ETSI TR 102 278 V1.1.1 (2008-08)

Technical Report

Satellite Earth Stations and Systems (SES); Satellite Component of UMTS/IMT-2000; Considerations on possible harmonization between A, C and G family Satellite Radio Interface features

Reference DTR/SES-00090

2

Keywords

CDMA, satellite, UMTS

ETSI

650 Route des Lucioles F-06921 Sophia Antipolis Cedex - FRANCE

Tel.: +33 4 92 94 42 00 Fax: +33 4 93 65 47 16

Siret N° 348 623 562 00017 - NAF 742 C Association à but non lucratif enregistrée à la Sous-Préfecture de Grasse (06) N° 7803/88

Important notice

Individual copies of the present document can be downloaded from: http://www.etsi.org

The present document may be made available in more than one electronic version or in print. In any case of existing or perceived difference in contents between such versions, the reference version is the Portable Document Format (PDF). In case of dispute, the reference shall be the printing on ETSI printers of the PDF version kept on a specific network drive within ETSI Secretariat.

Users of the present document should be aware that the document may be subject to revision or change of status. Information on the current status of this and other ETSI documents is available at <u>http://portal.etsi.org/tb/status/status.asp</u>

If you find errors in the present document, please send your comment to one of the following services: <u>http://portal.etsi.org/chaircor/ETSI_support.asp</u>

Copyright Notification

No part may be reproduced except as authorized by written permission. The copyright and the foregoing restriction extend to reproduction in all media.

> © European Telecommunications Standards Institute 2008. All rights reserved.

DECTTM, **PLUGTESTS**TM, **UMTS**TM, **TIPHON**TM, the TIPHON logo and the ETSI logo are Trade Marks of ETSI registered for the benefit of its Members.

3GPP[™] is a Trade Mark of ETSI registered for the benefit of its Members and of the 3GPP Organizational Partners.

Contents

Intell	ectual Property Rights	5
Forev	vord	5
1	Scope	6
2	References	6
2.1	Normative references	6
2.2	Informative references	6
3	Definitions, symbols and abbreviations	8
3.1	Definitions	8
3.2	Symbols	8
3.3	Abbreviations	8
4	Presentation of (S)W-CDMA and SAT-CDMA	10
4.1	SW-CDMA	10
4.2 4 3	W-CDMA	11
-		10
Э 5 1	Lotroduction	12
5.2	Commonalties and differences between SW-CDMA and SAT-CDMA	12
5.2.1	Physical channel structure	13
5.2.2	Channel coding and multiplexing	22
5.2.3	Spreading and Modulation	26
5.2.4	Physical layer procedure	27
5.3.1	Physical channel structure	33
5.3.2	Channel coding and multiplexing	41
5.3.3	Spreading and Modulation	44
5.3.4	Physical layer procedure	46
6	Synthesis	53
6.1	SW-CDMA and SAT-CDMA	53
6.2 6.3	W-CDMA and SAT-CDMA	53 54
0.5		
7	SAT-CDMA new features with respect to WCDMA and expected added value for context and	57
71	SAT CDMA new features with respect to W CDMA	
7.1.1	Uplink random access	57
7.1.2	Dedicated Physical Channels	58
7.1.3	Uplink packet access	58
7.1.4	Downlink synchronization channel	58
7.1.5	Power control algorithm	39 60
o	Conclusion	21
0	Conclusion	01
Anne	x A: SAT-CDMA features technical assessment	63
A.1	Uplink random access	63
A.2	TFCI/TPC bits generation and transmission	65
A.3	FSW for path diversity from different satellites	65
A.4	Power control algorithm	66
A.5	Downlink short scrambling code and data scrambling for multi-user detection	69
A.6	Synchronization codes for downlink SCH in LEO constellation	69

3

A.7	Another comment	69
A.8	RACH Simulation	70
Anne	x B: W-CDMA radio interface parameters that need specific configuration for satellite operation	72
B .1	Introduction	72
B.2 B.2.1	Random access	72
B.2.2 B.2.3	Preamble Acquisition Indicator reception Message part reception	73 74
B.2.4	Performances	74
B.3 B.3.1	Power control Open loop power control	74 74
B.3.2 B.3.3	Physical layer Closed loop power control Slow closed loop power control (layer 3 power control)	74 75
B.4	Timers adaptation	75
Histo	ry	76

Intellectual Property Rights

IPRs essential or potentially essential to the present document may have been declared to ETSI. The information pertaining to these essential IPRs, if any, is publicly available for **ETSI members and non-members**, and can be found in ETSI SR 000 314: "Intellectual Property Rights (IPRs); Essential, or potentially Essential, IPRs notified to ETSI in respect of ETSI standards", which is available from the ETSI Secretariat. Latest updates are available on the ETSI Web server (http://webapp.etsi.org/IPR/home.asp).

5

Pursuant to the ETSI IPR Policy, no investigation, including IPR searches, has been carried out by ETSI. No guarantee can be given as to the existence of other IPRs not referenced in ETSI SR 000 314 (or the updates on the ETSI Web server) which are, or may be, or may become, essential to the present document.

Foreword

This Technical Report (TR) has been produced by ETSI Technical Committee Satellite Earth Stations and Systems (SES).

1 Scope

The present document identifies all differences and commonalities between the A, C and G family satellite radio interfaces (ITU-R Recommendation M.1457 [i.13]) in order to asses harmonization.

6

It also includes a synthetic view of new features proposed by SAT-CDMA and SW-CDMA vs W-CDMA radio interface and what are their expected benefits, with respect to the context (type of constellation and service requirements)

2 References

References are either specific (identified by date of publication and/or edition number or version number) or non-specific.

- For a specific reference, subsequent revisions do not apply.
- Non-specific reference may be made only to a complete document or a part thereof and only in the following cases:
 - if it is accepted that it will be possible to use all future changes of the referenced document for the purposes of the referring document;
 - for informative references.

Referenced documents which are not found to be publicly available in the expected location might be found at http://docbox.etsi.org/Reference.

For online referenced documents, information sufficient to identify and locate the source shall be provided. Preferably, the primary source of the referenced document should be cited, in order to ensure traceability. Furthermore, the reference should, as far as possible, remain valid for the expected life of the document. The reference shall include the method of access to the referenced document and the full network address, with the same punctuation and use of upper case and lower case letters.

NOTE: While any hyperlinks included in this clause were valid at the time of publication ETSI cannot guarantee their long term validity.

2.1 Normative references

The following referenced documents are indispensable for the application of the present document. For dated references, only the edition cited applies. For non-specific references, the latest edition of the referenced document (including any amendments) applies.

Not applicable.

2.2 Informative references

The following referenced documents are not essential to the use of the present document but they assist the user with regard to a particular subject area. For non-specific references, the latest version of the referenced document (including any amendments) applies.

- [i.1] ETSI TS 101 851-1-2: "Satellite Earth Stations and Systems (SES); Satellite Component of UMTS/IMT-2000; Part 1: Physical channels and mapping of transport channels into physical channels; Sub-part 2: A-family (S-UMTS-A 25.211)".
- [i.2] ETSI TS 101 851-2-2: "Satellite Earth Stations and Systems (SES); Satellite Component of UMTS/IMT-2000; Part 2: Multiplexing and channel coding; Sub-part 2: A-family (S-UMTS-A 25.212)".

- [i.3] ETSI TS 101 851-3-2: "Satellite Earth Stations and Systems (SES); Satellite Component of UMTS/IMT-2000; Part 3: Spreading and modulation; Sub-part 2: A-family (S-UMTS-A 25.213)".
- [i.4] ETSI TS 101 851-4-2: "Satellite Earth Stations and Systems (SES); Satellite Component of UMTS/IMT-2000; Part 4: Physical layer procedures; Sub-part 2: A-family (S-UMTS-A 25.214)".
- [i.5] ETSI TS 101 851-1-1: "Satellite Earth Stations and Systems (SES); Satellite Component of UMTS/IMT-2000; Part 1: Physical channels and mapping of transport channels into physical channels; Sub-part 1: G-family (S-UMTS-G 25.211)".
- [i.6] ETSI TS 101 851-2-1: "Satellite Earth Stations and Systems (SES); Satellite Component of UMTS/IMT-2000; Part 2: Multiplexing and channel coding; Sub-part 1: G-family (S-UMTS-G 25.212)".
- [i.7] ETSI TS 101 851-3-1: "Satellite Earth Stations and Systems (SES); Satellite Component of UMTS/IMT-2000; Part 3: Spreading and modulation; Sub-part 1: G-family (S-UMTS-G 25.213)".
- [i.8] ETSI TS 101 851-4-1: "Satellite Earth Stations and Systems (SES); Satellite Component of UMTS/IMT-2000; Part 4: Physical layer procedures; Sub-part 1: G-family (S-UMTS-G 25.214)".
- [i.9] TTAS.KO-06.0090: "IMT-2000 SAT-CDMA Physical channel and mapping of transport channels onto physical channels (Release A) (TTAE-3G-SAT-25.211)".
- [i.10] TTAS.KO-06.0091: "IMT-2000 SAT-CDMA Multiplexing and channel coding (Release A) (TTAE-3G-SAT-25.212)".
- [i.11] TTAS.KO-06.0092: "IMT-2000 SAT-CDMA Spreading and modulation (Release A) (TTAE-3G-SAT-25.213)".
- [i.12] TTAS.KO-06.0093: "IMT-2000 SAT-CDMA Physical layer procedure (Release A) (TTAE-3G-SAT-25.214)".
- [i.13] ITU-R Recommendation M.1457-6: "Detailed specifications of the radio interfaces of International Mobile Telecommunications-2000 (IMT-2000)".
- [i.14] ETSI TR 102 058: "Satellite Earth Stations and Systems (SES); Satellite Component of UMTS/IMT-2000; Evaluation of the W-CDMA UTRA FDD as a Satellite Radio Interface".
- [i.15] ETSI TS 125 331:" Universal Mobile Telecommunications System (UMTS); RRC Protocol Specification (3G TS 25.331 version 3.3.0 Release 1999)".
- [i.16] IEEE Journal on Selected Areas in Communications, Vol. 19, No. 2, February 2001.
- [i.17] IEEE Journal on Selected Areas in Communications, Vol. 7, No.18, July 2000.
- [i.18] IEEE Journal on Selected Areas in Communications, Vol. 17, No. 2, February 1999.
- [i.19] ETSI TS 125 213: "Universal Mobile Telecommunications System (UMTS); Spreading and modulation (FDD) (3GPP TS 25.213)".
- [i.20] ETSI TS 125 214: "Universal Mobile Telecommunications System (UMTS); Physical layer procedures (FDD) (3GPP TS 25.214)".
- [i.21] TTAS.KO-06.0094: "Physical layer measurements (Release A) (TTAE-3G-SAT-25.215)".

3 Definitions, symbols and abbreviations

3.1 Definitions

For the purposes of the present document, the following terms and definitions apply:

SW-CDMA: satellite radio interface referenced as SRI-A of IMT-2000 satellite component at ITU-R Recommendation M.1457 [i.13]

NOTE: The SW-CDMA radio interface was produced by the ETSI SES Technical Committee as S-UMTS A-family standard.

8

W-CDMA: satellite radio interface referenced at SRI-G of IMT-2000 satellite component at ITU-R Recommendation M.1457 [i.13]

NOTE: The W-CDMA radio interface was produced by the ETSI SES Technical Committee as S-UMTS G-family standard.

SAT-CDMA: satellite radio interface referenced at SRI-C of IMT-2000 satellite component at ITU-R Recommendation M.1457 [i.13]

NOTE 1: The SAT-CDMA was produced by TTA of Korea.

NOTE 2: These radio interfaces are based on the FDD mode of UTRA defined by 3GPP Technical Specifications and adapted for operation over satellite transponders.

3.2 Symbols

For the purposes of the present document, the following symbols apply:

r	code rate
Κ	constraint length
R	number of rows for a block interleaver
С	number of columns for a block interleaver

3.3 Abbreviations

For the purposes of the present document, the following abbreviations apply:

AI	Acquisition Indicator
AICH	Acquisition Indicator Channel
AP	Access Preamble
APA	aAccess Preamble Acquisition
APA/CD/CA-ICH	Access Preamble Acquisition/Collision Detection/Channel Assignment-Indicator Channel
API	Access Preamble acquisition Indicator
BCH	Broadcast CHannel
BSDT	Beam Selection Diversity Transmission
CA	Channel Assignment
CAI	Channel Assignment Indicator
CCC	CPCH Control Command
CCTrCH	Coded Composite Transport CHannel
CD	Collision Detection
CDI	Collision Detection Indicator
CDP	Collision Detection Preamble
CLPC	Closed Loop Power Control
CPCH	Common Packet CHannel
CPCH-CCPCH	CPCH-Common Control Physical CHannel
CPICH	Common Pilot Channel
CRC	Cyclic Redundancy Check
CSICH	CPCH Status Indicator Channel

DL	Downlink
DPCCH	Dedicated Physical Control Channel
DPCH	Dedicated Physical Channel
DPDCH	Dedicated Physical Data Channel
DS	Direct Spread
DTX	Discontinuous Transmission
FACH	Forward Access Channel
FBI	FeedBack Information
FSW	Frame Synchronization Word
GEO	Geostationary Farth Orbit
GNSS	Global Navigation Satellijte System
I	L branch
	Long Code
	Long Code
LEU	Low Earth Orbit
MAC	Medium Access Control
MUD	MultiUser Detection
MSS	Mobile Satellite Service
NACK	Negative ACKnowledgment
NI	Notification Indicator
OLPC	Open Loop Power Control
OVSF	Orthogonal Variable Spreading Factor
P-CCPCH	Primary Common Control Physical Channel
PCH	Paging Channel
PCPCH	Physical Common Packet Channel
PDSCH	Physical Downlink Shared Channel
PG	Processing Gain
PhCH	Physical Channel
PHPPCH	Physical High Penetration Paging Channel
PI	Paging Indicator
PICH	Paging Indicator Channel
PRACH	Physical Random Access Channel
PSC	Primary Synchronization Code
RAN	Radio Access Network
RLC	Radio Link Control
RRC	Radio Resource Control
RSSI	Received Signal Strength Indicator
RTD	Round Trin Delay
SC	Short Code
S-CCPCH	Secondary Common Control Physical Channel
SCH	Synchronization Channel
SEI	Spreading Eactor
SEN	System Frame Number
SIN	CDSH Status Indicator
SI	Signal to Interforence Patio
SIK	Signal to Interference Ratio
22C	Secondary Synchronization Code
22D1	Site Selection Diversity Transmission
IF	Transport Format
TFC	Transport Format Combination
TFCI	Transport-Format Combination Indicator
TG	Transmission Gap
TPC	Transmit Power Control
TrBk	Transport Block
TrCH	Transport Channel
TTI	Transmission Time Interval
UE	User Equipment
TIT	Unlink

4 Presentation of (S)W-CDMA and SAT-CDMA

4.1 SW-CDMA

SW-CDMA is a satellite radio interface designed to meet the requirements of the satellite component of the third generation (3G) wireless communication systems. The SW-CDMA radio interface was produced by TS 101 851.

SW-CDMA is based on the adaptation to the satellite environment of the IMT-2000 CDMA Direct Spread terrestrial radio interface (UTRA FDD or WCDMA). The intention is to reuse the same core network and reuse the radio interface specifications for the Iu and Cu interface. Only the Uu interface will be adapted to the satellite environment.

SW-CDMA operates in FDD mode with RF channel bandwidth of either 2,350 MHz or 4,700 MHz for each transmission direction.

SW-CDMA provides a wide range of bearer services from 1,2 kbit/s up to 144 kbit/s. High-quality telecommunication service can be supported including voice quality telephony and data services in a global coverage satellite environment. SW-CDMA deviation from the above-mentioned terrestrial radio interface are summarized hereafter:

- Maximum bit rate supported limited to 144 kbit/s.
- Permanent softer handover forward link operations for constellations providing satellite diversity.
- Permanent reverse link satellite diversity combining for constellations providing satellite diversity.
- Feeder link (gateway-satellite) and satellite to user link beam centre Doppler pre-compensation.
- Two-steps (instead of three-steps as terrestrial) forward link acquisition procedure.
- Introduction of a high-power paging channel for in-building penetration.
- Optional (not standard) use of pilot symbols in the communication channels.
- Reduced power control rate with multi-level predictive power control loop to cope with longer propagation delay.
- Shorter scrambling sequence length (2 560 chips) in the forward link.
- Optional use in the forward link of a short scrambling sequence (256 chips) to allow CDMA interference mitigation.
- Single user terminal level.
- Longer random access preamble sequence.

SW-CDMA offers a great degree of commonality with the terrestrial radio interface making the interoperability between the IMT-2000 terrestrial and the satellite components easier.

For the comparison, the present document refers to Technical Specification (TS) describing the SRI as follows:

- ETSI TS 101 851-1-2 [i.1].
- ETSI TS 101 851-2-2 [i.2].
- ETSI TS 101 851-3-2 [i.3].
- ETSI TS 101 851-4-2 [i.4].

4.2 W-CDMA

This satellite radio interface is also based on the W-CDMA UTRA FDD radio interface already standardized in 3GPP. Mobile satellite systems intending to use this interface will address user equipment fully compatible with 3GPP UTRA FDD W-CDMA, with adaptation for agility to the Mobile Satellite Service (MSS) frequency band.

10

The use of a 3GPP standardized technology as well as a satellite IMT-2000 frequency band adjacent to a terrestrial IMT-2000 frequency band allows to accommodate these MSS system's features in 3G handsets with no waveform modification and consequently low cost impact. This optimizes considerably the market entry and penetration.

The key service and operational features of the W-CDMA radio interface are following:

- Support for low data rate services (e.g. 1,2 kbps) up to high data rate transmission (384 kbps) with wide area coverage.
- High service flexibility with support of multiple parallel variable-rate services on each connection.
- Efficient packet access.
- Built-in Support for future capacity/coverage-enhancing technologies, such as adaptive antennas, advanced receiver structures, and transmitter diversity.
- Support of inter-frequency handover for operation with hierarchical cell structures and handover to other systems, including handover to GSM.

For the comparison, the present document refers to Technical Specification (TS) describing the SRI as followed:

- ETSI TS 101 851-1-1 [i.5].
- ETSI TS 101 851-2-1 [i.6].
- ETSI TS 101 851-3-1 [i.7].
- ETSI TS 101 851-4-1 [i.8].

4.3 SAT-CDMA

The SAT-CDMA is a satellite radio interface to provide the various advanced mobile telecommunications services defined for the IMT-2000 satellite environment with maximum data rate, 384 kbit/s. This system could be applied for LEO and GEO satellite for the global international communications.

The major technical scheme in SAT-CDMA is also wideband code division multiple access (W-CDMA) whose chip rate is 3.84 Mchip/s.

The system has a high degree of commonality with the terrestrial ratio specification, IMT-2000 Direct Spread (DS), but it also has a number of different features. Those features, which are necessary to reflect the satellite-specific characteristics, such as long round trip delay and high Doppler shift, are implemented in the form of downlink synchronization, uplink packet access, and closed loop power control.

For the comparison, the present document refers to Technical Specification (TS) describing the SRI as followed:

- TTAS.KO-06.0090 [i.9].
- TTAS.KO-06.0091 [i.10].
- TTAS.KO-06.0092 [i.11].
- TTAS.KO-06.0093 [i.12].

5 Commonalties and differences

5.1 Introduction

This clause provides a short list with all the points of divergence identified in the analysis of the (S)W-CDMA and SAT-CDMA specifications. This list is intended as a guide to the more detailed comments provided in clauses 2 and 3. This means practically that in many cases an item covers several points of clauses 2 and 3. Additionally, this list is a pure description of the differences; where appropriate, a short technical discussion and a possible way of harmonization, are included in the comments of clause 2.

12

The following tables show the differences and commonalties between the draft specifications of (S)W-CDMA and SAT-CDMA, item-by-item.

5.2 Commonalties and differences between SW-CDMA and SAT-CDMA

5.2.1 Physical channel structure

Table 1-1: Commonality in radio frame structure

Item ref.	Item	SW-CDMA	SAT-CDMA	Difference	Commonality				
1.1.1	Radio frame	 10 ms = 15 slots = 38 400 chips 	 10 ms = 15 slots = 38 400 chips 	 There is no difference. 	High				
1.1.2	Time slot	 2 560 chips 	 2 560 chips 	 There is no difference. 	High				
Abbreviat	Abbreviations								

Table 1-2: Commonality in the type of physical channels

Item ref.	Item	SW-CDMA	SA	Г-CDMA	Difference	Commonality
1.2.1	Uplink	DPDCH	DPDCH		There is no difference.	High
	dedicated	DPCCH	DPCCH			-
1.2.2	Uplink common	PRACH	PRACH		 SAT-CDMA offers the PCPCH for 	Medium
			PCPCH		fast uplink packet-mode	
					transmission.	
1.2.3	Downlink	DPCH - DPDCH and DPCCH	DPCH - DPDCH a	and DPCCH	 There is no difference 	High
	dedicated					
1.2.4	Downlink	SCH	SCH		 SAT-CDMA offers secondary SCH 	Medium
	common	CPICH	CPICH		and AICH to assist mobile's beam	
		P-CCPCH	P-CCPCH		search and uplink RACH	
		S-CCPCH	S-CCPCH		transmission, respectively	
			CPCH-CCPCH		 SW-CDMA defines HPPICH for 	
		PDSCH	PDSCH		high penetration paging.	
		PICH	PICH		 SAT-CDMA defines the indicator 	
		HPPICH	AICH		channels and the CPCH-CCPCH	
			APA/CD/CA-ICH		for supporting the uplink PCPCH.	
			CSICH			
Abbreviatio	ons					
AICH - Aco	uisition Indicator	Channel		PCPCH - Physical Cor	mmon Packet Channel	
APA/CD/C	A-ICH - Access P	reamble Acquisition/Collision Detection/C	Channel	PDSCH - Physical Dov	wnlink Shared Channel	
	Assignmer	nt - Indicator Channel		PICH - Paging Indicate	or Channel	
CPCH-CC	РСН - СРСН - Со	mmon Control Physical Channel		PHPPCH - Physical H	igh Penetration Paging Channel	
CPICH - C	ommon Pilot Char	nnel		PRACH - Physical Rai	ndom Access Channel	
CSICH - C	PCH Status Indica	ator Channel	P-CCPCH - Primary C	ommon Control Physical Channel		
DPCH - De	edicated Physical	Channel		SCH - Synchronizatior	n Channel	
DPCCH - I	Dedicated Physica	I Control Channel		S-CCPCH - Secondar	y Common Control Physical Channel	
DPDCH - I	Dedicated Physica	I Data Channel				

Comment 1.2.2 and 1.2.4-1: In SAT-CDMA, the AICH can reduce the retransmission delay of the PRACH preamble and message because a quick acknowledgement is possible at physical layer by transmitting an acquisition indicator corresponding to the PRACH preamble signature. Although the preamble is successfully acquired it is possible that the message part may not be received successfully. However, generally, message detection probability is high if the preamble is detected.

Comment 1.2.2 and 1.2.4-1: There are some potential problems in the use of AICH, and, generally, Slotted transmission; this can be however modified if an analysis shows there are no problems.

Comment 1.2.2 and 1.2.4-2: The PCPCH is required for uplink packet-mode transmission with medium length (e.g. several or several tens of frames). CPCH-CCPCH for CPCH transmission control and power control is suggested in SAT-CDMA. In 3GPP specifications, each PCPCH is associated with a DL DPCCH for CPCH which is a downlink dedicated channel, while in the SAT-CDMA all of PCPCHs in a CPCH set are associated with a CPCH-CCPCH which is a downlink common control channel. In satellite environment, the common control channel is more efficient because the deviation of the propagation loss to each user is relatively little in a beam coverage, compared to the terrestrial case. This implies that power control is not mandatory for the associated common control channel.

Comment 1.2.2 and 1.2.4-2: The PCPCH and the downlink indicator channels might be deleted in SAT-CDMA because PCPCH have not been used in a real implementation, as close as possible to those in the 3GPP. PCPCH as applied in 3GPP specifications is not viable for satellite systems.

Comment 1.2.4-1: In SAT-CDMA, a hierarchical search procedure should be necessary for fast acquisition of the downlink primary scrambling code as in the 3GPP cell search procedure. Even if the synchronization codes are not differentially encoded at the transmitter, the differential detection can be employed in order to overcome the large frequency offset of the downlink carrier at the receiver.

Comment 1.2.4-1: An issue is the maximum timing uncertainty resolution, that may not be sufficient for satellite. A slightly modified three-step approach can be agreed, keeping the UW for time ambiguity resolution in SW-CDMA.

Comment 1.2.4-2: In SW-CDMA, an additional paging channel is required for the users whose positions are out of normal coverage area. The power of user terminals will be saved if the high-penetration paging channel could support the sleep-mode operation as the PICH.

ltem	SW-CDMA	SAT-CDMA	Difference	Commonality
Multiplexing	 DPDCH and DPCCH are I-Q/code multiplexed 	 DPDCH and DPCCH are I-Q/code multiplexed 	There is no difference.	High
DPDCH	 Slot = Data field SF = 256/2^k = 256~4 (k=06) 	 Slot = Data field SF = 256/2^k = 256~4 (k=06) 	There is no difference.	High
DPCCH	 Slot = Pilot + TFCI/TPC SF = 256 	 Slot = Pilot + TPC + TFCI + FBI SF = 256 	 SAT-CDMA defines the FBI field for the support of BSDT. SW-CDMA uses the combined TFCI/TPC field, while SAT-CDMA uses them separately. 	Medium
Pilot field	 8 bits per slot FSW used 	 3, 4, 5, 6, 7 or 8 bits per slot FSW used 	 SAT-CDMA defines the several pilot bit patterns as well as 8-bit pattern. 	Medium
TFCI / TPC field	TFCI and TPC bits: encoded	• TFCI and TPC bits: encoded	In SW-CDMA, the TFCI and TPC	Medium

 Table 1-3: Commonality in dedicated uplink physical channel

Item ref.

1.3.1

1.3.2

1.3.3

1.3.4 Pilot field • 8 bits per slot • 3, 4, 5, 6, 7 or 8 bits per slot • SAT-CDMA defines the several pilot bit patterns as well as 8-bit pattern. 1.3.5 TFCI / TPC field • TFCI and TPC bits: encoded together • TFCI and TPC bits: encoded separately. • In SW-CDMA, the TFCI and TPC bits: encoded together. Medium	
I.3.4 Pilot field • 8 bits per slot • 3, 4, 5, 6, 7 or 8 bits per slot • SAT-CDMA defines the several pilot bit patterns as well as 8-bit pattern. I.3.5 TFCI / TPC field • TFCI and TPC bits: encoded together • TFCI and TPC bits: encoded together. • TFCI and TPC bits: encoded together. • Medium	
I.3.5 TFCI / TPC field • TFCI and TPC bits: encoded together • TFCI and TPC bits: encoded separately • In SW-CDMA, the TFCI and TPC Medium bits are encoded together.	
1.3.5 TFCI / TPC field • TFCI and TPC bits: encoded together • TFCI and TPC bits: encoded together. • In SW-CDMA, the TFCI and TPC Medium bits are encoded together.	
together separately bits are encoded together.	
TPC/TFCI field: 2 bits per slot In SAT-CDMA, the TFIC and TPC In SAT-CDMA, the TFIC and TPC	
TFCI field: 2, 3 or 4 bits per slot bits are independently encoded	
1 TPC command per frame 1 TPC command per frame and mapped to the separated	
fields	
I.3.6 FBI field • Not defined • 0 or 1 bit per slot • SAT-CDMA uses 1 bit per slot as Low	
the FBI field for BSDT	
I.3.7 DPCCH · Power control preamble · Initial transmission preamble · The length of the DCPCCH Medium	
preamble - ength: Npcp slots - Length: Nitp frames preamble is Npcp slots in SW-	
- Slot format: identical to the - Slot format: identical to the CDMA, while N _{itp} frames in SAT-	
DPCCH slot DPCCH slot CDMA	
Abbreviations	
SF: Spreading Factor FSW: Frame synchronization word	
IFCI: Transport-format combination indicator BSDT: Beam Selection Diversity Transmission	
IPC: Transmit power control	

Comment 1.3.3 and 1.3.5: For the case when the TFCI bits and the TPC command bits are encoded together by the (32,10) RM code, the number of bits allocated for TFCI in 10 input bits to RM encoder is restricted to be smaller than 10 due to the portion of TPC command bits. This results in the limitation of TFC types come from higher layers. The detection performances of both, moreover, will be correlated mutually. Therefore, the TFCI bits and the TPC command in SAT-CDMA are separately encoded and distributed into the slots of the radio frame without modifying the 10-bit space reserved for TFCI bits. In this case, the same slot formats as in 3GPP can be used.

Comment 1.3.3 and 1.3.5: The idea in SW-CDMA is to reduce overhead related to unnecessary for slot power control. The proposed approach in SW-CDMA is expected to be sufficient to support the required flexibility.

Comment 1.3.6: In SAT-CDMA, BSDT can reduce additional downlink interference and power consumption in soft handover mode as with the terrestrial site selection diversity transmission (SSDT). Furthermore, the update period to select the primary satellite beam does not need to be as short as that in terrestrial case. In SAT-CDMA, one primary beam ID is transmitted to Satellite-RAN via the FBI fields in a radio frame regardless of non-compressed mode or compressed mode.

Comment 1.3.6: SW-CDMA is open to accept the points of SAT-CDMA, and the matter needs further work.

Comment 1.3.7: In SW-CDMA, the power control preamble with the length of Npcp slots is transmitted before DPCCH transmission and the preamble has the same slot format as the DPCCH. This is not consistent with the description in [i.4] due to the different 3GPP version used for the specification. This can be changed for the future release.

Item ref.	ltem		SW-CDMA		SAT-CDMA		Difference	Commonality
1.4.1	Random-access transmission	•	ALOHA approach Transmission = 1 PRACH preamble (9 * 4 096 = 36 864 chips) + 1 PRACH message (10/20 ms)	•	ALOHA approach with fast acquisition indication Transmission = 1 PRACH preamble (Np * 4 096) + 1 PRACH message (10/20 ms)	• In fa P	SAT-CDMA, DL AICH is used for st acquisition indication of the RACH transmission.	Medium
1.4.2	Access slot or frame	•	Not defined	•	Access frame = 2 radio frames	• S. st fra	AT-CDMA defines a timing ructure consisted of the access ames.	Low
1.4.3	PRACH preamble part		Preamble: 8 * 256 repetitions of a signature of length of 16 chips + an unique word of length 16 QPSK symbols (SF=256) differentially encoded. Unique word Value=0x78DB) Length = 9 * 4 096 = 36 864 chips		Preamble: Np repetitions of sub- preambles Sub-preamble = 256 repetitions of a signature of length of 16 chips. Invert the sign of the last sub- preamble Length = Np * 4 096 chips	 In is si S w pr 	S-UMTS, the number of repetition fixed, while in SAT-CDMA it is gnalled by higher layers. -UMTS defines a unique word, hile SAT-CDMA uses the last sub- reamble with inverse sign.	Medium
1.4.4	PRACH message part	•	Data and Control are I-Q/code multiplexed Length = 10 ms or 20 ms	•	Data and Control are I-Q/code multiplexed Length = 10 or 20 ms	• TI	nere is no difference	High
1.4.5	Data part of the RACH message		Slot = Data field SF = 256/2 ^k = 256~32 (k=03)		Slot = Data field SF = 256/2 ^k = 256~32 (k=03)	• TI	nere is no difference.	High
1.4.6	Control part of the RACH message	•	Slot = Pilot (8 bits) + TFCI (2 bits) SF = 256	•	Slot = Pilot (8 bits) + TFCI (2 bits) SF = 256	• TI	nere is no difference.	High
ADDIEVIA	10115							

Table 1-4: Commonality in physical random access channel (PRACH)

Comment 1.4.2: In SAT-CDMA, random-access transmission starts at the beginning of access frames. Each access frame has a length of two radio frames. Considering typical beam sizes and satellite altitude for LEO, MEO and GEO systems, the deviation of delays among users in a beam ranges within 20 ms. In the downlink AICH, the access frame of length 20 ms is also defined as the period of acquisition indicator transmission as well as the AICH frame.

Comment 1.4.2: This difference is related to the access procedure for RACH. SW-CDMA does not define access slots, as it has doubts on their suitability for satellite.

Comment 1.4.3: In SAT-CDMA, the number of sub-preamble repetitions is not fixed and signalled by higher layers. Generally, the repetition number depends on the detection scheme and the amount of the Doppler shift. Thus in specification it should not be optimized for a specific detection scheme and a satellite constellation. The last sub-preamble with the inverted sign and the same structure can inform the detector of the end time of the preamble or the beginning time of the message part, instead of the insertion of symbols modulated by a method different from the modulation method used for the preamble. The structure of signature repetition makes differential detection possible although the symbols are not differentially encoded. If the receiver has already detected and acquired the preamble using a matched filter with a differential detection scheme, the timing of the preamble scrambling code has been acquired and thus it is not required to detect the UW for a bit and/or a message packet synchronization.

17

Comment 1.4.3: The change in the place where the number of repetition is fixed can be accepted in SW-CDMA. Concerning the unique word/sub-preamble, SW-CDMA would like to have some quantitative analysis.

Comment 1.4.4: This difference is due to a change in 3GPP specifications. This will be changed in SW-CDMA for the future release.

Item ref.	Item	SW-CDMA	SAT-CDMA	Difference	Commonality
1.5.1	Random-access	 Not defined 	 DSMA-CD approach 	 SAT-CDMA defines the PCPCH for 	Low
	transmission		 Transmission = 1 AP/CDP part + 1 	fast packet transmission on uplink.	
			message part		
1.5.2	Access slot or	 Not defined 	 Access frame = 2 radio frames 	 The timing of the PCPCH 	Low
	frame			transmission is aligned to the access	
				frame, as with the PRACH	
				transmission	
1.5.3	PCPCH	 Not defined 	 Preamble = 1 AP + 1 CD 	The PCPCH preamble consists of a	Low
	preamble part		 AP =N_p * 256 repetitions of a 	pair of the access preamble and the	
			signature of length of 16 chips.	collision detection preamble.	
			CD = 256 repetitions of a signature	• The access preamble has the same	
			of length of 16 chips	structure as with the PRACH	
			• Length = $(N_p+1) * 4096$ chips	preamble	
1.5.4	PCPCH initial	Not defined	CPCH Initial Transmission Preamble	To help the detection at Satellite-	Low
	transmission		- Length: L _{itp} slots	RAN, the initial transmission	
	preamble		- Slot format: identical to the slot	preamble can be transmitted prior to	
			format of PCPCH message	the message part.	
			control part		
1.5.5	PCPCH	Not defined	Data and Control are I-Q/code	•	Low
	message part		multiplexed		
	0 1		Length = Nmax frames frames		
156	Data part of the	Not defined	Slot = Data field	The PCPCH message part is	Low
	message			transmitted after the successful	
			$SF = 250/2^{-1} = 250 \sim 4 (K=06)$	preamble acquisition indication.	

Table 1-5: Commonality in physical common packet channel (PCPCH)

Item ref.	Item	SW-CDMA	SAT-CDMA	Difference	Commonality
1.5.7	Control part of the message	Not defined	 Slot = Pilot (8 bits) + TFCI (2 bits) SF = 256 	 The control part does not have any TPC field because the power of the corresponding downlink channel is not controlled by an inner-loop power control procedure. 	Low
Abbreviat AP - Acce	ions ess Preamble		CDP - Collision Detection	n Preamble	

Comment 1.5: SAT-CDMA defines the PCPCH for fast packet transmission on uplink. The PCPCH and the downlink indicator channels are designed as close as possible to those in the 3GPP. However, in PCPCH transmission in SAT-CDMA, the access preamble and the collision detection preamble are successively transmitted as a pair in order to reduce the access delay.

Table 1-6: Commonality in downlink dedicated physical channel (downlink DPCH)

Item ref.	Item	SW-CDMA	SAT-CDMA	Difference	Commonality
1.6.1	Characteristics	 DPDCH and DPCCH are time multiplexed Slot = TFCI/TPC + Data + Pilot SF = 512/2^k = 512 ~ 4 (k=07) 	 DPDCH and DPCCH are time multiplexed Slot = Data1 +TFCI +TPC + Data2 + Pilot SF = 512/2^k = 512 ~ 4 (k=07) 	 SAT-CDMA defines one or two data fields as the DPDCH portion. SW-CDMA uses the combined TFCI/TPC field 	Medium
1.6.2	DPDCH	 One data field per slot 	One or two data fields per slot	 In SAT-CDMA, there are one or two data fields per slot according to slot format. 	Medium
1.6.3	DPCCH	TFCI/TPC and Pilot fields	 TPC, TFCI and Pilot fields 	 SW-CDMA uses the combined TFCI/TPC field. 	Medium
1.6.4	TFCI / TPC field	 TFCI and TPC bits: encoded together TPC/TFCI field: 2 bits per slot 1 TPC command per frame 	 TFCI and TPC bits: encoded separately TPC field: 2 bits per slot TFCI field: 2, 3 or 4 bits per slot 1 TPC command per frame 	 In SW-CDMA, the TFCI and TPC bits are coded together. In SAT-CDMA, the TFIC and TPC bits are independently encoded and mapped to the separated fields 	Medium
1.6.5	Pilot field	 0, 2, 4, 8, 16 bits per slot FSW used 	2, 4, 8, 16 bits per slot FSW used	 In SW-CDMA, the slot format without dedicated pilot bits is also defined. 	High
Abbreviat TFCI: Tra TPC: Tra	ions nsport-format comb nsmit power-control	ination indicator	FSW: Frame synchror	nization word	

Comment 1.6.1: See comments 1.3.3 and 1.3.5.

Comment 1.6.1: The idea behind a common TPC/TFCI field is covered before.

Comment 1.6.5: In SW-CDMA, this is an important possibility to improve S-UMTS efficiency as there is no need for user dedicated pilot channel (user steerable antenna is not likely to happen) but exploiting the beam common pilot for channel estimation.

Item ref.	ltem	SW-CDMA	Τ	SAT-CDMA	Difference	Commonality
1.7.1	Characteristics	 Carrying a pre-defined symbol sequence SF = 256 (fixed) Type: Primary CPICH and Secondary CPICH 		Carrying a pre-defined symbol sequence SF = 256 (fixed) Type: Primary CPICH and Secondary CPICH	There is no difference.	High
1.7.2	Primary CPICH	 Only one P-CPICH per cell Channelization: by the pre-defined code Scrambling: by the primary scrambling code 		Only one P-CPICH per cell Channelization: by the pre-defined code Scrambling: by the primary scrambling code	There is no difference.	High
1.7.3	Secondary CPICH	 Zero, one or several S-CPICH per cell Channelization: by an arbitrary code Scrambling: by the primary or secondary scrambling code 		Zero, one or several S-CPICH per cell Channelization: by an arbitrary code Scrambling: by the primary or secondary scrambling code	There is no difference.	High
Abbreviatio	ons			-		

Table 1-7: Commonality in common pilot channel (CPICH)

Table 1-8: Commonality in common control physical channel (CCPCH)

Item ref.	Item	SW-CDMA	SAT-CDMA	Difference	Commonality
1.8.1	Туре	Primary-CCPCH	 Primary-CCPCH 	 There is no difference. 	High
		 Secondary-CCPCH 	 Secondary-CCPCH 		-
1.8.2	Primary-	 Carrying BCH 	 Carrying BCH 	 S-UMTS transmits the predefined 	Medium
	CCPCH	 SF = 256 (fixed) 	 SF = 256 (fixed) 	QPSK symbols of the Frame	
		Slot = Tx OFF + Frame Sync + Data	Slot = Tx OFF + Data	Synchronization word after Tx	
		 Tx OFF: 256 chips. 	 Tx OFF: 256 chips 	OFF.	
		 Frame Sync field: differentially 	 Data: 18 bits 		
		encoded 4 QPSK symbols			
		Data: 10 bits			
1.8.3	Secondary-	 Carrying PCH and/or FACH 	 Carrying PCH and/or FACH 	There is no difference.	High
	CCPCH	SF = 256/2 ^k = 256 ~ 4 (k=06)	• SF = 256/2 ^k = 256 ~ 4 (k=06)		
		Slot = TFCI + Data + Pilot	Slot = TFCI + Data + Pilot		
		 TFCI field: 0, 2, 8 bits per slot 	 TFCI field: 0, 2, 8 bits per slot 		
		Data field: 10 ~ 1 272 bits per slot	Data field: 10 ~ 1 272 bits per slot		
		Pilot field: 0, 8, 16 bits per slot	Pilot field: 0, 8, 16 bits per slot		

Item ref.	Item	SW-CDMA	SAT-CDMA	Difference	Commonality
1.8.4	CPCH-CCPCH	Not defined	 To control the uplink PCPCH SF = 256 (fixed) Slot = TPC + CCC + Pilot TPC field: 8 bits CCC field: 8 bits Pilot field: 4 bits 	 SAT-CDMA uses a common control channel to support the power and transmission control for the uplink PCPCH 	Low
Abbreviati	ons				
BCH - Bro	adcast Channel		PCH - Paging Channel		
FACH - Forward Access Channel			CCC - CPCH control com	mand	

Comment 1.8.2: SW-CDMA inserted a frame sync field to allow path diversity from different satellites with differential delay exceeding the T-UMTS conditions.

Comment 1.8.4: See comments 1.2.2 and 1.2.4-2 about the CPCH-CCPCH in SAT-CDMA.

Comment 1.8.4: The reason for not using CPCH in SW-CDMA is already mentioned.

Table 1-9: Commonali	ty in s	ynchronization	channel ((SCH)
----------------------	---------	----------------	-----------	-------

Item ref.	Item	SW-CDMA	SAT-CDMA	Difference	Commonality
1.9.1	Туре	Primary SCH	Primary SCH and Secondary SCH	• SAT-CDMA offers a Secondary SCH to support UE's hierarchical cell	Medium
				search.	
1.9.2	Primary SCH	 Slot = PSC (256 chips) + Tx OFF (2 304 chips) DSC: complex valued converse of 	 Slot = PSC (256 chips) + Tx OFF (2 304 chips) DSC: complex valued converse of 	There is no difference.	High
		256 obin longth	PSC: complex valued sequence of		
		Lised the same PSC in every cell	Lised the same PSC in every cell		
1.9.3	Secondary SCH	-	 Slot = SSC sequence (256 chips) + Tx OFF (2 304 chips) SSC sequence: a set of 16 different codes of length 256 chips 64 different SSC sequences 	 SW-CDMA does not define any Secondary SCH. 	Low
Abbreviations					
PSC: Prim	ary Synchronizatio	on Code	SSC: Secondary Synchro	nization Code	

Comment 1.9.1: See comments 1.2.4-1 and 1.8.2 about the secondary SCH of SAT-CDMA.

Comment 1.9.1 and 1.9.3: The inclusion of the secondary SCH in SW-CDMA could be considered for a future release for the sake of T-UMTS commonality, although it has not been identified as strictly required.

Item ref.	ltem	SW-CDMA	SAT-CDMA	Difference	Commonality
1.10.1	PDSCH	Code-sharing between users Slot = only data field	Code-sharing between users Slot = only data field	There is no difference.	High
		 SF = 256/2^k = 256 ~ 4 (k=06) Associated with a DL DPCH 	 SF = 256/2^k = 256 ~ 4 (k=06) Associated with a DL DPCH 		
1.10.2	PICH	 SF = 256 Frame = 288-bit PI part + 12-bit Tx OFF 	 SF = 256 Frame = 288-bit PI part + 12-bit Tx OFF 	There is no difference.	High
1.10.3	AICH	-	 Carrying AI for RACH SF = 256 AICH frame = 20 ms 15 access slots per AICH frame First access slot = AI part (4 096 chips) + Tx OFF (1 024 chips) 	 SAT-CDMA transmits Als corresponding the PRACH preambles for the purpose of fast acquisition indication. 	Low
1.10.4	APA/CD/CA- ICH	-	 Carrying API and CDI/CAI for CPCH SF = 256 A pair of two access slots = API part (4 096 chips) + Tx OFF (1 024 chips) + CDI/CAI part (4 096 chips) + Tx OFF (1 024 chips) Use 7 access slot pairs except the first access slot in a AICH frame 	 SAT-CDMA transmits indicators corresponding the PCPCH preambles for the purpose of CPCH admission or channel assignment 	Low
1.10.5	CSICH	-	 Carrying SI for CPCH status information SF = 256 Access slots = Tx OFF (4 096 chips) + SI part (1 024 chips) 8 * 15 bits in a AICH frame 	 SAT-CDMA transmits status indicators for CPCH availability broadcast. 	Low
1.10.6	РНРРСН	 Unspread BPSK signal packet of length 10 ms Channel rate = 15 k symbol/s Packet = Preamble (24 bits) + UW (12 bits) + data (114 bits). 	Not defined	 SAT-CDMA does not define a deep paging channel. 	Low
Abbreviati Al: Acquis CAI: Char	ons ition Indicator inel Assignment I	API: Access	Preamble acquisition Indicator	PI: Paging Indicator CDI: Collision Detection Indicator	

Comment 1.10.4: In SAT-CDMA, the PCPCH preamble consists of a pair of an access preamble and a CD preamble. Therefore, the corresponding indicators are also transmitted as a pair in the associated downlink indicator channel. The APA/CD/CA-ICH is designed by combining the AP-AICH with CD/CA-ICH. The structures of acquisition indicators and CSICH are identical to those of 3GPP's.

Comment 1.10.3-5: SW-CDMA have reservation about the approach applicability to satellite due to the propagation delays.

Comment 1.10.6: see comment 1.2.4-2 about PHPPCH.

Comment 1.10.6: SW-CDMA considers that this functionality should be there since this specific function is important for the satellite component.

5.2.2 Channel coding and multiplexing

Item ref.	Item	SW-CDMA	SAT-CDMA	Difference	Commonality
2.1.1	Uplink processing steps	 CRC attachment TrBk concatenation/Code block segmentation Channel coding Radio frame equalization 	 CRC attachment TrBk concatenation/Code block segmentation Channel coding Radio frame equalization 	 There is no difference. 	High
		 1st interleaving Radio frame segmentation Rate matching TrCH multiplexing PhCH segmentation 2nd interleaving PhCH mapping 	 1st interleaving Radio frame segmentation Rate matching TrCH multiplexing PhCH segmentation 2nd interleaving PhCH mapping 		
2.1.2	Downlink processing steps	 CRC attachment TrBk concatenation/Code block segmentation Channel coding Rate matching 1st insertion of DTX indication 1st interleaving Radio frame segmentation TrCH multiplexing 2nd insertion of DTX indication PhCH segmentation 2nd interleaving Scrambling 	 CRC attachment TrBk concatenation/Code block segmentation Channel coding Rate matching 1st insertion of DTX indication 1st interleaving Radio frame segmentation TrCH multiplexing 2nd insertion of DTX indication PhCH segmentation 2nd interleaving 	 There is no difference except that S- UMTS adds an optional scrambling before physical channel mapping. 	High
Abbroviat	ions	· PhCH mapping	PhCH mapping		
CRC: Cyc TrBk: Tra TrCH: Tra	lic Redundancy C nsport block Insport channel	Check	PhCH: Physical chanr DTX: Discontinuous tr	nel ransmission	

Table 2-1: Commonality in processing steps of channel coding and multiplexing

22

Comment 2.1.2: When an interference mitigation is envisaged, the physical downlink scrambling process is expected to obtain an additional scrambling effect only for the bits in the TFCI/TPC field because the bits in data fields have already been scrambled in higher layers and the pilot bits is excluded from the scrambling.

Thus in SAT-CDMA the additional scrambling is not essential by considering small portion of TFCI/TPC field. Additionally, if the data scrambling was used along with the downlink short scrambling code, we would have a negative opinion of these processes.

Comment 2.1.2: SW-CDMA have found experimentally that is important to randomize data even for small fields in the frame; and being optional we feel there is no harm. The concerns from SAT-CDMA are not completely clear, a more detailed analysis could be necessary.

Item ref.	Item	SW-CDMA	SAT-CDMA	Difference	Commonality
2.2.1	Error detection	 Using CRC attachment 	 Using CRC attachment 	 There is no difference. 	High
		 CRC length: 24, 16, 12, 8 or 0 bits 	CRC length: 24, 16, 12, 8 or 0 bits		-
2.2.2	Channel coding	 Convolutional coding r=1/2 or 1/3, 	 Convolutional coding r=1/2 or 1/3, 	 There is no difference. 	High
	scheme	K=9	K=9		
		 Turbo coding: r=1/3, 8-state 	 Turbo coding: r=1/3, 8-state 		
		constituent code	constituent code		
Symbols					
r: code ra	te		K: constraint length		

Table 2-2: Commonality in error detection and channel coding

Table 2-3: Commonality in interleaving

Item ref.	ltem	S-UMTS A	SAT-CDMA	Difference	Commonality	
2.3.1	1 st interleaving	 Block interleaver with inter-column permutations Interleaving bit sequence for each TrCH before the TrCH multiplexing Writing input bits row by row Reading output bits column by column R = variable C = 1, 2, 4 or 8 	 Block interleaver with inter-column permutations Interleaving bit sequence for each TrCH before the TrCH multiplexing Writing input bits row by row Reading output bits column by column R = variable C = 1, 2, 4 or 8 	There is no difference.	High	
2.3.2	2 nd interleaving	 Block interleaver with inter-column permutations Interleaving bit sequence in one radio frame for each PhCH after the PhCH segmentation Writing input bits row by row Reading output bits column by column R = variable C = 30 	 Block interleaver with inter-column permutations Interleaving bit sequence in one radio frame for each PhCH after the PhCH segmentation Writing input bits row by row Reading output bits column by column R = variable C = 30 	There is no difference.	High	
Symbol R: numbe	Symbol C: number of columns for a block interleaver					

Table 2-4: Commonality	in rate matching ar	nd data scrambling
------------------------	---------------------	--------------------

Item ref.	Item	SW-CDMA	SAT-CDMA	Difference	Commonality
2.4.1	Uplink rate matching	 To match the bit rate of a CCTrCH to the bit rate of the allocated PhCH(s) Depending on the TFC used in each radio frame A radio frame is either completely filled with bits or not used Supporting the compressed mode 	 To match the bit rate of a CCTrCH to the bit rate of the allocated PhCH(s) Depending on the TFC used in each radio frame A radio frame is either completely filled with bits or not used Supporting the compressed mode 	There is no difference.	High
2.4.2	Downlink rate matching	 Depending on the TF of each TrCH in each TTI and the number of the assigned channelization codes Using DTX to fill up the radio frame with bits Supporting the fixed or flexible positions of the TrCHs in the radio frame Supporting the compressed mode 	 Depending on the TF of each TrCH in each TTI and the number of the assigned channelization codes Using DTX to fill up the radio frame with bits Supporting the fixed or flexible positions of the TrCHs in the radio frame Supporting the compressed mode 	 There is no difference. 	High
Abbreviations		TTI: Transmission T	ïme Interval		
TF: Transport Format		DTX: Discontinuous	Transmission		
TFC: Transport Format Combination					

Table 2-5: Commonality in transport format detection

Item ref.	Item	SW-CDMA	SAT-CDMA	Difference	Commonality
2.5.1	Transport format detection methods	 TFCI based detection Explicit blind detection Guided detection 	 TFCI based detection Explicit blind detection Guided detection 	There is no difference.	High
2.5.2	TFCI coding or TFCI/TPC coding	 TFCI/TPC coding in normal mode 10-bit TFCI/TPC per frame Using a (32, 10) sub-code of the second order Reed Muller code Code word: Linear combination of 10 basis sequences TFCI/TPC coding in split mode A pair of 5-bit TFCI/TPC using two (16,5) bi-orthogonal codes Code word: Linear combination of 5 basis sequences 	 TFCI coding in normal mode 10-bit TFCI per frame Using a (32, 10) sub-code of the second order Reed Muller code Code word: Linear combination of 10 basis sequences TFCI coding in split mode A pair of 5-bit TFCI using two (16,5) bi-orthogonal codes Code word: Linear combination of 5 basis sequences 	 S-UMTS combines TFCI bits with TPC command bits and encodes together. 	Low

Item ref.	ltem	SW-CDMA	SAT-CDMA	Difference	Commonality
2.5.3	Compressed mode	 Transmission gap for inter- frequency measurements TG position: decided by network Frame structure types Type A: maximizing the TG Type B: Optimizing for power control Compressing method Puncturing Reducing the spreading factor by 2 Higher layer scheduling 	 Transmission gap for inter-frequency measurements TG position: decided by network Frame structure types Type A: maximizing the TG Compressing method Puncturing Reducing the spreading factor by 2 Higher layer scheduling 	There is no difference except that SAT-CDMA uses only Type A as the frame structure.	High
2.5.4	TPC coding		 2-bit TPC per frame Using a (16,2) subcode of the bi- orthogonal code Code word: Linear combination of 2 basis sequences 	 SAT-CDMA encodes the TPC command bits using the (16, 2) bi-orthogonal code. 	Low
Abbreviat	ions		•	•	
TFCI: Tra	IFCI: Transport Format Combination Indicator TG: Transmission Gap				

Comment 2.5.3: In 3GPP two kinds of frame structure are required in compressed mode since the slot-by-slot power control is employed. However, there is no need of Type B in SAT-CDMA since the power control period is one radio frame in satellite specifications.

Comment 2.5.3: Type B could be dropped in SW-CDMA for future releases in a harmonization effort.

Item ref.	Item	SW-CDMA	SAT-CDMA	Difference	Commonality
2.6.1	Data scrambling	 Optional for downlink when interference mitigation is used. Prior to physical channel mapping By a ML sequence with polynomial 1+X¹⁴+X¹⁵ Rate: 30 kbit/s 	• Not defined	SAT-CDMA does not define the data scrambling in physical layer.	Medium (in SW- CDMA scrambling is enabled by the upper layers. Upper layers could disable the scrambling to allow
					interoperability)
Abbreviat	ions				
TFCI: Tra	nsport Format Cor	nbination Indicator TG: Transmiss	ion Gap		

Comment 2.6.1: See comment 2.1.1.

Comment 2.6.1: Already covered before.

5.2.3 Spreading and Modulation

Item ref.	ltem	SW-CDMA	SAT-CDMA	Difference	Commonality
3.1.1	Uplink modulation	 Dual channel QPSK I-Q/code multiplexing Chip rate: 3,84 Mchip/s 	 Dual channel QPSK I-Q/code multiplexing Chip rate: 3,84 Mchip/s 	 There is no difference. 	High
3.1.2	Uplink spreading	 Channelization: different Walsh covering on I and Q braches Scrambling: complex scrambling by long or short codes Multi-code transmission: Up to 6 codes for DPDCH 	 Channelization: different Walsh covering on I and Q braches Scrambling: complex scrambling by long or short codes Multi-code transmission: Up to 6 codes for DPDCH 	There is no difference.	High
3.1.3	Uplink channelization code	 OVSF Walsh code Length: 4~256 chips 	 OVSF Walsh code Length: 4~256 chips 	 There is no difference. 	High
3.1.4	Uplink long scrambling code	 Gold code Length: 38 400 chips (one radio frame) Generator polynomials: X²⁵+X³+1, X²⁵+X³+X²+X+1 	 Gold code Length: 38 400 chips (one radio frame) Generator polynomials: X²⁵+X³+1, X²⁵+X³+X²+X+1 	There is no difference.	High
3.1.5	Uplink short scrambling code	 Extended S(2) code Length: 256 chips Generator polynomials: g₀(x)=x⁸+x⁵+3x³+x²+2x+1, g₁(x)=x⁸+x⁷+x⁵+x+1, g₂(x)=x⁸+x⁷+x⁵+x⁴+1 	 Extended S(2) code Length: 256 chips Generator polynomials: g₀(x)=x⁸+x⁵+3x³+x²+2x+1, g₁(x)=x⁸+x⁷+x⁵+x+1, g₂(x)=x⁸+x⁷+x⁵+x⁴+1 	There is no difference.	High
Abbreviat OVSF: Or	ions rthogonal Variable	Spreading Factor UL: Uplink		DL: Downlink	

Table 3-2: Commonality in downlink spreading and modulation

Item ref.	Item	SW-CDMA	SAT-CDMA	Difference	Commonality
3.2.1	Downlink	· QPSK	· QPSK	 There is no difference. 	High
	modulation	Time multiplexed	Time multiplexed		-
		Chip rate: 3,84 Mchip/s	Chip rate: 3,84 Mchip/s		
3.2.2	Downlink	 Channelization: same Walsh 	 Channelization: same Walsh 	 There is no difference. 	High
	spreading	covering on I and Q braches	covering on I and Q braches		-
		 Scrambling: complex scrambling by 	 Scrambling: complex scrambling by 		
		primary or secondary scrambling	primary or secondary scrambling		
		codes	codes		

Item ref.	Item	SW-CDMA	SAT-CDMA	Difference	Commonality
3.2.3	Downlink	 OVSF Walsh code 	OVSF Walsh code	 There is no difference. 	High
	channelization	 Length: 4~512 chips 	 Length: 4~512 chips 		
	code				
3.2.4	Downlink	Gold code	Gold code	 There is no difference. 	High
	scrambling code	 Grouping: 512 sets 	 Grouping: 512 sets 		
		 Generator polynomial: 1+X⁷+X¹⁸. 	• Generator polynomial: $1+X^7+X^{18}$.		
		1, v5, v7, v10, v18	$1 \times 5 \times 7 \times 10 \times 18$		
2.2.5	Downlink	Chart Cold like code		- SW/ CDMA defines an entional short	Low
3.2.5	DOWNINK optional chart	- Short Gold-like code	. Not defined	sode (when dewnlink multi uppr	LOW
	optional short	Length. 256 chips			
	scrambling code	· I otal number of codes: 255		detection is envisaged)	
		 Generator polynomial: 1+X⁴+X⁹, 			
		1+X+X ³ +X ⁴ +X ⁹			
Abbreviati	ons				
OVSF: Ort	thogonal Variable S	Spreading Factor			
LC: Long (_C: Long Code SC: Short Code I: I-branch Q: Q-branch				

27

Comment 3.2.5: In SAT-CDMA, the downlink multi-user detection (MUD) scheme is not defined since it will cause expensive and complex user terminals, especially in the case of dual-mode terminal for accessing both satellite and terrestrial systems. In order to support the MUD, the system should scramble all downlink channels with the short scrambling code when the terminals with and without the MUD scheme coexist in a satellite system. Accordingly, all users should descramble the downlink channels with the short codes, and users without the MUD will suffer from performance degradation.

Comment 3.2.5: About complexity of MUD, in SW-CDMA, it has shown that this item can be done with limited demodulator complexity increase (see "VLSI Implementation of a CDMA Blind Adaptive Interference-Mitigating Detector," L. Fanucci, E. Letta, R. De Gaudenzi, F. Giannetti, M. Luise, IEEE Journal on Sel. Areas in Communic., Vol. 19, No. 2, February 2001 [i.16]), by using an improved single user detector (not a MUD).

Please note that interference mitigation advantages are noticeable (see "On Antenna Design and Capacity Analysis for the Forward Link of a Multi-beam Power Controlled CDMA Network", J. Romero, R. De Gaudenzi, IEEE Journal on Selected Areas in Comm., Vol. 7, No.18, July 2000 [i.17]) particularly evident for broadcasting applications (see "Capacity of a Multi-beam, Multi-Satellite CDMA Radio Network with Interference-Mitigating Receiver," R. De Gaudenzi, F. Giannetti, M. Luise, IEEE Journal on Selected Areas in Comm., Vol. 17, No. 2, February 1999 [i.18]).

5.2.4 Physical layer procedure

Item ref.	Item	SW-CDMA	SAT-CDMA	Difference	Commonality
4.1.1	Cell search	 Slot synchronization: Using SCH with a matched filter Frame synchronization: Using differentially encoded FSW on the P-CCPCH 	 Slot synchronization: Using SCH's primary synchronization code Frame synchronization: Using SCH's secondary synchronization code Scrambling-code identification: Using the CPICH 	 SW-CDMA uses the cell search procedure with two steps, while SAT-CDMA does that with three steps. In SW-CDMA, frame synchronization is performed using differentially encoded FSW on the P-CCPCH. 	Low

Table 4-1: Commonality in the synchronization procedure for common physical channels

Item ref.	ltem	SW-CDMA	SAT-CDMA	Difference	Commonality
4.1.2	Common	 P-CCPCH frame timing: Found 	 P-CCPCH frame timing: Found 		High
	physical	during cell search	during cell search		-
	channel	 All common physical channel timing: 	 All common physical channel timing: 		
	synchronization	Related to P-CCPCH timing	Related to P-CCPCH timing		
Abbreviati	ions				

Comment 4.1.1: The two-step procedure in SW-CDMA could be considered for the next release, although some quantitative analysis is needed before convergence.

Table 4-2: Commonality in the synchronization procedure for dedicated physical channe

Item ref.	Item	SW-CDMA	SAT-CDMA	Difference	Commonality
4.2.1	Downlink synchronization primitives	 Primitives: CPHY-Sync-IND, CPHY- Out-of Sync-IND Primitives are used as in TS 125 331 [i.15]. 	 Primitives: CPHY-Sync-IND, CPHY-Out-of-Sync-IND First phase During the first 160 ms Report the in-sync to higher layer Criteria: using DPCCH quality and threshold Q_{int} Second phase After the first 160 ms Report the in-sync or out-of- sync to higher layer Criteria: using DPCCH quality or CRC checks, and thresholds of Q_{in} and Q_{out} 	 SAT-CDMA defines the same synchronization primitives as the 3GPP specification In SW-CDMA according to TS 101 851-4 v1.1.1, primitives are used as in TS 125 331 [i.15]:. 	High
4.2.2	Uplink synchronization primitives	 Primitives: CPHY-Sync-IND, CPHY-Out-of-Sync-IND Indicate the sync status to the RL Failure/Restored triggering function in the Node B Criteria not subject to specification 	 Primitives: CPHY-Sync-IND, CPHY-Out-of-Sync-IND Indicate the sync status to the RL Failure/Restored triggering function in the Node B Criteria not subject to specification 	 SAT-CDMA explains the same synchronization primitives as the 3GPP specification 	High

Item ref.	ltem	SW-CDMA	SAT-CDMA	Difference	Commonality
4.2.3	Initial radio link establishment	 Network: Start the transmission of DL DCH (including Doppler pre-compensation at DL Tx frequency). UE: Establish DL ship and frame synchronization UE: Start the transmission of the Npreambles repetition of the RACH preamble and the UL DPCCH (including Doppler pre- compensation at UL Tx frequency) Network: Establish UL chip and frame synchronization (Conforming S_R successive frame sync) 	 Satellite-RAN: Start the transmission of the DL DPCCH (including Doppler pre-compensation at DL Tx frequency). UE: Establish DL chip and frame synchronization UE: Start the transmission of the initial transmission preamble and the UL DPCCH (including Doppler pre-compensation at UL Tx frequency) Satellite-RAN: Establish UL chip and frame synchronization 	 At the start of uplink transmission, SW-CDMA repeats the preamble having the same format as the RACH preamble. In SAT-CDMA transmits an initial preamble having the same format as the followed DPCCH. 	Medium
4.2.4	Additional radio link establishment	 DPCCH/DPDCH diversity path synchronization 	 Satellite-RAN Start the transmission of the new DL DPCCH/DPDCH (within T₀±148 chips prior to the UL frame at UE) Establish UL chip and frame synchronization UE Establish DL chip and frame synchronization of the new RL 	 S-UMTS does not explain the procedure in detail. SAT-CDMA uses the procedure similar to that of the 3GPP specification 	Low
4.2.6	Radio link monitoring	Not defined	 DL radio link failure: Indicating in-sync and out-of-sync to higher layers UL radio link failure: after N_OUTSYNC_IND successive out-of-sync indications and the time period of T_RLFAILURE UL radio link restore: after N_INSYNC_IND successive in-sync indications 	 S-UMTS does not explain in detail SAT-CDMA uses the procedure similar to that of the 3GPP specification 	Low
4.2.7	Transmission timing adjustment ions	Not defined	 When the time between reception of DL DPCCH and transmission of UL DPCCH lies outside a valid range at UE 	 S-UMTS does not explain in detail SAT-CDMA uses the procedure similar to that of the 3GPP specification 	Low

Comment 4.2: The above synchronization procedures in SW-CDMA can be defined as closely as possible to 3GPP as with SAT-CDMA. However, there are some concerns about the timing relationship in SW-CDMA.

Item ref.	Item	SW-CDMA	SAT-CDMA	Difference	Commonality				
4.3.1	UL PRACH power control	 Open-loop power control to calculate the initial transmit power No inner loop Control the control/data part relative power using gain factors β_c and β_d 	 No inner loop Control the control/data part relative power using gain factors β_C and β_d 	 There is no difference except that in S-UMTS the equation to calculate the initial transmit power of the PRACH is explained. This must be under the control of RRC layer. 	High				
4.3.2	UL DPCCH/ DPDCH power control	 Keep the SNIR at a target, SNIR_{target} One command per frame 2-bit TPC command 4-level adjustment Network: Generating TPC commands using the additional adjustment averaged over N_d frames 	 Keep the SIR at a target, SIR_{target} One command per frame 2-bit TPC command 4-level adjustment Power controls in soft handover and compressed mode 	 The power control measure is SNIR in S-UMTS, while it is SIR in SAT-CDMA. S-UMTS uses the power adjustment averaged in the past frames to generate the current TPC command. SAT-CDMA defines the power controls in soft handover and compressed mode. 	Medium				
4.3.3	UL PCPCH power control	Not defined	 PCPCH message part: the same rule as for DPDCH/DPCCH 	 S-UMTS does not define the PCPCH. 	Low				
4.3.4	DL DPCCH/ DPDCH power control	 Power offset between DPCCH and DPDCH fields, determined by the network TPC command generating rule: the same as for UL DPDCH/DPCCH 	 Power offset between DPCCH and DPDCH fields, determined by the network UE: the same rule as for UL DPDCH/DPCCH Satellite-RAN: power balancing Beam Selection Diversity TPC 	 In SAT-CDMA, power balancing procedure is added to the inner loop PC in Satellite-RAN behavior. In SAT-CDMA, BSDT is defined for soft handover mode. 	Low				
4.3.5	PDSCH	 Based on the PC commands sent by the MS on UL DPCCH 	 Based on the PC commands sent by the UE on UL DPCCH 	There is no difference.	High				
4.3.6	P-CCPCH	 Slow power control Transmit power: determined by network and signalled on BCH 	Not defined	 In SAT-CDMA, the power control for P-CCPCH is not explained. 	Low				
4.3.7	S-CCPCH	Set by network (time varying)	 Power offset of TFCI and pilot fields (time varying) 	There is no difference.	High				
4.3.8	CPCH-CCPCH	Not defined	 Inform the relative power compared to P-CPICH power 	 S-UMTS does not define the CPCH- CCPCH. 	Low				
4.3.9	AICH	Not defined	 Inform the relative power compared to P-CPICH power 	In S-UMTS, the AICH is not defined.	Low				
4.3.10	PICH	Not defined	 Inform the relative power compared to P-CPICH power 	 In S-UMTS, the power control for PICH is not explained. 	Low				
4.3.11	CSICH	Not defined	Inform the relative power compared to P-CPICH power	In S-UMTS, the CSICH is not defined.	Low				
Abbreviat TPC: Trai BSDT: Be CPCH-C0	Abbreviations - PC: Transmit Power Control 3SDT: Beam Selection Diversity Transmission - PCH-CCPCH: Common Packet Channel - Common Control Physical Channel								

Comment 4.3.1: The contents on open loop and outer loop power controls are subject to higher layers (e.g. RRC).

Comment 4.3.2: It is not subject to specification how the network (satellite or gateway) generates TPC commands but subject to network operator. However, it is subject to specification how a UE should calculate the uplink transmit power adjustment from the TPC commands generated and transmitted by the network adjustment.

Comment 4.3.2: The generation of TPC commands in SW-CDMA will be shifted to an annex, and also converged onto a common name for SNIR/SIR. The averaging of power control commands tries to minimize the impact of PC loop delay that in satellite is large. The performance improvement is large and shall be considered by SAT-CDMA. SW-CDMA will also include the description of power control commands for compressed mode.

Comment 4.3.4: See comment 1.3.6 about BSDT.

Item ref.	ltem	SW-CDMA	SAT-CDMA Difference		Commonality			
4.4.1	Step 1	 Select one preamble spreading code 	Select one access frame	 S-UMTS does not define transmission timing in detail. SAT-CDMA define the access frame time at UE. 	Low			
4.4.2	Step 2	Correct the Tx frequency for Doppler pre-compensation	Select one signature	 S-UMTS does not perform any signature selection. 	Low			
4.4.3	Step 3	 Set the preamble power 	 Set the Retrans Counter 	-	-			
4.4.4	Step 4	Perform the dynamic persistence check	Set the preamble power	• In S-UMTS, the dynamic persistence check is performed at physical layer.	Low			
4.4.5	Step 5	 Set the Retrans Counter 	Select one transmission time offset	 In SAT-CDMA, RACH is transmitted with a time offset from the start of the access frame. 	Low			
4.4.6.	Step 6	 Transmit the RACH preamble and message 	 Transmit the RACH preamble and message (including the Doppler pre-compensation) 		High			
4.4.7	Step 7	 If the acquisition indication on the FACH is not detected after a predefined interval Increase the transmission power Decrease the Retrans Counter Repeat from step 3 if Retrans Counter > 0 	 If the acquisition indication on the AICH is not detected after a predefined interval Select the next access frame Select a new signature Increase the transmission power Decrease the Retrans Counter Repeat from step 5 if Retrans Counter > 0 	 In S-UMTS, the acquisition indication is received via FACH at the level of higher layer, while in SAT-CDMA it is done via AICH at the level of physical layer. 	Low			
4.4.8	Step 8		 If the Nack on the AICH is detected, report to higher layer and stop 	In SAT-CDMA, the negative acknowledgement is used.	Low			
Abbreviat MAC: Mee	Abbreviations Nack: Negative acknowledgement							

Table 4-4: Commonality in the random access procedure

Comment 4.4: See comments 1.2.2 and 1.2.4-1.

Comment 4.4.4: The dynamic persistence check is subject to the MAC sub-layer.

Comment 4.4.7: In SW-CDMA, every retransmission during a power ramping period must pass through the persistence check. This may cause the additional access delay.

Comment 4.4: In SW-CDMA the whole random access procedure can be open for discussion.

Table 4-5: Commonality in the access procedure for CPCH

32

Item ref.	ltem	SW-CDMA	SAT-CDMA	Difference	Commonality
4.5.1	Step 1	•	Check the CPCH status information	 S-UMTS does not define the 	-
			on the CSICH	PCPCH.	
4.5.2	Step 2	•	 Set the preamble power and 		-
			retransmission counter		
4.5.3	Step 3	•	 Select an access frame, a AP 		-
			signature, a time offset		
4.5.4	Step 4		 Select a time offset 	•	-
4.5.5	Step 5	•	 Select a CD signature 		-
4.5.6	Step 6		 Transmit the AP and CDP 	•	-
4.5.7	Step 7	•	 If no ack on APA/CD/CA-ICH 		-
			 Select the next access frame 		
			 Select the new CD signature 		
			 Increase the transmit power 		
			 Decrease the retrans counter 		
			 Repeat from step 4 if Retrans 		
			Counter > 0		
4.5.8	Step 8	•	 If Nack on APA/CD/CA-ICH 		-
			 Report to MAC and stop 		
4.5.9	Step 9	•	 If Ack on APA/CD/CA-ICH 		-
			- Transmit the CPCH initial preamble		
			and the CPCH message		
4.5.10	Step 10	•	 If no Start of Message Indicator in 		-
			the first N _{Start Message} frames of		
			the CPCH-CCPCH		
			- Halt the transmission and report		
			to MAC		
4.5.11	Step 11		Perform the inner loop power control		-
			during the CPCH message		
			transmission		

Item ref.	ltem	SW-CDMA	SAT-CDMA	Difference	Commonality	
4.5.12	Step 12		 If Emergency Stop command on the CPCH-CCCH Halt the transmission and report to MAC 	•	-	
Abbreviat	ions					
AP: Access Preamble APA: Access Preamble Acquisition CD: Collision Detection CD P: Collision		Ilision Detection Preamble				
CA: Channel Assignment CPCH-CCPCH: Common Packet Channel - Common Control Physical Channel						

Comment 4.5: See comments 1.2.2 and 1.2.4-2.

Comment 4.5: In SW-CDMA, the whole random access procedure can be open for discussion.

5.3 Commonalties and differences between W-CDMA and SAT-CDMA

5.3.1 Physical channel structure

Table 5-1: Commonality in radio frame structure

Item ref.	Item	W-CDMA	SAT-CDMA	Difference	Commonality			
5.1.1	Radio frame	 10 ms = 15 slots = 38 400 chips 	 10 ms = 15 slots = 38 400 chips 	 There is no difference. 	High			
5.1.2	Time slot	• 2 560 chips	• 2 560 chips	 There is no difference. 	High			
Abbreviations								

Table 5-2: Commonality in the type of physical channels

Item ref.	Item	W-CDMA	SAT-CDMA	Difference	Commonality
5.2.1	Uplink	DPDCH	DPDCH	 There is no difference. 	High
	dedicated	DPCCH	DPCCH		-
5.2.2	Uplink common	PRACH	PRACH PCPCH	 SAT-CDMA offers the PCPCH for fast uplink packet-mode transmission. 	Medium
5.2.3	Downlink dedicated	DPCH - DPDCH and DPCCH	DPCH - DPDCH and DPCCH	There is no difference	High

Item ref.	Item	W-CDMA	SAT	-CDMA	Difference	Commonality
5.2.4	Downlink common	SCH CPICH P-CCPCH S-CCPCH PICH AICH	SCH CPICH P-CCPCH S-CCPCH CPCH-CCPCH PDSCH PICH AICH APA/CD/CA-ICH		 SAT-CDMA defines the indicator channels and the CPCH-CCPCH for supporting the uplink PCPCH. SAT-CDMA defines one channel for the indications of AP and CD/CA. 	Medium
		сѕісн	CSICH			
Abbreviatio	ons	·	•		·	
AICH - Acc	quisition Indicator (Channel		PCPCH - Physical Co	ommon Packet Channel	
APA/CD/C	A-ICH - Access Pr	eamble Acquisition/Collision Detection/C	hannel	PDSCH - Physical Do	wnlink Shared Channel	
	Assignmer	it - Indicator Channel		PICH - Paging Indicat	or Channel	
	CPCH-CCPCH - CPCH - Common Control Physical Channel			PHPPCH - Physical High Penetration Paging Channel		
CPICH - COMMON PHOL Channel			PRACH - Physical Random Access Channel			
IDPCH - Dedicated Physical Channel			SCH - Synchronizatio	n Channel		
DPCCH - I	DPCCH - Dedicated Physical Control Channel				rv Common Control Physical Channel	
DPDCH - [Dedicated Physica	I Data Channel				

Comment 5.2.2 and 5.2.4: The PCPCH, which might be deleted in SAT-CDMA because PCPCH has not been used in a real implement, is required for uplink packet-mode transmission with medium length (e.g. several or several tens of frames). The CPCH-CCPCH is suggested for CPCH transmission control and power control. In 3GPP specifications, each PCPCH is associated with a DL DPCCH for CPCH which is a downlink dedicated channel, while in the SAT-CDMA all of PCPCHs in a CPCH set are associated with a CPCH-CCPCH which is a downlink common control channel. In satellite environment, the common control channel is more efficient because the deviation of the propagation loss to each user is relatively little in a beam coverage, compared to the terrestrial case. This implies that power control is not mandatory for the associated common control channel.

Comment 5.2.4: In SAT-CDMA, only one channel for the indications of AP and CD/CA is needed for the fast access because satellite environment has a long round trip delay unlikely in 3GPP.

Item ref.	Item	W-CDMA	SAT-CDMA	Difference	Commonality
5.3.1	Multiplexing	DPDCH and DPCCH are I-Q/code	 DPDCH and DPCCH are I-Q/code 	 There is no difference. 	High
		multiplexed	multiplexed		
5.3.2	DPDCH	 Slot = Data field 	 Slot = Data field 	 There is no difference. 	High
		• SF = 256/2 ^k = 256~4 (k=06)	• SF = 256/2 ^k = 256~4 (k=0…6)		
5.3.3	DPCCH	 Slot = Pilot + TPC + TFCI + FBI 	 Slot = Pilot + TPC + TFCI + FBI 	 There is no difference. 	High
		• SF = 256	• SF = 256		

Table 5-3: Commonality in dedicated uplink physical channel

Item ref.	ltem	W-CDMA	SAT-CDMA	Difference	Commonality
5.3.4	Pilot field	 4,5,6,7 or 8 bits per slot Pilot bit pattern depending on slot format 	 4, 5, 6, 7 or 8, 9 bits per slot FSW used 	 SAT-CDMA defines the several pilot bit patterns as well as 9-bit pattern. 	Medium
5.3.5	TFCI / TPC field	 TFCI and TPC bits: encoded separately TPC field: 1 or 2 bits per slot depending on slot format TFCI field: 2, 3 or 4 bits per slot 1 TPC command per frame 	 TFCI and TPC bits: encoded separately TPC field: 1 bits per slot TFCI field: 2, 3 or 4 bits per slot 1 TPC command per frame 	SAT-CDMA reduces TPC filed to 1 bit	Medium
5.3.6	FBI field	0,1 or 2 bits per slot	0 or 1 bit per slot	 SAT-CDMA uses 1 bit per slot as the FBI field for only BSDT 	Medium
5.3.7	DPCCH preamble	 Power control preamble Length: N_{pCp} frames Slot format: identical to the DPCCH slot 	 Initial transmission preamble Length: N_{itp} frames Slot format: identical to the DPCCH slot 	 The length of the DCPCCH preamble is N_{pCP} slots in S-UMTS, while N_{itp} frames in SAT-CDMA. 	Medium
Abbreviations SF: Spreading Factor TFCI: Transport-format combination indicator TPC: Transmit power control			FSW: Frame synchroniz BSDT: Beam Selection	zation word Diversity Transmission	

Comment 5.3.4 and 5.3.5: Because one radio frame corresponds to one power-control period in two RTTs, usage of 2 bits per slot for TPC field is wasteful differently from 3GPP. Additionally, in SAT-CDMA, 1 bit expansion of pilot filed makes channel estimation more correct.

Comment 5.3.6: In SAT-CDMA compared to W-CDMA, FBI field is reduced to 1bit due to no use of closed loop transmit diversity. Therefore, The FBI bits are used to support techniques requiring feedback the UE to the Satellite-RAN Access Point including Beam Selection diversity transmission (BDST).

Table 5-4: Commonality in physical random access channel (PRACH)
--	--------

Item ref.	ltem	W-CDMA	SAT-CDMA	Difference	Commonality
5.4.1	Random-access transmission	 Slotted ALOHA approach with fast acquisition indication Transmission = 1 PRACH preamble, and then, 1 PRACH message 	 ALOHA approach with fast acquisition indication Transmission = 1 PRACH preamble + 1 PRACH message 	 In SAT-CDMA, one preamble and one message is transmitted together. 	Low
5.4.2	Access slot or frame	Access slot= 2 slots	Access frame = 2 radio frames	 SAT-CDMA defines a timing structure consisted of the access frames. 	Low
5.4.3	PRACH preamble part	 Preamble: 8 * 256 repetitions of a signature of length of 16 chips Length = 9 * 4 096 = 36 864 chips 	 Preamble: Np repetitions of sub- preambles Sub-preamble = 256 repetitions of a signature of length of 16 chips. Invert the sign of the last sub- preamble Length = Np * 4 096 chips 	 In S-UMTS, the number of repetition is fixed, while in SAT-CDMA it is signalled by higher layers. S-UMTS defines a unique word, while SAT-CDMA uses the last sub- preamble with inverse sign. 	Low

Item ref.	Item	W-CDMA	SAT-CDMA	Difference	Commonality
5.4.4	PRACH message part	 Data and Control are I-Q/code multiplexed Length = 10 or 20 ms 	 Data and Control are I-Q/code multiplexed Length = 10 or 20 ms 	There is no difference.	High
5.4.5	Data part of the RACH message	 Slot = Data field SF = 256/2^k = 256~32 (k=03) 	 Slot = Data field SF = 256/2^k = 256~32 (k=03) 	There is no difference.	High
5.4.6	Control part of the RACH message	 Slot = Pilot (8 bits) + TFCI (2 bits) SF = 256 	 Slot = Pilot (8 bits) + TFCI (2 bits) SF = 256 	There is no difference.	High
Abbreviations					

Comment 5.4.1: In SAT-CDMA, transmission of preamble with message and AICH can reduce the retransmission delay of the PRACH preamble and message because a quick acknowledgement is possible at physical layer by transmitting an acquisition indicator corresponding to the PRACH preamble signature. Although the preamble is successfully acquired, it is possible that the massage part may not be received successfully. However, generally, message detection probability is high if the preamble is detected.

Comment 5.4.2: In SAT-CDMA, random-access transmission is started at the beginning of access frames. Each access frame has a length of two radio frames. Considering typical beam sizes and satellite heights for LEO, MEO and GEO systems, the deviation of delays among users in a beam have values within 20 ms. In the downlink AICH, the access frame of length 20 ms is also defined as the period of acquisition indicator transmission as well as the AICH frame.

Comment 5.4.3: In SAT-CDMA, the number of sub-preamble repetitions is not fixed and signalled by higher layers. Generally, the repetition number depends on the detection scheme and the amount of the Doppler shift. Thus in specification it should not be optimized for a specific detection scheme and a satellite constellation. In addition, the last sub-preamble with the inverted sign and the same structure can inform the detector of the end time of the preamble or the beginning time of the message part, instead of the insertion of symbols modulated by a method different from the modulation method used for the preamble. The structure of signature repetition makes differential detection possible although the symbols are not differentially encoded. If the receiver has already detected and acquired the preamble using a matched filter with a differential detection scheme, the timing of the preamble scrambling code has been acquired and thus it is not required to detect the UW for a bit and/or a message packet synchronization.

Item ref.	Item	W-CDMA	SAT-CDMA	Difference	Commonality
5.5.1	CPCH Random- access transmission	Not defined	 DSMA-CD approach Transmission = 1 AP/CDP part + 1 message part 	 SAT-CDMA defines one channel for the indications of AP and CD/CA. 	Low
5.5.2	Access slot or frame	Not defined	Access frame = 2 radio frames	 The timing of the PCPCH transmission is aligned to the access frame, as with the PRACH transmission in SAT-CDMA 	Low
5.5.3	PCPCH preamble part	Not defined	 Preamble = 1 AP + 1 CD AP =N_p * 256 repetitions of a signature of length of 16 chips. CD = 256 repetitions of a signature of length of 16 chips Length = (N_p+1) * 4 096 chips 	 The PCPCH preamble in SAT- CDMA consists of a pair of the access preamble and the collision detection preamble. The access preamble has the same structure as with the PRACH preamble. 	Low

Table 5-5: Commonality in physical common packet channel (PCPCH)
Item ref.	Item	W-CDMA	S	AT-CDMA	Difference	Commonality
5.5.4	PCPCH initial transmission	Not defined	 CPCH Initial - Length: L_{itp} 	Transmission Preamble	 To help the detection at Satellite- RAN, the initial transmission 	Medium
	preamble		- Slot format: format of PC control part	identical to the slot PCH message	preamble or power control preamble can be transmitted prior to the message part.	
5.5.5	PCPCH message part	Not defined	 Data and Con multiplexed Length = Nm 	ntrol are I-Q/code ax_frames frames	There is no difference.	High
5.5.6	Data part of the message	Not defined	 Slot = Data fi SF = 256/2k 	eld = 256 ~ 4 (k=0…6)	There is no difference.	High
5.5.7	Control part of the message	Not defined	 Slot = Pilot (8 SF = 256 	3 bits) + TFCI (2 bits)	There is no difference.	High
Abbreviations AP - Access Preamble				CDP - Collision Detection	Preamble	

Comment 5.5.1: In SAT-CDMA, the PCPCH and the downlink indicator channels, which might be deleted in two satellite radio interfaces because PCPCH have not been used in a real implement, as close as possible to those in the 3GPP. However, in the PCPCH transmission, the access preamble and the collision detection preamble are successively transmitted as a pair in order to reduce the access delay.

Item ref.	Item	W-CDMA	SAT-CDMA	Difference	Commonality
1.6.1	Characteristics	 DPDCH and DPCCH are time multiplexed Slot = Data1 +TPC +TPC + Data2 + Pilot SF = 512/2^k = 512 ~ 4 (k=07) 	 DPDCH and DPCCH are time multiplexed Slot = Data1 +TPC +TPC + Data2 + Pilot SF = 512/2^k = 512 ~ 4 (k=07) 	There is no difference	High
1.6.2	DPDCH	One or two data fields per slot	One or two data fields per slot	There is no difference	High
1.6.3	DPCCH	 TPC, TFCI and Pilot fields 	 TPC, TFCI and Pilot fields 	There is no difference	High
1.6.4	TFCI / TPC field	 TFCI and TPC bits: encoded separately TPC field: 2, 4 or 8 bits per slot TFCI field:0, 2 or 4 bits per slot 1 TPC command per frame 	 TFCI and TPC bits: encoded separately TPC field: 1, 2 or 4 bits per slot TFCI field:0, 2 or 4 bits per slot 1 TPC command per frame 	 In SAT-CDMA, there is 1/2 reduction of bits for TPC field and expansion of bits for Data 2. 	Medium
1.6.5	Pilot field	 2, 4, 8 or 16 bits per slot Pilot bit pattern depending on slot format 	2, 4, 8 or 16 bits per slot FSW used	There is no difference	High
Abbreviations TFCI: Transport-format combination indicator TPC: Transmit power-control			FSW: Frame synchron	nization word	

Comment 5.6.4: Because one radio frame corresponds to one power-control period in two RTTs, usage of 2 bits per slot for TPC field is wasteful differently from 3GPP. Additionally, in SAT-CDMA, 1 bit expansion of data field makes data transmission efficiency, which is one of important issues in downlink, increased.

Comment 5.6: In clause 5.3.1 of W-CDMA [i.5], each frame of length 10,s is split into 15 slots, each of length $T_{slot}=2560$ chips, corresponding to one power control period. This is not consistent with the description as 1 TPC command per frame in W-CDMA

Item ref.	ltem	W-CDMA	SAT-CDMA	Difference	Commonality
5.7.1	Characteristics	 Carrying a pre-defined symbol sequence SF = 256 (fixed) Type: Primary CPICH and Secondary CPICH 	 Carrying a pre-defined symbol sequence SF = 256 (fixed) Type: Primary CPICH and Secondary CPICH 	There is no difference.	High
5.7.2	Primary CPICH	 Only one P-CPICH per cell Channelization: by the pre-defined code Scrambling: by the primary scrambling code 	 Only one P-CPICH per cell Channelization: by the pre-defined code Scrambling: by the primary scrambling code 	• There is no difference.	High
5.7.3	Secondary CPICH	 Zero, one or several S-CPICH per cell Channelization: by an arbitrary code Scrambling: by the primary or secondary scrambling code 	 Zero, one or several S-CPICH per cell Channelization: by an arbitrary code Scrambling: by the primary or secondary scrambling code 	There is no difference.	High
Abbreviatio	ons				

Table 5-7: Commonality in common pilot channel (CPICH)

Table 5-8: Commonality in common control physical channel (CCPCH)

Item ref.	Item	W-CDMA	SAT-CDMA	Difference	Commonality
5.8.1	Туре	Primary-CCPCH	Primary-CCPCH	 There is no difference. 	High
		 Secondary-CCPCH 	 Secondary-CCPCH 		
5.8.2	Primary-	 Carrying BCH 	 Carrying BCH 	 There is no difference 	High
	CCPCH	SF = 256 (fixed)	SF = 256 (fixed)		-
		 Slot = Tx OFF + Data 	 Slot = Tx OFF + Data 		
		Tx OFF: 256 chips	Tx OFF: 256 chips		
		Data: 18 bits	Data: 18 bits		
5.8.3	Secondary-	 Carrying PCH and/or FACH 	 Carrying PCH and/or FACH 	 There is no difference. 	High
	CCPCH	• SF = 256/2k = 256 ~ 4 (k=06)	• SF = 256/2k = 256 ~ 4 (k=06)		
		Slot = TFCI + Data + Pilot	Slot = TFCI + Data + Pilot		
		 TFCI field: 0, 2 or 8 bits per slot 	 TFCI field: 0, 2 or 8 bits per slot 		
		Data field: 10 ~ 1 272 bits per slot	Data field: 10 ~ 1 272 bits per slot		
		 Pilot field: 0, 8 or 16 bits per slot 	 Pilot field: 0, 8 or 16 bits per slot 		

Item ref.	ltem	W-CDMA	SAT-CDMA	Difference	Commonality
5.8.4	СРСН-ССРСН	Not defined	 To control the uplink PCPCH SF = 256 (fixed) Slot = TPC + CCC + Pilot TPC field: 8 bits CCC field: 8 bits Pilot field: 4 bits 	 SAT-CDMA uses a common control channel to support the power and transmission control for the uplink PCPCH 	Low
Abbreviations BCH - Broadcast Channel			PCH - Paging Channe	I _	
IFACH - Fo	orward Access Cha	annel	CCC - CPCH control command		

Comment 5.8.1: See Comment 1.2.2 and 1.2.4 about the CPCH-CCPCH.

Table 5-9. Commonality in synchronization channel (SCH).

Item ref.	Item	W-CDMA	SAT-CDMA	Difference	Commonality
5.9.1	Туре	 Primary SCH and Secondary SCH 	 Primary SCH and Secondary SCH 	There is no difference.	High
5.9.2	Primary SCH	 Slot = PSC (256 chips) + Tx OFF 	 Slot = PSC (256 chips) + Tx OFF 	There is no difference.	High
		(2 304 chips)	(2 304 chips)		
		 PSC: complex valued sequence of 	 PSC: complex valued sequence of 		
		256-chip length	 256-chip length 		
		Used the same PSC in every cell	Used the same PSC in every cell		
5.9.3	Secondary SCH	 Slot = SSC sequence (256 chips) + 	 Slot = SSC sequence (256 chips) + 	There is no difference.	High
		Tx OFF (2 304 chips)	Tx OFF (2 304 chips)		
		SSC sequence: a set of 16 different	SSC sequence: a set of 16 different		
		codes of length 256 chips	codes of length 256 chips		
		64 different SSC sequences	64 different SSC sequences		
Abbreviati	ons				
PSC: Primary Synchronization Code			SSC: Secondary Synchro	nization Code	

Table 5-10: Commonality in other physical downlink channels

Item ref.	Item	W-CDMA	SAT-CDMA	Difference	Commonality
5.10.1	PDSCH	Not defined	 Code-sharing between users Slot = only data field SF = 256/2^k = 256 ~ 4 (k=06) Associated with a DL DPCH 	 In S-UMTS G, PDSCH is not defined. 	Low
5.10.2	PICH	 SF = 256 Frame = 288-bit PI part + 12-bit Tx OFF 	 SF = 256 Frame = 288-bit PI part + 12-bit Tx OFF 	 There is no difference. 	High

Item ref.	Item	W-CDMA	SAT-CDMA	Difference	Commonality
5.10.3	AICH	 Carrying AI for RACH SF = 256 AICH frame = 20 ms 15 access slots per AICH frame First access slot = AI part (4 096 chips) + Tx OFF (1 024 chips) 	 Carrying AI for RACH SF = 256 AICH frame = 20 ms 15 access slots per AICH frame First access slot = AI part (4 096 chips) + Tx OFF (1 024 chips) 	There is no difference.	High
5.10.4	APA/CD/CA- ICH	• Not defined	 Carrying API and CDI/CAI for CPCH SF = 256 A pair of two access slots = API part (4 096 chips) + Tx OFF (1 024 chips) + CDI/CAI part (4 096 chips) + Tx OFF (1 024 chips) Use 7 access slot pairs except the first access slot in a AICH frame 	 SAT-CDMA transmits indicators corresponding the PCPCH preambles for the purpose of CPCH admission or channel assignment at the same time. 	Low
5.10.5	CSICH	Not defined	 Carrying SI for CPCH status information SF = 256 Access slots = Tx OFF (4 096 chips) + SI part (1 024 chips) 8 * 15 bits in a AICH frame 	 In S-UMTS, CPCH is not implemented. 	Low
5.10.6	CD/CA-ICH	 Carrying CDI/CAI for CPCH SF = 256 A pair of two access slots = CDI/CAI part (4 096 chips) + Tx OFF (1 024 chips) 	Not defined	 SRI-G has CD/CA-ICH for separately transmitting AI preambles and CD/CA preamble. 	Low
Abbreviation Al: Acquis CAI: Chan	ons ition Indicator nel Assignment In	API: Access dicator SI: CPCH St	Preamble acquisition Indicator actuation actuatita actuatita actuatita actuatita actuatita actua	PI: Paging Indicator CDI: Collision Detection Indicator	

Comment 5.10.1: In W-CDMA, PDSCH is not defined because the need for increasing the downlink data rate for a very short time in addition to dedicated channels is not shown.

Comment 5.10.4: In SAT-CDMA, the PCPCH preamble consists of a pair of an access preamble and a CD preamble. Therefore, the corresponding indicators are also transmitted as a pair in the associated downlink indicator channel. The APA/CD/CA-ICH is designed by combining the AP-AICH with CD/CA-ICH. The structures of acquisition indicators and CSICH are identical to those of 3GPP's.

5.3.2 Channel coding and multiplexing

Table 6-1: Commonality in processing steps of channel coding and multiplexing

Item ref.	Item	W-CDMA	SAT-CDMA	Difference	Commonality
6.1.1	Uplink processing steps	CRC attachment TrBk concatenation/Code block segmentation Channel coding Radio frame equalization 1 St interleaving Radio frame segmentation Rate matching TrCH multiplexing PhCH segmentation 2 nd interleaving PhCH mapping	 CRC attachment TrBk concatenation/Code block segmentation Channel coding Radio frame equalization 1St interleaving Radio frame segmentation Rate matching TrCH multiplexing PhCH segmentation 2nd interleaving PhCH mapping 	There is no difference.	High
6.1.2	Downlink processing steps	 CRC attachment TrBk concatenation/Code block segmentation Channel coding Rate matching 1st insertion of DTX indication 1st interleaving Radio frame segmentation TrCH multiplexing 2nd insertion of DTX indication PhCH segmentation 2nd interleaving PhCH mapping 	 CRC attachment TrBk concatenation/Code block segmentation Channel coding Rate matching 1st insertion of DTX indication 1st interleaving Radio frame segmentation TrCH multiplexing 2nd insertion of DTX indication PhCH segmentation 2nd interleaving PhCH mapping 	There is no difference except that S-UMTS adds an optional scrambling before physical channel mapping.	High
Abbreviations CRC: Cyclic Redundancy Check TrBk: Transport block TrCH: Transport channel			PhCH: Physical chanr DTX: Discontinuous tr	nel ansmission	

Table 6-2: Commonality in error detection and channel coding

Item ref.	ltem	W-CDMA	SAT-CDMA	Difference	Commonality
6.2.1	Error detection	 Using CRC attachment 	 Using CRC attachment 	 There is no difference. 	High
		 CRC length: 24, 16, 12, 8 or 0 bits 	 CRC length: 24, 16, 12, 8 or 0 bits 		
6.2.2	Channel coding	 Convolutional coding r=1/2 or 1/3, 	 Convolutional coding r=1/2 or 1/3, 	 There is no difference. 	High
	scheme	K=9	K=9		
		 Turbo coding: r=1/3, 8-state 	 Turbo coding: r=1/3, 8-state 		
		constituent code	constituent code		
Symbols					
r: code ra	te		K: constraint length		

Table 6-3: Commonality in interleaving

Item ref.	Item	S-UMTS G	SAT-CDMA	Difference	Commonality		
6.3.1	1 St interleaving	 Block interleaver with inter-column permutations Interleaving bit sequence for each TrCH before the TrCH multiplexing Writing input bits row by row Reading output bits column by column R = variable C =1, 2, 4 or 8 	 Block interleaver with inter-column permutations Interleaving bit sequence for each TrCH before the TrCH multiplexing Writing input bits row by row Reading output bits column by column R = variable C =1, 2, 4 or 8 	There is no difference.	High		
6.3.2	2 nd interleaving	 Block interleaver with inter-column permutations Interleaving bit sequence in one radio frame for each PhCH after the PhCH segmentation Writing input bits row by row Reading output bits column by column R = variable C = 30 	 Block interleaver with inter-column permutations Interleaving bit sequence in one radio frame for each PhCH after the PhCH segmentation Writing input bits row by row Reading output bits column by column R = variable C = 30 	There is no difference.	High		
Symbol R: numbe	Symbol R: number of rows for a block interleaver C: number of columns for a block interleaver						

Table 6-4: Commonality	in rate matching and	I data scrambling
------------------------	----------------------	-------------------

Item ref.	ltem	W-CDMA	SAT-CDMA	Difference	Commonality
6.4.1	Uplink rate matching	 To match the bit rate of a CCTrCH to the bit rate of the allocated PhCH(s) Depending on the TFC used in each radio frame A radio frame is either completely filled with bits or not used Supporting the compressed mode 	 To match the bit rate of a CCTrCH to the bit rate of the allocated PhCH(s) Depending on the TFC used in each radio frame A radio frame is either completely filled with bits or not used Supporting the compressed mode 	There is no difference.	High
6.4.2	Downlink rate matching	 Depending on the TF of each TrCH in each TTI and the number of the assigned channelization codes Using DTX to fill up the radio frame with bits Supporting the fixed or flexible positions of the TrCHs in the radio frame Supporting the compressed mode 	 Depending on the TF of each TrCH in each TTI and the number of the assigned channelization codes Using DTX to fill up the radio frame with bits Supporting the fixed or flexible positions of the TrCHs in the radio frame Supporting the compressed mode 	There is no difference.	High
Abbreviat	Abbreviations				
TE: Transport Format			DTX: Discontinuous	Transmission	
TFC: Trar	sport Format Con	nbination			

Table 6-5: Commonality in transport format detection

Item ref.	ltem	W-CDMA	SAT-CDMA	Difference	Commonality
6.5.1	Transport	 TFCI based detection 	 TFCI based detection 	 There is no difference. 	High
	format detection	 Explicit blind detection 	 Explicit blind detection 		-
	methods	 Guided detection 	 Guided detection 		
6.5.2	TFCI coding or	 TFCI coding in normal mode 	 TFCI coding in normal mode 	 There is no difference. 	High
	TFCI/TPC	- 10-bit TFCI per frame	- 10-bit TFCI per frame		
	coding	- Using a (32, 10) sub-code of the	 Using a (32, 10) sub-code of the 		
		second order Reed Muller code	second order Reed Muller code		
		 Code word: Linear combination of 	 Code word: Linear combination of 		
		10 basis sequences	10 basis sequences		
		 TFCI coding in split mode 	 TFCI coding in split mode 		
		 A pair of 5-bit TFCI 	 A pair of 5-bit TFCI 		
		 using two (16,5) bi-orthogonal 	- using two (16,5) bi-orthogonal		
		codes	codes		
		 Code word: Linear combination of 	 Code word: Linear combination of 		
		5 basis sequences	5 basis sequences		

Item ref.	ltem	W-CDMA	S	AT-CDMA	Difference	Commonality
6.5.3	Compressed mode	 Transmission gap for inter- frequency measurements TG position: decide by network Frame structure types Type A: maximizing the TG Type B: Optimizing for power control Compressed method Puncturing Reducing the spreading factor by 2 Higher layer scheduling 	 Transmission measuremer TG position: Frame struct Type A: maxin Compressed Puncturing Reducing the Higher laye 	n gap for inter-frequency hts decide by network ure types nizing the TG method spreading factor by 2 r scheduling	 There is no difference except that SAT-CDMA uses only Type A as the frame structure. 	
6.5.4	TPC coding	 1-bit TPC command per frame if all TPC bit patterns in a slot are 1, TPC command is 1. If all TPC bit patterns in a slot are 0, TPC command is 0. 	2-bit TPC co Using a (16,2 Code word: I basis sequer	mmand per frame 2) bi-orthogonal code Linear combination of 2 nces	 SAT-CDMA encoded the TPS command bits using the (16,2) bi-orthogonal code 	Low
Abbreviat TFCI: Tra	ions Insport Format Co	Abbreviations				

Comment 6.5.3: In 3GPP, two kinds of frame structure are required in compressed mode since the slot-by-slot power control is employed. Therefore, there is no need of Type B in SAT-CDMA since the power control period is one radio frame in satellite specification.

Comment 6.3.4: SAT-CDMA defines TPC coding for 2-bit TPC command per frame. In SAT-DMA, 2-bit command per frame helps power control algorithm adapted fast to channel attenuation. Because power control period is a radio frame in SAT-CDMA and W-CDMA, mapping of TPC bit pattern for 2 bit TPC command is sufficiently achieved over one radio frame unlikely in 3GPP where all TPC bit pattern for TPC command should be transmitted in one slot.

5.3.3 Spreading and Modulation

Item ref.	Item	W-CDMA	SAT-CDMA	Difference	Commonality
7.1.1	Uplink	 Dual channel QPSK 	 Dual channel QPSK 	 There is no difference. 	High
	modulation	 I-Q/code multiplexing 	 I-Q/code multiplexing 		-
		Chip rate: 3,84 Mchip/s	Chip rate: 3,84 Mchip/s		
7.1.2	Uplink spreading	 Channelization: different Walsh covering on I and Q braches Scrambling: complex scrambling by long or short codes Multi-code transmission: Up to 6 codes for DPDCH 	 Channelization: different Walsh covering on I and Q braches Scrambling: complex scrambling by long or short codes Multi-code transmission: Up to 6 codes for DPDCH 	There is no difference.	High
7.1.3	Uplink channelization code	 OVSF Walsh code Length: 4~256 chips 	 OVSF Walsh code Length: 4~256 chips 	There is no difference.	High

Item ref.	ltem	W-CDMA	SAT-CDMA	Difference	Commonality
7.1.4	Uplink long scrambling code	 Gold code Length: 38 400 chips (one radio frame) Generator polynomials: X²⁵+X³+1, X²⁵+X³+X²+X+1 One or several preamble code: the repetition of the first preamble code. 	 Gold code Length: 38 400 chips (one radio frame) Generator polynomials: X²⁵+X³+1, X²⁵+X³+X²+X+1 Access preamble code: the repetition of the first sub-preamble code except the final sub-preamble and the conjugate of it in the final sub-preamble 	 SAT-CDMA defines one access preamble code which consists of N_p- 1 repetitions and one conjugate code of the first sub-preamble code. 	Medium
7.1.5	Uplink short scrambling code	 Extended S(2) code Length: 256 chips Generator polynomials: g₀(x)=x⁸+x⁵+3x³+x²+2x+1, g₁(x)=x⁸+x⁷+x⁵+x+1, g₂(x)=x⁸+x⁷+x⁵+x⁴+1 	 Extended S(2) code Length: 256 chips Generator polynomials: g₀(x)=x⁸+x⁵+3x³+x²+2x+1, g₁(x)=x⁸+x⁷+x⁵+x+1, g₂(x)=x⁸+x⁷+x⁵+x⁴+1 	 There is no difference. 	High
Abbreviat OVSF: Or	ions thogonal Variable	Spreading Factor UL: Uplink		DL: Downlink	

Comment 7.1.4: See Comment 1.4.3.

Item ref.	Item	W-CDMA	SAT-CDMA	Difference	Commonality
7.2.1	Downlink modulation	QPSK Time multiplexed Chip rate: 3.84 Mehip/s	QPSK Time multiplexed Chip rate: 3.84 Mehip/s	There is no difference.	High
7.2.2	Downlink spreading	 Channelization: same Walsh covering on I and Q braches Scrambling: complex scrambling by primary or secondary scrambling codes 	 Channelization: same Walsh covering on I and Q braches Scrambling: complex scrambling by primary or secondary scrambling codes 	• There is no difference.	High
7.2.3	Downlink channelization code	 OVSF Walsh code Length: 4~512 chips 	 OVSF Walsh code Length: 4~512 chips 	There is no difference.	High
7.2.4	Downlink scrambling code	 Gold code Grouping: 512 sets Generator polynomial: 1+X⁷+X¹⁸, 1+X⁵+X⁷+X¹⁰+X¹⁸ 	 Gold code Grouping: 512 sets Generator polynomial: 1+X⁷+X¹⁸, 1+X⁵+X⁷+X¹⁰+X¹⁸ 	There is no difference.	High

Item ref.	Item	W-CDMA	SAT-CDMA	Difference	Commonality	
7.2.5	Downlink optional short scrambling code	 Short Gold-like code Length: 256 chips Total number of codes: 255 Generator polynomial: 1+X⁴+X⁹, 1+X+X³+X⁴+X⁹ 	Not defined	 SRI-G may define an optional short code (when downlink multi-user detection is envisaged) like TS 125 213 [i.19] 	Low?	
7.2.6	Synchronization code	 one so-called generalized hierarchical Golay sequence. 	 Two so-called generalized hierarchical Golay sequences for LEO based SAT-CDMA One so-called generalized hierarchical Golay sequences for GEO based SAT-CDMA 	LEO base SAT-CDMA defines new codes for better performance because mobility of LEO satellites makes the performance of coherent code detection very poor.	Medium	
Abbreviations OVSF: Orthogonal Variable Spreading Factor LC: Long Code SC: Short Code I: I-branch Q: Q-branch						

Comment 7.2.5: In SAT-CDMA, the downlink multi-user detection (MUD) scheme will cause expensive and complex user terminals, especially in the case of dual-mode terminal for accessing both satellite and terrestrial systems. In order to support the MUD, the system should scramble all downlink channels with the short scrambling code when the terminals with and without the MUD scheme coexist in a satellite system. Accordingly, all users should descramble the downlink channels with the short codes, and users without the MUD will suffer from performance degradation.

Comment 7.2.6: A coherent code detection of length 256 chips on the synchronization code as in 3GPP has poor performance under very large frequency offset corresponding to mobility of LEO satellites. Therefore, two new codes, so-called generalized hierarchical Golay sequences, are needed for appropriate performance of LEO based SAT-CDMA. However, GEO based SAT-CDMA has a good performance with the sequences of 3GPP Release 1999 because a frequency offset of GEO based SAT-CDMA is as small as that of TS 125 213 [i.19].

5.3.4 Physical layer procedure

Item ref.	Item	W-CDMA	SAT-CDMA	Difference	Commonality
8.1.1	Cell search	 Slot synchronization: Using SCH's primary synchronization code Frame synchronization: Using SCH's secondary synchronization code Scrambling-code identification: Using the CPICH 	 Slot synchronization: Using SCH's primary synchronization code Frame synchronization: Using SCH's secondary synchronization code Scrambling-code identification: Using the CPICH 	 There is no difference. 	High
8.1.2	Common physical channel synchronization	 P-CCPCH frame timing: Found during cell search All common physical channel timing: Related to P-CCPCH timing 	 P-CCPCH frame timing: Found during cell search All common physical channel timing: Related to P-CCPCH timing 	 There is no difference. 	High
Abbreviat	ions				

Table 8-1: Commonality in the synchronization procedure for common physical channels

Item ref.	ltem	W-CDMA	SAT-CDMA	Difference	Commonality
8.2.1	Downlink	 Primitives: CPHY-Sync-IND, 	 Primitives: CPHY-Sync-IND, 	 It is expected that SRI-G defines the 	High
	synchronization	CPHY-Out-of-Sync-IND	CPHY-Out-of-Sync-IND	same synchronization primitives as	
	primitives	 First phase 	 First phase 	TS 125 214 [i.20] and	
		 During the first 160 ms 	 During the first 160 ms 	SAT-CDMA.	
		 Report the in-sync to higher 	 Report the in-sync to higher 		
		layer	layer		
		 Criteria: using DPCCH quality 	 Criteria: using DPCCH quality 		
		and threshold Q _{int}	and threshold Q _{int}		
		 Second phase 	 Second phase 		
		- After the first 160 ms	 After the first 160 ms 		
		 Report the in-sync or out-of- 	 Report the in-sync or 		
		sync to higher layer	out-of- sync to higher layer		
		 Criteria: using DPCCH quality or 	 Criteria: using DPCCH quality or 		
		CRC checks, and thresholds of	CRC checks, and thresholds of		
		Q _{in} and Q _{out}	Q _{in} and Q _{out}		
8.2.2	Uplink	 Primitives: CPHY-Sync-IND, 	 Primitives: CPHY-Sync-IND, 	 It is expected that SRI-G defines the 	High
	synchronization	CPHY-Out-of-Sync-IND	CPHY-Out-of-Sync-IND	same synchronization primitives as	
	primitives	 Indicate the sync status to the RL 	 Indicate the sync status to the RL 	TS 125 214 [i.20]and	
		Failure/Restored triggering function	Failure/Restored triggering function	SAT-CDMA.	
		in the Node B	in the Node B		
		· Criteria	Criteria		
		 not subject to specification 	 not subject to specification 		
8.2.3	Initial radio link	 Satellite-RAN: Start the transmission 	 Satellite-RAN: Start the transmission 	 There is no difference. 	High
	establishment	of the DL DPCCH (including Doppler	of the DL DPCCH (including Doppler		
		pre-compensation at DL Tx	pre-compensation at DL Tx		
		frequency).	frequency).		
		• UE: Establish DL chip and frame	UE: Establish DL chip and frame		
		synchronization	synchronization		
		UE: Start the transmission of the	UE: Start the transmission of the		
		power control preamble and the UL	initial transmission preamble and the		
		DPCCH (including Doppler pre-	UL DPCCH (including Doppler		
		compensation at UL 1x frequency)	pre-compensation at UL 1x		
		Satellite-RAN: Establish UL chip and	Trequency)		
		trame synchronization	Satellite-RAN: Establish UL chip and		
			trame synchronization		1

Table 8-2: Commonality in the synchronization procedure for dedicated physical channels

47

Item ref.	ltem	W-CDMA	SAT-CDMA	Difference	Commonality
8.2.4	Additional radio link establishment	 Satellite-RAN Start the transmission of the new DL DPCCH/DPDCH (within T₀±148 chips prior to the UL frame at UE) 	 Satellite-RAN Start the transmission of the new DL DPCCH/DPDCH (within T₀±148 chips prior to the UL frame at UE) 	There is no difference.	High
		 Establish UL chip and frame synchronization UE Establish DL chip and frame synchronization of the new RL 	 Establish UL chip and frame synchronization UE Establish DL chip and frame synchronization of the new RL 		
8.2.6	Radio link monitoring	 DL radio link failure: Indicating insync and out-of-sync to higher layers UL radio link failure: after N_OUTSYNC_IND successive out-of-sync indications and the time period of T_RLFAILURE UL radio link restore: after N_INSYNC_IND successive in-sync indications 	 DL radio link failure: Indicating insync and out-of-sync to higher layers UL radio link failure: after N_OUTSYNC_IND successive out-of-sync indications and the time period of T_RLFAILURE UL radio link restore: after N_INSYNC_IND successive in-sync indications 	There is no difference.	High
8.2.7	Transmission timing adjustment	 When the time between reception of DL DPCCH and transmission of UL DPCCH lies outside a valid range at UE 	 When the time between reception of DL DPCCH and transmission of UL DPCCH lies outside a valid range at UE 	 There is no difference. 	High
Abbreviat	ions				

Item ref.	ltem	W-CDMA	SAT-CDMA	Difference	Commonality
8.3.1	UL PRACH power control	 No inner loop Control the control/data part relative power using gain factors β_c and β_d 	 No inner loop Control the control/data part relative power using gain factors β_c and β_d 	There is no difference.	High
8.3.2	UL DPCCH/ DPDCH power control	 Not recommend to activate inner loop power control for GEO. Keep the SIR at a target, SIR_{target} One command per frame 1-bit TPC command 4-level adjustment Power control in soft handover Algorithms 1 or 2 for processing 1 bit TPC command. Power control in compressed mode: - ^ΔDPCCH_cmp^{= Δ}DPCCH^{+ Δ}pilot 	 Keep the SIR at a target, SIR_{target} One command per frame 2-bit TPC command 4-level adjustment OPLC in option Power control in soft handover Generating TPC commands using prediction algorithm. Algorithm 1 for processing 2 bit TPC command Power control in compressed mode: - ΔDPCCH_cmp= ΔDPCCH 	 In SAT-CDMA, 2 bit TPC command is defined. 4 level adjustment by 2 bit TPC command in SAT-CDMA, and 1 bit TPC command and high layer parameter in S-UMTS G. In S_UMTS G, algorithm 2 for processing TPC command is defined. In SAT-CDMA, UE do not reflect Δpilot for power control in compressed mode. 	Low
8.3.3	UL PCPCH power control	Not defined	 PCPCH message part: the same rule as for DPDCH/DPCCH 	 In S-UMTS, PCPCH is not implemented. 	Low
8.3.4	DL DPCCH/ DPDCH power control	 Power offset between DPCCH and DPDCH fields, determined by the network UE: the same rule as for UL DPDCH/DPCCH Satellite-RAN: power balancing Spot Selection Diversity TPC 	 Power offset between DPCCH and DPDCH fields, determined by the network UE: the same rule as for UL DPDCH/DPCCH Satellite-RAN: power balancing Beam Selection Diversity TPC 	 In SAT-CDMA, power balancing procedure is added to the inner loop PC in Satellite-RAN behavior. In SAT-CDMA, BSDT is defined for soft handover mode. 	High
8.3.5	PDSCH	 Not defined 	 Based on the PC commands sent by the UE on UL DPCCH 	 In S-UMTS G, PDSCH is not implemented. 	Low
8.3.7	S-CCPCH	 Power offset of TFCI and pilot fields (time varying) 	 Power offset of TFCI and pilot fields (time varying) 	There is no difference.	High
8.3.8	CPCH-CCPCH	Not defined	 Inform the relative power compared to P-CPICH power 	 In S-UMTS G, PCH is not implemented. 	Low
8.3.9	AICH	 Inform the relative power compared to P-CPICH power 	Inform the relative power compared to P-CPICH power	There is no difference.	High
8.3.10	PICH	 Inform the relative power compared to P-CPICH power 	Inform the relative power compared to P-CPICH power	There is no difference.	High
8.3.11	CSICH	Not defined	Inform the relative power compared to P-CPICH power	 In S-UMTS G, PCH is not implemented. 	Low
Abbreviat TPC: Tra CPCH-C0	ions nsmit Power Contr CPCH: Common P	ol BSDT: Beam Selection Diverse Selection Divers	ersity Transmission al Channel		

Comment 8.3.2: 4 level adjustment by 2 bit TPC command in SAT-CDMA can reduce signal overhead and signalling delay between physical layer and higher layer because SAT-CDMA does not use high layer parameter for level adjustment unlike W-CDMA. Additionally, algorithm 2 for processing TPC commands is not needed in SAT-CDMA with power control period of 1 radio frame because, although algorithm 2 in 3GPP is for emulating smaller step size than the minimum power control step in good channel condition according to achieve one power control per 5 slots, one TPC command per 5 frame in SAT-CDMA does not have a meaning of inner loop power control due to very large loop delay.

50

Comment 8.3.2: In SAT-CDMA, UE does not need to consider Δ_{pliot} when it shall adjust the transmit power of the uplink DPCCH in compressed mode. Because, in 3GPP, at

the start of the first slot after an uplink or downlink transmission gap the UE shall apply a change in the transmit power of the uplink DPCCH by an amount Δ_{DPCCH} , with

respect to the uplink DPCCH in the most recently transmitted uplink slot, where $\Delta_{\text{DPCCH}_\text{cmp}} = \Delta_{\text{DPCCH}} + \Delta_{\text{pilot}}$ but, in two RTTs, Δ_{pilot} over SIR_{target} shall be reflected in RAN and power adjustment shall be applied per one frame differently from one slot in 3GPP specifications.

Comment 8.3.2: TS 101 851-4-1 [i.8] table 1 in this clause represents 2 bit TPC bit pattern. This is not consistent with the description as 1 bit TPC command in W-CDMA. Additionally, other contents of this clause should also be consistent with the description as TPC command per 1 frame in S-UMTS.

Item ref.	ltem	W-CDMA	SAT-CDMA	Difference	Commonality
8.4.1	Step 1	Select one access slot	Select one access frame	 SRI-G does not define transmission timing in detail. SAT-CDMA define the access frame time at UE. SAT-CDMA define the same access slot time at UE as 3GPP specification. 	Low
8.4.2	Step 2	 Select one signature 	 Select one signature 	 There is no difference. 	High
8.4.3	Step 3	 Set the Retrans Counter 	 Set the Retrans Counter 	 There is no difference. 	High
8.4.4	Step 4	 Set the preamble power 	 Set the preamble power 	 There is no difference. 	High
8.4.5	Step 5	Not mentioned	 Select one transmission time offset (access frame) 	 In SAT-CDMA, RACH is transmitted with a time offset from the start of the access frame. 	Low
8.4.6.	Step 6	 Transmit the RACH preamble. 	 Transmit the RACH preamble and message (including the Doppler pre- compensation) 	 In SAT-CDMA, RACH preamble and message is transmitted together. SRI-G has the same step as 3GPP specification. 	Low
8.4.7	Step 7	 If the acquisition indication on the AICH is not detected after a predefined interval Select the next access slot Select a new signature Increase the transmission power Decrease the Retrans Counter Repeat from step 5 if Retrans Counter > 0 	 If the acquisition indication on the AICH is not detected after a predefined interval Select the next access frame Select a new signature Increase the transmission power Decrease the Retrans Counter Repeat from step 5 if Retrans Counter > 0 	 SRI-G has the same step as 3GPP specification. SAT-CDMA has the step similar to 3GPP specification. 	Medium

Table 8-4: Commonality in the random access procedure

Item ref.	ltem	W-CDMA		SAT-CDMA	Difference	Commonality
8.4.8	Step 8	 If the Nack on the AICH is detected, 	 If the Nack of 	on the AICH is detected,	 There is no difference. 	High
		report to higher layer and stop	report to hig	her layer and stop		
Abbreviations						
MAC: Medium Access Control			Nack: Negative acknowle	dgement		

Comment 8.4: In SAT-CDMA, transmission interval in AICH and PRACH is longer than 15 ms considering the maximum difference of round trip delays in a beam of satellite systems. Therefore, in satellite radio interfaces, timing reference is defined using access frame (20 ms) instead of access slot (20/15 ms).

Comment 8.4: In SAT-CDMA, this procedure could reduce the additional access delay to transmit both preamble part and massage part together.

Item ref.	Item	W-CDMA	SAT-CDMA	Difference	Commonality
8.5.1	Step 1	Not defined	 Check the CPCH status information on the CSICH 	 In S-UMTS G, CPCH is not implemented. 	High
8.5.2	Step 2	Not defined	 Set the preamble power and retransmission counter 	 In S-UMTS G, CPCH is not implemented. 	High
8.5.3	Step 3	Not defined	 Select an access frame, a AP signature, a time offset 	 In S-UMTS G, CPCH is not implemented. 	High
8.5.4	Step 4	Not defined	Select a time offset	 In S-UMTS G, CPCH is not implemented. 	High
8.5.5	Step 5	Not defined	Select a CD signature	 In S-UMTS G, CPCH is not implemented. 	High
8.5.6	Step 6	Not defined	Transmit the AP and CDP	 In S-UMTS G, CPCH is not implemented. 	High
8.5.7	Step 7	Not defined	 If no ack on APA/CD/CA-ICH Select the next access frame Select the new CD signature Increase the transmit power Decrease the retrans counter Repeat from step 4 if Retrans Counter > 0 	 In S-UMTS G, CPCH is not implemented. 	High
8.5.8	Step 8	Not defined	 If Nack on APA/CD/CA-ICH Report to MAC and stop 	 In S-UMTS G, CPCH is not implemented. 	High
8.5.9	Step 9	Not defined	 If Ack on APA/CD/CA-ICH Transmit the CPCH initial preamble and the CPCH message 	 In S-UMTS G, CPCH is not implemented. 	High
8.5.10	Step 10	Not defined	 If no Start of Message Indicator in the first NStart_Message frames of the CPCH-CCPCH Halt the transmission and report to MAC 	 In S-UMTS G, CPCH is not implemented. 	High

Table 8-5 Commonality in the access procedure for CPCH

Item ref.	Item	W-CDMA	SAT-CDMA	Difference	Commonality
8.5.11	Step 11	Not defined	Perform the inner loop power control	 In S-UMTS G, CPCH is not 	High
			during the CPCH message	Implemented.	
			transmission		
8.5.12	Step 12	Not defined	 If Emergency Stop command on the CPCH-CCCH Halt the transmission and report to MAC 	 In S-UMTS G, CPCH is not implemented. 	High
Abbreviations					
AP: Access Preamble		APA: Access Preamble Acquisition	CD: Collision Detection CD P: Col	Ilision Detection Preamble	
CA: Channel Assignment		CPCH-CCPCH: Common Packet Chann	nel - Common Control Physical Channel		

Comment 8.5: See comment 1.2.2 and 1.2.4.

6 Synthesis

This clause highlights the functions which differs when comparing SW-CDMA and SAT-CDMA and WCDMA and SAT-CDMA and identify also the complementarities.

6.1 SW-CDMA and SAT-CDMA

A synthetic view of SW-CDMA and SAT-CDMA is presented in the table 9.

Functions	SW-CDMA	SAT-CDMA	Complementarities
Uplink random access	 based on an ALOHA approach define timing reference using Access Slot 	 based on so-called slotted ALOHA approach define timing reference using Access Frame 	difficult (different access approaches and timing references)
Uplink common packet access	Not defined	 based on DSMA-CD approach transmission=1AP/CDP part + 1 message part define timing reference using Access frame define a downlink CPCH-CCPCH 	Easy (The function will be deleted in SAT- CDMA)
TFCI/TPC bits generation and transmission	 TFCI and TPC bits: encoded together 	 TFCI and TPC bits: encoded separately two bit TPC command per frame TPC field of one bit per slot 	Difficult (different encoding method, TPC filed of one bit per slot)
FSW for path diversity from different satellites	 Slot of P-CCPCH: TxOFF+Frame Sync+Data Frame Sync filed: differentially encoded 4QPSK symbols. 	 slot of P-CCPCH: TxOFF +Data 	difficult (Not defined of FSW in SAT-CDMA)
Power control algorithm	 CLPC: a delay compensation power control scheme SIR estimation from CPICH 	 CLPC: a delay compensation power control scheme + prediction algorithm SIR estimation from CPICH and S- CCPCH OLPC algorithm using pilot diversity in option 	Moderate (addition of prediction algorithm in SAT-CDMA and diversity gain from S-CCPCH)
Downlink short scrambling code and data scrambling for multiuser detection	 short Gold-like code with the length of 256 chips. additional data scrambling for the MUD 	Not defined	easy (short scrambling code can be used in SAT-CDMA for commonality with terrestrial system)
Synchronization codes for downlink SCH in LEO constellation	 one so-called generalized hierarchical Golay sequence 	 two co-called generalized hierarchical Golay sequence beam search and initial synchronization with good performance under a high frequency offset 	Difficult (different synchronization code) But easy in GEO

6.2 W-CDMA and SAT-CDMA

A synthetic view of W-CDMA and SAT-CDMA is presented in table 10.

Functions	W-CDMA	SAT-CDMA	Complementarities
Uplink random access	 transmission of preamble and message part, separately. access slot: 2 slots 	 transmission of preamble and message, together. access frame: 2 radio frames 	difficult (different transmission methods and timing references)
Uplink common packet access	Not defined	 based on DSMA-CD approach transmission=1AP/CDP part + 1 message part define timing reference using Access frame define a downlink CPCH-CCPCH 	Easy (The function will be deleted in SAT-CDMA)
TFCI/TPC bits generation and transmission	 TPC field: 1 or 2 bits per slot depending on slot format 	- TPC field: 1 bits per slot	Easy (TPC field of SAT-CDMA can be used in 1 bit TPC field of WCDMA)
Power control algorithm	 not recommend to activate inner loop power control for GEO 1-bit TPC command 	 CLPC: a delay compensation power control scheme + prediction algorithm SIR estimation from CPICH and S- CCPCH 2-bit TPC command OLPC algorithm using pilot diversity in option 	Moderate (addition of CLPC in GEO of SAT-CDMA and diversity gain from S-CCPCH)
Downlink short scrambling code and data scrambling for multiuser detection	 short gold-like code with the length of 256 chips. additional data scrambling for the MUD 	• Not defined	easy (short scrambling code can be used in SAT-CDMA for commonality with terrestrial system)
Synchronization codes for downlink SCH in LEO constellation	 one so-called generalized hierarchical Golay sequence 	 two co-called generalized hierarchical Golay sequence beam search and initial synchronization with good performance under a high frequency offset 	Difficult (different synchronization code) But easy in GEO

Table 10: Synthetic view of W-CDMA and SAT-CDMA

6.3 SW-CDMA and W-CDMA

A synthetic view of SW-CDMA and W-CDMA is presented in table 11.

Eurotiona	SW/ CDMA	
Functions	SW-CDMA	W-CDMA
FBI bits	- No FBI bits	 3GPP format. For satellite operation, FBI bits may be used for Spot Selection Diversity Transmission, not used or used for another purpose
Pilot bits pattern	 1 single pattern allowed (n_{pilot}=8), no flexibility 	 Several pilot bits patterns, (n_{pilot}=3 to 8). Configurable according to radio environment (e.g. n=3 could be sufficient for GEO while n=8 could be more suitable for LEO)
TPC coding	 2 bits for coding 4 TPC commands, no protection against transmission errors 	 Possibility to encode 1 TPC on 2 bits for protection against transmission errors (redundancy)
Compressed mode	- 1 single format	- Several formats allowing flexibility of compressed mode configuration
Initialization of dedicated physical channels	 Not indicated if transmission of DPDCH is allowed during power control preamble of DPCCH. TFCI bits filled with "1" 	 Initialization with transmission of DPCCH with power control preamble prior to start of DPDCH TFCI bits filled with "0"
Downlink slot structur	e dedicated channels	
Slot format	 Proprietary format, reduced number of configurations 	 3GPP format, extended number of configurations (pilots, etc.)
Data field position	- 1 single block	- 2 blocks
TFCI/TPC position	 Beginning of the slot 	 In the middle of the slot (protection)
Slot formats for the compressed mode	None	 Several, allowing UE energy saving mode
TPC coding	 2 bits for coding 4 TPC commands, no protection against transmission errors 	 Possibility to encode 1 TPC on 2 bits for protection against transmission errors
DTX	None	 Possibility of DTX bits if TFCI not used.
Other features		
P-CCPCH (for BCH)	 Proprietary format. Data field: 10 bits FSW: Frame Synchronization Word (4 QPSK symbols) → reduced BCH rate 	 3GPP format. Data field: 18 bits
P-CCPCH channelization code	- Fixed (C _{CH,256,1})	- Configurable
Physical layer bits scrambling	 As an option for downlink, with data randomization 	None
Coding of TFCI	 Sequence shorter than 3GPP and proprietary coding 	- 3GPP
Downlink channels phase reference	 By default for all the downlink channels primary CPICH. As an option 2^{ndary} CPICH for DBCH and 2 CCDCH. 	 Primary CPICH for all the downlink channels, optional for DPCH. As an option for DPCH: 2^{ndary}
Synchronization	- 1 single SCH	 Primary and 2^{ndary} SCH
Synchronization	- Proprietary (thus proprietary cell	- 3GPP. Ease integration in RAN of
Construction of the	-Proprietany	
sequence for the synchronization code		

Functions	SW-CDMA	W-CDMA
Downlink	- P-CPICH, P-CCPCH: primarv	- P-CPICH, P-CCPCH, PICH. MICH.
scrambling code	scrambling code.	AICH and S-CCPCH carrying PCH:
(rules for use of	- Other channels:either primary or	primary scrambling code
secondary	2ndary scrambling code	- PDCH and S-CCPCH carrying FACH:
scrambling codes)		either primary or 2 ^{ndary} scrambling
		 Restriction: no more than one 2^{ndary} scrambling code per CCTrCH
Uplink scrambling code	- Short or long	- Long
AICH	 Not supported 	- Supported
MICH	 Not supported 	- Supported
Downlink Shared	- Supported	 Not supported for satellite operation
Channel		
HPPICH	- Supported	 Not supported. High penetration of paging is obtained with power allocation
Indicators (physical	 Paging Indicator (PI) 	 Paging Indicator (PI)
signals)		 Notification Indicator (NI)
		 Acquisition Indicator (AI)
Random access	 Based on ALOHA, efficiency: 18 % 	 Based on slotted ALOHA, efficiency: 62 % (with capture effect)
	- Message part transmitted together	- Preamble prior to message part
	with the preamble, collision risk	transmission, collision risk over
	over the whole (10/20 ms)	5 120 chips (preamble), no collision risk on message part
Closed loop power	 Proprietary procedure 	- For satellite operation, 3GPP physical
control		layer procedure can be deactivated by
		higher layer, using 3GPP
		standardized protocol.
		 Possibility of slow closed loop power
		control managed at layer 3 level
		(RRC) without modification of 3GPP
Open leep power	Propriotony (using propriotony	
control	information broadcast over BCH)	- 36FF
Spot (cell) search	- 2 steps procedure:	- 3 steps procedure:
procedure	1) Initial satellite search together	1) Slot synchronization
F	with scrambling code	2) Frame synchronization and
	identification	code-group identification
	2) Frame synchronization	3) Scrambling-code identification
MBMS	- Not supported	- Supported
DSCH	- Supported	- Not supported for satellite operation
S-CCPCH soft	 Not supported 	- Supported
combining		
Out of	- Proprietary	- 3GPP. Two steps procedure.
synchronization	 Estimate quality over 200 ms 	- Estimate quality over 40 ms then 2 nd
proc.		phase over 200 ms
In-sync procedures	- Proprietary	- 3GPP. Two steps procedure.
	- Estimate quality over 200 ms	- Estimate quality over 40 ms then 2 nd
• • • •		phase over 200 ms
Synchronization	- Proprietary	- 3GPP
procedure at		
dedicated channel		
Setup Radia link	Not supported	2000
Radio IINK	- Not supported	- 3677
nonitoring		
Timing adjustment	Not supported	As an option, dodicated channels can
aujustment		be time adjusted
Spot Selection	 Not supported 	- Supported
Diversity Transmit		

Finally, attention should be paid on the fact that radio equipment performance (demodulation performances, transmission an reception RF characteristics) are not standardized for SW-CDMA while they are for WCDMA.

57

7 SAT-CDMA new features with respect to WCDMA and expected added value for context and service requirements

7.1 SAT-CDMA new features with respect to W-CDMA

7.1.1 Uplink random access

One of the main IMT-2000 services is a packet service. The PRACH is used to transmit a short packet over one or two frames without the establishment of a prior radio link. Although the notation and purpose of the channel are the same in both SAT-CDMA and W-CDMA satellite radio interfaces, different operation and procedure are designed for the SAT-CDMA, considering a longer round trip delay.

In the random access of the W-CDMA, a user terminal transmits a preamble and receives a detection indication from a RAN before transmitting the data message. The access scheme using at transmission-after-detection indication causes a severe access delay. In SAT-CDMA, the user terminal successively transmits the message along with the preamble, and then it waits for a detection indication for successful reception. The physical layer of a Satellite-RAN immediately transmits the indication-after-transmission scheme can reduce the access delay more than the method in W-CDMA. It also has a shorter retransmission delay than the W-CDMA random access scheme because of fast acknowledgment. In the W-CDMA, the response message is not a detection acknowledgment but a high-layer acknowledgment of the RAN physical layer. The higher-layer acknowledgment cannot be transmitted by the Satellite-RAN within the signalling and processing delay in the higher layers, which depends on the contents of the random access message.

Concerned about the structure of the random access transmission in the SAT-CDMA, the transmission timing is based on the access frame. Each access frame has a length of two radio frames and consists of two sub-access frames: an even sub-access frame and an odd sub-access frame. The random access transmission at the even sub-access frame and the odd sub-access frame use different scrambling codes for discrimination. The random access transmission consists of a preamble with a length of several sub-preambles with 4 096 chips and a message with a length of 10 ms or 20 ms. In SAT-CDMA, the number of sub-preamble repetition is not fixed and signalled by higher layers. Generally, the repetition number depends on the detection scheme and the amount of the Doppler shift. For example, many sub-preambles may be required in LEO case with high Doppler shift. The structure of each sub-preamble is identical to that of the preamble in the random access of the W-CDMA and consists of 256 repetitions of a signature with a length of 16 chips. The same scrambling code sequence with a length of 4 096 chips is repeatedly used in the sub-preambles except for the last sub-preamble. The last sub-preamble is scramble by a conjugate code sequence with a length of 4 096 chips. This indicates the end of the sub-preamble repetition. The message part is identical to that of the W-CDMA.

Regarding the structure of the AICH, the AICH access frame has the same length as the PRACH access frame and consists of 15 access slots. The transmission of an Access Indicator (AI) in the access slot is identical to that of the W-CDMA. However, in the SAT-CDMA, the AI for the PRACH is transmitted only on the 1st access slot and the 9th access slot at each AICH access frame, but not transmitted during the rest of the 13 access slots.

In result, compared with the W-CDMA scheme, the SAT-CDMA has a feature of one-step transmission that results in a shorter access delay for packet service.

7.1.2 Dedicated Physical Channels

In SAT-CDMA and W-CDMA satellite radio interface, it is noted that the fast power control for combating fast fading in the terrestrial counterpart is impossible to be implemented in satellite systems and that it is necessary to take a different approach to implement in satellite systems. Accordingly, they transfer once a frame and thus the command rate is 100 Hz. In SAT-CDMA, it is considered that usage of several bits per slot for TPC field is wasteful differently from W-CDMA terrestrial interface since one power control period corresponds to one radio frame. Therefore, instead of a half of TPC field, SAT-CDMA has an extension of pilot field to make channel estimation more correct in uplink (i.e. performance enhancement) and an extension of data field (i.e. throughput increase) to increase a data rate in downlink.

Next, in SAT-CDMA, the FBI field is used only in the uplink DPCCH in order to support beam selection diversity transmission (BSDT). In the terrestrial interface, the FBI bits are used when closed-loop transmission diversity and the Site Selection Diversity Transmission (SSDT) are applied in the downlink and the base station transmits signals using two antennas. However, because there is no diversity gain from the spatial separation of two satellite antennas in satellite system, in SAT-CDMA, a slot format for the transmit diversity is deleted.

7.1.3 Uplink packet access

The PCPCH is intended to carry bursty packets of user data with a length of several tens of frames, while the PRACH is used to transmit a short packet over one or two frames.

In SAT-CDMA interface, we designed a modified uplink packet access scheme so that the PCPCH can be efficiently used for a satellite link with a relatively longer round trip delay. The main elements that are different from the terrestrial W-CDMA can be summarized as follows: one-step access/channel assignment, the use of a downlink common control channel for PCPCH transmission and power control, and a power control speed of 100 Hz.

In SAT-CDMA, a user transmits a combined preamble to obtain an access grant. The combined preamble consists of an AP and a CDP, both of which have the same structures as those of the terrestrial counterparts. The Satellite-RAN responds to the preamble, transmitting two consecutive acknowledgments. The user terminal, thus, can obtain transmission permission and channel assignment by a one-step access mechanism. Additionally, in SAT-CDMA, the power control period was designed to be equal to a radio frame length. In order to control the transmission power on the uplink PCPCH, the SAT-CDMA defines a downlink CPCH common control physical channel (CPCH-CCPCH). The CPCHs up to 15 in a CPCH set are associated with the common control channel. Unlike in the W-CDMA, the transmission power of the downlink channel is not controlled by each PCPCH. Additionally, by using a common control channel instead of several dedicated control channels, the number of channelization codes available for the downlink can be reduced.

In SAT-CDMA, the PCPCH transmission is based on a reservation approach. The user can start transmission at the beginning of access frames or sub-access frames. The structure of PCPCH access transmission consists of one or several pairs of AP with a length of several 4 096 chips, a CDP with a length of 4 096 chips, initial transmission preamble with a length of several slots, and a message with a variable length. The structures of them are identical to W-CDMA radio interface while the transmission power of each frame in the message part is controlled by the power control command received on the downlink CPCH-CCPCH.

In result, although the PCPCH and its downlink indicator channels might be deleted in SAT-CDMA hereafter since PCPCH has not been used in a real implementation, modified uplink packet access in SAT-CDMA can reduce an access delay for packet service.

7.1.4 Downlink synchronization channel

The synchronization channel (SCH) is a downlink channel used for satellite beam search. During the beam search, the UE searches for a beam and determines the downlink scrambling code and frame synchronization for the beam. The hierarchical beam search is based on the same idea as in W-CDMA interface, but the synchronization codes transmitted through SCHs are different. Because of a satellite's fast movement in case of LEO, the Doppler shift reaches several tens of kHz. Although a pre-compensation scheme is applied for each beam, the frequency offset may reach to about 10 kHz because of frequency uncertainty in user terminals as well as the residual Doppler shift after pre-compensation. This prohibits coherent correlation on the synchronization code with a length of 256 chips, because the phase offset may not remain constant within the correlation length (or within 256 chips). Therefore, in SAT-CDMA, the coherent correlation length is decreased to 128 chips so that the detection performance may not deteriorate.

The Primary Synchronization Code (PSC) for the W-CDMA interface can be used in SAT-CDMA without modifications by using a 128 chips coherent correlation length. However, for the secondary synchronization code (SSC), it is difficult to use the same code as used in the W-CDMA. This is because the SSC includes a Hadamard sequence with a 256 chips length that requires the coherent correlation during the whole code length. Therefore, a new secondary code is needed and a revised primary code is also required in order to minimize cross-correlation between the two codes. In

59

SAT-CDMA, two synchronization codes are designed using hierarchical Golay complementary sequence. The best PSC and SSC were selected from the simulation on detection performance.

In conclusion, 128 chips coherent detection in SAT-CDMA could provide satisfactory performance even at high frequency offset due to a satellite's fast movement (e.g. in case of LEO constellation).

7.1.5 Power control algorithm

One of the main differences between terrestrial and satellite networks is in a significant difference of the round trip delay. This induces significant degradation of the close-loop power control if the power control used for the terrestrial interface is employed. In order to reduce the power control error due to such a long delay, two factors are considered in SAT-CDMA. One is to optimize the basic power control loop parameters, including the power control rate, power control step size, and the number of control levels, because they are highly dependent on the round trip delay. The other is to consider the round trip delay compensation algorithm.

For the case of the uplink closed-loop power control in SAT-CDMA, the UE calculates the actual amount of the transmission power control by using the two most recently received power control commands, which is aimed to change the loop dynamics and shorten the latency in updating transmission power. Multiplying the previous power control command by a gain factor and subtracting it from the latest power control command generates the actual amount of transmission power control.

In the uplink closed-loop power control adjust the UE transmit power in order to keep the received uplink power SIR at a given SIR target, SIR_{target} . The RAN estimates the SIR of the received uplink DPCCH, generates two-bit TPC commands and transmits the commands once per 10 ms (the length of a radio frame) according to the following rule. Define $\Delta = SIR_{est} - SIR_{target}$, where SIR_{est} denotes the estimated SIR of the received uplink DPCCH, then a four-level quantized power control step Δ_{P} (*i*) generated according to the region of Δ :

- if $|\Delta| < \mathcal{E}_T$ and $\Delta < 0$, $\Delta_P(i) = \Delta_s$,
- if $|\Delta| > \mathcal{E}_T$ and $\Delta > 0$, $\Delta_P(i) = -\Delta_s$,
- if $|\Delta| > \mathcal{E}_T$ and $\Delta < 0$, $\Delta_P(i) = \Delta_L$,
- if $|\Delta| < \varepsilon_T$ and $\Delta > 0$, $\Delta_P(i) = -\Delta_L$,

Figure 1: The block diagram for the uplink closed-power control loop

The relationship between Δ_{P} (*i*) and the transmitter power control command TPC_{cmd} is presented as follows.

TPC _{cmd}	Δ _Ρ <i>(i)</i>
-2	-Δ _L
-1	-A _S
1	Δ _S
2	Δ _L

Table 11: Relationship between $\Delta_{\mathbf{P}}$ /// and TPC cmd

60

Because of the round trip delay, the UE can reflect Δ_{P} (*i*/*i*) at its transmission power after about 10 ms to 50 ms in case of LEO constellation during which there may be a considerable change in the SIR. In the SAT-CDMA, we employ a simple pre-processing Δ_{P} (*i*/*i*) for before it is reflected at the transmission power in order to compensate for the round trip delay. The UE adjust the transmit power of the uplink DPCCH with an amount of Δ_{DPCCH} using the two most recently received power control steps, Δ_{P} (*i*/*i*) and Δ_{P} (*i*-*1*), as follows:

$$\Delta_{DPCCH} = \Delta_P(i) - \alpha \Delta_P(i-1)$$

We can rewrite the above equations as follows:

$$\Delta_{DPCCH} = (1 - \alpha)\Delta_{P}(i) + \alpha(\Delta_{P}(i) - \Delta_{P}(i-1)),$$

which means that Δ_{DPCCH} is determined not only by $\Delta_{\text{P}}(i)$ but also by the difference between $\Delta_{\text{P}}(i)$ and $\Delta_{\text{P}}(i-1)$ with weighting factors (1- α) and α , respectively. As increase, becomes more dependent the term $\Delta_{\text{P}}(i) - \Delta_{\text{P}}(i-1)$, which corresponds to an estimate for the amount of the recent channel variance.

For the case of the downlink closed power loop control, the UE may employ a prediction algorithm that estimates the future signal-to-Interference Ratio (SIR) value after a round trip delay by observing the SIR of the downlink CPICH and S-CCPCH. The compensation algorithm in SAT-CDMA reduces power control errors regardless of the round trip delay or the UE velocity. Especially, the improvement is the most apparent for the case when the round trip delay is large. This is because, as the round trip delay increases, the amount of the SIR change increases and thus the compensation algorithm is more effective. Beside the improvement by round trip delay compensation, an additional improvement can be obtained by using the prediction algorithm using the CPICH and S-CCPCH to obtain an improved pilot diversity for downlink closed-loop power control in SAT-CDMA.

Additionally, differently from 2 level adjustment by 1 bit TPC command in W-CDMA, 4 level adjustment by 2 bit TPC command in SAT-CDMA can reduce signal overhead and signalling delay between physical layer and higher layer because SAT-CDMA do not use high layer parameter for level adjustment.

Power control algorithm in SAT-CDMA gives a remarkable reduction in power control error and is more efficient for GEO constellation and fast UE movement than as in W-CDMA.

7.1.6 TPC bits generation

The TPC command consists of two bits defined by the power control procedure described in clause 4 and is encoded into a codeword by repetition. The code word is then mapped to the TPC fields of 15 slots in a radio frame.

As mentioned before, TPC coding for 2-bit TPC command in SAT-CDMA per one frame supports power control algorithm adapted fast to channel attenuation.

8 Conclusion

The A, C and G family satellite radio interfaces share a common view since they represent an approach whereby a great degree of commonality with terrestrial W-CDMA radio interface of 3GPP is achieved. Therefore, for consideration on possible harmonization between those satellite radio interfaces, in the present document, all commonalities and differences have been identified and the characteristics of the new features implemented in A family and C family with respect to G family have been put forward.

G family is fully compliant with 3GPP User Equipment chip-set.

Major different features between A family and G family can be summarized as follows.

- slot structure;
- slot formats for the compressed mode;
- initialization of dedicated physical channels;
- downlink channels phase reference;
- synchronization channel;
- construction of the sequence for the synchronization code;
- BCH Transport channel rate (due to different physical channel structure) and channelization code;
- support of Downlink Shared Channel;
- physical layer processing (data scrambling);
- rules for use of secondary scrambling codes;
- random access;
- power control;
- support of MICH and MBMS services;
- support of soft combining for common channels;
- out of synchronization and In-sync procedures;
- radio link monitoring procedure;
- possibility for time adjustment;
- support of Spot Selection Diversity Transmit (SSDT);
- spot search procedure (for the scrambling code identification);
- optional use of short scrambling code;
- use of HPPICH.

C family introduce new features with respect to G family and can be summarized as follows.

- Uplink random access for shorter access delay for packet data service.
- TFCI/TPC bits generation and transmission for better channel estimation in uplink and increase of data rate in downlink.

62

- Power control process applying the compensation scheme and the prediction algorithm (only downlink) in order to reduce power control error and signal overhead/signalling delay between the physical layer and higher layer.
- Synchronization codes for downlink SCH with good performance for beam search and initial synchronization under a high frequency offset in LEO constellation.

Based on the above results, possible harmonization can be achieved. New features (e.g. power control algorithm, synchronization code, uplink random access) introduced by C family can provide optimized performance with respect to G family at the expense of chip-set upgrade.

Annex A: SAT-CDMA features technical assessment

A.1 Uplink random access

The random access scheme of SAT-CDMA is based on a so-called slotted ALOHA. If users with a divergence of round trip delays transmit PRACH preambles in accordance with a timing reference derived from the received timing of downlink P-CCPCH frame, the preambles would be received within a slot at RAN (Gateway). SAT-CDMA defines timing reference using Access Frame instead of the slot. The time period of the Access Frame is 20 ms (equal to the time period of two radio frames) and larger than the maximum difference of round trip delays in a beam. At the user side, the timing of the Access Frame used for PRACH transmissions is derived from and time aligned with the downlink

P-CCPCH frame with SFN mod 2 = 0. At the RAN side, the downlink AICH frames are also time aligned with the downlink P-CCPCH frame with SFN mod 2 = 0. That is, the uplink PRACH Access Frame is time aligned with the reception of downlink AICH frame. Detailed timing relation can be found in SAT-CDMA TS 125 211 [i.9].

SAT-CDMA radio interface has originally been designed to be used for LEO or GEO constellation. Therefore, we can find that the delay difference for satellite height of even around 36 000 km is smaller than 20 ms. Figure A.1 shows the difference of maximum and minimum round trip delays in a spot beam with a range of beam sizes. This implies that transmission interval in AICH and PRACH should be longer than 12 ms. Therefore, in SAT-CDMA, the Access Frame in AICH and PRACH preamble transmissions has a length of 20 ms.

(a) For LEO satellite height

Figure A.1: Difference of maximum and minimum round trip delays in the satellite spot beam (minimum elevation angle of 15°)

The timing relation between PRACH and AICH can be described by the parameter of preamble-to-AI distance in specifications. The parameter value is determined by the round trip delay in each beam. In SAT-CDMA, the parameter was set such that:

$$(n-1) \times L_{AF} < RTD_{max} + 2 \times \tau_{off,max} + T_{ps} < n \times L_{AF}$$
, n is an integer

where L_{AF} , RTD_{max} , $\tau_{off,max}$ and T_{ps} are Access Frame length, maximum round trip delay in a beam, maximum transmission offset and processing time required for preamble detection, respectively. The RTD may be different for different beams of the same satellite and for position in which Node-B functionalities are implemented. The P-CCPCH of each beam broadcast AICH timing parameter so that users belonging to the beam is notified the PRACH/AICH timing relationship. In SAT-CDMA, the AICH parameter has two different values as shown in table A.1. These values were set by considering the RTD in SAT-CDMA LEO or GEO constellation.

Table A.1: PRACH/AICH timing	relationship for LEO	based SAT-CDMA
------------------------------	----------------------	----------------

AICH timing parameter	τ _{p-p,min}	τ _{p-a}
0	3 access frames (60 ms)	2 access frames (40 ms)
1	4 access frames (80 ms)	3 access frames (60 ms)

AICH timing parameter	τ _{p-p,min}	τ _{p-a}
0	15 access frames (300 ms)	14 access frames (280 ms)
1	28 access frames (560 ms)	27 access frames (540 ms)

Simulations has been performed for performance evaluation of the random access scheme of SAT-CDMA. The simulation environment and parameters are shown in tables A.4, A.5 and A.6. In the simulations, the RACH messages at the UE are generated by a poison process with a mean arrival rate. Each UE in a spot experiences independences independent Rician fading and log-normal shadowing. The round trip delay is assumed to be within 39 ms to 49 ms considering a LEO satellite altitude of 1 600 km and an elevation angle of 40 °. The initial transmit power of the preamble is estimated by the UE using open-loop power control. It is assumed that a power control error is generated by a Gaussian distribution with a standard deviation in dB scale. The preamble structure of the WCDMA and SW-CDMA is identical to that of SAT-CDMA scheme. We assume that the preamble and the massage can be successfully received if the average received SIR exceeds the required SIR in tables.

Figure A.5 of annex A.7 shows the simulation results. Throughput was normalized by the target SIR of PRACH message part. Transmission delay was scaled by the radio frame length (10 ms). T-UMTS, S-UMTS and SAT-CDMA mean the random access schemes of WCDMA, SW-CDMA and SAT-CDMA specifications. Figure A.5 (b) shows that the SW-CDMA has the maximum throughput at about 0,25, where the arrival rate has the same amount. It becomes unstable if the arrival rate is larger than 0,25, so that the throughput falls rapidly and the delay increases abruptly. For the SAT-CDMA scheme, the throughput reaches about 0,31, and we can see this is the highest value of the three schemes. We note that maximum throughput for the SW-CDMA and WCDMA schemes are 0,25 and 0,18, respectively. The SAT-CDMA has a smaller delay than the WCDMA by about 10 frames or 30 frames. With WCDMA scheme, the user terminal has to wait for the success of the preamble transmission before the message part is transmitted. Additionally, although the preamble is successfully received at the S-RAN, a successful transmission of the message cannot be guaranteed because the channel and interference situation will change after the time duration of the preamble-to-message distance.

A.2 TFCI/TPC bits generation and transmission

After simulations for coding of two-bit TPC command, SAT-CDMA has concluded to employ command repetition instead of the (16,2) bi-orthogonal coding. This is because code rate of 0,125 is too low to produce an appreciable coding gain. The BER performance of the (16,2) bi-orthogonal code on an AWGN channel, which was measured by bit energy to nose ratio, were no better than that of the (8,1) repetition code. Simulation results using low earth orbit satellite channel model showed that the repetition code using power combining technique could produce diversity gain. This results in coding gains at most of the elevation angles and mobile speeds we have investigated.

In SAT-CDMA specification, the uplink DPCCH has TPC field of one bit per slot and the number of TPC bits transmitted in a radio frame becomes 15 bits. A user terminal generates a two-bit TPC command per frame, and repeating the MSB and the LSB 8 times and 7 times respectively. These total 15 bits are mapped into TPC fields. Detailed description for repetition and mapping to a radio frame can be found in SAT-CDMA TS 125 212 v130 [i.10].

The intention of splitting TFCI and TPC fields is to independently encode and decode each word. As it is mentioned in the previous document, to encode using the (32,10) RM code after combining two words would restrict the number of bits allocated for TFCI transmission in a radio frame.

If we employ the combined coding method, we should define a bit mapping of TPC command and TFCI bits to the combined TFCI/TPC bits not only in the normal mode ((32,10) RM coding) but also the split mode (two (16, 5) bi-orthogonal codings).

The combined encoding method would be acceptable for SAT-CDMA if the restriction of the TFCI bits is shown to be trivial and the bit allocation of TPC and TFCI is described clearly.

A.3 FSW for path diversity from different satellites

It is noted that, for every beam, BCH carried by P-CCPCH broadcasts System Frame Number (SFN) inserted by higher layers of RAN. The SFN has a period that can be considered as a multi frame. Using these SFNs from different beams and frame reception timing, when a user terminal enters into the soft handoff mode (i.e. path diversity from different satellites), it can estimate the delay difference among two or several beams and report it to RAN (see SAT-CDMA TS 125 215 [i.21] and 3GPP Technical Specifications related in higher layers). RAN then adjusts the transmission time of downlink dedicated channels to the user using such information on delay difference. Of course, detecting the SCH of each beam, the user terminal should acquire the frame synchronization for each beam in order to decode each P-CCPCH.

For these reasons, in SAT-CDMA, the FSW for path diversity from different satellites does not have to be inserted in P-CCPCH.

A.4 Power control algorithm

In SAT-CDMA, the compensation algorithms is developed for the round trip delay in the closed loop power control and reflected it in the specification for the power control algorithm. The Round Trip Delay (RTD) of a GEO system results in significant performance degradation of the CLPC if the third generation partnership project (3GPP) standard is employed as it is. There are two main problems that degrade the CLPC under such a long RTD. The first one is the instability in the internal loop dynamics due to the fact that the power control step size specified in 3GPP is too large to keep the loop stable under such a long propagation delay. In other words, the measurements at UE do not reflect the results of the most recent power updates at the satellite radio access network (S-RAN). The second one is the possibility of the large amount of SIR change during the loop delay thus resulting in large power control errors. As one of the effective solutions to the first problem, Gunnarsson proposed a delay compensation power control scheme, and this was reflected in the satellite-universal mobile telecommunications system (S-UMTS) standard. Although this effectively cancels the internal RTD in the power control loop, we still have the second problem.

In SAT-CDMA, we employed prediction algorithms for the closed loop power control in order to solve the second problem in combination with SW-CDMA scheme. For the case of uplink closed loop power control, UE calculates the actual amount of the transmission power control by using 2 most lately received power control commands. Multiplying the previous power control command by a gain factor and subtracting it from the latest power control command generates the actual amount of transmission power control. The power control command step size and the gain factor are UE-specific and are defined by high layer.

For the case of downlink closed power control of SAT-CDMA, UE may employ prediction algorithm that estimates the future SIR value after the round trip delay. Power control command is generated based on the predicted SIR value. The prediction for the SIR variation can be implemented by observing the SIR of the CPICH and S-CCPCH. When the UE is in soft handover and BSDT is not activated, the UE should observe the SIR of all cells' CPICHs and S-CCPCHs in the active set. In order to support UEs that employ the prediction algorithm, round trip delay between the Satellite-RAN and the center position of the beam, which the UE belongs to, is signalled by higher layers in the unit of number of frames.

Simulation parameters are given in table A.3. In figure A.2, we present the simulation results of the proposed CLPC scheme over GEO-based environments, and compared the performance of the various conventional CLPC algorithms. As the conventional schemes, we used the terrestrial CLPC scheme in the WCDMA system and Gunnarsson's scheme in SW-CDMA and they are denoted as T-UMTS, S-UMTS in the figures. In our simulations, we consider a satellite system with a single beam and ignore the inter-spot interference. We assume that the path loss exponent is taken to be 2. For the simulation we chose a common SIR of 5 dB. We select the Processing Gain (PG) of 256. We assumed power control begin to work since about 250 ms due to propagation delay. Figure A.2 shows average transmits power consumed at the transmitters of specific users according to mobile speed. We can see that users with the efficient CLPC scheme consume less power.

Figure A.3 illustrates power control error according to normalized maximum Doppler frequency. When employing our efficient channel estimator, power control shows greater stability, which is important in sense of network. Performance of S-UMTS and proposed algorithms with increased power control command error probability is illustrated in figure A.4, but the proposed algorithm is still powerful compared to S-UMTS. As seen in simulation results, the conventional power control methods incur many errors in case of deep fading. On the other hand, since the proposed power control using the S-CCPCH and CPICH to the conventional channel estimation methods can obtain an improved pilot diversity gain by performing the channel estimation using other channel in case that once channel is not come up to a required level of a received signal, it is possible to implement an ideal maximum ratio combining method in a RAKE receiver.

The lower power consumption will also directly lead to the capacity increase. The superior power control performance is due to more efficient estimation of SIR.

Additionally, in SAT-CDMA, the open loop power control (OLPC) algorithms using pilot diversity is developed in option. UE can measure the SIR value with gain from pilot diversity more correctly than conventional OLPC.

Carrier frequency (fc)	2 170 MHz
Power control sample interval (Td)	10 ms
Frame length	10 ms
Round trip delay	250 ms
Path loss	150 dB
Processing gain	256 (about 24 dB)
Transmit frame	150 000 frames
Small step size	1 dB
Large step size	2 dB
Fading model	Clarke's model (Classical Doppler spectrum)
Target SIR	5 dB
Power command error probability	0 ~ 0.1
Rician K-factor	-inf, 5 dB
Interference plus noise power	-123 dBm
Maximum transmit power	28 dB
Power control dynamic range	89 dB
Mobile speed	1 m/s ~ 10 m/s

 Table A.3: Simulation environment

Figure A.2: Average transmit power according to mobile velocity

68

Figure A.3: Control error: Standard deviation of target SIR minus received SIR

Figure A.4: Performance of S-UMTS and SAT-CDMA with increased power control command error probability

A.5 Downlink short scrambling code and data scrambling for multi-user detection

Interference cancellation scheme is useful at user terminals since the downlink interference from multiple satellites would be severe. However, although the multi-user detection does not increase so much complexity, we need to consider the performance degradation at user terminals without the MUD scheme. If the performance degradation at the conventional terminal is severe, we may have to recommend avoiding heterogeneous deployment of terminals with/without the MUD scheme. The prerequisite condition, that the aforementioned performance degradation can be neglected, would be necessary in order to use downlink short scrambling code.

Regarding to the additional data scrambling for the MUD, SAT-CDMA does not have any quantitative analysis at this stage. However, we would like to note that, according to S-UMTS-A TS 125 212 [i.10], the scrambling only affect data stream from higher layers, that is, DPDCH part only. Such data stream has already been scrambled in higher layers. Therefore, there would be no need for the additional scrambling in physical layer. SW-CDMA specifies the scrambling rate as a fixed rate of 30 kbit/s. However, the channel bit rate for the DPCH could be larger than 30 kbit/s.

EXAMPLE: In case of SF < 256).

In this case, even though it is assumed TFCI/TPC field would also be scrambled, there will be groups of non-scrambled bits. If the data scrambling is important even for small portion, the non-scrambled portions may cause a negative effect on the interference mitigation technique. It would be necessary to clear this negative effect in order to use downlink data scrambling.

A.6 Synchronization codes for downlink SCH in LEO constellation

In SAT-CDMA, the downlink synchronization codes has been evaluated for beam search and initial synchronization, and designed new codes for better performance. A study result showed that a coherent detection of length 256 chips on the synchronization code had poor performance under a frequency offset of more than around 6 kHz. The frequency offset can be reached to more than 6 kHz due to the residual Doppler shift after pre-compensation and frequency uncertainty in terminals. It would be, thus, desirable to use a shorter coherent detection length than 256 chips.

It is found that 128-chip coherent detection could provide a satisfying performance even as high frequency offset as 15 kHz. In this case, a new designed 128-chip length code was necessary because it is not possible to detect the original Secondary Synchronization Code (SSC) (defined by 3GPP) due to multiplication of a Hadamard sequence. In other words, the Hadamard sequence of length 256 chips requires the 256-chip coherent detection. Therefore, we designed a new synchronization code which make it possible to do coherent detection of length 128 chips. The new codes are derived from hierarchical Golay complementary sequences, and position-wise multiplied by Hadamard sequences with of length 128 chips. The new SSC of length 256 chips is obtained by concatenating two different codes of length 128 chips. In addition to designing the SSC, Primary Synchronization Code (PSC) was also designed in order to minimize cross correlation between PSC and SSC. The best PSC and SSC are selected from extensive simulations. Detailed code generation is described in SAT-CDMA TS 125 213 [i.11].

If the SSC is not used for downlink synchronization, it is possible to receive the PSC by the 128-chip coherent detection. However, the hierarchical beam search procedure using the SSC sequences as well as the PSC is necessary to reduce the beam search time and to identify the group of downlink scrambling codes used for the target beam.

A.7 Another comment

It would not be important to mention the comment 1.6.5 in the part on commonalities and difference. The comment is:

Comment 1.6.5: In SW-CDMA, this is an important possibility to improve S-UMTS efficiency as there is no need for user dedicated pilot channel (user steerable antenna is not likely to happen) but exploiting the beam common pilot for channel estimation.

However, in SAT-CDMA, the use of the smart antenna was not envisaged at satellites, but it would like to be noted that one of main purposes of dedicated pilot bits in the downlink DPCH is to make it convenient for a user terminal to estimate SIR values for the dedicated channel. The user terminal can generate a TPC command from the estimated SIR value and send it through an uplink dedicated channel to maintain an appropriate received SIR for the downlink channel. It is also worth noticing that the beam common pilot is not power-controlled and accordingly the user cannot estimate the SIR of user's own downlink dedicated channel.

A.8 RACH Simulation

Table A.4: Simulation environment

Simulation environment	
RACH message arrival	Poison process with mean of λ messages/frame
RACH message length	1 frame (10 ms, fixed)
Round trip delay	Uniform over 3,9 to 4,9 frames
Simulation time resolution	15 k samples/second
Total simulation time	10 000 frames
	Gaussian random variable with standard deviation
Open loop power control error	$\sigma_{PCE} = 3 \text{ dB}$
Background noise and interference	-100 dBm
Target SIR for preamble detection	-18 dB
Target SIR for message reception	-15 dB
RACH/FACH signalling delay	10 frames
Maximum number of RACH trials	$M_{max,rach_{trials}} = 3$
Waiting time for FACH acknowledgement	18 frames
Message backoff time	Uniform over 1 to 10 frames

Table A.5: RACH parameters.

RACH parameters	
Persistence value	$P_{r} = 0.5$
Backoff time for the negative AI	Uniform over 1 to 10 frames
PRACH parameters	
Maximum number of transmission cycles	M _{cycle} = 3
Maximum number of power-ramping transmissions	M _{ramping} = 3
Preamble length	$N_p \times 4$ 096 chips (N_p =1 and 3)
Number of signatures	16
Transmission offset	0
Preamble-to-preamble distance	8 frames
Preamble-to-AI distance	6 frames
Preamble-to-message distance	8 frames
Power-ramping step	$\Delta P = 3 dB$
Power offset between preamble and message	3 dB

Table A.6: Fading channel.

Channel environment	
Fading model	Corrazza Model
Carrier frequency	2 GHz
Environment	Urban and Rural
Elevation angle	40 degree
Long-term fading (Shadowing)	Log-normal distribution
Short-term fading	Rician distribution
Mobile speed	3 km/h and 70 km/h

(b) Preamble length = 3 * 4096 chips

Figure A.5: Throughput-delay performance (mobile velocity: 3 km/h)

Annex B: W-CDMA radio interface parameters that need specific configuration for satellite operation

B.1 Introduction

S-UMTS made a feasibility study for operating 3GPP WCDMA radio interface in a satellite environment which means a remote access infrastructure antenna to be compared to terrestrial networks where the infrastructure antenna is located on the earth.

72

The objective was to show that it is possible to operate terminals equipped with 3GPP WCDMA chipsets without modification, but with appropriate configuration of the physical layer parameters among the multiple possibilities offered by 3GPP WCDMA.

The evaluation was oriented to geo-stationary constellation, it concluded as positive feasibility. The results are reported in TR 102 058 [i.14].

Hereafter are re-called the optimization of the parameters for satellite operation.

B.2 Random access

Clause 5.5.2 of TR 102 058 [i.14] details the random access satellite operation.

B.2.1 Preamble access

Time reference is broadcast by satellite and is received at UEs with a delay which is depending on their position in the spot coverage. Thus there is time dispersion which increases preamble collision risk. Time dispersion is evaluated to \sim 13 ms i.e. 10 preamble access slots under European coverage, to \sim 4 ms i.e. \sim 3 access slots under national coverage.

The guard time specified in 3GPP standards (1 024 chips) is not sufficient to absorb delay jitter under satellite coverage.

As an option UE transmission timing could be corrected with GNSS reference so that it is guaranteed preamble reception fits within one access slot at gateway receiver arrival.

As an alternative UE could repeat preambles with a time shift chosen according to an algorithm configured depending on the spot size. Several transmissions would be tried until to cope with gateway preamble acquisition window. A major drawback of this solution would be increase of time for preamble acquisition due to multiple preamble re-transmissions.

With 3GPP UE standard chipset, i.e. without any GNSS transmission or time shifted preamble repetition, the process is as follows.

- 3GPP access slot map structure is kept unmodified.
- Adaptation to satellite is done by inhibiting some of the access slots of the map broadcast over BCH.
- The number of inhibited access slots is satellite constellation configuration dependant.

In figure C.1, access slot map broadcast over BCH indicates only 1 access slot is available for a total of 3 access slots (slots number slots 0, 3, 6, 9 and 12).

Figure C.1: Access slot map example

But due to UE dispersion delay the gateway is subject to receive preambles in all the access slots including the ones which are "officially" (according to BCH info) inhibited.

Figure C.2: Preamble arrival

At the gateway preamble search window is adjusted to the maximum UEs time dispersion. Enlarged preamble acquisition window means that several preambles received in the same reception window are not distinguished, while there is no preambles overlapping (collision). This reduces artificially RACH capacity.

In order to improve system efficiency, it is possible as an option to implement several preamble reception windows per group of access slots, i.e. running also for inhibited access slots as in figure C.3.

Figure C.3: Hub parallel reception windows

B.2.2 Preamble Acquisition Indicator reception

3GPP standards set preamble-to-Acquisition Indicator distance, τ_{p-a} , in relation with terrestrial propagation delays, which does not fit with satellite channel latency.

Thus UE Acquisition Indication reception window is adapted in order to cope with satellite propagation delay in that way: UE implements with a multiplication factor and AICH reception window is time shifted to be compared to 3GPP terrestrial procedure. The multiplication factor is satellite constellation dependent.

B.2.3 Message part reception

When gateway has sent positive acknowledgement over AICH, it must prepare RACH message part reception after a delay compatible with satellite channel latency. The reception delay is satellite constellation dependant.

B.2.4 Performances

Performances for unsynchronized UEs have been reported in TR 102 058 [i.14], clause 6.2.1, and detailed for several search window sizes, it was concluded that it will fit with satellite link budget constraints.

Moreover, a method for improving performance are possible where RACH synchronization is done through repetition of the preamble. It consists in the *adjacent slotted repetition* of $N C_{pre}$ of length 4 096 chips. The 3GPP slotted frame structure is kept unmodified, and composed by 5 120 chip slots; thus, successive C_{pre} 's are spaced by a guard period of 1 024 chips. See figure C.4:

Figure C.4: Repetition structure of the preamble

Performance of such a method is detailed in TR 102 058 [i.14].

B.3 Power control

Configuration of power control is explained in TR 102 058 [i.14], clause 5.5.5. A Synthesis is given hereafter.

B.3.1 Open loop power control

Open loop power control is operated in the same manner as 3GPP terrestrial cellular networks.

B.3.2 Physical layer Closed loop power control

Generating one Transmit Power Control (TPC) command per slot, as done for terrestrial networks, is not efficient via satellite, due to slow channel reactivity (round trip delay) TPC commands don't match fast fading correction and are destructive.

In order to avoid oscillation loops, several methods were presented, among them:

- The processing of TPC commands is adapted to satellite environment: the receiver averages TPC commands over several slots (several frames) before applying the update of the transmit power. This is similar to 3GPP Algorithm 2, with a filtering period extended from 5 slot to several frames. The averaging period is to be adapted according to satellite constellation type (LEO, MEO, HEO, GEO). It is configured via the parameter DPC_MODE in the RRC protocol message sent to the UE at link establishment. One TPC command is repeated over several slots, filtered at the receiver, so that the TPC rate is reduced.
- Or layer 1 closed loop power control can also be inhibited by radio link configuration. For the uplink 3GPP algorithm 2 is used, UE processes received TPC commands on a 5 slots cycle. The gateway generates an alternating series of TPC commands so that UE always interprets the overall TPC command as null. For the downlink, layer 1 power control is inhibited via Iub RADIO LINK SETUP REQUEST protocol message with the Inner Loop DL PC Status information element set to "*Inactive*".

• Explicitly at channel setup, with the associated RRC protocol message element which configures the radio link, the TPC bits are transmitted but have no meaningful value. In order not to waste energy, power allocated to TPC bits can be configured to the lowest value.

Additionally, this is not mentioned in TR 102 058 [i.14], but there is also another possibility to implicitly inhibit power control for the uplink, by configuring the UE maximum transmit power in the RRC connection message, and for the downlink by just not executing the TPC commands received at the gateway.

B.3.3 Slow closed loop power control (layer 3 power control)

Moreover, a slow closed loop power control, which is managed at the RRC level, has been proposed in TR 102 058 [i.14]:

- For the uplink: the gateway processes and transmits RRC physical channel reconfiguration messages. All of the radio link parameters are kept unchanged apart from the transmit power that is ordered to the UE. The gateway takes decision based on uplink reception quality measurements and UE measurement reports (that contain information such as UE effective transmitted power and CPICH Received Signal Code Power.
- For the downlink: the gateway adjusts its transmitted power based on UE measurement reports and uplink quality measurements. The UE measurement reports contain UE quality measurement and carrier RSSI i.e. the received wide band power, including thermal noise and noise generated in the receiver, within the bandwidth defined by the receiver pulse shaping filter.

Slow power control performance in presence of slow fading or brutal signal obstruction is reported in clause 6.2.5.4 of TR 102 058 [i.14].

B.4 Timers adaptation

The RRC, RLC and MAC timers are configurable to several values.

3GPP standards allow values up to several seconds: this is compliant with satellite round trip delay constraint.

The only exception could be the RLC timer_discard in case RRC would configure the Transmission RLC Discard operation mode as "*Timer based no explicit*". In that case timer_discard value would be limited to 100 ms and thus wouldn't fit operation requirement. For that reason, this option is not used. Transmission RLC Discard operation mode is set by RRC at the gateway to "*Timer based explicit*" so that timer_discard value is extended up to 900 ms according to 3GPP standards.

History

Document history		
V1.1.1	August 2008	Publication

76