has started to emerge as a new approach that may complement Cloud Computing in some
cases where the availability of computing resources closer to the devicesisrequired. The support of Edge Computing
can be seen as a way to support requirements related to low latency (faster computing), massive handling of data
(reduced amount of data transfer toward the core) or fault tolerance (replication of computing resources at the edge).

With Edge Computing, Cloud Computing is going through a fundamental shift in which the traditional model of
accessing highly centralized resourcesis replaced by a distributed, decentralized architecture. This new computing
paradigm brings the core building blocks of cloud (computing, storage and networking) closer to the consumers
(devices).

Though Edge Computing is still in the maturing phase, the support of Edge Computing will be a key requirement for a
very large range of 10T Virtualization use case and for the associated platforms. There are hundreds of use cases where
reaction time is the key value of the 10T system. The main goal of Edge Computing is to minimize latency by bringing
the public cloud capabilities to the edge, in contrast with "traditional” Cloud Computing where constantly sending the
data back to a centralized cloud increases latency.

The implementation of Edge Computing can be achieved by two approaches:
o Device Edge: custom software stack emulating the cloud services running on existing hardware.
. Cloud Edge: the public cloud seamlessly extended to multiple point-of-presence (PoP) locations.

Device Edge: Customersinstall and run Edge Computing software in existing environments. The hardware can be
dedicated or shared with other services. In many scenarios, the edge stack is run on low-powered devices running low
consumption processors (e.g. ARM). All the sensorstalk to the local edge device, which manages the connectivity with
the cloud.

Application Services

Device " h

Compute Storage Network

\ 4

Sensors & Applications Cloud Infrastructure

Figure 5: Device Edge

Figure 5 illustrates a device edge architecture. A specialized device is acting asthelocal 10T Gateway that mimics the
public cloud capabilities.

Microsoft Azure 10T Edgeis an example of device edge software. It attempts to bring device registry, device twins,
device communication, local storage and synchronization capabilities.
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Cloud Edge: It isan extension of the public cloud in a highly distributed form. Unlike device edge, cloud edgeis
owned and maintained by the public Cloud Service Provider. The cloud edge becomes a micro-zone, alogical extension
to the existing hierarchy of regions and zones. Micro-zones may extend public clouds to thousands of new locations,
enabling devel opers to keep applications as close as possible to consumers. With just a single hop to the data centre, the
latency involved in accessing traditional cloud platformsis dramatically reduced.

The concept of Cloud Edgeisillustrated in Figure 6.
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Figure 6: Cloud Edge

6.3.4 Security

Security isakey enabler (or, when not properly taken into account, aroadblock) of Cloud Computing. As stated in [i.6],
"Cloud computing systems can address security requirements such as authentication, authorization, availability,
confidentiality, non-repudiation, identity management, integrity, audit, security monitoring, incident response, and
security policy management”.

Security isaglobal requirement for every 10T system that impacts every layer of the system architecture (making it a
sort of "vertical" sub-system asit will be depicted below in clause 7) and every component of the system design, in
particular when security by design techniques are used, which is expected to be the case for emerging 10T systems that
are developed concurrently with the maturation of security-by-design.

loT virtualization does not reduce the importance of security requirements, nor the complexity of the implementation of
security across the components of the virtualized 10T system. In particular, Information Security (which broadly covers
the protection of the confidentiality, integrity and availability of information assets) isamajor challenge where Identity
and Access Management (IAM) is akey building block in any solution. IAM involves the management of individuals
and ICT resources in an organization and the definition and enforcement of policies for the authentication and resource
authorization. It involves a number of techniques amongst which the support for access control (including role-based
access control) isrequired for any effective and trustable implementation.

6.4 Features in support of virtualized 10T implementations

6.4.1 Microservices

6.4.1.1 Definition
In order to get the most of the integration of loT and Cloud Computing, the use of microservices should be considered.

Microservices are an architectural approach to devel oping applications as a set of small services, where each serviceis
running as a separate process, communicating through simple mechanisms.
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The advantages of a microservice-based architecture stem from its main feature, the decomposition of a service or an
application into many independent units (i.e. smaller component). As aresult, one can develop, deploy, upgrade and
scale every microservice independently of the others. This enables to use an optimal amount of resources and to make
microservice-based architectures a natural fit for achieving both scalability and elasticity. Developing microservices
separately enables the use of different technologies for each microservice. Possible example of microservicesin the
context of 10T include: communication with 10T devices, protocol adaptation, data processing, communication with
databases and visualization.

6.4.1.2 Comparison to monolithic architectures

The advantages of microservices architecture are best identified when compared to the traditional "monolithic"
architectures. A monolithic application has all of its components packed together. For instance, monolithic loT
applications may include the whole computing logic for communication with 10T devices; processing of devices data;
potential communication with databases and visualization, packaged in asingle logical executable. Monolithic 10T
applications may become so large that managing them - and moreover updating them - can become extremely complex.

While errorsin monolithic 10T applications may be really expensive as they cause the whole application to crash, errors
in microservices applications cause only the corresponding microservice to collapse. This means that the
microservices-based application is still running, and only the specific functionality implemented by the microserviceis
unavailable. The importance of this behaviour is even more apparent in 10T applications. For instance, if amicroservice
which communicates with a certain group of sensors crashes, that will not affect or stop the processing of the data
provided by microservices which communicate with other sensors. The other components of the application will still be
up and running.

6.4.1.3 Impact on IoT solutions

Microservices architecture have emerged in the recent years and consequently are not fully generalized with universally
adopted devel opment principles. However, most of the microservices applications share the same characteristics. In
general, the microservices architecture is adaptable to the requirements of 10T applications.

When developing applications, it is a good practice to break down the application into several components. The
microservices architecture tends to componentize a project into services, where each serviceisrunning in its own
separate process. Thereby, each microservice can be deployed and scaled independently. The componentization into
microservices allows to address the problem of the vast heterogeneity of 10T devices. It is possible to have distinctive
microservices for devices that communicate using different protocols. These microservices might act as a proxy. The
problem of adding new devices which communicate using a non-supported protocol is usually resolved by adding a
microservice acting as a proxy between protocols.

Another advantage of microservices is regarding the programming languages. Monolithic applications are usually
written in one programming language, and the use of different languages is possible but often brings additional
problems. On the other hand, microservices enable a decentralized approach that encourages developersto write
different microservices using different technologies. This characteristic is especialy helpful to 10T applications. For
instance, it enables the use of technology for communication with devices different from the one used for data
processing, or the one used for visualization as well. Microservices enable all of the technologies to be integrated
without having to worry about compatibility issues.

6.4.1.4 Scaling microservices

The microservices architecture brings more freedom for deployment and management of applicationsin cloud
infrastructures. In order for an application to be elastic, one will ensure that every microservice uses an optima amount
of resources. For scaling of microservices, both Infrastructure as a Service (laaS) and Platform as a Service (PaaS) can
be used. In particular, PaaS environments are very suitable for microservice-based applications. they offer a platform,
which isresponsible for low-level operations like management of virtual machines, application deployment, load
balancing, etc. Altogether, PaaS supports an easier management of applications by enabling the designers and
developersto focus on the 10T features and not on the low-level part of the application. On the contrary, PaaSis not
supporting monolithic applications where devel opers also have to take care of the configuration and management of the
application.
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6.4.1.5 Providing persistency for microservices

Microservices persistence means persistence database tables and event streams, in addition to traditional files. In
microservice-based architectures, the approach to persistence is different:

. The operational state is not stored in files but in a database table, typically one that is dedicated to the
microservice (to accomplish the isolation of duties). The complete state of an application at agiventimeis
distributed across its stores: it is the collective state of what has been read from the input stream, what has
been stored in the operational database, and what has been sent to the output stream.

. The units of work are no longer transactions but events, typically received via a publish/subscribe channel by
upstream microservices.

e  Theapplication history (logs, metrics) is still produced and has to be persisted somewhere for monitoring.
Logs are usually saved to afile, and metrics to a stream.

Using a database per service has the following benefits:

. it helps ensure that the services are loosely coupled. Changes to one service's database does not impact any
other services,

. each service can use the type of database that is best suited to its needs. For example, a service that does text
searches could use ElasticSearch. A service that manipulates a socia graph could use Neo4j;

and the following drawbacks:
. Implementing business transactions that span multiple servicesis not straightforward.
o Implementing queries that join data that is now in multiple databases is challenging.

In the following paragraphs, some current approaches to sharing data in microservices architecture is presented together
with their advantages and disadvantages: Shared database; Dedicated microservice; and Event/subscription.

Shared database

To avoid concurrency and inconsistency problem of shared data across databases, there are essentially two approaches:
transactions and eventual consistency.

Transactions are mechanisms that allow database clients to make sure a series of changes either happen or not. In other
words, transactions allow us to guarantee consistency. In the world of distributed systems, there are distributed
transactions. There are different ways of implementing distributed transactions, but in general, there is atransaction
manager that will be notified when a client wants to start a transaction. The downside to this approach is that scaling is
usually harder. Transactions are useful in the context of small or quick changes.

Eventual consistency deals with the problem of distributed data by allowing inconsistencies for atime. In other words,
systems that rely on eventual consistency assume the data will be in an inconsistent state at some point and handle the
situation by postponing the operation, using the data as-is, or ignoring certain pieces of data. Eventual consistency
systems are easier to reason about but not all data models or operations fit its semantics. Eventual consistency is useful
in the context of big volumes of data.

Dedicated microservice

In this approach, a new microservice is devel oped to manage a shared database rather than allowing the microservices
to access the database directly. This microservice manages all access to the shared data by the other services. By having
acommon entry point it is easier to reason about changesin various places. For small volumes of data, this can be a
good option as long as the new microservice is the only one managing the data.

Event/Subscription model

In this approach, rather than allowing each service to fetch directly the data, services that make changes to data or that
generate data allow other services to subscribe to events. When these events take place, the services that have
subscribed receive the notification and make use of the information contained in the event. This meansthat, at no point,
amicroservice may be reading data that has been modified by other microservices. The simplicity of this approach
makes it a powerful solution to many use cases. However, there are downsides: a set of events will be integrated into the
data generating microservice and losing events becomes a possihility.
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6.4.1.6 Security for microservices

Theintroduction of microservicesin virtualized |oT architectures has also an impact on their security architecture.
When an architecture isimplemented as a number of interacting microservices, the protection of the microservices
themselves and of the inter-services communication mechanismsis an essential requirement.

One effective way to secure amicroservice isto secureits API. A secure API to a microservice can guarantee the
confidentiality of the information it processes, by making it visible only to the users, applications and servers that are
authorized to consumeit. It should be able to guarantee the integrity of the information it receives from the clients and
serversit collaborates with, so that it will only process such information if it knows that it has not been modified by a
third party. The ability to identify the calling systems and their end-usersis a prerequisite to guarantee those security
qualities.

6.4.2 Inter-Process Communication (IPC) in microservices architecture

6.4.2.1 Communication Mechanisms

When selecting an I|PC mechanism for a service, it is useful to think first about how services interact. There are a
variety of interaction styles which can be categorized along two dimensions. The first dimension is whether the
interaction is onezito@one where each client request is processed by exactly one service instance or oneztoamany
where each request is processed by several service instances. The second dimension is whether the interaction is
synchronous where the client expects atimely response from the service, or asynchr onous where the client does not
block while waiting for aresponse, that is not necessarily sent immediately.

6.4.2.2 Synchronous IPC communications: RESTful communication

Microse rvlce
4

/

- Mmmce ‘

— REST Request

REST Response

1

Figure 7: RESTful IPC

In synchronous communications, a call is made to a remote service which blocks until the operation is achieved. With
synchronous communication, one knows when reguests have been fulfilled successfully or not. The synchronous
communication mode enables request/ response collaboration style, where a client initiates a request and waits for the
response.

A popular architectural style for request/response communication is REST. RESTful microservices, as shown in
Figure 7, communicate directly and synchronously with each other, without the need for any additional infrastructure.
RESTful communications are based on HTTP verbs like GET, POST and PUT. An important concept for RESTful
collaboration is resources. A resource can be thought of as a thing that the service knows about, for example an order.
A service manages the representation of this order on requests (creating different representation, updating, deleting,
etc.). It should be noted that REST is independent of the underlying protocol and can be implemented using several
ones such asHTTP, CoAP, etc.
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6.4.2.3 Asynchronous IPC communications: Messaging

Asynchronous communication is suitable for long-running jobs, where constantly maintaining the connection between
the service and the client is not feasible. It is also useful when low latency is required. Asynchronous communications
invert the approach: a client does not request for something to be done, but instead says that something happened and
waits for other servicesto react.

In an asynchronous messaging-based system (as depicted in Figure 8), both input and output from services are defined
as events. Each service subscribes to the events that it isinterested in consuming, and then receives these events reliably
when the events are placed on the queue by other services.

ik 2 4

Message broker

1

.
5 3 6

— Event Message

Figure 8: Asynchronous Messaging IPC
This publish/subscribe system is implemented by a message bus (in a message broker). The message bus can be
designed as a middleware, with the API needed to subscribe or unsubscribe to events and to publish events. Different
message bus implementations are available and each implementation will determine which protocol to use for

event-driven, message-based communications. For instance, the AMQP protocol has proven that it can achievereliable
queued communication.

6.4.2.4 Hybrid IPC communications

With hybrid IPC style, each service typically uses a combination of synchronous and asynchronous interaction styles (as
shown in Figure 9). For some services, asingle IPC mechanism is sufficient. Other services might need to use a

combination of |PC mechanisms.
—
1 2 4

Message broker
REST Response

Microservice - Microservice Microservice
3 5 6
_ Event Message

Figure 9: Hybrid IPC communications

— REST Request
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7 Implications of 10T virtualization

7.1 Introduction

This clause is addressing the consequences of the introduction of virtualization in 10T systems on their architecture and
design. Mainly two major impacts have to be noticed:

. On the one hand, 10T system architectures based on microservices should be able to support the split of
monolithic servicesinto a (potentially significant) number of microservices that are able to evolve relatively
independently from each other and to communicate in a safe, secure and efficient manner. To this extent, a
microservices architecture is a key element. One such architecture is described below.

. On the other hand, the possibility to split an architecture into microservices that can be implemented by
separate components (and in particular by Open Source Software components) does not mean that the resulting
architecture be largely unstructured. Actually, the possibility to define architectural layers and group themina
High-Level Architecture (HLA) for 10T virtualization may allow for the most effective selection and
combination of such components.

7.2 Microservices for 10T Virtualization

7.2.1 Microservices Architecture

Figure 10 describes a Microservices Architecture for 10T systems. Each microservice handles an 10T service logic.

Data st Subscription Cloud applications Authentication and
el notification APls Authorisation

Message broker

Field dlevice Reque;:rt1 g:c;iessmg Device
protocol (HTTP, . . management
CoAP, MQTT, etc.) orchestration Logic

I _ REST Request

REST Response

@ pyent Message

Protocol
adaptation
(IPE)

Figure 10: Microservices Architecture for 0T Virtualization

The following microservices are considered:
. Protocol adaptation

This entity plays the role of an Interworking Proxy Entity which enable seamless communication for legacy
devices such as Zigbee, Phidgets, and many other technol ogies with by performing mapping/converting
operations.
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. Field device protocol

This service provides a point of contact for communication between users and the system using several
applications protocols. It makes use of existing network connectivity and manages all security aspects for
secure session establishment and teardown. For each protocol, afield device protocol microserviceis
provided.

o Request processing and |oT orchestration logic

This service provides a protocol independent service for handling users requests. It is also responsible of the
coordination between the microservices.

. Device Management

This service provides functions pertaining to device/gateway life cycle management, such as software and
firmware upgrade and provides mechanisms for fault and performance management.

. Data Storage

This service ensures the persistence of the system by storing information related to 10T applications and
microservices states.

. Authentication and Authorization

This service implements authentication, authorization, and key management functions to establish secure
communication between cloud applications and the system.

. Subscription notification

This service defines the set of procedures allowing an application to subscribe and be notified when specific
subscription criteria are matched.

. Cloud application APIs

This service implements bootstrapping, authentication, authorization, and key management functions to
establish secure communication between cloud applications and the system.

Asshown in Figure 10, a hybrid Inter-Process Communication (IPC) architecture is deployed: a message broker isin
charge of handling communication between microservices: high decoupling and RESTful communication between
microservices is supported, in order to minimize microservices communication processing when needed.

7.2.2 The Microservices Architecture in practice: an example
Figure 11 provides an example of message flow explaining how microservices could be used for processing incoming

requests from field devices or gateways. For simplicity, the message broker is not shown in thisfigure, but it is assumed
all flows apart from 1 and 6 would take place using the broker.
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1. Incoming request
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processing

primitive

3. Request primitive

5. Response primitive

4.3. Validate primitive and URI
b. Check ACP
c.Storedata

6. Response

7. Trigger subscriptions

processing

8. Generate notifications list

9.bis Send notification

9. Send notification

Step 1:

Step 2:

primitives

Figure 11: Message Flow Example

primitives

Anincoming request is received by the Field device protocol microservice. Thisrequest would typically be
using a binding protocol such asHTTP, CoAP or MQTT.

A first security processing takes place, that includes message decryption, authentication headers and integrity

validation. Then a Request primitive is extracted and syntactically validated: this Request primitive is now
protocol independent.

Step 3:
Step 4:

The Request primitive is sent to the Request processing and 10T orchestration logic microservice.

This microservice would need several interactions with Data storage. First the primitive is validated beyond

basic syntactic processing. The URI validity is checked using the stored data. Then the Access Control Policies
are checked to validate the request is valid from an authorization perspective. Finally (and optionally), data

pertaining to the Request primitive is stored using the Data storage microservice.

Step 5:

Step 6:
CoAP, etc.)

Step 7:
processing i

Step 8:

asinstep 1.

striggered.

Step 9 and Step 9.his:

The notification primitives are sent to the subscriber entities in the field or cloud domain.

7.2.3

A Response primitiveis sent back to Field device protocol microservice.

Relationship of the microservice service HLA to oneM2M

A Response is sent back to the originator in step 1. It will use the same protocol binding (HTTP, MQTT,

Based on the existence of subscriptions impacted by the Request primitive, subscriptions and notifications

The Subscription notification microservice interacts with the Data stor age microservice to generate
notifications primitives to be sent to subscribers as shown in Step 9 and Step 9.his.

oneM2M defines alist of Common Service Functions (CSFs) as an "informative architectural construct which
conceptually groups together a number of sub-functions' (see ETSI TS 118 101 [i.7]). Figure 12, extracted from this

document, providesthe list of these CSFs.
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Figure 12: Common Services Functions defined by oneM2M

The CSF descriptions are provided for the purpose of understanding of the oneM2M Architecture functionalities and are
informative. The CSFs contained inside the Common Services Entity (CSE) can interact with each other but ETSI

TS 118 101 [i.7] does not specify how these interactions take place. CSFs are actually defined in order to provide
guidelines for implementers. Only the interactions on the reference points between CSEs and between applications
(AEs) and CSEs are mandated in oneM2M.

Additionally, CSFs have not been defined with a micro service architecture in mind. Indeed, the choice of dividing a
CSE into microservices should always be left up to specific implementations, which means that the optimizations made
for two different deployment scenarios may result in two different choices of grouping into microservices.

The example provided in clause 7.2.1 is rather generic and has not been provided with oneM2M in mind. Nevertheless,
it is possible to reconcile the microservices architecture (presented in clause 7.2.1) and the oneM2M architecture,
especially the functional architecture (presented in Figure 12). Thisis the purpose of Figure 13.

It should be noted that, even if a given oneM2M Service Entity (SE) can be mapped onto a single microservice, thisis
not meant to be the general case: for implementation efficiency considerations, aoneM2M SE will be mapped onto
more than one microservice. Thisisthe main expected benefit of introducing the Microservice Architecture.
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Figure 13: Comparison between the microservices architecture and oneM2M CSF

The following mappings between oneM2M CSFs and the Microservice Architecture (developed in clause 7.2.1) can be
made:

1) Protocol adaptation isimplemented in oneM2M as an Application Entity. It is functionally equivalent to the
Protocol Adaptation | PE of the microservice architecture.

2)  Subscription management CSF is equivalent to the microservice in the architecture.

3) Device management CSF is equivalent to the microservice in the architecture.
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4) Data management and repository CSF is equivalent to Data storage microservice.

As noted above, agiven oneM2M CSF will be mapped onto several microservices. In some case, the mapping isless
obvious. The Field device protocols microservice as well as the Cloud application API microservice have no equivalent
in the oneM2M CSFs. Indeed, in some way, they are part of the reference points Mcc and Mca which are used for
communication between oneM2M functional entities. This confirms that microservices as presented in clause 7.2.1 are
closer to areal implementation, while oneM2M CSFs are providing guidelines.

7.3 One High-Level Architecture for 10T Virtualization

7.3.1

Figure 14 introduces one example of a structuration of the functional architecture into layers (and sublayers) with an
indication of the main functions that are expected to be provided in each of the layers and sublayers. In addition, two
vertical functions are added related to cross-layer functionality: security and management.

Functional Architecture for IoT Virtualization

The focus in the present document is on the functions. This architectureisalso used in ETSI TR 103 528 [i.1] and the
functions described in the layers and sublayers are used for the identification of potential Open Source Components that
can support the implementation of the loT microservices.
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Figure 14: A High-Level Architecture for 0T Virtualization

The above architecture is one example (amongst other possible ones) that isin particular dealing with a structuration of
the generic microservices that could be found in an |oT Layer.

7.3.2 HLA for loT Virtualization and oneM2M HLA

The Microservice Architecture described in Figure 14 is meant to be generic in the sense that it can apply to alarge
number of systemsin various business sectors. It provides away to structure the provision of functionality with layers
that ensure a certain degree of separation that can be supported by APIs and implemented via microservices. The layers
described can be refined in order to address specific issues. For example, it could be possibly needed to have an "Edge

layer" (not represented in Figure 14) sitting under the "Cloud Infrastructure" and meant to handle specific requirement
(e.0. low latency) on virtualized resources.
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The respective positioning of oneM2M Common Service Entities (CSE) and the microservicesin the Microservice

possible implementation of (a subset of) a CSF.

Architecture is shown in Figure 15. To better understand what is represented, the following observations can be made:

Thereis adifference between the CSFs (that are specified via a standard) and the microservices that are one

All (aswell asonly a part of) the microservices described on Figure 14 can beincluded in agiven CSE. The

set of implemented microservices and their chosen implementations can (and probably will) be different from

one CSF to another. Consequently, there is no standardized mapping of one CSF to microservices.

Some aternatives for the choice of an implementation of microserviceis addressed in ETS| TR 103 528 [i.1].

It has already been noticed (as described in Figure 13) that the mapping of microservicesin the Microservice
Architecture with oneM 2M CSEs can be one-to-one. However, thisis not the general case and, moreover, the use of
microservicesis, in principle, away to map a given oneM2M CSE on more than one microservice, thus enabling the use
of more fine-grain services, evolving separately and eventually developed with different technologies (and different
developers).

Moca Reference Point

Mcc
| Reference

Point

Application Entity
Orchestration Monitoring (AE)
Orchestration Orchestration Monitoring Monitoring
Microservices Agent Agent Microservices
\. : 2
Y y 4
/
1 .
T 7 N\
1 . Monitorin S
CSE BEID ‘| Monitoring 4 gcu
n ri
gement / Agent ity
1
L)
Dataf 1 C-omITnU Computation Storage Search Engine Data Usage Authen
Conl collection 1 nication
il Baich Clustering Visusiization tication
guration Gathering & H " :c‘;sm Multiple
Measurement Publish & rocessing Partitioning Data Types Exploration
Subscribe
Repl| A
utho
Unstructured 1 :::;::sle sal/NosaL Discovery Prediction risation
Data “ Data Locality Schema(less) Analytics Control
Mainte =
nance T
: rchestration
Orchestration
Account
Agent ting
Container
Opesa Standardized Units for Cloud Portability Application Isolation Tracking
ton development, shipment, deployment o From Infrastructure
Cloud Infrastructure
Virtualized HW Virtualized HW

Virtualized HW

Virtualized HW

— Mcn Reference Point

Underlying Network Service
Entity
(NSE)

Figure 15: Mapping the Microservice Architecture and oneM2M Common Service Entities

following remarks can be made:

An important point of notice is regarding the role of the orchestrator in the mapping of the microservicesHLA. The

No provision for an orchestrator is made in the oneM2M architecture specification.

The global orchestrator is entirely outside of the CSE. It includesin particular:

that interacts with an Orchestration Agent in the CSE Monitoring layer.

ETSI
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In Figure 15, no assumption is made regarding the Application Entity (AE): the implementation of functionality in the
AE can be done in avariety of ways, depending on the needs of the application designers and developers. In some
cases, the implementation can be made without using microservices (and an underlying Microservice Architecture).

In case the implementation is done with microservices, some of the functional blocks present in the CSE part of

Figure 15 (e.g. data collection, communications, computation, storage, search engine, data usage) can be (fully of
partly) present in the AE. However, whereas the microservices in the CSE are expected to be rather generic, those in the
AE will probably be much more "domain specific".

The CSFs have not been defined with a micro service architecture in mind. Indeed, the choice of dividing a CSE into
microservices should always be left up to specific implementations, which means that the optimizations made for two
different deployment scenarios may result in two different choices of grouping into microservices.

The examplein Figure 16 is showing a possible implementation where two CSE are involved that may embed different
functionalities:

e A CSE with all the microservices described in Figure 15. This could typically correspond to one possible
implementation of microservices on a cloud-based platform that will support all the common services offered
for Data Collection, Communication, Computation, Storage, Search Engine, Data Usage.

e A CSE withonly apart of the microservices described in Figure 15. This could correspond to one possible
implementation of microservices on a basic gateway that will not support parts of the common services whose
implementation can be hindered by the limitations of the gateway. Services like Storage (if no persistenceis
required), Search engine or Data usage may not be implemented.
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Figure 16: An example of implementation options of the microservices HLA
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8

8.1

Conclusions

Implications

The introduction of microservices and the support of Virtualization is expected to be a mgjor improvement factor in the
development of 10T systems. It is also important to note that this introduction comes with a number of impacts - and
challenges - regarding the current approach to |oT systems. Amongst them:

Efficient implementations:

As aready pointed out in the previous clauses, the introduction of microservices comes with expectation of
improvement in the implementation of 10T systems, in particular in terms of efficiency. In order to ensure that
the expected benefits will materialize, microservices will need to be supported by open architectures; alarge
catalogue of effective, easily available and possibly certified (OSS) components; supporting integration
platforms, etc. Moreover, as soon as they will be part of large - and even complex - 0T systems, microservices
will not be working in full isolation from others and their development will have to made with thisin mind and
depart from ad-hoc solutions.

Deconstruction of monoliths:

Microservices are specially expected to support the development of fine-grained components that interact with
apluraity of others. Inthe case of existing 10T systems, their introduction may require that some currently
used sol utions (applications, building blocks) be split in smaller (interacting) units. This "deconstruction” may
be quite significant - and require a certain amount of effort - to benefit from microservices. The support of an
architecture - like the High-Level Architecture (HLA) mentioned in the previous clause - will be needed, as
well as its mapping to other existing HLAS.

Role and place of legacy:

Not al 10T systems are greenfield and are incorporating existing (and sometimes long existing) elements. The

introduction of microservices may not be possible for the entire system, for cost reasons as well as difficulties

related to old or unmaintained technologies. The potential coexistence of old and new parts (the latter based on
microservices) will require some adaptations, in particular as long as the communication mechanisms used by

microservices may not be supported in the legacy part.

Federation of systems:

The question of federation of systemsis much debated in the IoT community, in particular by the Research
community, and somehow by the Standard community. The need for federation of 10T systemsis becoming a
credible requirement for some Use Cases like Smart Cities (and even in Industrial 10T). The impact of 10T
Virtualization still needs to be assessed: the evaluation of relevant use cases may provide a useful input.

Security and trust:

Security is universally pointed out as a key enabler for trusted 0T systems. From this standpoint, thereis no
silver-bullet solution for security isthe current (10T) systems. The introduction of virtualization (and the
widespread use of microservices) may not change this situation drastically without a specific effort. However,
given the higher degree of flexibility combined with the possibility to use (trusted) open source components
offered by virtualization, there is a possibility that more efficient security solutions be more easily introduced
thanks to microservices. But thiswill come asamiracle, but only if thisistaken as a central requirement by
the microservices architects and devel opers.

Standards:

The most visible benefits of 10T virtualization (and the introduction of microservices) point to the massive
reuse of OSS components. From this standpoint, the traditional role of standardsis going to be challenged. On
the other hand, the potential "deconstruction” of 10T systems may also require that some existing building
blocks (and associated standard) are re-considered with alayering approach that may in turn promote the
development of new standards. For instance, where a complex Application Server currently exist,
virtualization may introduce the need for new interfaces that may become in turn supported by standards.
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. Regulation:

loT Virtualization will introduce new requirements on the systems concerned that are currently not apparent
but may become significant. In particular, virtualization will introduce more consideration of the role of Cloud
Service Providers and some of aspects of their solutions. Such aspects may involve business (such as Service
Level Agreements) but also regulation, the example of GDPR being currently the most discussed one.

. Education:

The technical expertise requirements for developing full-fledged 10T systems are quite high. They span alarge
range of capabilities such as |oT platforms and protocols, big data or security-by-design. The introduction of
microservicesis asking even more from the architects and devel opers: expertise on the development of the
microservices themselves, on the integration of open source components, etc. Thisis going to be achallengein
terms of the education support for such varied and highly demanded profiles.

8.2 Lessons Learned

After the definition of the Microservices HLA and its applicationsto |oT Virtualization in clause 7, a more practical
validation has been made. The experiences gained from the evaluation of the Open Source Components landscape (see
ETSI TR 103 528 [i.1]) and from the implementation of the Proof-of-Concept (see ETSI TR 103 529 [i.2]) have
produced guidelines for the architects and designers of 10T systems based on microservice architectures that can be
found in both Technical Reports.

In addition to the above cited guidelines, some lessons have been drawn regarding the approach taken in the present
document. The main lessons learned are the following:

e  Theapproach taken in the present document has been confirmed by the complementary approach of selecting
Open Source Software (OSS) components and of using (some of) them for the implementation of a Proof-of-
Concept (PoC). The principles of layering exposed in the Microservice HLA have been useful in the selection
of the components for the PoC implementation and in the fast deployment of the resulting application.

. One magjor enabling factor isthat there isthat there is alarge number of OSS components available that have a
very high level of technical readiness (TRL-9). The mix of chosen components can be different from one
implementation to another one and may dictated by different considerations.

e  Taking into account the constraints at the edge requires attention in the architecture in order to fully support
the implementation. The orchestrator can consider the resources at the edge in the same manner as those on the
cloud but this can create problems if those resources are more constrained (Size, computing power, storage
capabilities, etc.) and may have less non-functional capabilities (e.g. latency on a Raspberry Pi ™) that may
degrade the performance of the system: to alleviate this, deployment rules have to be carefully defined.

. If applications are developed with the microservices approach, they can benefit from the advantages of
virtualization (in terms of scalability, reliability, etc.) but also from the possibility to orchestrate the
application microservices (via the orchestrator) and till benefit from what is done for the common services.

8.3 Recommendations to oneM2M

Based on the above considerations regarding the mapping of the Microservices HLA on oneM2M and on the feedback
provided by the Proof-of-Concept (see ETSI TR 103 529 [i.2]), the following recommendations can be made to
oneM2M:

. Integrate the orchestrator in the oneM 2M framework as a standardized element, with the corresponding
Reference Point(s).

e  Add a"high-throughput/big data" binding to the current list, since no existing solution for thisisincluded in
oneM2M.
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Annex A:
Relationship to big data

The boundaries between Cloud, 10T and big data are rapidly blurring, actually they may be seen by young developers as
quite artificial. While the present document is focused mostly on 10T virtualization, this clause explores the relationship
with big data. Big datais defined by Recommendation ITU-T Y.3600 [i.8] asa"A paradigm for enabling the collection,
storage, management, analysis and visualization, potentially under real-time constraints, of extensive datasets with
heterogeneous characteristics.”

Big datais often linked with the famous "4V" properties:
e Volume
e  Védocity;
e Variety; and
. Veracity.

V olume denotes the dimension that gives the Big Data field its name. Velocity describes the pace of data generation
from adiversity of data sources such as physical sensors. Variety describes different aspects of data sources, including
structured and unstructured, multimedia, languages, etc. Veracity addresses both the natural and artificially injected
noises and miss-information in many (open) data sources.

There are several waysto qualify the veracity of collected data. Several studies have for example dealt with fault
detection and isolation of 10T datasets or time series using rule-based fault detection as well as self-learning fault
detection algorithms based on e.g. an approach of statistics sliding window. The rule-based approach would be based on
available manufacturer datasheets including rules when available. The self-learning algorithm is based on determining
trend vectors and comparing such vectors with longer term historic data.

One of the challengesin loT fault detection and isolation (as a possible scenario for data veracity) isto perform data
processing in a passive manner, that is without impacting the normal operations of an 10T system. The advantage of
passive monitoring is two-fold:

1) no additional traffic to the devices and gateways, and
2)  runswithout any disruption to the ongoing data collection mechanisms.

Using a micro services architecture (as proposed in clause 7.2.1) with a message broker that allows a microserviceto
subscribe to receive specific data sets provides a perfect fit for amicroservice performing |oT fault detectionin a
passive manner. The microservice would typically run using its own computing and memory resources while the broker
would simply perform additional replication of collected data sets when such data is exchanged using the broker. Thisis
explained in Figure A.1.
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Figure A.1: Passive IoT fault detection and isolation module

In Figure A.1, the Fault detection and isolation microservice can subscribe (from the message broker) to received
datasets or time series data in order to perform the detection of one of the following faulty scenarios:

. Outliers: A singleisolated event that is outside the expected range of values to be returned. An example of
outlier is provided in Figure A.2.

A

Figure A.2: Fault detection: Outlier data-point

e  Stuck-at faults: A seriesof data values with little or no variation for a period of time longer than expected.

. Spikes: A changein gradient over aperiod of time much greater than expected. The biggest difficulty with
spikesistheissue of determining if a gradient changeis part of normal behaviour such as alarm or afaulty
behaviour of a sensor. A spike example isdepicted in Figure A.3.
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Figure A.3: Fault detection: Spike behaviour
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Annex B:
Relationship with NFV

B.0 Introduction

The Network Functions Virtualisation (NFV) Industry Specification Group (ISG) has been created in ETSI in 2012 with
the overall vision that the application of Virtualization technology may help address many of the evolution challenges
that new usages (such as1oT and M2M communications) pose to existing networks and, in turn, simplify the roll-out of
network services, reduce deployment and operational costs and improve network management automation.

As stated by ETSI: "With NFV, standard IT virtualization technology is adapted to consolidate many network
equipment types onto industry-standard high-volume servers, switches and storage. This involves implementing network
functions in software which can run on a range of industry-standard server hardware. This software can then be moved
to, or introduced in, various locationsin the network as required.” (see http://www.etsi.org/technol ogies-
clusters/clusters/networks).

B.1 Virtualization in the NFV Architecture

The NFV ISG hasinitially worked on the identification of use cases for virtualization and their implication on the
virtualization of traditional network functions. Based on this, the | SG has defined the NFV Architectural Framework, its
main components and reference points (see ETSI GS NFV 002 [i.9]).

More specifically, the ISG has defined the "NFV Infrastructure” (NFV1): "The NFVI isthe totality of the hardware and
software components which build up the environment in which VNFs are deployed. The NFV1 is deployed asa
distributed set of NFVI-nodes in various locations to support the locality and latency requirements of the different use
cases and the NFV1 provide the physical platform on which the diverse set of VNFs are executed; enabling the flexible
deployment of network functions envisaged by the NFV Architectural Framework." (see ETSI

GS NFV-INF 001 [i.10]).

The high level NFV framework (see ETSI GS NFV 002 [i.9]), can be seen in Figure B.1 and consists of three main
domains:

e  Virtualized Network Function (VNF): the software implementation of a network function which is capable
of running over the NFVI.

. NFV Infrastructure (NFVI): includes the diversity of physical resources and how they can be virtualized.
The NFV1 supports the execution of the VNFs.

. NFV management and orchestration (M ANO): covers the orchestration and lifecycle management of
physical and/or software resources that support the infrastructure virtualization and the lifecycle management
of VNFs. NFV Management and Orchestration focuses on all virtualization-specific management tasks
necessary in the NFV framework.
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Figure B.1: High Level NFV Framework

B.2

The NFV architecture and the Microservice-based
HLA

The Microservices-based architecture presented in clause 7.3 and the NFV Architectural Framework have been
developed in different contexts. In particular, NFV in addressing primarily the "traditional" networks (e.g. those
operated by Telecom Service Providers) and focuses on their major Network Functions. In contrast, the "Microservices-
based HLA" is spanning across high-layers of the "loT Stack" and potentially address alarger set of "loT functions".
Consequently, both approach share common objectives and similarities, as well as differences that are not fully visible
today given the lack of maturity of the corresponding deployments. Some preliminary remarks are outlined below:

The potentialy critical importance of the support from standards:

The NFV Architectural framework has been defined with the expectation that its approach to virtualization
should be supported by a very precise set of standards (developed by NFV or not) supporting Reference
Points. A similar approach has been taken by oneM2M for the development of 10T systems using its
architectural framework. In both cases, the challenge posed to virtualization is to make sure that the support of
standards will not be compromised.

Specialization:

An important difference between the NFV architectural approach and the |oT virtualization approach
described in clause 7.3 isthat NFV is more focused on the functions related to the network and does not
systematically take into account higher-layer functions.

NFV asan loT Virtuaization Framework:

Aslong asthe loT functionsthat are targeted for virtualization are matching the ones defined in the NFV
Architectural Framework, the latter can be used as an |oT virtualization framework where aVNF is replaced
by an "loT Virtualized Function™. The main advantage of this approach is that the Reference Points defined by
the NFV Architectural Framework can be used by the virtualized 10T system.

The role of the network: 5G, orchestration:

The deployment of 5G networks involves the redesign of the Core Network where the NFV architecture will
play acentral part, in particular the MANO component of the NFVI. The approach taken by the industry for
the implementation of MANO has been to use Open Source both as a methodology and as a technology. Two
major Open Source projects are under development: Open Source MANO (OSM) and Open Network
Automation Platform (ONAP).
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o Microservices as a new programming paradigm:

The technologies available for the implementation of microservices-based applications have reached alevel of
maturity and effectiveness that has made their usage become mainstream in software engineering. The
development of the Virtualized Network Functions of NFV islargely based on this approach. Thisisastrong
enabler to the adoption of microservice-based architectures like the one described in clause 7.3.

e  Therole of Open Source components in the procurement of Telecom Operators:

Telecom Service Providers are increasingly using (and sometimes reguesting) Open Source componentsin
their procurement. The deployment of NFV systems will also include Open Source components (and not just
for the MANO part). This can be seen as another enabler to the adoption of microservices-based architectures
and should improve the effectiveness of NFV asan 10T virtualization framework.

Despite the differences outlined above, the two approaches are not mutually exclusive and microservices (and
microservices-based architectures) can be used in the NFV context, for example for the implementation of Virtualized
Network Functions.

The coming years are going to see the concurrent deployment of 10T systems using microservices-based HLA and of
5G systems with 10T sub-systems. They will provide feedback and more lessons learned in terms of e.g. which use
cases and business models are better supported by which approach; how far the microservice software devel opment
model will become the de-facto approach; which will be the relative part for the support of standards (and frameworks
such as NFV and oneM2M and their related reference points) versus the use of OSS components, etc.
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Annex C:

Change History

Date Version Information about changes
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January 2018 0.2.1 |Revised stable version for discussion at meeting with SmartM2M on January 9%, 2018
February 2018 0.3.0 [Revised version for presentation at SmartM2M #45
February 2018 031 Slightly revised version for SmartM2M #45 (document date; additional paragrah in
clause 7.3.1)
May 2018 0.4.0 |Revised version for presentation at meeting with SmartM2M on May 7t
May 2018 0.9.0 [Final stable draft for review by SmartM2M patrticipants
July 2018 0.9.1 [ETSI Secretariat check, EditHelp Clean-up
July 2018 1.0.0 |Final version for publication
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