ETSI TR 101 873-3 vi.1.1 (2001-01)

Technical Report

Methods for Testing and Specification (MTS);
The Tree and Tabular Combined Notation version 3;
Part 3: TTCN-3 MSC Presentation Format

ETSI %

2 ETSI TR 101 873-3 V1.1.1 (2001-01)

Reference
DTR/MTS-00063-3

Keywords
ASN.1, methodology, MSC, MTS, testing, TTCN

ETSI

650 Route des Lucioles
F-06921 Sophia Antipolis Cedex - FRANCE

Tel.: 43349294 4200 Fax: +334 93 65 47 16

Siret N° 348 623 562 00017 - NAF 742 C
Association a but non lucratif enregistrée a la
Sous-Préfecture de Grasse (06) N° 7803/88

Important notice

Individual copies of the present document can be downloaded from:
http://www.etsi.org

The present document may be made available in more than one electronic version or in print. In any case of existing or
perceived difference in contents between such versions, the reference version is the Portable Document Format (PDF).
In case of dispute, the reference shall be the printing on ETSI printers of the PDF version kept on a specific network drive
within ETSI Secretariat.

Users of the present document should be aware that the document may be subject to revision or change of status.
Information on the current status of this and other ETSI documents is available at http://www.etsi.org/tb/status/

If you find errors in the present document, send your comment to:
editor@etsi.fr

Copyright Notification

No part may be reproduced except as authorized by written permission.
The copyright and the foregoing restriction extend to reproduction in all media.

© European Telecommunications Standards Institute 2001.
All rights reserved.

ETSI

http://www.etsi.org/
http://www.etsi.org/tb/status
editor@etsi.fr

3 ETSI TR 101 873-3 V1.1.1 (2001-01)

Contents

Intellectual Property RIGNEScouiii ettt e nneas 7
0] 1= Yo o SR 7
g1 0o 1 o o o OSSP 7
1 000 TR PR P UURPPURPRRN 9
2 1= 1 10T 9
3 ABDIBVIALIONS ...ttt ettt e et e re e 9
4 (Y= = S SUS 9
5 TSC [ANQUAGE CONCEPES.eeeeee ettt ettt ettt et et e s b e et e e b e see e e b e e ebe e san e e b e e nneesneenneeenes 12
51 IS s (0 el 1 1= o | T T T T TPV P PP UPPPPPR 12
511 Parameterization Of TSC JOCUMENTS.ccueiitiiiiieitietieiiei ettt sbe e ee s sne b sane e 13
512 Implicit and explicit typing for COMPONENES @N POITS......cveeverierie et 13
5121 Implicit typing for COMPONENES 8N POIS........ciueeriiirieeiieieee et 13
5122 Explicit typing for COMPONENS 8N POISccoveeiiieiiiiieieeie et 13
513 IMPOrting Other TSC AOCUMENTS.........eeteeteeieeie ettt sttt sttt ee b e e b e saeesbnesane e 14
514 Variall @ AECIAIaLI ONS.........eeiieeeet bbbt b e b b e e sb e e nbeesbeesbeesbeesbeesbeenreen 14
515 DALA AEfINITIONS..... ettt bbb bt b e e s b e e b e e sb e e bt e be e see e e aneenneenneennenan s 14
516 Data parentNesi S AECIAIaEION........ooviii ettt sb e e et e sanesaneaanesans 14
52 1600 01100 I o ST TP TR PP PR 14
521 ParameteriZati 0N OF TSCS......ueiiuieitietieiteet ettt bbb e sb e s be e s b e e be e beesanesaneannesnns 15
522 CONLIOl VATADIES. ...ttt st e e bt e be e be e beebe e 16
523 REFENENCES L0 TESE CASES. ... e ettt ettt bbbt b e b e sb e s b e e sbe e s b e et et annesaneennesnn s 16
524 (600 g1 g0 = o 1o S T T TP PT PR PR PR 16
525 ADLEINELIVE EXPIESS ONS......eeutieteeteete ettt ettt ettt ae e seesaeesheesbeeshe e sbeesbeesbeesbeesbeesheesbeesbeesbeesbeesreesreens 17
53 L= 0= S TP PU P PTRRT 17
54 TS £ (0= TP PP PRSPPI 18
541 TSt COMPONENT INSLANCES. ...ttt it sttt e bt e st e st e sbeesbe e b e e sbeesbeesbeesbeesbeesbeesbeesbeesbeesbeesbeesbeesreesreen 18
542 EXPIICIT POIT INSLBNCES. ...ttt bbbt sb e b b e b e sb e e b e e sbeesbeeseneanneannennnesnns 18
543 IMPLICIT POIT INSLBNCES.eeeieeeeee ettt bbb b b e b e s b e e sb e e beesbe e beesenesnnesnneannesnns 19
55 Test COMPONENE NANAIING........oiueiiie e e h e sb e e sb e e sbeesbe e sbeenbeenbe e 20
5.6 PO NANAIING. ..+ttt bbbt b s bt e sb e e sb e e sb e e she e sb e e ebe e sbeesbeesbeesbeesbeeareenreen 21
56.1 HaNAING OF EXPIICIT POMTS.....veeteetiet ettt bbb b b e b e e bt et e e bt e b e e snnesaneannesnnas 21
5.6.2 Handling Of IMPIICIT POITSveetietiet e bbb et e sanesanesans 22
57 (600 01T 131 11010 H PP TR PP PP PR 23
5.8 D 7= OSSPSR 24
581 Do =] 0o o = = SO STPTO TP PP TPRTRO 24
582 (€110 o7 o = - WSRO PRSPPI 24
583 Sz (o = - TSRO PRTURRTRN 24
584 DY A= 0 ol = - T OO U R T PO PPTO RPN 25
5841 COMPONENTE VATADIES ...ttt n e e bt r e e n e e an e s e e sbeesreenree 25
5.84.2 271 gTo 110 =TSR UR PPN 25
5843 COMPONENTE TNMITIALION ...ttt r e e bt e ab e e et e n e e bt eareenesaneebeesbeesreesreen 25
584.4 DALA TN MESSATESveeuteeuteete ettt ettt et et e bt e bt e bt e bt e bt e b e e s heeabeeabeesbeenbe e b e e nbeenaeeebeenbeenbeebeenes 25
5845 ACTTON BOXES ...t b ettt b e bt e b et e e b e e bt a bt nn e nn e nne e 25
5.84.6 CompPONENt 8N POIT TYPESveeiveeieee ittt ettt sb e bt e e sb e e b e e sbeesb e e sbeesbeesbeesbeesbeesreesreen 25
585 GUANING CONDITIONS.......eeiiteiitee ittt ettt st b e bt sb e b e e st e e sb e et e e bt e abeeabe e beenbeebe e 26
5.8.6 SELING CONDITIONS ...ttt bbbt b e bbbt bt ae et e s ae e s ae e eaeesae e e abeenbeeabeenbeebe e 26
59 B I £ 07= £ S T TSPV R PP PP PRR PR 26
5.10 ASYNCNIrONOUS COMIMUNICALION.......eeutteaee ettt sttt sttt be e sbe e sb e e sbeesb e e sb e e beenbeenbeeabeebeesbeenbeenbeenes 27
510.1 IVIEBSSA0ES ...ttt ettt ettt r et e e R R e R eR e nR e s n e e r et nr e nare s 27
5.10.2 RECEIVING @MY IMESSAGE ...tttk he et a et bt e et e et e e et s e st eae e ean e een e e neeenneaanesnnesnns 29
5.10.3 RECEIVING FrOM BNY POIT......ceeiieiiitii ittt se ettt it ee e an e et e e sanesans 29
5.10.4 TH TGN TTIESSAGE. ...ttt euee ettt ettt ettt ettt ettt ekt e he e s he e eh e e ek e e eh et she e she e she e eh e e eh e e ehe e ehe e eheeehe e sheesbeeabeenbeesbeesbeesreen 29
511 SYNCAIrONOUS COMIMUINICALION ...ttt ettt ettt b bt b e b e be e bt e sbeenbeesbeesbeebeenbeebe e 29

ETSI

4 ETSI TR 101 873-3 V1.1.1 (2001-01)

5111 Call, getreply, Catch, @and tIMEOUL..........c.eiiiiieiiee ettt st et e e sbee e snreesnreeans 30
5112 (€ (o= L= o VA= (o = TR = SO RTUSRRRIN 32
5113 ANY NBNAIING ..ttt b e b b sb e e sb e sb e e sb e e sb e e sbe e sheesbe e sbeenbeesreenreenreen 33
5.12 27 0T o | RO RPTRR 34
5121 SEqUENTIAl DENAVIOUN ... e sb e e b e e b e e be b e 34
5122 ARENALIVE DENAVIOUN ...ttt e e e st e e st e e s smbe e e be e e steeesneeas 34
5123 INEETEAVEA DENAVIOUNcoeiii ettt e et e e sbe e e saee e sbe e e sbee e sneeesneeas 36
51231 (00 1= s [0 TP OUPTOPPPPRTPPRPPRPPN 36
5124 [0 oo J PO TP PP RP TR 37
5.125 Voo PSR S 37
5.12.6 DIEFALITS ...ttt ettt ettt e b E e Rt e b e Rt Rt e bR et R et nn e enn e an e nnennn s 37
5.12.7 RELUMN STBEEIMENT ...ttt ettt e e s bt e e e s bt e e e e aabe e e e s nbe e e e e bbeeeeabeeasabbeeesanbeeeeaan 38
5.12.8 ACHTON BOXES ...ttt ettt b e sttt et e e bt e an e et e e s e eb e e sbe e sreesbeenreenree 39
5.13 RV [T o: TPV R PRSPPI 39
5.14 HIGN-1EVE TSC (HTSC) ...ttt sttt he et h e s saeesbeesaeesbeesbeesbeenreen 40
5.15 ()Y 1< S IS O PP P PP PUPT PP PP PPRPPRPRN 41
5.16 PAITIB] TSC ...ttt ettt b bbbt b e s b e e sh e e sb e e sh e e eh e e sb e e she e sbe e she e sb e e ebeenbeesbeenbeesbeesbeeabeenreens a4
5.17 [Y7 o IS OO O PP PUT PP PP PPRPPRPRN a4
Annex A: Used subset of and extensSioNSTO MSCcooiiiiiiiiiee e 46
N A V7= = S 46
A.l2 TSt SPECITIC EXLENSIONS.....ecteeitie ittt ettt ettt bbbt bt bt e s bt e s b e e s b e e sbe e ke e s b e e abeenbe e abeeabeenbeenbeenbeenne 47
A.l21 LS s (0 el 11 1< o PP OPPTPPPTPUPTPPRTPPPPUN 47
Al1211 NEW JOCUMENT SECLIONS ...ttt sttt e s i e sb e s b e nbe e et e e b e e b e 47
A.1212 Component 8N POt INSIANCES..........eieeiieiie ettt sae e sanesaeesaeesreesree 47
A.13 LIRS O 1152 o [oo U T TP P PR PP PP PRPR 48
A.l4 TESE COMPONENTS......ceiiteie ittt r et sh e sa e s e e e E et e sRe e e sh e e s b e e e b et e er e e e sar e e sar e e e re e e nnee e nnre s 48
A.l41 IMTC GBS KEYWOI ...ttt ettt ettt ettt e bt e bt e bt e st e bt e bt e s e s snesnneennennnesnns 48
A.14.2 SET BSKEYWOIT. ... bbb b e b sb e e s bt e s b e e sbe e s be e be e be e nreebe e 48
A.15 IVIESSAES.ttt ettt r ettt e e e R R Rt e e E e R st e s et r e ne e 438
A.16 QLI o= ST SURTRURSR 49
A.17 (00T PSR R U USPR 49
A.18 (670 011 20 I Lo 1Y S TP TP TR ST P PRP PR 49
A.19 Test verdiCctSWIthin CONAITIONScc..eiiiiieie e bbb r e e be bbb 50
N 1 0 T I 4= SO SUURURUUURURTUROPRTRIN 50
A. 111 Creste tO tESt COMPONENTS.ciueiiiiiieirie ettt ettt r ettt se et e s e e s r e e e re e e sr et e se b e e sar e e s r e e e nre e e snneesnne s 50
A.L12 St 1O tESE COMPONENTS.eiiireie it iree ettt sttt r et se bt e s e e s e e e b et e sr et e se e e sare e s r e e e nre e e srneennne s 50
A.L13 REUMN FOr FUNCHIONS. ...ttt bbbt b e sb e e s bt e sb e e s b e e sb e e sb e e sbeesbe e beesbeesbeesbeesbeesbeesreens 51
A.L14 SLOP ON tESE COMPONENTS......ciiitie it eite et ettt st s et r ettt sr et e se e e s r e e e r e e e s e e e abe e e s sn e e sre e e are e e snneennne s 51
A.1141 Special meaning of StoP 0N thE MTC INSANCE.......ccviiieiieiie et 51
A.1.14.2 Stop within an operand of an iN-liNE EXPrESSIONoiiiiiiie e e e 51
A.L15 Clear, Start and SIOP L0 POMTS....coueeiuieiiie ittt sttt sttt sttt sb e b e e sb e e b e e s bt e sbeesbe et e e sbe e beeneesbeesbeesbeesreesreens 52
ALLE IN-TiNEEXPIESSIONS.....coteiitie ittt sttt sttt sb e s b e sb e e sb e e sb e e sb e e sb e e sb e e sb e e sb e e she e sheesb e e ebeesbeesbeesbeesbeenbeesbeenreenreens 52
A.116.1 Propagation of Messages to the ENVIFONMIENT...........oi i 52
A.1.16.2 NEW iNtErEaVE IN-1INE EXPIESSION........iiiiieieie ettt se e b e b e e s be e s beenaneeanesanesanas 52
N N A o I S O ST URUSURUR PRSPPI 53
S o 1Yo o I IS O PP OU PP UPPTOPPPPRPPPOPIN 53
A.L19 EXIENSONSTO the QAL PAIT......cctiiieeieee ettt r e bt r e r e n e sb e e sbeesreesreenree 53
A.1.191 DECIAITNG DALAL ... e ettt ettt ettt b e bttt e bt e bt e bt e bt e et en e e an e enn e enn e nnn e 53
A.1.19.2 S (ol D - FO U T T TSP PP PRP PSPPI 54
A.1.19.3 DY AT 0 0 ol B - - VT OO TP TRRTRO 54
A.1.194 =TT gTo] 1o =PTSRS 54
ALL20 HYPEE TOCS ..itiiitieitee ittt sttt et e b e sh et bt e bt e sbe e s b et sb e e sb e e sh e e sh e e ehe e ehe e eh e e eh e e eh e e ah e e ebe e ebeesbeesbeeabeenbeenbeesbeesreenreens 55
N 2t R = o 4 1= STV URURURTURUPRTRN 55
ALL22 DEFAUIT ...t b bbb bR e e Ee e h e Re e e e ehe Rt R e e b e ehe b e eReebenbesbe e e e nre b 55
Annex B: LI LIRS O o 1 LTSS 56
2 R O 1Y 1= T SRS 56
B.1.1 F N =T 10 o LT U PTOTRR 56
B.1.2 Form aspect: vertical split VS. NOVETICAl SPIT.......eiiieiieeie e 57
B.1.3 Form aspect: horizontal split vs. N0 horizontal SPlIt.........cooeeiiiiii e 58

ETSI

5 ETSI TR 101 873-3 V1.1.1 (2001-01)

B.1.4 Form aspect: explicit vs. impliCit POrt repreSENTAiON.ccvviiiiieiieteeeee e e 60
B.1.5 Form aspect: hybrid VS. NOt NYDFId.ooiii e e 61
B.1.6 Form aspect: partial VS, COMPIELE.ottt bbb sb e b e e sbeesreesreesree 62
B.1.7 SUMMENY OF TSC FONMIS. ..ttt ettt b b e b e bt e be e b e e sbe e s beesbeesbe e sae e beeabeenbeebe e s 62
Annex C: Subset of the graphical syntax of TSC.........cooiiiiiiiiii s 63
C.l MeaLangUage for TSC/ON .. .ou ittt ettt b e e b e e ne et e nnnas 63
C.2 Conventions for the SyNtaX JESCIIPLION..........ciriiiieieeie ettt 64
C.3 Rdation between TTCN-3and TSC FIlEScoiiiieiee e 64
C.4 TheTSC/Gr ProdUCTION TUIES........ccueeiieeie ettt ettt san e e s e e nne e eneenneas 65
C41 Test SEqUENCE Chart QOCUMENTeiiii ettt ettt b e b et b e e bt bbb b e e nbe e nbe e b e 65
C4.2 L0l o= T TP PP PTOPRPPRRTRIN 68
C.4.3 TESE SEQUENCE CREIT ...ttt b ettt s b e bt e b e b e bt e st et e sb e sbeeae e e e s be et e sbesbesbeeneesbeee 68
C44 ENVIFONMENT N0 POIS ...ttt bbb bt b s b e e sb e et e e b e e sbeesbeesbeesbeesreen 70
C.45 =S T o I TR TT R URUSURURURURRPRN 72
C451 Ingtances (Component and POrt INSLANCES)eoviriiriiiiiree et 72
C452 IVIESSA0ES ... ettt sttt b bt a et R R s e e e R e Rt R s e n e r et nrre e nane s 74
C453 (600 011 g0 I o VAT T TSP PP P PP R PR PR 75
C454 SPECIAI IMESSAJES ...ttt ettt h e bt bt e e bt e e bt e s bt e she e she e eh e e s b e e eh e e e Re e b e e eRe e Re e be e be e re e b 78
C455 ENVIFONMENT N0 POIS........oiiiiiiiie bbb e b e et snn e san e e 78
C.45.6 1670 110] 100 L= SR PSP P PP VPP P R PR PP 80
C.45.7 B0 £SO U PR RTURUPR 81
C.45.8 AACHIONS ...ttt ettt b ekt e e et h e e a e et e E e h £ e Rt e e e ehe e R£ e R e e EeeReeR e e n e e eReeheebeeRe e beebenaeente b neas 82
C.45.9 DL = U (=TRSOOSR 82
C.45.10 INSEBINCE CIALTON ...ttt ettt ettt e ettt et e et e et e et e e st e b e e bt e st eae e emneannesnneennennns 83
C4511 1 £ (o= o] o PO PP PP RP TR 83
C46 SITUCEUFE] CONOEIES ...ttt a e e et a e st e st s et s e st e ae e e bt e bt et e e bt e nbeebe e 83
C461 (00T <o |00 - TR T T TSRS PR PRP PR 83
C46.2 IN-lINE EXPIESSIONS ...ttt ettt b e st e s bt e st e a bt et e e bt e bt s ee e e Rn e enn e nnnennnennn s 84
C46.3 LS O = 1= = 1[0/ OO OO U PP OPPTPUPPPRPPPPUN 84
c4a7 HIiGh-1EVEl TSC (HTSC) ...ttt sttt bbb bt ettt b e s b e st e b e b b e et e sbesbeeneenbenra s 86
Annex D: MappPiNg TSC 10 TTCN-3 ... ettt r e neereen 88
D 20 R D T=ot] 1o o PSP RP PR PRTPPPRPRPPRN 88
D.11 T SC UOCUMENIES..... ettt ettt sttt b e b e b e bt bt s bt e e bt e e bt e e bt e bt e bt e bt e be e be e bt e bt e be e bt e bt e ebe e beeabeebeebeenes 88
D.1.11 S B0 e U010 o | PSPPSR 88
D.1.1.2 TSCDOCUMENTHER ...ttt bttt bbbt bt bt e e bt bt s bt e b e sbesb e s ae e besbesbeennesbennas 88
D.1.121 TTCN3DAADEf NITIONLISEeiviite ettt bbbt b e ae et b s ae e b e e 89
D.1.1.22 TTCONIDAADEINITION ...ttt sb et bt bt s a b e bbbt e e e sbesbesaeenee e e 89
D.1.1.3 (000 g1 g0 1o gV = = T TSRS PRP PSPPI 89
D.1.131 TSCCONIOIREFEIENCELISE. ...ttt bbb nn e sanenanas 90
D.1.1.32 T SCFUNCLiONOF GrOUPREFENENCELISE ...t s 90
D.1.1.33 TSCRUNCHIONONGIOUPRET ...t s e san e 90
D.1.1.34 TSCCONIOIREFEIENCEATERLeeueeeiee ettt bbb b s b b e bt e st e e sbeesbe e sanesnnesnnas 90
D.1.14 TESICASEPAITATIEReeitie ettt ettt 91
D.1.141 TSCTestcaseor GroUPREFENENCELISEcoovieiieiieiee e 91
D.1.14.2 T SCTESICASERENEI ENCEATER.cuteeiteeee ettt ettt ettt b et b e et bt e b e e b sanesnne e 91
D.1.15 FUNCE ONPAITATERL. ...t h bbbt b e b e e s b e b e e sb e e bt e be e sen e e anesnneannesnnesnns 91
D.1.151 T SCRUNCE ONREFENENCEATERL ...ttt ettt ettt b e nb et e e b an e nne e 92
D.1.1.6 INBMEJATIPAITATERL......c.ee ittt bttt b e bt b et e bt s bt b e ae et e beebe e b e sbesbesbeennesbeseas 92
D.1.161 TSCNamedAItorGroUPREFEIrENCELISE........eotieiieiieiee e 92
D.1.1.6.2 TSCNAMEUAITREFErONCEATERL. ..ottt et bbbt bbb bbb e e b e e 92
Annex E: AN TNRES eXampPlein TSC...oii ittt 93
A SO0 oo U1 11 o | PR UPPOPRPRPPRPRRPRN 93
E.2 TSCSTOr SEQUENtial tESE CASE.......cueiieeieiiie ettt n e e s e e enne e 94
E21 6 AT £ o o OO PP PP PP PR PPRPRRPRN 94
E.2.2 = o0 010 IV £ oo D TPV PR PSP P PPP PR 96

ETSI

6 ETSI TR 101 873-3 V1.1.1 (2001-01)

E.2.3 LI 0 V== T o T ROTRR 98
E.3 TSCSTOr CONCUIMTENE TESE CASE. ... eieiueereiieieesiieeseieeestteestteessteeesteaessteeastaeesseeessteeesseeesseeesnseeesnseesnsenans 99
E.4 INRES examplein TTCN-3 COrelanQUAgE...........corueerueiiieeiieiieeieesiee et et 108
L T (PSPPSR PRSP 115

ETSI

7 ETSI TR 101 873-3 V1.1.1 (2001-01)

Intellectual Property Rights

IPRs essential or potentially essentia to the present document may have been declared to ETSI. The information
pertaining to these essential 1PRs, if any, is publicly available for ETSI member s and non-member s, and can be found
in ETSI SR 000 314: "Intellectual Property Rights (IPRs); Essential, or potentially Essential, IPRs notified to ETS in
respect of ETS standards’, which isavailable from the ETS| Secretariat. Latest updates are available on the ETSI Web
server (http://www.etsi.org/ipr).

Pursuant to the ETSI IPR Policy, no investigation, including IPR searches, has been carried out by ETSI. No guarantee
can be given asto the existence of other IPRs not referenced in ETSI SR 000 314 (or the updates on the ETSI Web
server) which are, or may be, or may become, essential to the present document.

Foreword

This Technical Report (TR) has been produced by ETSI Technical Committee Methods for Testing and Specification
(MTS).

Introduction

The Message Sequence Chart (MSC) presentation format for TTCN-3 isagraphica format based on the
ITU-T Recommendation Z.120 [2].

This presentation format uses a subset of Message Sequence Charts with test specific extensions and extensions of
general nature. ThisMSC profile will be in the following referred to as Test Sequence Charts (TSCs). The majority of
extensions are textual extensons only. Graphical extensions are defined to ease the readability of TSC documents. All
graphical extensons have either substitutes within standard MSC or are optiona (i.e. need not to be used). Thisallows
established M SC tool s (with some modifications to the textual syntax) to be used for the graphical definition of
TTCN-3 test cases using TSCs. The used subset of and extensionsto MSC are described in annex A.

The core language of TTCN-3 isdefined in ES 201 873-1 [1] and provides a full text-based syntax, static semantics and
operational semantics as well as defining the use of the language with ASN.1. The TSC presentation format provides an
alternative way of displaying the core language.

TTCN-3 < >
e Core Tabular
Types & ——Pr Language [———— ormat D
Values
Other Types Graphical [e TTCN-3 User
& Values —> format <4+—>
Other Types Presentation
& Values, 1 format, < >

Figure 1: User's view of the core language and the various presentation formats

ETSI

http://www.etsi.org/ipr

8 ETSI TR 101 873-3 V1.1.1 (2001-01)

The core language may be used independently of the TSC presentation format. However, the TSC format cannot be
used without the core language. Use and implementation of the TSC presentation format shall be done on the basis of
the core language.

The present document describes how different forms (styles) of Message Sequence Charts (MSC) can be used for
describing test specifications. In doing so, we introduce new language concepts that are necessary for the definition of
test specifications.

The present document defines:
» thelanguage features of TSC;
» theguideinesfor the use of TSC;
» theused subset of and extensonsto MSC.

Together, these characteristics form the TSC presentation format.

ETSI

9 ETSI TR 101 873-3 V1.1.1 (2001-01)

1 Scope

The present document defines the M essage Sequence Chart (M SC) presentation format for the TTCN-3 core language
asdefined in ES 201 873-1 [1]. This presentation format uses a subset of Message Sequence Charts as defined in [2]
with test specific extensions and extensions of general nature.

The present document is based on the core TTCN-3 language defined in ES 201 873-1[1]. It is particularly suited to
display testsas TSCs. It is not limited to any particular kind of test specification.

The specification of other formatsis outside the scope of the present document.

2 References
For the purposes of this Technical Report (TR) the following references apply:
[1] ETSI ES 201 873-1: "Methods for Testing and Specification (MTS); The Tree and Tabular
Combined Notation version 3; Part 1: TTCN-3 Core Language”.
[2] ITU-T Recommendation Z.120 (1999): "Message Sequence Chart (MSC)".
[3] I SO/IEC 9646-3 (1994): "Information technology - Open Systems Interconnection - Conformance

testing methodol ogy and framework - Part 3: The Tree and Tabular Combined Notation (TTCN)".

3 Abbreviations
For the purposes of the present document, the following abbreviations apply:
ASN.1 Abstract Syntax Notation One
BNF Backus-Nauer Form
CATG Computer Aided Test Generation
CORBA Common Object Request Broker Architecture
ETS Executable Test Suite
ETS European Telecommunication Standards Institute
HTSC High-level Test Sequence Chart
MSC Message Sequence Chart
MTC Master Test Component
PTC Parallel Test Component
SUT System Under Test
TSC Test Sequence Chart
TTCN Tree and Tabular Combined Notation
4 Overview

According to the OSl conformance testing methodol ogy defined in 1SO/IEC 9646-3 [3], testing normally startswith the
development of atest purpose, defined as follows.

A prose description of awell-defined objective of testing, focusing on a single conformance requirement or a set of
related conformance requirements as specified in the appropriate OS| specification.

Having devel oped a test purpose an abstract test suite is devel oped that comprises of one or more abstract test cases. An
abstract test case defines the actions necessary to achieve part (or al) of the test purpose.

ETSI

10 ETSI TR 101 873-3 V1.1.1 (2001-01)

Applying these terms to Message Sequence Charts (M SCs) we can define two categories for their usage:

1) Test Purposes— Typically, a MSC specification that is devel oped as a use-case or as part of a system
specification. For example, figure 2 illustrates a simple M SC describing the interaction between instances
representing the System Under Test (SUT) and its environment. Such M SC specifi cations can represent many
different behaviours. Therefore, one or more abstract test cases may be required to ensure that the SUT conforms
to the specification. Note that theinclusion of SUT instancesis optional, and that both the SUT and Environment
can be defined using more than oneinstance. Figure 2 illustrates the typical configuration used during the
development of test purposes.

>

Figure 2: MSC illustrating how the SUT interacts with its environment

Environment

Al B C

Figure 3: lllustrates the architecture that is normally represented by a test purpose

2) Abstract Test Cases (or Test Suite) — Typically, a MSC written solely for the purpose of describing the behaviour
of atest case. For example, figure 3illustrates a simple M SC defining the interactions between different
elements of the test configuration e.g. instances can represent test components, ports mapped to the SUT and

ports connected to other test components. Figure 3 illustrates the test configuration used by the MSC
specification.

ETSI

11 ETSI TR 101 873-3 V1.1.1 (2001-01)

MTC TCA TCBC A B C C1 c2
I | | | | | | | | | | | | | | |
a
b
>
P Cc
d
. <
4___
I T N S s T N
— A -
~ T~
mandatory optional

Figure 4: A MSC illustrating both the behaviour and configuration of a test case

MTC

C)/ c2
B

A C

Figure 5: Configuration used by the above MSC

In identifying these two categories of MSC usage two distinct areas of work can be defined see figure 6:

a) Develop a mapping from MSC test purposesto TTCN-3 test cases (or TSC test cases — see next item). However,
itis perceived that such a mapping would be non-trivial, and would involve the devel opment of Computer Aided

Test Generation (CATG) techniques.

b) Develop Test Sequence Charts (TSC) being atest specific profile of MSC for the purpose of specifying abstract
test cases (and test suites) together with a mapping from TSC test casesto TTCN-3.

MSC Test Purpose

Generation

TSC Test Suite Specification
contains one or more test cases

Mapping

TTCN-3 Test Suite
Figure 6: Diagram illustrating the different levels of abstraction for sequence charts

NOTE: Item b) isthefocus adopted during the development of the present document.

ETSI

12 ETSI TR 101 873-3 V1.1.1 (2001-01)

) TSC language concepts

This clause explains the language concepts of TSC and indicates their use for the specification of test suitesin TSC.

51 TSC document

The Test Sequence Chart document defines a test suite and the associated collection of test sequence charts, which
again define traces of test events. An exampleisillustrated in figure 7.

tsc document TetSlite Exanple
tscgroup groupl
contral ‘ testomeel 1 ‘ testoasel2
11
tetcases gap
[testcaeel] [tetcase? ’ { gopl J
fundims tsgrwp gapﬂ
funcl, groupA; groupA:= func2, groupB;
goupB:=func3, funcs;

Figure 7: TSC document

The TSC document may contain a collection of Test Sequence Charts (TSCs), together with any declarations needed for
the test suite. Within a TSC document TSCs are grouped according to their function.

The control part, identified using the contr ol keyword, refersto one or more control TSCs, which are defined using the
HTSC notation. These control HTSCs may refer to other control HTSCs, or to TSCs representing test cases. Theroot
control HTSC isindicated by the keyword contr ol followed by the HTSC identifier.

The test cases part, identified using the test cases keyword, contains TSCs that define the interaction between the ports
and components contained in the TSC document.

The functions part, identified using the functions keyword, containstest behaviour patterns, which are reused by the
test case part.

The named alternatives part, identified using the keyword named alts, contains the named dternatives used in TSCs.

TSCs within the TSC document may be grouped providing a hierarchical structure. A TSC groupsreferencesa TSC
group document, denoted using the keyword tscgr oup, which in-turn references TSCs or other TSC groups.

TSC references of each part of the TSC document can be denoted either using graphical reference symbols or in the
form of alig of identifiers. The only constraint is that the two representations cannot be mixed within one area.

ETSI

13 ETSI TR 101 873-3 V1.1.1 (2001-01)

A TSC document islike a M SC document except of the more fine-grained differentiation into control, test cases,
components and functions TSC parts (as opposed to defining and utility MSC parts only).

Whenever thereisno special support for the different TSC document areas, the keywords contral, test cases,
functions, and named alts should be put into comment symbols, which serve like the separation line as proposed
above.

51.1 Parameterization of TSC documents

A TSC document parameter list defines a set of values that are supplied by the test environment at run-time. During
testing execution these values shall be treated as constants. For example:

t scdocunent Test SuiteExanple (integer TS parl, bool ean TS par2);
The data language used with TSC defines the form given to TSC document formal parameters. The syntax given to
formal parametersistaken from TTCN-3.
51.2 Implicit and explicit typing for components and ports

Ports facilitate communication between test components, and between test components and the test system interface.
Where, a TSC port instance can support message-based events, procedure-based events or a mixture of both. Test
components then use these ports to communi cation with other test components or the test system interface.

Where, a port type defines the method of communication that can pass through a port (e.g. message-based,
procedure-based or mixed), including the direction of communication (e.g. in, out or inout).

TSC supports both implicit and explicit typing for components and ports as described in [1].

5.1.2.1 Implicit typing for components and ports

Implicit typing of components and portsis defined using the keyword implicit_typing within the TSC document
header. For example:

t scdocunent Test SuiteExanple inplicit_typing;

Implicit typing means that any typing of ports or components is determined from the message interactions between
ports and component instances.

5.1.2.2 Explicit typing for components and ports

Explicit typing of components and portsis defined using the keyword explicit_typing within the TSC document header.
Thismeansthat al port or component types must be given either in the TSC document header, or within instance
headers. For example:

t scdocunent Test Suit eExanpl e explicit_typing;
data {

type port MyPortType= {...};

type conponent MyMICType= {...};

ETSI

14 ETSI TR 101 873-3 V1.1.1 (2001-01)
51.3 Importing other TSC documents

TSC documents may be imported using an import clause in the document declaration part or by an import statement
within the test case reference. The syntax for the import clause follows that defined in [1].

inport testcase A
from nodul eA

| nport testcase
A from nodul eA

Figure 8: Example of an imported test case

514 Variable declarations

Component variables are declared within the TSC document header as part of the declaration contained with the data
definition part, which follows TTCN-3 syntax as defined in [1]. For example:

t scdocunent Exanpl eTest Suite explicit_typing;

data {
type conponent MyMIC { ...; var MyTypel a, b; var MyPTCType PTCL;... }
type conponent MyPTCl { ...; var MyType2 c; var MyType3 d; ...}

}
5.1.5 Data definitions

Asdescribed in clause 6.8 the TSC notation can be parameterized with a data language of the users choice. In doing so,
data definitions from the chosen language are given within the TSC document header. For example, if TSCis
parameterized with TTCN-3 data types and values, a TSC document header could ook as follows:

t scdocunent Exanpl eTest Suite (SuiteParType parl);
| anguage TTCN-3 data {
type integer SuiteParType;
type enunerated SegNo { zero (0), one (1) };
type record MyMessageType { integer fieldl, SeqNo field2 };
tenpl ate MyMessageType MyTenpl ateType { 1, ? };

5.1.6 Data parenthesis declaration

Delimiters dencting the start and finish of data strings are declared in the TSC document header (see also clause 6.8).

5.2 Control part

The control part of a TSC document may reference one or more High-level TSCs (HTSC). Together, all HTSCs
referenced within the control part of a TSC document define the execution order (and possibly repetitions) of actual test
cases. One of the control HTSC can be ditinguished from other HT SCs using the contr ol keyword. This control HTSC
represents theroot of the control structure for the test suite, and may refer to other HTSCs that are a so contained within
the control part of the TSC document. Figure 9 illustrates a simple example of a controlling High-level Test Sequence
Chart (HTSC).

ETSI

15 ETSI TR 101 873-3 V1.1.1 (2001-01)

tsc Contrd_Example (MyTypel parl);
var aMyTypel;
var reslit vedidtype
a=Pal+1l
l
result:=testcassl(a)
O
{Jresit=fail] > [result=pass]
A N\
resut:=testcas=2(a)
log(“temination)
A

Figure 9: Example of a control HTSC

Because all the HT SCs contained within the control part of the TSC document represent a single thread of contral,
parale composition isnot allowed within a control HTSC, but alternative expressions with guarded conditions are
allowed. Also, al reference expressions are not supported within control HTSCs.

A Control HTSC issimilar to aHigh-level MSC with the addition of formal parameters, local variables, action boxes
containing

A Control HTSC issimilar to a High-level MSC with the addition of formal parameters, local variables, action boxes
containing data expressions or |og operations, guarded conditions, and references to TSC test cases that return values. Some
restrictions have been applied to the usage of MSC reference expressions.

521 Parameterization of TSCs

A control HTSC parameter list defines a set of values that are supplied by the test environment at run-time. During
testing execution these values shall be treated as constants. For example:

control Control Exanple (integer TS parl, bool ean TS par?2);

The data language used with TSC defines the form given to control TSC formal parameters. In the exampleillustrated
above the syntax given to formal parametersis taken from TTCN-3 (see also clause 6.8).

ETSI

16 ETSI TR 101 873-3 V1.1.1 (2001-01)

5.2.2 Control variables

A controlling HTSC may declarelocal variables. These variables are different from component variables, as declared
within a TSC document header (see aso clause 6.8.4.1), because they are not bound to a single component ingance, and
they arenot globally visible. Ingtead controlling variables are declared within the TSC header and are only visible
within the HTSC they are declared.

For example:
control control _exanple

var integer a:=0;
var verdicttype resultl, result2;

Aswith other data definitions the form given for control variable declarations follows that of the data language used
with TSC. For example, the variable declarationsillustrated above are defined using TTCN-3 syntax.
5.2.3 References to test cases

A control HTSC may refer to TSC test cases referenced within the test case part of a TSC document using the reference
symbol. In addition to simple TSC references, areference symbol may also contain a binding expression.

Binding expressions allow the values returned by TSC test cases to be assigned to alocal control variable. The left-hand
side of abinding expression is theidentifier of thelocal control variable, and the right-hand side of the expression isthe
test casereference.

For example, figure 10 illustrates areference to a TSC test case whose value is assigned to thelocal control variable.

result:=testcase(a)

Figure 10: Example of a test case reference binding expression

A timeout on test execution may be defined either using the time constraint notation of MSC or using the keyword
duration. If thetest case failsto complete within the given time constraint an error verdict isreturned.

A
5E1 testcasel(a) testcasel(a) duration 55-3

Figure 11: Time supervision of test case execution

5.2.4 Control actions

Action boxes can be used within control HT SCs to introduce expressions, which operate over local control variables, or
to includelog statements:

1) alog statement can be introduced into an action box using the TTCN-3 log statement;

2) smple binding expressions that operate over local control variables or parameters can be given in action boxes
contained within a control HTSC. For example, figure 12 illustrates two typical TTCN-3 expressions in which a
local contral variable (on the right-hand side) is bound to an expression involving aformal parameter (on the
left-hand side). A semi-colon separates multiple expressions.

ETSI

17 ETSI TR 101 873-3 V1.1.1 (2001-01)

var A =par 1;
var B: =par 1+1,;

Figure 12: Example of an action box containing control expressions

5.2.5 Alternative expressions

Alternative expressions allow choices to be introduced into a control HTSC, where each aternative represents a
different thread of control actions. Within a control HTSC all alternative branches must be guarded using guarding
conditions (see clause 6.8.5). For example, figure 9 illustrates an aternative with two possible choices both of which are
guarded by Boolean conditions. The order in which alternative choicesis from top to bottom or from left to right,
respectively. If none of the guarding conditions evaluates to true during run-time then control execution is stopped.

5.3 Test cases

Test cases (see[1]) arerepresented using Test Sequence Charts (TSCs). A TSC represents the flow of test events
between test component instances, port instances and/or the environment.

A test case declaration isrepresented by a TSC within a box. Thetest caseidentifier isused asthe identifier for the
TSC. The component type identifier given after the runs on keyword within TTCN-3, isrepresented in TSC asthe type
of the MTC test component instance, contained inside the instance head symbol (for further details please refer to
clause 6.5). Thetype declaration for thetest system interface is put into the TSC header with the system keyword
(taking the TTCN-3 syntax).

tsc MyTesCasOne
sysem MyTetSganilype

MTC
MyMTCType

Figure 13: TSC for atest case with MTC

Theresult of an executed test case alwaysisavalue of typever di ctt ype.

ETSI

18 ETSI TR 101 873-3 V1.1.1 (2001-01)

‘ A test caseistreated like an MSC except of the addition of the system clause to the header information.

54 Instances

TSC instances represent either test components or ports (see[1]). In order to differentiate the two kinds of TSC
instances, different graphical symbols are used. TSC instances contained in the TSCs referenced from the control, test
cases, components, or functions part must only be chosen from the list of instances declared in the instance list of the
TSC document.

5.4.1 Test component instances

Figure 14 shows a test component instance. The instance head symboal is an unfilled box, on top of which the identifier
of thetest component and inside of which optionally the type of the test component is given. The head symboal is
followed by theinstance line (represented as a solid line). The events on thisinstance line are totally ordered from top
to bottom. The end of a behaviour description for atest component isindicated by the instance end symbol, whichisa
filled box.

TC1
TC1 type

Figure 14: Test component instance

Thereisa special test component instance , denoted using the mtc keyword, which represents the main test component
of atest case (see [1]). It has not to be declared explicitly asit isgiven implicitly. The concrete MTC type for atest case
istaken from theruns on and/or the type information in the mtc instance head.

A test component ingtance istreated like an instance in MSC. Test component instances may use the following TSC
congtructs: synchronous and asynchronous communication concepts, in-line expressions, co-regions, conditions, action
boxes, timers, ingance creation, TSC references, stop and special messages for test component and port handling
(seeclauses 6.5 and 6.6).

54.2 Explicit port instances

Figure 15 shows an explicit port instance. The instance head symbal is an unfilled box with dashed lines, on top of
which theidentifier of the port and insde of which optionally the port typeis given. The head symbal is followed by an
port instance line (represented as a dashed line). The end of the behaviour description for a port isindicated by the port
instance end symboal, which isan empty, unfilled box with dashed lines. Also to maintain backward compatibility with
existing MSC tools TSC allows solid lines to be used for representing port instances. In such cases the port keyword is
placed before the port name to distinguish them from control instances.

ETSI

19 ETSI TR 101 873-3 V1.1.1 (2001-01)

Figure 15: Explicit port instance

A port ingtance is graphically treated like an instance in MSC except of the specific port head, port instance line and
port end symbols. In addition, the semantics of a port instance resembles the semantics of portsin TTCN-3: being a
FIFO queuein the receiving direction. Port instances may use synchronous and asynchronous communication TSC
constructs (indicated by an async and sync keyword respectively. In the instance head — a port instance without an
explicit type definition and without this differentiation is assumed to be async) and may share in-line expressions and
TSC references with test component instances. Furthermore, they may have special messages for test port handling
(see clause 6.6).

Whenever there isno support for the special port instance symbol, the MSC ingance symbol should be used with the
keyword port in front of the port type, instead.

5.4.3 Implicit port instances

Figure 16 shows an implicit port ingtance. In fact, there are no graphica symbolsfor a port that isrepresented
implicitly. It israther a specific kind of denoting messages that are exchanged at a port. In case of a sending port, the
message denotation is prefixed with the port identifier and the special symbol ">", whereasin case of areceiving port
the message denotation is postfixes with ">" and the port identifier. Optionally, the port type can be given after the port
identifier separated by a":". The example given in figure 16 represents that message mis exchanged at port A of type

A type.

ETSI

20 ETSI TR 101 873-3 V1.1.1 (2001-01)

TC1
TCL type

m>A

m>A: A type

Figure 16: Implicit port instance (for mapped ports)

If two test component instances have ports which are connected to each other, the name of the sending port is given as
prefix and the name of the receiving port as postfix to the message. In the case that the port names are equal, the postfix
can be omitted.

TClL T2
TCL type TC2 type

A: A type>m>B: B _type

Figure 17: Implicit port instance (for connected ports)

5.5 Test component handling

The creation and stop of atest component is shown in the left-hand side of figure 18. The creation of atest component
(see[1]) isrepresented by a dashed line that is connected to the instance head symbol. Whenever the createlineis
directed to a component instance no information shall be attached toit. Otherwise, theidentifier of the test component
and "create" are attached to the create symbol.

The stop of atest component, i.e. the termination of a test component (see[1]) isrepresented by a cross symbol attached
to the ingtance line.

The right-hand side of figure 18 shows the graphical representation of connect, map, start and done operations for test
components. Connect and/or map operations (see [1]) are given within an action box attached to the instance line of that
test component that performs the connect or map operation. The syntax for the operationsis taken from TTCN-3.

ETSI

21 ETSI TR 101 873-3 V1.1.1 (2001-01)

The starting of atest component (see[1]) isrepresented by a dashed arrow connected to the ingance line of the started
test component. Theidentifier of the test component and "start" are attached to the arrow symbol. Whenever the
behaviour function of the test component is described implicitly (i.e. without an explicit TSC reference), the function
identifier shall be given in parenthesisin addition.

The done operation (see[1]) isrepresented by a guarding condition indicated by a left and right brackets|] (optionally,
the keyword when can be used for a guarding condition asit is donein MSC). The guarding condition hasto be put at
the beginning of an operand of an in-line expression, a branch of an HTSC, or awhole TSC. Thisreflects the typical use
of the done operation in TTCN-3 within flow control statements like if-else and loop statements (see [1]).

creation and stop: connect, map, start and done:
TC1 MTC
- » TC1 type MTC_type
TC1
————————————————————— » TC1 type
connect (..);
map (..);
start (func)
_____________________________ .>
a>A
B>b
> < TCl.done D E—
;< >< cC)

Figure 18: Test component handling

The trestment of done and start operations for test components are extensions to MSC. Whenever no support for thisis
given, action boxes have to be used instead.

5.6 Port handling

The representation of communication operations (see[1]) in TSC depends on the selected form for representing ports.

5.6.1 Handling of explicit ports

The left-hand side of figure 19 represents the operations for controlling communi cation ports, which are explicitly
represented as port ingtances (see[1]). A dashed arrow pointing at the porting instance, upon which the operation isto
be performed, isrepresented by a dashed arrow. The type of port operation (i.e. start, clear, and stop) is atached to this
arrow. The syntax for the port operationsis defined with TTCN-3.

The right-hand side of figure 19 represents a sending operation (see [1]) and receiving operation (see [1]). Sending and
receiving operations are represented with a solid arrow having the port instance as destination or, respectively, as
source. The value of information that is sent or received is attached to the arrow. The representation of thisinformation
is described in further details in clauses 6.10 and 6.11.

ETSI

dear, dart and sop: snd andrecaive
| D A _______ 1 | B A _______ 1
v Atype ! L Atype !
dear ! miL !
------------- > — >
dtart | m
————————————— > +—
JSop ’5 i

22 ETSI TR 101 873-3 V1.1.1 (2001-01)

5.6.2

Figure 19: Handling of explicit ports

Handling of implicit ports

The left-hand side of figure 20 represents the operations for controlling communication ports that are implicitly
represented (see[1]). In this case an action box containing the port operations (i.e. sart, clear and stop), whose syntax is

defined within TTCN-3.

Theright-hand side of figure 20 represents a sending operation (see TTCN-3[1]) and receiving operation (see[1]).
Sending and receiving operations are represented with a solid arrow having the test component instance that performs
the operation as source or, respectively, as destination. In case of a sending port the port identifier is attached to the
arrow as a prefix (separated with the special symbol ">") to the message denotation. In case of areceiving port, the port
identifier is attached to the arrow as a postfix (separated with the special symbal "<") to the message denotation. The
representation of thisinformation is described in further detailsin clauses 6.10 and 6.11. Optionally, the port type can
be given in the prefix after the port identifier separated by a™:".

dear, dart and Sop: sndand recaves
TC TC
TC type TC type
mL>A
A.dear;
A. gart
I

Figure 20: Handling of implicit ports

ETSI

23 ETSI TR 101 873-3 V1.1.1 (2001-01)

5.7 Configurations

Test configurations (see [1]) can be graphically represented only if the ports are represented explicitly by port instances:
1) adashed lineto represent the association of atest component with a port instance and;
2) asolid line to represent the connection between two port instances.

The association symbol is always attached to atest component instance and a port instance. The connection symbal is
always attached to two port instances. It is used only if the ports of a test component are represented as separate port
instances (see figure 21).

Figure 21: Representation of configuration (1)

Two connected ports may be represented by a single multi-port instance. The head of a multi-port instanceis split into
several parts by dashed vertical lines, thus allowing the specification of several port identifiers/types. In this case, the
association of test component instances and port instances is used only (see figure 22).

TCltype |i A_type ! ! C type iC_type TC2 type |! B_type !

Figure 22: Representation of configuration (2)

ETSI

24 ETSI TR 101 873-3 V1.1.1 (2001-01)

The graphical symbols for associations and connections are new to MSC.

Whenever there isno support for these two symbals, the configurations cannot be represented graphically. Instead,
connect and map operations are placed insde an action box.

5.8 Data

The approach adopted for incorporating data into Test Sequence Charts (TSC) has been taken according to MSC [2].
MSC introduced the novel concept of data parameterization allowing users to select the data language of their own
choice. Consequently, TSC reuses this concept, with some minor modifications and extensions, asthe basisfor
including TTCN-3 data types and values into the TSC language.

However, it must be noted that TSC should not necessarily be restricted to TTCN-3 data types or values. And in
general, it should be possible to parameterize the TSC language with other data languages e.g. Java or C. Thiswill be
worked out in alater version of TSC.

Dataisincorporated into TSC in anumber of places, such as document parameters, control variables, verdicts,
component and port instance headers, message passing, timers, action boxes, and TSC references. Datais used in two
distinguishable ways. staticaly, such asin the parameterization of a TSC diagram, or dynamically, such asin the
acquisition of a value through a message receipt. TSC has anumber of points in the definition where a string
representing some aspect of data usage is required, such as expressions or type declarations. In order to define the
semantics of TSC with dataa number of functions arerequired that extract the required information from such stringsto
interface to the TSC data concepts.

ITn SCCI ause 6.1 we define a set of semantic functions that are required for the use of TTCN-3 data types and valuesin
5.8.1 Declaring data
The declaration of data mostly takes place in a TSC document header clause 6.1, the only exceptions being:

« port and component types, which can be declared within instance headers;

* message types, which can be declared on amessage arrow;

 control variables, which are declared local within control TSCs;

+ global and component verdict variables, which are declared implicitly.

All declarations are given within the data definition part of the TSC document header. All types and values are taken
directly from the TTCN-3 core notation.

5.8.2 Global data

In general TSC does not support global data. However, implicitly TSC assumes that a verdict variable is declared for
each test case and test component, and that address variables exist for each component. Values for verdict variables are
defined through the mechanisms given in clause 6.12.8, whereas access to address variablesis given in clause 6.5.

5.8.3 Static data

Optionally, both TSC documents and TSCs can define formal parameter lists. A corresponding TSC reference must
definealist of actud parameters whose scope is the TSC body. These parameters are treated as constants, whose val ues
are determined a compile time. Consequently, when a parameter appearsin the body, it must only be used in
expressions that reference its value, hence cannot be modified dynamically.

ETSI

25 ETSI TR 101 873-3 V1.1.1 (2001-01)

584 Dynamic data

5.8.4.1 Component variables

Variables are owned by single component instances. This means that only the instance owning a variable can defineits
value through the use of bindings or expressions contained within action boxes or message parameters.

5.8.4.2 Bindings

A binding could be considered as an assignment as found in many programming languages. However, if wildcards are
used, permitting under specification, these bindings become simple expressions. Again thenotion of abinding is taken
from MSC.

A binding consists of an expression part and a pattern part that are connected by a bind symbol. The bind symbol has
left and right form both of which are equivalent, but which permit more natural reading of a binding associated with a
message. Figure 23 illustrates a S mple message interaction in which the variable x, owned by instance TC1, isassigned
to an expression involving the variable y, owned by instance TC2. In dl cases the value of a variable should be defined
before it can be used.

t scdocunent exanpl el tsc Data Exanple
expl i cit_typing;
type conponent TCl Type { .. var x:integer; ..} TC1 TC2
type conponent TC2 _Type { .. var y:integer; ..}] |——'_|
y=3
C>c
»
l
(x=y+1)

Figure 23: Example of a variable binding

5.8.4.3 Component initiation

A parameter list may be passed to a created component via the start message.

5.8.4.4 Data in messages

Dynamic datais permitted in messages via their parameter lists. A list of parameters may be bindings or expressions.

5845 Action boxes

Data can appear inside action boxes as a semi-colon separated list of TTCN-3 statements. Such statements are permitted
to use variables, which are owned by the component instance on which the action is placed, or formal parameters.

5.8.4.6 Component and port types

The introduction of component and port typesis an extension to the notion of instance kind in MSC. Component and
port types define the type and direction of data that can be communicated by a component over a port. If explicit typing
isused (see clause 6.1.2.2) then all communication events must be consistent with associated component and port types.

ETSI

26 ETSI TR 101 873-3 V1.1.1 (2001-01)

5.8.5 Guarding conditions

Guarding conditionsin TSC are used to guard choices in alternatives and for the definition of upper boundsin loops.
The Boolean expression placed within a guarding condition is put into brackets. However, in order to keep
compatibility with MSC, the guard can also be preceded with the keyword when.

5.8.6 Setting conditions

Setting conditionsin TSC are used to set test verdicts Test verdicts can have one of five values with the keywords pass,
fail, inconc, none, and error (see clause 6.13).

59 Timers

Asillustrated in figure 24 the setting, stopping and timeout of atimer are using different graphical symbols. These
events are used to represent the start, sop, and read timer operations and the timeout event (see[1]).

The graphica symbol for atimer looks like an hour-glass. It is attached to the test component instance line with aline
(in the case of the gtart timer operation) or with an arrow pointing at the test component instance (in the case of a
timeout event). The stop timer operation isrepresented by a cross, which is attached to the test component instance line.
The graphica symbols are associated with further information like the timer identifier or the timer duration.

TC
TC type

s | wc S
stoptimer: My'ﬁrmr>%

readtimer: MyVar:= MyTimer.read
uat U VA
I

Figure 24: Timer representation

The graphical symbolsfor timer operations can be combined to give amore compact representation for the timer
handling as shown in figure 25.

ETSI

27 ETSI TR 101 873-3 V1.1.1 (2001-01)

TC
TC type

Sart and Soptimer: MyTime (20E-3) %

sart timer and timeout: MyTime (20E-3) %

Figure 25: Condensed timer representation

A timer in TSCistreated like atimer in MSC except of the addition of the read timer operation.

5.10 Asynchronous communication

Asynchronous communication comprises of the send, receive, check and trigger operations (see[1]). In generd, a
message arrow represents the sending and receiving of a message from or to a component ingance. The sending of a
message by a component to it respective port represents a send event, and the receipt of a message by component from
aport representsar eceive event.

In TSC, messages are communicated via ports each representing a Firgt-1n Firg-Out (FIFO) buffer. This meansthat
messages cannot overtake each other.

5.10.1 Messages

In TTCN-3 amessage must have avalue. Therefore, the type of each message must be declared within the TSC
document header. The value of messages is defined usng templates or in-line templates (see [1]). A templateis
declared within the TSC document header. In TSC the type of a messageis given either by the message name or
implicitly through itstemplate reference, if an in-line template is not used. Figure 26 illustrates the various
combinations of message usage within TSC.

ETSI

ETSI TR 101 873-3 V1.1.1 (2001-01)

Typeand In-line

Figure 26: Combinations of type and template usage for TSC messages

In the case where no template is given the message assumes that any val ue can be received. When receiving a message
the value keyword can be used to storeitsvaluein alocal variable. Figure 27 illustrates areceive operation in which the

value of the message is stored in variable x.

. Pot.______ | Componat |
i MyTypeRef >
MyTerplaeRe->valuex

Figure 27: Storing the value of a received message

ETSI

29 ETSI TR 101 873-3 V1.1.1 (2001-01)

5.10.2 Receiving any message

Graphically a message arrow labelled with the any keyword shows the receipt of any message. Figure 28 illustrates an
example of the any keyword.

rt | [Component |

any

>

Figure 28: Example receipt of any message

5.10.3 Receiving from any port

In general thereceipt of messages from any port isillustrated using amessage coming from afound symbol. Figure 29
illugtrates two examples of receiving a message from any port. On the left-hand side a message is shown coming from a
found symboal. This mechanismis used for the no vertical split. On theright-hand sde the any keyword is used asan
implicit port.

[Component_| [Component_|
o MyTypeRef > any >MyTypeRef >
(MyTemplateRef) (MyTemplateRef)

Figure 29: Examples of receiving a message from any port

By labelling a message using the any keyword it is possible to receive any message from any port.

5.10.4 Trigger message

A message arrow with the trigger keyword placed above the line represents the trigger operation. The template for the
trigger operation is placed under the line as defined within TTCN-3.

5.11 Synchronous communication

Synchronous communication comprises the send operations call, reply, raise and the receive operations getcall,
getreply, catch (see[1]). Synchronous communication operations are declared within an TSC document in the
declaration part. Their useis represented as events of the repective test component instance.

ETSI

30 ETSI TR 101 873-3 V1.1.1 (2001-01)

5.11.1 Call, getreply, catch, and timeout

The call operation is graphically represented by a message arrow starting from a component instance. Above the
message arrow, the keyword call followed by the signatureis placed. The signature template is placed undernegath the
message arrow. The call operation may be followed by a start timer operation represented by the start timer symbol
together with the timer duration. The call symboal is attached to a subsequent blocking area on the test component. The
blocking areais graphically represented by atall thin rectangle with dashed vertical border lines. The blocking area
finishes at the reception of a getreply, exception or timeout.

The getreply operation is graphically represented by a message arrow pointing towards a component instance. Above
the message arrow, the keyword getr eply followed by the signatureis placed. The signature templateis placed
underneath the message arrow. Underneath the signature template, the binding of parameter valuesto variablesis
placed. The binding begins with - > (see [1]). The getreply symboal is attached to the end of the blocking area (started by
acall message) on the test component.

The catch operation is graphically represented by a message arrow pointing towards a component instance. Above the
message arrow, the keyword catch followed by the signatureis placed. The signature template is placed undernegath the
message arrow. Underneath the signature template, the binding of parameter valuesto variablesis placed. The binding
beginswith - > (see[1]). The catch symboal is attached to the end of the blocking area (started by a call message) on the
test component. Multiple exceptions within alternative expressions are all owed.

Thetimeout is represented by atimeout symbol likein MSC. Thetimeout symbal is attached to the end of the blocking
area on the test component.

In case of anon-blocking cal [1], the call operation isnot attached to a subsequent blocking area. Instead, anormal
instance line replaces the blocking area.

tsc cal MTC

call MyProc ;
{MyVar1, MyVar2} '

kp_:L

getreply MyProc

{Mwarl, MyVar2}
-> value Myresult

}’

¥ catch MyProc

MyException

Figure 30: Blocking call with reply and exception

ETSI

31 ETSI TR 101 873-3 V1.1.1 (2001-01)

tsc call2 MTC PCOL
Il MyPr !
20E-3X call Myrroc >

{MyVarl, MyVar2}

alt getreply MyProc

{MyVarl, MyVar2}
-> value Myresult

k________

N
!
M
w]
I

Figure 31: Blocking call with reply and timeout

tsc cal_nowait MTC

i
call MyProc i
{MyVarl, MyVar2} !

ﬂj getreply MyProc

<
{MyVarl, MyVar2}
-> value Myresult
catch MyProc
MyException

< fail >

Figure 32: Non-blocking call with reply and exception

ETSI

32 ETSI TR 101 873-3 V1.1.1 (2001-01)

5.11.2 Getcall, reply, and raise

The getcall operation is graphically represented by a message arrow pointing towards a component instance. Above the
message arrow, the keyword getcall followed by the signature is placed. The signature template is placed underneath
the message arrow. Underneeth the signature template, the binding of parameter values to variablesis placed. The
binding begins with - > (see [1]). The getcall symboal is atached to a subsequent activation region on the test
component. The activation region is graphically represented by atall thin black filled rectangle. The activation region
finishes at thereception of areply or raise.

Thereply operation is graphicaly represented by a message arrow starting from a component instance. Above the
message arrow, the keyword reply followed by the signature is placed. The signature template is placed underneath the
message arrow. The reply symbol is attached to the end of the activation region (started by a getcall message) on the
test component.

Theraise operation is graphicaly represented by a message arrow starting from a component insance. Above the
message arrow, the keyword raise followed by the signatureis placed. The signature template or an expression is
placed underneath the message arrow. Theraise symbol is attached to the end of the activation region (started by a
getcall message) on thetest component.

tsccal3 MTC

getcall MyProc

{5, MyVar}
-> param (MyPar1Var, MyPar2

Elj reply MyProc

{5 Myvar}
value 20

< 1
2

4

I raise MyProc
‘Mystring’

S N, A

Figure 33: Incoming call with reply and exception

ETSI

33 ETSI TR 101 873-3 V1.1.1 (2001-01)

5.11.3 Any handling
Accepting any call isrepresented by a message arrow with getcall any above.

tsc cdl4 MTC

getcall any

e m - ——

Figure 34: Incoming any call

Getcall on any port isrepresented by a found message with getcall followed by the signature above and the signature
template undernegth.

getcall MyProc
{5, MyVarg O
-> param (MyPar1Var, MyPar2Var)

Figure 35: Incoming call from any port

Get any reply from acall isrepresented by a message arrow with getr eply followed by the signature and the keyword
any undernegth.

Get any reply from any call isamessage arrow with getr eply followed by the keyword any above and the keyword any
undernesth.

Get areply from any port isrepresented by a found message with getr eply followed by the signature above and the
optional template underneath.

In al cases above, if the port is presented explicitly then the message arrows are drawn from the port instance (in the
case that a concrete port is used). If the ports are represented implicitly, then the port is put in front of getcall and
getreply (separated by a">" symbol).

Catch any exception isrepresented by a message arrow with the keyword catch any. Catch on any port isrepresented
by a found message with the keyword catch above.

ETSI

34 ETSI TR 101 873-3 V1.1.1 (2001-01)

512 Behaviour

The behavioural program statements (see [1]) cover sequential, alternative, interleaved, default behaviour, and the
return statement. Their representation in TSC is discussed in the following clauses.
5.12.1 Sequential behaviour

Sequential behaviour (see[1]) isimplicitly represented as subsequent behaviour on the instance axis of the test
component, which performs the sequentia behaviour. For example, the order in which events are placed on theinstance
axisisthe order in which they occur.

Figure 36 represents that the test component TC1 sends in sequence the messages aand b.

TC1
TC1 type

b>A

Figure 36: Representation of sequential behaviour

| Sequential behaviour in TSC is treated like sequential behaviour in MSC.

5.12.2 Alternative behaviour

Alternative behaviour (see[1]) isrepresented in the form of an alternative in-line expression (alternatives can aso be
represented by an HTSC with choice and guards or, in the Hyper TSC form with the enhanced graphical meansto
represent aternatives. The exception in-line expression may be used as a shorthand notation for an aternativein-line
expression with the exception part as the first operand and the rest of TSC as the second operand. The dternative in-line
expression isrepresented in abox, indicating in the left upper corner with the keyword alt that it isan aternative
expression. The dternatives are separated by a dotted line. Guarded alternatives use guarding conditions. The else case
is guarded with an else condition. In order to keep compatibility with MSC, the other wise keyword can be used instead.
Named aternatives are represented by TSC references with a prefix [expand], which refer to the TSC representing the
named alternative. A TSC that is used as anamed alternative, referenced within an expand, must have an dternative
expression on top level.

ETSI

35

Within an alternative in-line expression, only local conditions are allowed, but aternative in-line expressions may be
non-local, i.e. covering multiple components. Each component has either only operands with receiving events or with
sending events as first events or an operand may be empty. Sending events must be guarded with deterministic guarding
conditions whereas receiving events may be guarded with guarding conditions. Theinterpretation of an dternative
in-line expression across multiple components differs from MSC. Non-local aternative in-line expressions covering
multiple components are interpreted as independent local alternative in-line expressions for each component. We alow

ETSI TR 101 873-3 V1.1.1 (2001-01)

non-local alternative in-line expressions as a convenient shorthand notation and a possibility to avoid gates.

TC1

L]

alt{ at/

PCO1 > MyMessagel

<«

] PCOL. receive(MyMessagel);

>1] >

PCO2 > MyMessage2

<
<

v
x>1] PCO2. receive(MyMessage?);
e

[dse] PCO2. receive(MyMessage3);

-

PCO2 > MyMessage3

4
«

[expand] MyNamedAlternative;

[[expand] MyNamedAlternative I

l—

Figure 37: Representation of alternative behaviour (with implicit ports)

alt{ it/ MyMessagel

PCOL. receive(MyMessagel);
< [x>1]
x>1] PCO2. receive(MyMessage?);

[else] PCO2. receive(MyMessage3); < ese >

[expand] MyNamedA lternative;

3 |

Figure 38: Representation of alternative behaviour (with explicit ports)

ETSI

36 ETSI TR 101 873-3 V1.1.1 (2001-01)

Alternative behaviour is either represented within aternative in-line expressons asit isdonein MSC or within
HyperTSC, which isan extension to MSC. In addition for user convenience, brackets and the keyword other wise can
be used within guarding condition.

Alternatives get an additional semantic interpretation: they are interpreted from top to bottom within alternative in-line
expressions and from | eft to right within HyperTSC. Whenever thisisambiguous, acircled number can be put into the
TSC reference box of a Hyper TSC to indicate the priority leve for that dternative. The dternatives are evaluated from
smallest to highest numbers.

Whenever thereisno support for Hyper TSC, aternative in-line expressions can be used only.

5.12.3 Interleaved behaviour

Thei nt er| eave statement of [1] alows the specification of interleaved occurrences of sequences preserving the
determinigtic ordering of sending events This statement isrepresented in TSC with an in-line expression having in the
upper left side box the keyword int.

In agreement with TTCN-3, interleave expressions are not alowed within operands of alternative expressions and
interleave expressions may not be guarded. Therefore, initia events for each operand must be areception satement,
i.e receive, trigger, getcall, getreply, catch, check.

TC1
interleave { |_nt/ PCO1 > MyMessagel
[] PCOL. receive(MyMessagel) h
{...}
[1 PCO2. receive(MyM essage?)
{...} PCO2 > MyMessage?
3
I

Figure 39: Representation of interleaved behaviour

Theinterleave in-line expression isan extension to MSC. It islike any other MSC in-line expression except that it uses
the keyword int to indicate that it representsinterleaved behaviour. Simple interleaved behaviour can be represented in
TSC by the use of co-regions.

5.12.3.1 Co-regions
Co-regions may be used in TSC instead of interleave in-line expressions for the simple case where only reception

eventsare interleaved, i.e. only reception events (receive, trigger, getcdl, getreply, catch, and check) may be placed
within a co-region.

ETSI

37 ETSI TR 101 873-3 V1.1.1 (2001-01)

5.12.4 Loops

Thefor, while, do while satement of (see [1]) alows the specification of cyclic behaviour. In TSC, we support the for
and while statement only. These statements are represented in TSC with aloop in-line expression having in the upper
left side box the keyword loop (loops can & so be represented by an HTSC with cyclic connection lines and guards or,
in the HyperTSC form with the enhanced graphical meansto represent 1oops).

In TSC, loops must have alower boundary. If the lower boundary is not reached or if thelower boundary is greater than
the upper boundary then an error verdict is given. Within loop in-line expressions, only local conditions are allowed, but
loop in-line expressions may be non-local.

A loop exits, if the upper boundary isreached or if a guard becomes false.

The interpretation of in-line loop expressions acrass multiple components differs from MSC. Similarly toin-line
alternative expressions, non-local loop in-line expressions covering multiple components are interpreted as independent
local loop in-line expressions for each component. We allow non-local 1oop in-line expressions as a convenient
shorthand notation and a possibility to avoid gates.

TC
TC type
loop <1,3>J
< ml>A
A>m2 >

Figure 40: Loop behaviour

5.12.5 Functions

Functionsare used in TTCN-3 to express test behaviour or to structure computation in amodule. Functions may return
avaue. [1]. In TSC, functions arerepresented by means of TSC references. Binding expressions alow the values
returned by TSC test casesto be assigned to alocal variable. Note, that values cannot be returned by a function (TSC
reference) crassing multiple components.

5.12.6 Defaults

Defaults (see[1]) arerepresented by separate TSCs and activated and deactivated by referring to those TSCswithin a
special graphical symbol for defaults. The graphical symbol for representing defaultsis a parallelogram, which is
attached to the test component ingance line. Inside the graphical symbal, the keyword activate or deactivate followed
by the default behaviour in parenthesis are given (asit is donein the TTCN-3 syntax for the activate and deactivate
operations). Named alternatives may take parameters. A list of named alternatives may also be given to the activate
operation. In this case, the named dternatives are expanded in the order given.

ETSI

38 ETSI TR 101 873-3 V1.1.1 (2001-01)

TC
TC type
activate: activate (Defaultl)
deactivate: deactivate (Defaultl)

Figure 41: Default representation

The default symboal is an extensgon to MSC for the representation of TTCN-3 defaults. Whenever the new graphica
symbol isnot available, an alternative representation would be the action box having the activate or deactivate operation
inside.

5.12.7 Return statement

Return statements (see[1]) for behaviour functions (i.e. those with aruns on keyword in the function header) (see note)
arerepresented by the ingtance stop symbol. If areturn value is associated, an additional dashed arrow starting at the
instanceline of the returning test component is used. Thereturn keyword and the return value are attached to the arrow
symbol. Thetypeidentifier for thereturn is given after thereturn keyword of the TSC header.

NOTE: Evaluation functions are not represented graphically in TSC, but are contained in the TSC data part with
their textual TTCN-3 definition.

ETSI

39 ETSI TR 101 873-3 V1.1.1 (2001-01)

tsc MyBehaviour
return verdicttype

TC1
TC1 type

return verdict.get

X

Figure 42: Return representation

The treatment of return values for behaviour functionsis an extension to MSC: both the additional keyword return in
the header information as well as the dashed arrow for thereturn value extend MSC.

If this extension is not supported an action box for thereturn of avalueis used instead.

5.12.8 Action Boxes

Apart from assignments, action, boxes may contain TTCN-3 statements like the connect, map or log operation.

5.13 Verdicts

Verdict operations dlow test componentsto set and retrieve local verdict values. Each test component maintainsits own
local verdict, which iscreated for each test component at thetime of ingtantiation. All verdicts can have one of five
values pass, fail, inconc, none, and error where, inconc means an inconclusive verdict. In addition to local verdicts
thereisaglobal verdict for each test case. The value of thisverdict isreturned by the test case upon termination. The
value of the global verdict is defined by the values of all test components within atest case (i.e. MTC and every PTC).
Therulesfor determining the global verdict is determine using the overwriting rules defined in [1].

A local verdict can be set in one of two ways. (1) using the verdict operation ver dict.set (value), or (2) using alocal
condition labelled with one of the following keywords pass, fail, inconc, and none. Figure 43 illustrates the setting of a
local verdict variable.

ETSI

40 ETSI TR 101 873-3 V1.1.1 (2001-01)

TC TC

verdict.set(pass) pass

Figure 43: Operations that can be used to set a local verdict

Thevalue of alocal verdict variable can be retrieved using the operation ver dict.get. Figure 44 illustrates the
assignment of the local verdict to alocal variable.

TC

x:=verdict.get

Figure 44: An example of how the local verdict variable can be retrieved

5.14 High-level TSC (HTSC)

High-level TSCsare used in the control part of the TSC document (see clause 6.2) or may be used for representing
alternative or cyclic behaviour (see clause 6.15) within test cases. HT SCs provide a meansto graphically define how a
set of TSCs can be combined. HTSCS allow the description of sequential, alternative and parallel composition.
Guarding conditions (see clause 6.8.5) are used to guard choices and loopsin HTSCs. HTSCs used for the control part
of the TSC document have the following extensions to MSC [2]: formal parameters, local variables, action boxes
containing data expressions, guarded conditions, and references to TSC test cases that return values. Some restrictions
have been applied to the usage of MSC reference expressions. For test case modelling, HT SC contains few extensions
concerning the parallel composition: The paralld frame (rectangle) may be omitted in case whereiit is redundant and no
ambiguities may occur. In order to explicitly indicate the connection of ports between different reference symbolsin
HTSCs, adouble line arrow with the port names above can be used. A dashed double line arrow can be used to indicate
a create/start operation between references.

NOTE: the same connection and create/start construct can be used also between TSC references contained in
plain TSCs.

ETSI

41 ETSI TR 101 873-3 V1.1.1 (2001-01)

system?2

4+—Pp

R Dy —

Figure 45: HMSC with parallel composition and connection, create/start symbol

5.15 Hyper TSC

The most obvious and grai ghtforward way to represent TTCN-3 test cases by TSC diagramsisto use in-line operator
expressions for aternatives, iterations etc. Depending on thetest verdict, the representation of alternatives by means of
the exception operator may be more suitable (see clause 6.12.2). Practice has shown that apart from Smple cases using
such in-line expressions may lead to diagrams, which are not so easy to read and to understand. As a consequence, it is
not clear whether such a TSC format would mean a progress with respect to the TTCN-3 notation or even a step back.
In particular, in-line operator expressions obscure the message flow of the "standard” cases (pass verdict) by mixing it
with alternative parts. Asarule, in-line expressions should be used only in a very limited manner and should be
restricted to afew alternatives or loops.

In more complex situations, HT SCs are much more transparent since they abstract from details and focus on the
compositional structure. However, if standard HTSCs are used instead of in-line expressions it has the immediate
drawback that the representation appearsin afairly indirect manner. Sandard HT SCs consist of TSC references, which
point to TSC definitions by means of reference names. In order to overcome this deficiency, an expanded form of TSC
references within HTSCsis admitted. Thisisarea extension to the MSC language. If a"mixed" representation is
allowed where some HT SC references appear in expanded form and some not, a very flexible notation is obtained
(seefigure 46). In particular, it provides ameansto single out thenormal (pass-) case. The TSC referencesreferring to
the pass-case may be shown in expanded form, the others as non-expanded TSC references. An immediate
generalization of thisideaisto allow a so representations where inconclusive- and fail-cases are Sngled out by
changing theroles.

A test case representation by means of HT SCs where parts of the TSC references appear in expanded form still hasthe
disadvantage that the non-expanded TSC references do not provide sufficient information without looking &t the
corresponding explicit TSC definitionsin the TSC document. Thisis particularly inconvenient in case where many
small TSC definitions are used, which is just typical for test case descriptions. To make HT SCs applicable to test cases,
an additional extension isnecessary. It seemsto be more appropriate to interpret the TSC referencing mechanismin a
hypertext-like manner assuming a corresponding tool support where the TSC references can be expanded within the
embedding HTSC or possibly also in a separate window. The TSC references, which can be expanded may be indicated
by underlining the text, by coloured text or by a variation of theline width of the symbol lines.

ETSI

42 ETSI TR 101 873-3 V1.1.1 (2001-01)

tsc hyperl V
MTC PCO1
a >
[t
tsc_reference 1 |4 %
MTC PCO1
b !
—— [t

Figure 46: Combined use of Hyper TSC and TSC references

Eventually, such a coherent expanded representation of a whole path should be possible not only in a separate window
but also in in-line-form within the HTSC itself. Thisis advantageous in particular, to show the pass-casein a coherent
manner since in case of many alternatives, a splitting is very disturbing. Therefore, afurther extenson of HTSCsis
introduced which somehow may be viewed also as a unification of HTSC and BTSC (basic TSC). Severa expanded
TSC references may be combined to one coherent expanded TSC reference. As a conseguence, the connection points
have to be shifted to the border line of the resulting TSC reference. This procedure isillustrated in figure 47.

ETSI

43 ETSI TR 101 873-3 V1.1.1 (2001-01)

tsc hyper2 V

N\

[}
|
[}
[}
|
[}
:
tsc_reference 1 !
[}
[}
|
[}
[}
]
[}
[}

| »

\)

Figure 47: Condensed representation of Hyper TSC

The dashed lines are used in an obvious manner as separators to indicate the clauses to which the branching refers. If
the branching refers to the reception of an event also a more compact notation with the same semantics may be used
where the separation line is a continuation of the message input.

tsc hyper3

1
]
1
1
1
1
1
;
1
tsc reference 1 H
1
]
1
1
]
i
]

Figure 48: Shorthand for sectioning in Hyper TSC

The concept of TSC reference expansion is not restricted to HM SCs. It may be used also in any basic TSCs containing
MSC references.

It isimportant to note that the extension for Hyper TSC merdy refers to the graphical representation and does not imply
any semantics changes.

A tag will be used in TSC to indicate whether a TSC shall be represented in expanded or non-expanded form.

ETSI

44 ETSI TR 101 873-3 V1.1.1 (2001-01)

5.16 Partial TSC

The analogy with hypertext in HyperTSC leads to another extension of TSC references. Since the TSC reference name
normally does not provide much information about the underlying TSC definition it should be admitted to write pure
comment text together with the test verdict into the TSC reference symbal instead of the TSC reference name thereby,
the TTCN-3 syntax for comments must be used. Please consider figure 49 , which contains a comment only instead of a
concrete reference.

It should be noted, however, that this deviates dightly from the MSC standard: The TSC references do not contain a
name but an arbitrary text. Subsequently, two cases may be distinguished: the TSC referenceis undefined or a
corresponding TSC reference definition is provided. In the first case only the comment text together with the test verdict
isassigned to the TSC reference symboals. In the later case, a TSC reference identifier may be specified explicitly in
front of the comment text or otherwise a default identifier is created automatically.

In case where TSC reference definitions are provided the TSC references may be expanded either within the diagram or
in a separate window depending on the specia stuation. The other way round, expanded TSC references may be closed.
As an additional feature, complete paths in the HT SC may be expanded and shown in expanded form as a coherent TSC
in a separate window.

tsc hyperd Y

1
|
|
1
1
]
1
1
:
Comment i
text i
i
1
1
1
1
J
1
1

Figure 49: Partial TSC (including commented TSC reference)

5.17 Hybrid TSC

Since TSC can be viewed as abasis for creating TTCN-3 test descriptions, some of the TSC reference definitions may
be provided as well in form of TTCN-3 descriptionsinstead of TSC diagrams. A TSC containing such a hybrid
description shall be denoted as Hybrid TSC. In aHybrid TSC, each TSC reference may be defined either in form of a
TSC diagram or in form of a TTCN-3 description.

The choice between both descriptionsis left completely to the user. There are two extreme cases of Hybrid TSCs:
1) all TSC references are defined in form of TTCN-3 descriptions; or
2) al TSC references are defined in form of TSC diagrams, which isthe normal HyperTSC case.

In practice probably, a mixture is most important where the main path of the test case (pass case) is described in a
coherent manner in form of an expanded TSC diagram while the TSC references describing the side cases
(inconclusivelfail) refer to TTCN-3 descriptions. Such ahybrid representation may be particul arly useful for
documentation purpases since it provides a compl ete test case description with a visudization of the main pathsin form
of the TSC format. In case of multiple components, the TSC reference containing a TTCN-3 description must refer to
one single component.

ETSI

45 ETSI TR 101 873-3 V1.1.1 (2001-01)

tsc hybrid V

f MTC PCO1 \

\)

—

PCO1.receive (d);

| »

)

Figure 50: Hybrid TSC (including TTCN-3 core notation)

ETSI

46

ETSI TR 101 873-3 V1.1.1 (2001-01)

Annex A:

Used subset of and extensions to MSC

A.l

Overview

Table A.1: Existing MSC constructs with possible extensions/modifications

Feature Used Textual | Graphical Static Dynamic Section
changes| changes semantics | semantics
changes changes
MSC Document yes yes yes yes no
Basic MSC
MSC yes yes no yes yes
Instance yes yes yes yes yes
Message yes yes no yes yes
Control Flow yes yes no yes yes
Environment yes no no no no
Gates no
General Ordering no
Condition yes yes no yes yes
Timer yes (without parameters) |yes no yes yes
Action yes yes no yes yes
Instance Creation yes yes no yes no
Stop yes no no no yes
Data Concepts
Declaring Data yes yes yes yes yes
Static Data yes yes no no no
Dynamic Data yes yes yes yes yes
Bindings yes yes no no no
Assumed Data Types TTCN-3 data
Time Concepts
Time Constraints yes (for references in no no no no
control TSC only)
Time Measurements no
Structural Concepts
Co-region yes no no yes no
In-line Expression yes yes no no
MSC Reference Expression no
MSC Reference yes yes no yes no
Instance Decomposition no
High-Level MSC yes yes yes yes yes

ETSI

47

ETSI TR 101 873-3 V1.1.1 (2001-01)

Table A.2: TSC specific constructs

Feature Related to existing MSC | Textual | Graphical Static Dynamic Section
Construct changes| changes semantics | semantics
changes changes

Port Instance yes yes yes yes
Start to Test Component Instance Creation yes no yes yes
Return to Function Instance Creation yes no yes yes
Clear to Port Instance Creation yes no yes yes
Start to Port Instance Creation yes no yes yes
Stop to Port Instance Creation yes no yes yes
Trigger Message yes no yes yes
Check Message yes no yes yes
Call Control Flow no no yes no

Getreply Control Flow yes yes yes no

Catch Control Flow yes yes yes yes
Getcall Control Flow yes no yes no

Reply Control Flow yes yes yes no

Raise Control Flow yes yes yes yes
Timer in Calls Timer yes yes yes yes
Functions MSC References yes no yes yes
Defaults Action yes yes yes yes
Hybrid TSC HMSC yes no no no

HyperTSC HMSC yes no no no

A.1.2 Test specific extensions

A.1.2.1 TSC document

Meaning

The TSC document defines the associated collection of TSCs.

Al211

Syntax

New document sections

The TSC document contains document sections for control, test case and functions. Thisimpliesthe use of new
keywords (textual extension) and additiona separator lines (graphical extension). Thisneed not to be used asit eases
the reading only and comments can be used instead as a workaround. TSC allows document parameterization,

i.e. adocument head with parameters (textual extension).

Static Semantics
The TSC document must contain references to defined TSCs only. Incomplete TSC specifications containing just

comments are also alowed. Control references may refer to an HTSC only.

Dynamic Semantics
No change.

Al1l.21.2

Syntax

Component and port instances

Component and port instances are differentiated (by keywords) Thisimplies a new syntax for instance declaration. It
eases readability, but can be redized aso with just comments or naming convention as a workaround.

Static Semantics

Port instances or corresponding message prefixes are dlowed for declared ports only.

Dynamic Semantics

FIFO order for CPs (= connected ports) and no event structure for PCOs (= mapped ports) is assumed.

ETSI

48 ETSI TR 101 873-3 V1.1.1 (2001-01)

A.1.3 TSC heading

Meaning
The TSC head provides the TSC name together with parameter lists.

Syntax
The TSC head contains a system and return keyword (textual extension).

Static Semantics
Return value and return type have to be compatible. Only those ports declared in thetest system interface shall be used
as mapped ports. Test system interface and used messages/calls on mapped ports have to be compatible.

Dynamic Semantics
Return becomes a separate control event in the trace semantics.

A.1.4 Test components

Meaning
A test caseis executed on test components. Each test case contains exactly one MTC.

A.1.4.1 MTC as keyword

Syntax
MTC/mtcisused asanew keyword (textua extension).

Static Semantics
MTC/mtc may be used only asidentifier for "real” instances. There hasto be exactly one mtc per test case.

Dynamic Semantics
Stop on an mtc instance has a special meaning, i.e. disrupting dl other components.

A.1.4.2 Self as keyword

Syntax
SEL F/self isused as anew keyword (textual extension). It can be used whenever the test component identifier isnot
known. Alternatively, the test component identifier can be empty in such cases.

Static Semantics
Self may be used only asidentifier for "real” instances. There may be at most one self per TSC.

Dynamic Semantics
No change.

A.1l.5 Messages

Meaning
Messages describe the asynchronous communication in test cases, i.e. send and receive events at components and ports.

Syntax

Messages are represented by solid arrows. On top of the message, the message type can be given, (optionally) with a
port prefix in case of implicit port representation. Below the message arrow the message template can be given either by
referring to a named message template or by giving an in-line template definition (in parenthesis).

Static Semantics
Template and message/call/etc. types have to match. Port type and message/call/etc. types have to match. Prefixes are
allowed only for communication events.

Dynamic Semantics
For CPs (= connected ports) a FIFO order is defined. No event structureis defined for PCOs (= mapped ports).

ETSI

49 ETSI TR 101 873-3 V1.1.1 (2001-01)

A.1.6 Trigger

Meaning
The trigger operation filters messages with certain matching criteria from a stream of received messages on a given
incoming port.

Syntax
In TSC, trigger is defined as a special message with keyword trigger (textual extension to the text syntax of messages).

Static Semantics
The trigger message must always point at areal insgtance.

Dynamic Semantics

Trigger isinterpreted as a separate control event in the trace semantics. Sent messages/calls etc. which are not yet
received at that port and which do not match, are deleted from that port. Thisisindicated by a special control event:
delete.

A.1.7 Check

Meaning
The check operation allows read access to the top element of message-based and procedure-based incoming port
queues without removing the top e ement from the queue.

Syntax
In TSC, check is defined as a special message with keyword check (textual extension to the text syntax of messages).

Static Semantics
The check message must always point at areal insance.

Dynamic Semantics
Check isinterpreted as a separate control event in the trace semantics. It becomes only then part of atraceif it matches
successfully to the top e ement of the port.

A.1.8 Control flow

Meaning
Control flow comprises procedure based (synchronous) communication mechanisms defined by means of calls and
replies.

Syntax

TSC uses special keywords for getcall, getreply, catch, raise, reply and special binding to variables for parameters and
return values of a call (textual extension to the text syntax of call messages). For the reply messages getreply, catch,
reply and raise, solid message arrows are used instead of dashed arrows since they are already distinguished from call
messages by keywords (graphical extension). As aworkaround dashed message arrows may be used.

Static Semantics

Getcall, getreply and catch must point at real (component) instances only. The corresponding port has to be
synchronous or mixed and must be type compatible. Cdl, raise and reply must point at port instances only. The port has
to be synchronous or mixed and must be type compatible. Method areas and suspension areas are attached only to "real”
(component) instances.

Dynamic Semantics

Getreply, catch arereceived at the end of a suspension region or after anon-blocking call, which matches the getreply
and catch. Raise, reply arereceived at the end of amethod symbol or after a non-blocking call, which matches the raise
and reply.

ETSI

50 ETSI TR 101 873-3 V1.1.1 (2001-01)

A.1.9 Test verdicts within conditions

Meaning
Test verdicts within conditions denote the result of atest case.

Syntax

TSC employs verdict keywords together with a special handling of their meaning within conditions. However, as any
identifier isalowed within MSC conditions, this does not really impact the syntax of MSC.

Static Semantics
The verdict keywords can be used only in conditions and action boxes, where the verdict of a component is set or read.

Dynamic Semantics
Verdicts can only become worse relative to an insance. Components report implicitly back their verdict to the mtc
when stopping.

A.1.10 Timer

Meaning
In TSC, unnamed timers are used to supervise call operations.

Syntax

A timer start without timer identifier isdirectly attached to the beginning of a suspension region. A corresponding
timeout is directly attached to the end of a suspension region (graphical extension: extension to the graphical placement
of symbols). A semi-optimal workaround would be to place the start/timeout timer nearby the begin/end of a suspension
region.

Static Semantics:
No other timer events are alowed between start and timeout of the unnamed timer.

Dynamic Semantics:
Timer start at the beginning of a suspension region and the end event of a suspension region become eventsin the trace.
An end event can be areply, exception, or unnamed timeout event. No other event can be between start and end.

A.1.11 Create to test components

Meaning
The create operation is used to dynamically create all test components except the MTC.

Syntax
The TSC create construct uses the textual TTCN-3 syntax instead of the textual MSC syntax (textual extenson).

Static Semantics
The create arrow may point only to "real" instances (but not to the MTC) or to MSC references or to the environment.
The referenced instance type must have been declared in the declaration part of the TSC document.

Dynamic Semantics
Create just becomes an event in the trace semantics.

A.1.12 Start to test components

M eaning
By means of the start operation the execution of a component's behaviour is started.

Syntax

Graphically, adashed arrow represents the start operation. Thisimplies anew use of dashed line messages (graphical
extension). As aworkaround, standard message arrows can substitute dashed line arrows. The TSC start construct uses
the textual TTCN-3 syntax.

ETSI

51 ETSI TR 101 873-3 V1.1.1 (2001-01)

Static Semantics

The start arrow may point only to "real” ingtances (but not to the MTC) or to MSC references or to the environment.
Thereferenced instance type must have been declared in the declaration part of the TSC document. Start may only
happen after a create. On the created instance, no event is allowed between create and start.

Dynamic Semantics
Start becomes just an event in the trace semantics.

A.1.13 Return for functions

Meaning
The return operation terminates execution of a function. The return may be optionally associated with areturn value.

Syntax

Graphically, adashed arrow represents the return operation. Thisimplies anew use of dashed line messages (graphical
extension). As aworkaround, standard message arrows can substitute the dashed line arrow. The TSC start construct
uses the textual TTCN-3 syntax.

Static Semantics
Thereturn arrow may point only to "real" insances (the calling instance) or to the environment. The referenced instance
type must have been declared in the declaration part of the TSC document.

Dynamic Semantics
Return becomes just an event in the trace semantics.

A.1.14 Stop on test components

Meaning
The stop test component operation explicitly stops the execution of the test component in which the stop is called.

A.1.14.1 Special meaning of stop on the MTC instance

Syntax

At lead, thisimplies a semantic change to cover the disruption of other test components (those which have been created
but are till running when the MTC stops). Possibly, it would be even better to have a specific symbol for this stop
behaviour with disrupt semantics. Either we require the use of that symbol on MTC instances or we use a
pre-processing step to substitute "old" stop symbols on MTC instances with this new symbol and only then apply the
semantics.

Static Semantics:
No change.

Dynamic Semantics
The stop event on an MTC initiates adisrupt for all other active components, i.e. only other stop events are possible
(this does of course not forbid to have further events belonging to the next test case).

A.1.14.2 Stop within an operand of an in-line expression

Syntax
In TSC, astop of atest component is alowed also within a section of an in-line expression (graphical extension). Asa
workaround, in some cases, the sections of the in-line expression may be chosen differently.

Static Semantics
Stop isalowed only for real instances.

Dynamic Semantics
No change.

ETSI

52 ETSI TR 101 873-3 V1.1.1 (2001-01)

A.1.15 Clear, start and stop to ports

Meaning
Clear removes the content of an incoming port queue. Start sarts listening and gives access to a port. Stop stops
listening and disallows sending operations at a port.

Syntax

Clear/start/stop are special messages to a port. Thisimplies anew use of dashed line messages and new text syntax for
those arrows (graphical and textua extension). As a workaround, dashed line arrows can be substituted by standard
message arrows.

Static Semantics
Clear/Start/Stop may be sent only to declared ports.

Dynamic Semantics

Clear/start/stop are dways pointing to port instances. Ports of a component are implicitly started at the start of this
component. A start for a started port isthe null operation. Start, clear and stop become control eventsin the trace
semantics. A receive and a send event on a stopped port is not possible. A start for a stopped port enables again the
receive and send events.

A.1.16 In-line expressions

Meaning
In TSC, in-line expressions are used to define alternative and interleaved behaviour.

A.1.16.1 Propagation of messages to the environment

Syntax

Out- and in-messages point at, respectively come from the in-line expression frame only. Thisisagraphica syntax
changeto MSC, but in fact just an extension to MSC tools. Note that in MSC-96 this propagation of messages to the
next higher environment was allowed, contrary to MSC.

Static Semantics
No change.

Dynamic Semantics
Events coming from or pointing at the in-line expression frame are propagated to the environment (i.e. recursively to
the next higher environment).

A.1.16.2 New interleave in-line expression

Syntax
In TSC, anew keyword int in the left top corner of an in-line expression frameisintroduced (textual extension).

Static Semantics
The interleaving in-line expression mugt always include a component (“real") instance. It isnot allowed within alt
expressions and must not include loop expression, activate/deactivate, stop, return and MSC references.

Dynamic Semantics
Interleaving in-line expressions denate full interleaving with "non-interruptible”’ parts (thereceive { send, calculation,
etc.} * sequences). The non-interruptible parts are defined by the TTCN-3 semantics.

ETSI

53 ETSI TR 101 873-3 V1.1.1 (2001-01)

A.1.17 HTSC

Meaning
HTSCs (High Level TSCs) define the possible composition of TSCs. HTSCs are used for the description of the module
control part.

Syntax
In TSC, variable declarations are allowed within HT SCs (textua extension to the HMSC header). Action boxes are

included in HTSCs (graphical extension). As a (non-ideal) workaround, areference to a TSC including the action box
may be used. Valuereturning TSC references are introduced (textua extension).

These syntax extensions could be even generic. It is problematic, however, for weak sequentia composition, which is
fortunately not an issue for TSC, since every test case (mtc instance) has an unambiguous start and end event.

Static Semantics
These extensions may be used for control TSCsonly.

Dynamic Semantics

Thereisimplicitly a control instance, which hosts the variables. The sequential composition of test cases does not have
to consider weak composition as stopping/terminating the mtc imposes stopping all running test components and only
then the next test case can be invoked.

A.1.18 Hybrid TSCs

Meaning
Within hybrid TSCs, some of the TSC references may point to TSC reference definitions, which are provided in form of
TTCN-3 descriptionsinstead of TSC diagrams.

Syntax
MSC references point at "lega” TTCN-3 code fragments (tool issue).

Static Semantics
The code fragments must be consistent (to the environment).

Dynamic Semantics

A code to TSC mapping may be used to handle the semantics for the code fragment or alternatively, the TSC graphicsis
mapped to TTCN-3 code with a subsequent evaluation of the whale.

A.1.19 Extensions to the data part

A.1.19.1 Declaring Data

Meaning
Declaration of types and variables used within a TSC.

Syntax
A number of changes have been made to the syntax used for declaring data within TSC:

* Ingtance, message and timer declarations have been removed from the document header. For TSC, the
declaration of component ingtance variables is now given within the TTCN-3 data definition string;

* Introduced the concepts of implicit and explicit typing for instances;

» HTSCs can now contain local variable declarations;

» Message names now represent message types, and parameter part now is prefixed with a message template;
« Addition of verdicts;

» Vauereturning TSC references.

ETSI

54 ETSI TR 101 873-3 V1.1.1 (2001-01)

Static Semantics

HTSCs can only contained variable declarationsif it is referenced from the control part of a TSC document.
Message names and parameters static rules have changed.

Explicit typing imposes TTCN-3 semantics on the use of component ingtance events and ports.
Valuereturning TSC references.

Dynamic Semantics

Addition of verdicts.

Addition of local variablesfor control HTSCs.
Valuereturning TSC references.

A.1.19.2 Static Data

Meaning
Parameterization of TSCs constructs.

Syntax
Forma parameter listsnow follow TTCN-3 syntax.

Static Semantics
No change.

Dynamic Semantics
No change.

A.1.19.3 Dynamic Data

M eaning
Dynamic datarefers to the assignment and reassignment of variables.

Syntax

Local variables, declared within control HTSCs, can be assigned values within High-level TSCs.
TSCs references can return values.

Verdicts.

Wildcards are not need for TTCN-3 parameterization.

Static Semantics
As above.

Dynamic Semantics

TSC hasimplicit verdict variables, one for each test case and one for each component. The dynamic rules for these
variables are defined by TTCN-3.

Control variables define a possible execution order for control HTSCs.

A.1.19.4 Bindings

Meaning
Bindings are treated as assignments.

Syntax
TSC references can return values.

Static Semantics
No change.

Dynamic Semantics
No change.

ETSI

55 ETSI TR 101 873-3 V1.1.1 (2001-01)

A.1.20 Hyper TSCs

Meaning

In HperTSCs, some of the TSC references may appear in expanded form whereby the TSC referencing mechanismis
interpreted in a hypertext-like manner (tool issue). Several expanded TSC references may be combined to one coherent
expanded T SC reference with the connection points being shifted to the borderline of the TSC reference.

Syntax
HyperTSCs admit that only comments are contained in TSC references. The TSC reference nameis implicitly defined
by the hyperlink (graphical extension, in particular, tool issues).

Static Semantics

No change.

Dynamic Semantics
No change.
A.1.21 Ports
Meaning

In TSC, communication is effected between the components within the test system and between the components and the
test system interface via communication ports.

Syntax

For ports a special event structure differing from "real” instances may be defined: FIFO/LIFO, no order. In TSC we take
FIFO for CPs and no event structure for PCOs. The explicit port representation uses anew graphical symbol,

i.e. adashed instance (graphical extension). The implicit port representation uses a message prefix. Therefore, this
extension can just be reflected as atextua extension with message prefix and keyword port, async, etc. in theinstance
header (workaround).

Static Semantics
Port instances are allowed for declared ports only.

Dynamic Semantics
An event structure is assumed according to the definition. In TSC thisimplies FIFO order for CPs (= connected ports)
and no event structure for PCOs (= mapped ports).

A.1.22 Default

Meaning

A default behaviour isan extension to an at statement or a single receive operation which is defined in a special
manner. A default behaviour hasto be activated beforeit is used and may again be deactivated. This construct may be
used quite generally, e.g. for exception handling or for operations like "onhook" in telecommunication.

Syntax
A new graphica symbol with new keywords (activate/deactivate) isintroduced for the default construct. A workaround
for the new default symbal is an action box.

Static Semantics
The default construct may be only attached to component (“real”) instances. For the default behaviour, which is
activated or deactivated, a corresponding TSC must be defined.

Dynamic Semantics
The default behaviour defines additional alternative events.

ETSI

56 ETSI TR 101 873-3 V1.1.1 (2001-01)

Annex B:
The TSC forms

B.1 Overview

TSC can be used in different formsto represent TTCN-3 test cases. Using anumber of smple TSC examples, each
illugrating a different form, we explain those forms.

TSC forms are either for test purpose specifications (these are not considered in the present document) or for test cases.
TSC Forms for test cases can be characterized by the following aspects:

Vertical vs. no vertical split,
i.e. onetest component per TSC or combined view on &l test componentsin a TSC.

Horizontal vs. no horizontal split,
i.e. one TSC per function or combined view on the complete behaviour in a TSC.

Explicit vs. implicit port representation,
i.e. port representation with specia port instances or port representation as annotations to send and receive operations.

Hybrid vs. no hybrid form,
i.e referencesreferring to TSC definitions or to TTCN-3 specification parts.

Partial vs. complete form,
i.e. TSC references may contain commentsonly or al TSC references refer to TSCs.

A TSC specification can make use of hyper facilities. A Hyper TSC containsin TSC references hyperlinksto the
defining TSC and supports different views on a TSC to make the test specification more readable and more transparent.

B.1.1 An example

A simple exampleistaken to express the various forms of TSC specifications . The small example consists of an SUT
that hastwo interfaces A and B. The test behaviour isto send a message a at interface A and to recelve subsequently a
message b at interface B. Thetest behaviour isrealized by two components TC1 and TC2, which are mapped to the SUT
interfaces A and B, respectively. The are co-ordinated via port C by exchanging message c.

MTC

Figure B.1: Simple example for explanation of TSC forms

ETSI

57 ETSI TR 101 873-3 V1.1.1 (2001-01)

Those parts of the TTCN-3 example specification that are essential to discuss the various TSC forms, are given bel ow:

MTC: var TCl_type TCl create(TCl_type);
var TC2_type TC2 create(TC2_type);
map(TCL. TC1_A, sut . A); map(TC2. TC2_B, sut. B); connect (TCL. TC1_C, TC2. TC2_C);
TCl1. st art (behavi ourl);
TC2. st art (behavi our 2) ;
al | conponent. done;
verdi ct. set (pass);

behavi our1: TCl_A send(a);
TC2_C. send;
verdi ct. set (pass);

behavi our2: TC2_C.receive;
TC2_B. recei ve(b);
verdi ct. set (pass);

B.1.2 Form aspect: vertical split vs. no vertical split

In avertical split form, there are TSCs per test component, which represent the behaviour of the test components. For
example, thereisa TSC vertical _split_mtc for the master test component (indicated by the keyword mtc), aTSC
behaviourl for test component TC1, and a TSC behaviour2 for test component TC2. Per TSC, thereisa TSC instance
representing the test component. The TSC instance head contains the identifier of the test component, the keyword mtc
and itstype. In themid of figure 2, thereis an unnamed ingtance of type TC1_type, which acquiresthe test component
identifier from the create message of the mtc. A test component is started with the specia start message (indicated by
the dashed arrow symboal). Afterwards, the behaviour of the test component isrepresented. In the example, message ais
sent via port TC1_A and message c viaport TC1_C. Finally, atest verdict isassigned (in the example, passis assigned)
and the test component terminates.

tsc vertica_split_mtc tsc behaviourl tsc behaviour2
mtc
MTCtype | | e TCltype | | prememmmmeemeees ﬁ TC2_type
TCLi=TC1 typecreate dart start
____________________________________ L I e e a>TCLA I o TC2. C>c
TC2:=TC2 typecreate »
map(TCL.TC1_A,sut.A); c>TCl C TC2B> b
map(TC2.TC2_B,sut.B); d ¢
connect(TCL.TC1_C, TC2.TC2_C);
pass pass

TCl.start (behaviourl)

A

all component.done

Figure B.2: Vertical split

Without a vertical split, one TSC contains dl test components constituting the test case behaviour. In thisview, the
communication between TC1 and TC2 with message c transferred from TC1_C to TC2_C becomes apparent. In
addition, the order between test events at different test componentsisvisible. Theidentifier for the behaviour function
of atest component instance is contained in its start operation.

ETSI

58 ETSI TR 101 873-3 V1.1.1 (2001-01)
tsc no_verticd _split
mtc
MTC type TC1
____________________________________ » TCI type TC2
——— » TC2 type
map(TCL1.TCL_A,sut.A);
map(TC2.TC2_B,sut.B);
connect(TCL.TC1_C, TC2.TC2_C);
I start (behaviourl)
_______________________ start (behaviow2) |
a>TCL A
TC1.C> c>TC2_C -
- TC2B>b
ass ass
all component.done < P > < P >

e >
X

X

Figure B.3: No vertical split

B.1.3 Form aspect: horizontal split vs. no horizontal split

In the horizonta split form, separate TSCs per function called in the behaviour of a test component are defined. Let us

assume, that in the exampl e the behaviour of the test component uses an additional function funcl to perform the

sending and receiving of messages. A separate TSC funcl is defined for this function (right-hand side of figure B.4).
The test component refers to this TSC by means of a TSC reference (a box with round corners containing the TSC

identifier it refersto).

ETSI

59 ETSI TR 101 873-3 V1.1.1 (2001-01)

tsc horizontal_split tsc funcl

--------------------- » TC1_type TC1 type
_____________________________ N a>TCI_A

\ 4

¢c>TCLC

_.,
c
=}
O
=

A

Figure B.4: Horizontal split

Without horizontal split, the test behaviour of functions isrepresented in-line at the TSC instance, which representsthe
test component that performs a given function. In this form, the information on the structuring of test behaviour into
functionsislost! Whenever thisinformation shall be kept, a Hyper TSC (i.e. one where the TSC reference to afunction

is expanded) shdl be used instead (see clause B.1.15). In the example, the test behaviour of the function funcl isjust
represented in-line at the instance.

tsc no_horizontal_split

_____________________ » TCI_type

a>TClL A

g
c>TClL C

g

Figure B.5: No horizontal split

ETSI

B.1.4 Form aspect: explicit vs. implicit port representation

Communication ports can be represented in TSC differently. Either, a port isrepresented by a special port ingance

60

ETSI TR 101 873-

3V1.1.1 (2001-01)

(indicated by dashed instance head, line and end symbols) or it isrepresented as a prefix to the message.

Figure B.6 contains an explicit port representation for the ports TC1_A of type A_type and TC1_C of type C_type. The
instance head of port instances contains the port type. Messages, which are sent or received at a port, are represented by
incoming or, respectively, outgoing messages of the port instance. For example, message a that is sent by TC1 to port

TC1_Aisrepresented by a message from ingance TC1 to ingance TC1_A.

tsc explicit_ports

_TCLA__ __TCLGC._.
————————————————————— » TC1_type . Atype i C_type
Sar'[e e = - ! e e
----------------------------- » . ;
b
c

Figure B.7 contains an implicit port representation, where the prefix in front of a message indicates the port to which a
message is sent or from which amessageisreceived. The prefix is separated from the message with a">" symbol. For
examplein thefigure, TC1_A > aindicates that message a is sent to port TC1_A. Optionally, the port type can be given

Figure B.6: Explicit ports

in addition such asitisdonewith TC1 C: C _type > c.

tsc implicit_ports

----» TCL type

a>TCL A

c>TCL1l C: C_type >

>

Figure B.7: Implicit ports

ETSI

61

ETSI TR 101 873-3 V1.1.1 (2001-01)

A combination of different port representation can aso be used. In figure B.8, port TC1 A isrepresented explicitly and

port TC1_Cisgiven implicitly.

tsc mixed_ports
. ICLA ___
————————————————————— » TC1_ type r A_type |
gart bbbk T '
_____________________________ -> a i
>

Figure B.8: Combination of different port representation

A tag will be used in TSC to indicate whether a port shall be represented in TSC/gr explicitly or implicitly.

B.1.5 Form aspect: hybrid vs. not hybrid

In hybrid TSC, TTCN-3 code can be used directly insde of TSC references. In figure B.9, the test behaviour isgiven

textualy in terms of TTCN operations and not graphically.

tsc hybrid_tcl

_____________________ » TCL type

tsc funcl
{ TCl1_A send(a);
TC1_C. send(c);

= >
X

Figure B.9: Hybrid TSC

ETSI

62 ETSI TR 101 873-3 V1.1.1 (2001-01)

The figures given in the previous clauses have not been hybrid.

A tag will be used in TSC to indicate whether a TSC is defined in TSC/gr or in TTCN-3. In fact, both the TSC/gr and
the TTCN-3 code could be used within a TSC definition and either of the two or both can be shown.

B.1.6 Form aspect: partial vs. complete

TSC specifications may be partial only. A TSC may contain inside a TSC reference a comment only (asitisdonein
figure B.10). The support of partial TSC specificationsis of particular importance for the step-wise devel opment of test
suites within TSC.

tsc partial_tcl

_____________________ » TCL type

[/ this shall reflect
/!l the test behavior

= >
X

Figure B.10: Partial TSC

Complete TSC specifications contain TSC identifiers or TTCN-3 code within TSC references. The figures given in the
previous clauses are compl ete ones.

B.1.7 Summary of TSC forms

Thefive different form aspects of TSC result in several different forms for representing test suitesin TSC.

The firg three aspects, i.e vertical vs. no vertical split, horizontd vs. No horizontal split, and explicit vs. implicit port
representation, relate to the graphical setting of test specificationsin TSC. The hybrid vs. not hybrid aspect relates to the
combined use of TSC and TTCN-3. The partial vs. complete form aspect relates to the level of completeness of a TSC
specification.

Since the graphical representation of test casesin TSC is the main focus of the work, the present document concentrates
on the vertical vs. no vertical split, horizonta vs. no horizontal split, and explicit vs. implicit port representation only.

ETSI

63 ETSI TR 101 873-3 V1.1.1 (2001-01)

Annex C:
Subset of the graphical syntax of TSC

Thisgrammar definition for TSC/gr isonly partial. It does not cover:
* HyperTSC;
» configuration symbols between test component instances and port instances,
e connection symbols between TSC references;
* stop symbol within operands of in-line expressions.

The graphica syntax definition of TSC/gr uses grammar rules of TTCN-3 and of MSC. Whenever TTCN-3 core
notation production rules are used (for textual annotation of graphical € ements) they arereferred to as
production_rule_name. Thoserules are contained in annex A of [1]. Whenever MSC graphical production rulesare
used, they arereferred to as< production_rule_name >. Those rules are taken from [2], clause 1. Please note that rules
taken from MSC may have different textual syntax for annotated graphical symbols and may have a modified set of
derived productions within TSC. New rules and rules where the graphical syntax of MSC is changed have no prefix,

i.e. production_rule_name.

C.1 Meta-Language for TSC/gr

The graphica syntax for TSC/gr is defined on the basis of the graphical syntax of MSC [2]. The graphical syntax
definition uses a meta-language, which is explained in clause 1.3.4 of [2]:

"The graphicd syntax is not precise enough to describe the graphics such that there areno graphical variations. Small
variations on the actual shapes of the graphical terminal symbols are dlowed. These include, for instance, shading of
the filled symbals, the shape of an arrow head and therdative size of graphical dements. Whenever necessary the
graphical syntax will be supplemented with informal explanation of the appearance of the constructions.

The meta-language consists of a BNF-like notation with the special meta-constructions: contains, is followed by, is
associated with, is attached to, above and set. These constructs behave like normal BNF production rules, but
additionally they imply some logical or geometrical relation between the arguments. Theis attached to construct
behaves somewhat differently as explained below. Theleft-hand sde of all constructs except above must be a symboal.
A symbol isanon-terminal that produces in every production sequence exactly one graphical terminal. We will
consider asymbal that is attached to other areas or that is associated with atext string as a symbal too. The explanation
isinformal and the meta-language does naot precisdly describe the geometrical dependencies’.

See[2] for more details.

ETSI

64

ETSI TR 101 873-3 V1.1.1 (2001-01)

C.2

MSC meta-notation is given in addition and differences areindicated.

Conventions for the syntax description

Table C.1 defines the meta-notation used to specify the grammar for TSC. It isidentical to the meta-notation used by
TTCN-3, but different from the meta-notation used by MSC. In order to ease the readability, the correspondence to the

Table C.1: The Syntactic Meta-Notation

Meaning TTCN-3 TSC MSC Differences

is defined to be n= n= =
abc followed by xyz abc xyz abc xyz abc xyz
Alternative | [|
0 or 1 instances of abc |[abc] [abc] [abc]
0 or more instances of |{abc} {abc} {abc}* X
abc
1 or more instances of |{abc} + {abc} + {abc} +
abc
Textual grouping () () {.} X
the non-terminal symbol |Abc abc <abc> X
abc (for a TSC non-terminal)

or <abc>

(for a MSC non-terminal)

or abc

(for a TTCN non-terminal)
a terminal symbol abc |abc or abc or abc or X

"abc" "abc" <name> or
<character string>

C.3 Relation between TTCN-3 and TSC Files

A TTCN-3 Module has as graphical representation a TSC Document. Thetest case, functions and named alts contained
in aTTCN-3 Module have as graphical representations Test Sequence Charts.

The mapping function from TSC to TTCN-3 core notation defines the underlying core notation for TSC documents and
Test Sequence Charts. The with attribute within the TTCN-3 core notation is used to reference to the TSC Document
and the Test Sequence Charts, respectively. Therelation between TSC document and TTCN-3 core notation moduleis
doneviatheidentical identifier of the TSC document and the TTCN-3 module. Therelated to attribute within TSC
allowsto reference to related system specifications, requirement specifications, etc.

Thisrelation is shown in figure C.1.

nodul e MyModul e
{

const int eger MyConstant := 1;
type record MyMessageType { ...};

function MyTest Step(){ ...}
with display “tsc MyTest Step"”;

testcase MyTest Case(){ ...}
with display “tsc MyTest Case";

}
with display “tscdocunent MyModul e";

Figure C.1: Relating TTCN-3 Core Notation to TSC

ETSI

65
tsc document MyModule tsc MyTestCase
related to UMLspec],; related to Requirement132;

testcases

MyTestCase

functions

MyTestStep

ETSI TR 101 873-3 V1.1.1 (2001-01)

tsc MyTestStep;

]

————»

Figure C.2: Relating TSC to TTCN-3 Core Notation

Itisatechnical issue whether the core notation and the TSC presentations of a TTCN-3 Module are stored in onefile or

in several files. Thisisnot defined here.

C.4 The TSC/gr production rules

C.4.1 Test Sequence Chart document

TSCDocunment Area :: =
<frane synbol >
contai ns TSCDocunent Head
[is foll owed by Control PartArea]
[is foll owed by TestcasePartArea]
[is followed by FunctionPartArea]
[is followed by NanedAl tPartArea]

TSCDocument Head :: =
t scdocunment TTCN3Modul el d [Mbdul ePar Li st]
[related to ldentifier { “," Identifier }]
[explicit_typing | inplicit_typing]
[WthStatenent] [“;"]
[[language TTCN-3] data TTCN3Dat aDefiniti onPart]

Therelated to identifier list may refer for example system specifications, requirements specification, etc., which relate

to the TSC document.

The explicit_typing keyword indicates that declarations needed within this TSC document are contained in the module
definition part. The implicit_typing keyword indicates that the declarations have to be generated from the TSCs
contained in this TSC document. If no keyword isused the default is explicit_typing.

TTCN3Dat aDefinitionPart ::=
“{“ TTCN3Dat aDefinitionList “}*

TTCN3Dat aDef i nitionList ::=
{ TTCN3DataDefinition [WthStatenent] }

ETSI

66 ETSI TR 101 873-3 V1.1.1 (2001-01)

TTCN3Dat aDefinition ::=
TypeDef | Const Def |
Tenpl at eDef | FunctionDef | SignatureDef |
I mport Def | TSCGroupDef | ExtFunctionDef |
Ext Const Def

Functions defined within TTCN3DataDefinitions shall only use basic statements or function references to functions
defined within TTCN3DataDefinitions or to external functions.

TSCGr oupDef ::=
G oupKeyword Groupldentifier
Begi nChar
TTCN3Dat aDef i ni ti onLi st
EndChar

Control PartArea :: =
control
(TSCControl Ref erenceList [“;" TSCFuncti onG oupDefList]
| is followed by (TSCControl ReferenceArea *) set)
is foll owed by <separator area>

TSCCont rol Ref erenceList ::=
TSCCont rol Ref erence { “,"TSCContr ol Ref erence }

TSCControl Ref erence :: =
([control] Functionldentifier) | Goupldentifier

TSCFuncti onGroupDef Li st ::=
TSCFuncti onGroupDef { “;" TSCFuncti onG oupDef }

TSCFuncti onGroupDef ::=
Groupldentifier “:=" TSCFunctionor G oupRef er enceli st

TSCFunct i onor Gr oupRef erencelLi st:: =
TSCFunct i onor GroupRef { “,"TSCFuncti onor G oupRef }

TSCFunct i onor GroupRef ::=
Functionldentifier | Goupldentifier

TSCControl Ref erenceArea :: =
<msc reference synbol >
contains ([control] Functionldentifier | Goupldentifier)

TSC references used in the Control PartArea shall refer to HTSCs representing TTCN-3 control functions or to groups
that contain other groups or references to control HTSC. Only one control HTSC reference can be prefixed with
control.

TestcasePartArea :: =
test cases
(TSCTest caseor GroupRef erenceList [“;" TSCTestcaseG oupDefList]
| is followed by (TSCTestcaseReferenceArea *) set)
is foll owed by <separator area>

TSCTest caseor G oupRef erencelLi st:: =
TSCTest caseor G oupRef { “,"TSCTest caseor G oupRef }

TSCTest caseor G oupRef ::=
Testcaseldentifier | Goupldentifier

TSCTest caseGr oupDef Li st:: =
TSCTest caseGr oupDef { “;"TSCTest caseG oupDef }

ETSI

67 ETSI TR 101 873-3 V1.1.1 (2001-01)

TSCTest caseG oupDef ::=
G oupldentifier “:=" TSCTestcaseor G oupRef erenceli st

TSCTest caseRef erenceArea: : =
<nmsc reference synbol >
contains (Testcaseldentifier | Goupldentifier)

TSC references used in the TestcasePartArea shall refer to TSCsrepresenting TTCN-3 test cases or to groups
containing other groups or test cases only.

FunctionPartArea ::=
functions
(TSCruncti onor GroupRef erencelLi st [“;"TSCFuncti onG oupDef Li st]
| is followed by (TSCFunctionReferenceArea *) set)

TSCFuncti onRef erenceArea: : =
<nmsc reference synbol >
contains (Functionldentifier | Goupldentifier)

TSC references used in the FunctionPartArea shall refer to TSCsrepresenting TTCN-3 functions that include behaviour
statements or to groups containing other groups or functions only. Data functions are not graphically represented in
TSC.

NanedAl t Part Area :: =
naned alts
(TSCNanedAl t or G oupRef erenceLi st [“;"TSCNanedAl t G oupDef Li st]
| is followed by (TSCNarmedAlt Ref erenceArea *) set)

TSCNanmedAl t GroupDef Li st ::=
TSCNanmedAl t GroupDef { “;" TSCNanedAl t G oupDef }

TSCNanmedAl t GroupDef ::=
Groupldentifier “:=" TSCNanmedAl t or G oupRef er enceli st

TSCNanmedAl t or G oupRef erencelLi st:: =
TSCNanmedAl t or G oupRef { “, " TSCNanmedAl t or G oupRef }

TSCNanedAl t or G oupRef ::=
NanedAl tldentifier | Goupldentifier

TSCNanmedAl t Ref erenceArea: : =
<msc reference synbol >
contains (NanedAltldentifier | Goupldentifier)

TSC references used in the NamedAltPartArea shall refer to TSCs representing named alts or to groups containing other
groups or named ats only.

ETSI

68 ETSI TR 101 873-3 V1.1.1 (2001-01)

C.4.2 Groups

TSCG oup ::=
TSCControl Group | TSCTestcaseG oup |
TSCFuncti onGroup | TSCNanmedAl t Group

TSCControl Group ::=
<msc synbol >
contai ns TSCGr oupHeadi ng
is followed by (TSCControl Ref erenceArea *) set

TSCG oupHeadi ng: : =
tscgroup Groupldentifier

TSCTest caseG oup :: =
<msc synbol >
contai ns TSCG oupHeadi ng
is followed by (TSCTestcaseReferenceArea *) set

TSCFunctionGroup ::=
<msc synbol >
contai ns TSCG oupHeadi ng
is followed by (TSCFuncti onReferenceArea *) set

TSCNanmedAl t Group :: =
<msc synbol >
contai ns TSCG oupHeadi ng
is followed by (TSCNanedAl t Ref erenceArea *) set

C.4.3 Test Sequence Chart

TSCDi agram : : =
Basi cTSCDi agram | HTSCDi agram | HyTSCDi agr am

Basi cTSCDi agram : : =
<msc synbol >
contai ns TSCHeadi ng <msc body area>

HTSCDi agram : : =
<msc synbol >
cont ai ns HTSCHeadi ng (HTSCExprArea*) set

The use of several HT SC expression areas within one HTSC is a shorthand notation for the parallel expression of those
HTSC expression areas. This shal not be used for HTSCs representing control functions.

Hy TSCDi agram : : =
<msc synbol >
contai ns TSCHeadi ng TSCHyper BodyAr ea

TSCHeading :: =
tsc TSCHead [<end>]

TSCHead =
(Testcaseldentifier [“(" [TestcaseFormal ParList] ")"]
Syst enfSpec)
| (Functionldentifier [“(" [FunctionFormal ParList] ")"]

[ReturnType])
| (NanedAltldentifier [“("[NanedAltFormal ParList 1 ")"])

ETSI

69 ETSI TR 101 873-3 V1.1.1 (2001-01)

Local definitions shall be used only for TSCs representing test cases and functions but not for TSCs representing named
ats. Please note that all variable and timer definitions for test cases and functions shall be part of the component type
definition referenced in the runs on and/or the ingtance head of a test component.

<msc synbol > :: =
<frame synbol >

<frame synbol > :: =

<msc body area> ::=
(<instance |layer> <text |ayer>
<event |ayer> <connector |ayer>) set

<instance layer> ::=
(<instance area>*) set

<text layer> ::=
(<text area>*) set

<event layer> ::=
<event area> | <event area> above <event |ayer>

<connector layer> ::=
(<nessage area>* | <inconplete nessage area>*
TSCSpeci al Area* |
<met hod call area>* | <inconplete nmethod call area>*
<reply area>* | <inconplete reply area>*) set

<event area> ::=
<i nstance event area>
| <shared event area>
| <create area>

<instance event area> ::=
(<message event area>
| <met hod call event area>
| <reply event area>
| <tinmer area>
| <concurrent area>
| <met hod area>
| <suspensi on area>
| <action area>
| <defaul t area>)

<shared event area> ::=
| <condition area>
| <msc reference area>
| <in-line expression area>

ETSI

70 ETSI TR 101 873-3 V1.1.1 (2001-01)

C.4.4 Environment and Ports

Ports represent the interface between atest component and its environment. They are either explicitly represented by
port instance or implicitly within communication messages to the environment (represented as communication to and
from the frame symbol of a TSC).

Thereisa special TSC management port, which isimplicitly given and which allows to gate the TTCN-3 configuration
operations create and start and to gate the TTCN-3 behaviour statement return.

Communication to and from the frame symbol of an in-line expression is a shorthand notation for a communication to
the environment.

TSCIn-linePortArea ::=
TSCIn-1ineQutPortArea | TSClIn-linelnPortArea
TSCI n-1ineSpeci al Qut Port Area | TSCln-1ineSpecial | nPort Area
TSCIn-lineQutCall PortArea | TSCln-linelnCallPortArea
TSCl n-1ineQut Repl yPort Area | TSCl n-1linel nRepl yPort Area

TSCIn-lineCutPortArea ::=
<voi d synbol >
is attached to <in-line expression synbol >
[is attached to (<nmessage synbol > | <found nessage synbol >)]

TSCIn-linelnPortArea ::=
<voi d synbol >
is attached to <in-line expression synbol >
[is attached to (<message synbol > | <found nessage synbol >)]

TSCIn-lineCutCall PortArea ::=
<voi d synbol >
is attached to <in-line expression synbol >
[is attached to (<message synbol >| <found nessage synbol >)]

TSCIn-linelnCall PortArea ::=
<voi d synbol >
is attached to <in-line expression synbol >
[is attached to (<nessage synbol > | <found nessage synbol >)]

TSCl n-1i neQut Repl yPort Area :: =
<voi d synbol >
is attached to <in-line expression synbol >
[is attached to (<nmessage synbol > | <found nessage synbol >)]

TSCI n-1inel nRepl yPort Area ::=
<voi d synbol >
is attached to <in-line expression synbol >
[is attached to (<nmessage synbol > | <found nessage synbol >)]

TSCIn-lineCreateCutPortArea ::=
<voi d synbol >
is attached to <in-line expression synbol >
[is attached to <createline synbol >]

TSCIn-lineCreatelnPortArea ::=
<voi d synbol >
is attached to <in-line expression synbol >
[is attached to <createline synbol >]

<def port area> ::=
(<def out port area> |<def in port area>
<def order out port area> | <def order in port area>
<def out call port area> | <def in call port area>
<def out reply port area> | <def in reply port area>
<def create out port area> | <def create in port area>
<def special out port area> | <def special in port area>)
is attached to <nsc synbol >

ETSI

71 ETSI TR 101 873-3 V1.1.1 (2001-01)

<def out port area> ::=
<voi d synbol >
is attached to (<message synbol > | <found nessage synbol >)

The <message symbol> or <found message symbol> must have its arrow head end attached to the <def out port area>.

<def in port area> ::=
<voi d synbol >
is attached to <message synbol >

The <message symbol> must have its open end attached to the <def in port area>.

<def out call port area> ::=
<voi d synbol >
is attached to (<nmessage synbol > | <found nessage synbol >)

The <message symbol> or <found message symbol> must have its arrow head end attached to the <def out call port
ares>.

<def in call port area> ::=
<voi d synbol >
is attached to <nessage synbol >

The <message symbol> must have its open end attached to the <def in call port area>.

<def out reply port area> ::=
<voi d synbol >
is attached to (<nmessage synbol > | <found nessage synbol >)

The <message symbol> or <found message symbol> must have its arrow head end attached to the <def out reply port
ares>.

<def in reply port area> ::=
<voi d synbol >
is attached to <nessage synbol >

The <message symbol> or <lost message symbol> must have its open end attached to the <def in reply port area>.

<def create out port area> ::=
<voi d synbol >
is attached to <createline synbol >

The <createline symbol> must have its arrow head end attached to the <def create out port area>.

<def create in port area> ::=
<voi d synbol >
is attached to <createline synbol >

The <createline symbol> must have its open end attached to the <def createin port area>.

<def special out port area> ::=
<voi d synbol >
is attached to TSCSpeci al MessageSynbo

The TSCSpeciaMessageSymbol must have its arrow head end attached to the <def create out port area>.

ETSI

72 ETSI TR 101 873-3 V1.1.1 (2001-01)

<def special in port area> ::=
<voi d synbol >
is attached to TSCSpeci al MessageSynbol

The TSCSpeciaMessageSymbol must have its open end attached to the <def createin port ares>.

C.45 Basic TSC

C.4.5.1 Instances (Component and Port Instances)

<instance area> ::=
<instance fragment area> [is followed by <instance area>]

<instance fragment area> ::=
<instance head area> is followed by <instance body area>

<instance head area> ::=
I nst anceHeadSynbol
is associated with | nstanceHead
contains I nstanceType
[is attached to <createline synbol >]
[is attached to (TSCPortlnstanceHeadArea *) set]

Only instance head areas of port instances shall be attached to each other. The createline symbol shall be attached to
component instance only.

TSCPort | nst anceHeadArea :: =
I nst anceHeadSynbol
is associated with PortlnstanceHead
contains PortlnstanceType

I nstanceHead :: =
Conponent | nst anceHead | Portl nstanceHead

Conponent | nst anceHead: : =
Conponent Il dentifier | nmtc | MIC

Portl nstanceHead :: =
Por t

I nstanceType :: =
Conmponent | nst anceType | PortlnstanceType

Conponent | nst anceType :: =
Conponent Typel denti fi er

Port | nstanceType ::=
[port] PortTypeldentifier

I nst anceHeadSynbol ::=
<i nstance head synbol > |
Port | nst anceHeadSynbol

<i nstance head synbol > ::=

[]

The <instance head symbol> can be used for test component instances and for port instances. In the latter case, the
keyword port (see InstanceType) shall be used in addition.

ETSI

73 ETSI TR 101 873-3 V1.1.1 (2001-01)

Portl nst_qnceHeadSynboI =

The PortinstanceHeadSymbol shall be used for port instances only.

<instance body area> ::=
I nst anceAxi sSynbol
is followed by (|nstanceEndSynbol | <stop synbol >)

I nst anceAxi sSynbol ::=
<instance axi s synbol > |
Port | nst anceAxi sSynbol

Port 1 nst anceAxi sSynbol ::=

The PortInganceAxisSymbol shall be used for port instances only.

<instance axi s synbol> ::=
(<instance axis synbol 1> | <instance axis synbol 2>)
is attached to (<event area>*) set

<instance axi s synbol 1> ::

<i nstance axi s synbol 2> ::

I nst anceEndSynbol ::=
<i nstance end synbol > |
Port I nst anceEndSynbol

Port | nstanceEndSynbol ::=

The PortInganceEndSymbol shall be used for port instances only.

<instance end synbol > ::=

ETSI

74 ETSI TR 101 873-3 V1.1.1 (2001-01)

C.4.5.2 Messages

<nessage event area> ::=
<message out area> | <message in area>
TSCSpeci al Qut Area | TSCSpeci al | nArea

Message shall never be attached to two port instances.

<message out area> ::=
<message out synbol >
is attached to InstanceAxi sSynbo
is attached to <message synbol >

<message out synbol > ::=
<voi d synbol >

<void synbol > ::=

<message in area> ::=
<message i n synbol >
is attached to InstanceAxi sSynbo
is attached to <nessage synbol >

<message in synbol> ::=
<voi d synbol >

<nessage area> ::=
(<nessage synbol > [above it TSCMessage_PortsAndType])
[is associated with [“[“] TSCTenplate [“1"]]
is attached to (<nessage start area> | <message end area>)

TSCMessage_Port sAndType :: =
[TSCSourcePort] [Type | any] [TSCDestinationPort]

TSCSour cePort:: =
[(Port [“:" PortTypeldentifier “>"]) | any]

TSCDest i nati onPort:: =
“>" Port [“:" PortTypeldentifier]]

<nessage start area> ::=
<message out area> | <def in port area> | <in-line port area>

<message end area> ::=
<message in area> | <def out port area> | <in-line port area>

<message synbol > ::=

<inconpl ete nessage area> ::=
<f ound nessage area>

<found nessage area> ::=
(<found nessage synbol> [above (Type | any)])
[is associated with [“[“] TSCTenplate [“1"]]
[is associated with Port]
is attached to <nessage end area>

At least the type, any or the template shall be given.

ETSI

75 ETSI TR 101 873-3 V1.1.1 (2001-01)

TSCTenpl ate ::=
(Tenplatelnstance | any) [FronClause] [PortRedirect]

<found nessage synbol > :: =

4

C.4.5.3 Control Flow

<met hod call area> ::=
(<nessage synbol >
above (call | getcall | check) [TSCSignatureType | any])
is associated with
(TSCCal | SendTenpl ate | TSCCal | Recei veTenpl ate)
is attached to (<nethod call start area> | <method call end area>)
is attached to I nstanceAxi sSynbol
[is attached to (<nethod area>)]

Receive templates and any shall be used only in combination with getcall and check. Method areas shall be attached
only to test component instances.

See[1] for detailed information on the use of call, getcall and check operation.

TSCSi gnat ureType :: =
Signature [[“:"] DerivedDef “:="]

TSCCal | SendTenpl ate :: =
(ArrayValueOrAttrib | FieldSpecList) [Tod ause]

TSCCal | Recei veTenpl ate :: =
[(ArrayValueOrAttrib | FieldSpecList)]
[FronClause] [(PortRedirect WthParam | PortRedirect)]

Port redirect shall be used only in combination with check.

<met hod call start area> ::=
(<call out area> | <def in port area> | <in-line port area>)
is attached to I nstanceAxi sSynbol
is attached to <nessage synbol >
[is attached to <suspension synbol >]

The suspension symbol can only be used on component instances. Calls without suspension symbol represent nowait
calls. Suspension regions shall be attached only to test component instances.

<met hod call end area> ::=
(<call in area> | <def out port area> | <in-line port area>)
is attached to I nstanceAxi sSynbol
is attached to <nessage synbol >

<reply area> ::=
(<nessage synbol >
above (raise | reply | getreply | catch | check)
[Signature | TSCSignatureType | any])
is associated with
(TSCRepl ySendTenpl ate | TSCRepl yRecei veTenpl ate)
is attached to (<reply start area> <reply end area>)

Signature shall be used only for raise. Receive templates and any shall be used only in combination with getreply, catch,
and check.

See[1] for detailed information on the use of raise, reply, getreply, catch, and check operation.

ETSI

76 ETSI TR 101 873-3 V1.1.1 (2001-01)

TSCRepl ySendTenpl ate :: =
(ArrayValueOrAttrib | FieldSpecList) [ReplyValue] [Tod ause]

Reply value shall be used only in combination with reply.

TSCRepl yRecei veTenpl ate :: =
[(ArrayValueOrAttrib | FieldSpecList)] [ValueMatchSpec]
[FronClause] [(PortRedirectWthParam | PortRedirect)]

Port redirect shall be used only in combination with catch or check.

<reply start area> ::=
(<reply out area> | <def in port area> | <in-line port area>)
is attached to InstanceAxi sSynbo
is attached to <nessage synbol >
is attached to <nethod synbol >

The method symbol can only be used on component instances.

<reply end area> ::=
(<reply in area> | <def out port area> | <in-line port area>)
is attached to InstanceAxi sSynbo
is attached to <nessage synbol >
[is attached to <suspension synbol >]

For non-blocking calls, the suspension symbal is not attached.

<inconplete nethod call area> ::=
<found nethod call area>

<found nethod call area> ::=
(<found nessage synbol > above getcall [TSCSi gnatureType | any])
[is associated with TSCCal | Recei veTenpl ate]
[is associated with Port]
is attached to <method call end area>

Either the signature template or an any shall be given. The port identifier shall not be used in combination with a
signature template.

<inconplete reply area> ::=
<found reply area>

<found reply area> ::=
<f ound nmessage synbol > is associated with <nsg identification>
[is associated with (<instance name> | <port name>)]
is attached to <reply end area>

<met hod call event area> ::=
(<call out area> | <call in area>)

<call out area> ::=
<call out synbol >
is attached to InstanceAxi sSynbo
is attached to <nessage synbol >

<call out synbol> ::=
<voi d synbol >

ETSI

77 ETSI TR 101 873-3 V1.1.1 (2001-01)

<call in area> ::=
<call in synbol >
is attached to InstanceAxi sSynbo
is attached to <nessage synbol >

<call in synbol> ::=

<voi d synbol >

<reply event area> ::=
(<reply out area> | <reply in area>)

<reply out area> ::=
<reply out synbol >
is attached to InstanceAxi sSynbo
is attached to <nessage synbol >

<reply out synbol> ::=
<voi d synbol >

<reply in area> ::=
<reply in synbol >
is attached to InstanceAxi sSynbo
is attached to <nessage synbol >

<reply in synbol> ::=
<voi d synbol >
<met hod area> ::=
<met hod synbol >

is attached to <instance axis synbol >
[contains <nmethod event |ayer>]

i

<met hod event |ayer>::=
<met hod event area> | <nethod event area> above <nethod event |ayer>

i

<nmet hod event area>:.:=
<event area>

<met hod synbol > ::=

i

<suspensi on area> ::=
<suspensi on synbol >
is attached to <instance axis synbol >
[contai ns <suspension event |ayer>]

i

<suspensi on event |ayer>::=
<met hod invocation area>
| <method invocation area> above <suspensi on event |ayer>

i

<met hod i nvocation area> ::=
<met hod start area>
is foll owed by <nethod area>
is foll owed by <nethod end area>

i

<met hod start area> ::=
<call in area> | <found nethod call area>

ETSI

78 ETSI TR 101 873-3 V1.1.1 (2001-01)

<met hod end area> ::=
<reply out area> | <lost reply area>

i

<suspensi on synbol > :: =

i

C.4.5.4 Special Messages

TSCSpeci al Qut Area ::=
<message out synbol >
is attached to <instance axis synbol >
is attached to TSCSpeci al MessageSynbol

TSCSpeci al I nArea :: =
<message in synbol >
is attached to <instance axis synbol >
is attached to TSCSpeci al MessageSynbol

TSCSpeci al Area :: =
TSCSpeci al MessageSynbol
is associated with TSCSpeci al Messages
is attached to (TSCSpecial StartArea | TSCSpeci al EndArea)

TSCSpeci al Messages :: =
([Conponentldentifier “."] StartKeyword [“(“ Functionlnstance “)"]) |
([Conponent Type “."] CreateKeyword) |
([Conmponentldentifier “."] ReturnKeyword [“(“ Expression “)"]) |
([PortoAll “."] PortCearOp) |
([PortOAl “."] PortStartOp) |
([PortOAl “."] PortStopOp)

i

TSCSpeci al StartArea ::=
TSCSpeci al Qut Area | <def in port area> | <in-line port area>

i

TSCSpeci al EndArea :: =
TSCSpeci al EndArea | <def out port area> | <in-line port area>

i

TSCSpeci al MessageSynbol :: =

i

C.455 Environment and Ports

<in-line port area> ::=
(<in-line out port area> | <in-line in port area> |
<in-line create out port area> | <in-line create in port area> |
<in-line out call port area>| <in-line in call port area> |
<in-line out reply port area> | <in-line in reply port area>)
[is associated with <port identification>]

i

<in-line out port area> ::=
<voi d synbol >
is attached to <in-line expression synbol >
[is attached to (<message synbol >| <found nessage synbol >)]
[is attached to (<message synbol > | <l ost nessage synbol >)]

ETSI

ETSI TR 101 873-3 V1.1.1 (2001-01)

)]
)]

)]
)]

79

<in-line in port area> ::=

<voi d synbol >

is attached to <in-line expression synbol >

[is attached to (<nessage synbol > | <l ost nessage synbol >)]

[is attached to (<message synbol > | <found nessage synbol >)]
<in-line out call port area> ::=

<voi d synbol >

is attached to <in-line expression synbol >

[is attached to (<nmessage synbol >| <found nessage synbol >

[is attached to (<nessage synbol > | <l ost nessage synbol >
<in-line in call port area> ::=

<voi d synbol >

is attached to <in-line expression synbol >

[is attached to (<nessage synbol > | <l ost nessage synbol >)]

[is attached to (<message synbol > | <found nessage symnbol >)]
<in-line out reply port area> ::=

<voi d synbol >

is attached to <in-line expression synbol >

[is attached to (<nessage synbol >| <found nessage synbol >

[is attached to (<nessage synbol > | <l ost nessage synbol >
<in-line in reply port area> ::=

<voi d synbol >

is attached to <in-line expression synbol >

[is attached to (<nessage synbol > | <l ost nessage synbol >)]

[is attached to (<message synbol > | <found nessage synbol >)]
<in-line create out port area> ::=

<voi d synbol >

is attached to <in-line expression synbol >

[is attached to <createline synbol >]

[is attached to <createline synbol >]
<in-line create in port area> ::=

<voi d synbol >

is attached to <in-line expression synbol >

[is attached to <createline synbol >]

[is attached to <createline synbol >]
<in-line order port area> ::=

<in-line order out port area> | <in-line order in port area>
<in-line order out port area> ::=

<voi d synbol >

is attached to <in-line expression synbol >
<in-line order in port area> ::=

<voi d synbol >
is attached to <in-line expression synbol >

i

<def port area> ::=
(<def out port area> |<def in port area>
<def out call port area> | <def in call port area>
<def out reply port area> | <def in reply port area>
<def create out port area> | <def create in port area>
<def special out port area> | <def special in port area>)
is attached to <nsc synbol >

i

<def out port area> ::=
<voi d synbol >

is attached to (<message synbol > | <found nessage synbol >)

ETSI

80 ETSI TR 101 873-3 V1.1.1 (2001-01)

<def in port area> ::=
<voi d synbol >
is attached to <nessage synbol >

<def out call port area> ::=
<voi d synbol >
is attached to (<nmessage synbol > | <found nessage synbol >)

<def in call port area> ::=
<voi d synbol >
is attached to <message synbol >

<def out reply port area> ::=
<voi d synbol >
is attached to (<nessage synbol > | <found nessage synbol >)

<def in reply port area> ::=
<voi d synbol >
is attached to <nessage synbol >

<def create out port area> ::=
<voi d synbol >
is attached to <createline synbol >

<def create in port area> ::=
<voi d synbol >
is attached to <createline synbol >

C.4.5.6 Conditions

<condition area> ::=
<condi ti on synbol >
contains <condition text> [<shared>]
is attached to (<instance axis synbol >*) set

<condition synbol > ::=

< b

If a shared <condition> crosses an <ingtance axis symbol> which isnot involved in this condition the <ingtance axis
symbol> is drawn through:

<condition text> ::=
<condition nanme |ist>
when (<condition nane list> | “(“ Bool eanExpression ")")
“[“ Bool eanExpression “1]"
otherwi se | else
pass | PASS | inconc | |NCONC
fail | FAIL| none | NONE| error | ERROR

ETSI

81
C.4.5.7 Timers
<timer area> ::=
(<tinmer start area> | <tinmer stop area> | <tinmeout area>)
<tinmer start area> ::=
<timer start areal> | <timer start area2>
<tinmer start areal> ::=
<timer start synbol >
is associated with [TimerRef] [TinerValue]
is attached to <instance axis synbol >
[is attached to (<restart synbol> | <tiner stop synbol 2>
| <tinmeout synbol 3>)]
<timer start area2> ::=

<restart synbol >

is associated with [TinerRef] [TinerValue]
is attached to <instance axis synbol >

is attached to <tiner start synbol >

[is attached to (<tinmer stop synbol 2> | <tineout synbol 3>)]
<timer start synbol> ::=
<start synbol 1> | <start synbol 2>
<start synbol 1> ::=
<start synbol 2> ::=
<restart synbol> ::=
<tinmer stop area> ::=
<tinmer stop areal> | <tiner stop area2>
<tinmer stop areal> ::=
<timer stop synmbol1> [is associated with TinerRef]
is attached to <instance axis synbol >
<tinmer stop area2> ::=
<timer stop synbol2> [is associated with TinerRef]
is attached to <instance axis synbol >
is attached to (<timer start synmbol> | <restart synbol >)
<timer stop synbol> ::=
<tinmer stop symbol 1> | <tinmer stop synbol 2>
<tinmer stop symbol 1> ::=

—X

ETSI

ETSI TR 101 873-3 V1.1.1 (2001-01)

82 ETSI TR 101 873-3 V1.1.1 (2001-01)

<timer stop synbol 2> ::=

i

<timeout area> ::=
<timeout areal> | <tinmeout area2>

i

<timeout areal> ::=
<timeout synmbol> [is associated with TinmerRef]
[(<paraneter list>)]
is attached to <instance axis synbol >

i

<timeout synbol> ::=
<tinmeout synbol 1> | <tineout synbol 2>

i

<ti meout synbol 1> ::=

X

<4—

i

<timeout synbol 2> ::=
X

<timeout area2> ::=
<tinmeout synbol 3> [is associated with TinerRef]
is attached to <instance axis synbol >
is attached to (<timer start synbol> | <restart synbol >)

i

i

<ti meout synbol 3> ::=

<4

C.4.5.8 Actions

<action area> ::=
<action synbol >
is attached to <instance axis synbol >
contains ({ FunctionStatement }+)

i

<action synbol > ::=

C.45.9 Defaults

<default area> ::=
<defaul t synbol >
is attached to <instance axis synbol >
contains ([activate | deactivate]"(“ Functionldentifier “)")

ETSI

83 ETSI TR 101 873-3 V1.1.1 (2001-01)

<default symbol > ::=

s

C.4.5.10 Instance creation

<create area> ::=
<createline synbol >
[is associated with [Variabl eRef “:="]
Conponent Type “." Creat eKeywor d]
is attached to
((<instance axis synbol> | <def create in port area>)
(<instance head area> | <def create out port area>)) set

<createline synbol> ::=

C.4.5.11 Instance stop

<stop synbol > ::=

C.4.6 Structural concepts

C.4.6.1 Co-regions

<concurrent area> ::=
<cor egi on synbol >
is attached to <instance axis synbol >
contai ns <coevent |ayer>

<coregi on synbol > ::=
<coregi on synbol 1> | <coregi on synbol 2>

<coevent |ayer> ::=
<coevent area>
<coevent area> above <coevent |ayer>

<coevent area> ::=
(<nessage event area>
<i nconpl ete message area> | <action area>
<tinmer area> | <create area>)*

Only receive events are allowed in a coregion

<coregi on synmbol 1> ::=

ETSI

84

<coregion synbol 2> :: =

T T
I I
1 1

C.4.6.2 In-line expressions

<in-line expression area> ::=
(<loop area> | <alt area> | <int area>)
[is attached to <nsc synbol >]

<l oop area> ::=
<in-line expression synbol > contains
(loop [<loop boundary>] <operand area>)
is attached to (InstanceAxi sSynbol *) set

<alt area> ::=
<in-line expression synbol > contains
(alt <operand area>
(is followed by <separator area>
is foll owed by <operand area>)*)
is attached to (InstanceAxi sSynbol *) set

<int area> ::=
<in-line expression synbol > contains
(int <operand area>
(is followed by <separator area>
is foll owed by <operand area>)*)
is attached to (InstanceAxi sSynbol *) set

<in-line expression synbol > ::=

-/

<operand area> ::=
(<event layer>)* set

<separator area> ::=
<separat or synbol >

<separator synbol> ::=

C.4.6.3 TSC references

<nsc reference area> ::=
<msc reference synbol >
[is attached to <tinme interval area>]
contains (TSCReference) set
is attached to (InstanceAxi sSynbol *) set
is attached to (TSCConnecti onArea *) set
is attached to (TSCConnecti onArea *) set

ETSI

ETSI TR 101 873-3 V1.1.1 (2001-01)

85 ETSI TR 101 873-3 V1.1.1 (2001-01)

TSCRef erence :: =
([VariableRef “:="1]
(Testcaseldentifier | Functionldentifier | ([expand] NanmedAltldentifier))

[“(" [FunctionFornal ParList] ")"] [duration FloatValue])
| Functi onBody
| Comment

An assignment shall be used only for referencesto test cases, i.e. within control HTSCs. A timeinterval or duration
shall be used only for references to test cases, i.e. within control HTSCs.

<nmsc reference synbol> ::=

()

<tinme interval area> ::=
<int synbol >
is associated with Fl oat Val ue
is followed by (<cont interval> | <interval area 2>)

<interval area 2> ::=
<int synbol >
[is associated with <tinme interval >]

<cont interval> ::=
<cont int synbol >
is associated with <interval name>

<int synbol> ::=
{<int synbol 1> | <int synbol 2>}
is attached to <nsc reference synbol >

<int synbol 1> ::=

<int synbol 2> ::=

<l -

<cont int synbol> ::=

ETSI

86 ETSI TR 101 873-3 V1.1.1 (2001-01)

C.4.7 High-level TSC (HTSC)

HTSCHeading :: =
tsc
(Functionldentifier [“(" [FunctionFormal ParList] ")"]
[ReturnType])
{ Varlnstance } [<end>]

The HTSC, which defines the control part for the module (indicated with the contr ol keyword within the control area of
the TSC document) shall have neither formal parameters nor areturn type. Only those HT SCsthat are referenced within
the control part of the TSC document shall have local variables.

HTSCExprArea :: =
(<text layer> <start area> HTSCNodeExpressi onArea*
<hmsc end area>*) set

<start area> ::=
<hnmsc start synbol> is followed by (<alt op area>t) set

<hmsc start synbol> ::=

<hmsc end area> ::=
<hnmsc end symbol > is attached to (<hmsc line synbol >t) set

<hmsc end synbol > ::=

VAN

<hmsc |ine synbol> ::=
<hmsc |ine synbol 1> | <hnsc |ine synbol 2>
<hmsc |ine synbol 1> :: =

<hmsc |ine synbol 2> :

v

<alt op area> ::=
<hmsc |ine synbol >
is attached to (HTSCNodeArea | <hmsc end synbol >)

HTSCNodeExpr essi onArea :: =
HTSCNodeArea is followed by (<alt op area>*) set
is attached to (<hmsc |ine synbol >*) set

HTSCNode area ::=
<hmsc reference area>
| <connecti on point synbol >
| <hmsc condition area>
| <par expr area>
| HTSCAct i onAr ea

ETSI

87

<hmsc reference area> ::= <nsc reference synbol >
contains <nmsc ref expr> [time <time interval >]

<connection point synbol> ::=

O

<hmsc condition area> ::=
<condi tion synbol > contains <condition text>

<par expr area> ::=
<par frame synbol >
is attached to <hnsc |ine synbol >

contains (HTSCExprArea 1) set

Parallel expressions are not allowed for HT SCs representing a control function.

<par frame synbol> ::=
<frame synbol >

HTSCActi onArea ::=
<action synbol >
is attached to <hnsc |ine synbol >
contains { (Assignnment | LogStatenent)
[“;"(Assignnent | LogStatenent)] }

Actions shall be used only within a HT SC representing a control function.

ETSI

ETSI TR 101 873-3 V1.1.1 (2001-01)

88 ETSI TR 101 873-3 V1.1.1 (2001-01)

Annex D:
Mapping TSC to TTCN-3

Thisannex defines the mapping of TSC/gr to TTCN-3 core notation [1].

D.1 Description

A denotational style for describing the mapping of TSC/gr syntax onto TTCN-3 syntax is used. For each TSC/gr
production rule one or more functions, denoted using "[[" and "]]", each labelled usng a permissible syntax for the
production is defined. These functions may also carry parameters. The definition of each function is given by therules
on theright-hand side, which may in-turn invoke other mapping functions. All rules are terminated with a semi-colon.
For example:

[[group identifier <body>]] parl :=if parl then
group identifier “{“
[[<body>]]

LYt]

In this example asingle function is defined that is labelled with the syntax "group identifier <body>", which takes a
single boolean parameter "par1" asan argument. |f the parameter istrue the function returns the TTCN-3 syntax for a
simple group definition, otherwise it returns nothing. This function also calls another mapping function for the <body>
production rule, which returns the syntax for the body production. Note that the inclusion of the semi-colon is optional.

D.1.1 TSC documents

D.1.1.1 TSCDocument

[[<frame synbol >
contai ns TSCDocunent Head
[is foll owed by Control PartArea]
[is foll owed by TestcasePartArea]
[is followed by FunctionPartArea]
[is followed by NanedAl tPartArea]
11 :=
nodul e [[TSCDocunent Head]]
[[TestcasePartArea]]
[[FunctionPartArea]]
[[NanedAltPartArea]]
[[Control PartArea]]

with “{
[removeW t hKeyword (TSCDocument Head. Wt hStatement)]
di splay “ETSI TTCN-3 TSC v1.0",
di spl ay TSCDocumnent
ST

Where, the removeWithKeyword function allows the merger of with statements by simply removing the with keyword.

D.1.1.2 TSCDocumentHead

[[tscdocunment TTCN3Modul eld [Mbddul eParList]
[related to ldentifier { “," Identifier }]
explicit_typing [WthStatenment] <end>
[TTCN3Dat aDefi nitionPart]
[<parenthesis declaration>]
11 :=
TTCN3Modul el d [Modul eParLi st]

{
[[TTCN3Dat aDefinitionPart]] (explicit_typing)

i[t scdocunment TTCN3Modul el d [Mbdul ePar Li st]
[related to ldentifier { “," Identifier }]

ETSI

�eethovengroupdskSTF156STF MembersInaJulySessionTTCN3Parser.html

89 ETSI TR 101 873-3 V1.1.1 (2001-01)

implicit_typing [WthStatenment] <end>
[TTCN3Dat aDefinitionPart]
[<parenthesis declaration>]
11 ::=
TTCN3Modul el d [Modul eParLi st]

T

[[TTCN3Dat aDefinitionPart]] (inplicit_typing)

The ‘related to’ and ‘parenthesis declaration’ productions are not mapped to TTCN 3.
TTCN3Dat aDef i ni ti onPart
[[BeginChar
TTCN3Dat aDefi ni ti onLi st
EndChar
11 (typing) ::=
[[TTCN3Dat aDefinitionList 1]]
if typing == inplicit_typing then
derive(PortDef) derive (ConponentDef)

The derive function determines the typing of ports or components from the message interactions between ports and
component instances.

D.1.1.2.1 TTCN3DataDefinitionList

[[{ TTCN3DataDefinition [WthStatement] }]] ::=
{ [[TTCN3DatabDefinition]] [WthStatement] [“;"] }

D.1.1.2.2 TTCN3DataDefinition

[[TypeDef | ConstDef | ExtConst Def
Tenpl at eDef | FunctionDef | SignatureDef |
I mport Def | TSCGroupDef | ExtFunctionDef |
11 ::=
TypeDef | ConstDef | Ext ConstDef |
Tenpl at eDef | FunctionDef | SignatureDef |

ImportDef | [[TSCG oupDef]] | ExtFuncti onDef
TSCG oupDef
[[group Goupldentifier
Begi nChar
TTCN3Dat abDefi ni ti onLi st
EndChar

]]1 ::= group Goupldentifier

W

[[TTCN3Dat aDefinitionList]]
Wy

D.1.1.3 ControlPartArea

[[control
TSCCont rol Ref erenceList [“;" TSCFuncti onG oupDefList]
is foll owed by <separator area>
11 :=
[[TSCControl ReferenceList]] ([[TSCFuncti onG oupDefList]], defs_only)
[[TSCControl ReferenceList]] ([[TSCFuncti onG oupDefList]], control _only)

[[control
is foll owed by (TSCControl Ref erenceArea *) set
is foll owed by <separator area>
11 :=
for all nenbers of the (TSCControl ReferenceArea *) set do [[TSCControl ReferenceArea]] (defs_only)
for all nenbers of the (TSCControl ReferenceArea *) set do [[TSCControl ReferenceArea]]
(control _only)

Where, defs_only and control_only are distinct flags to indication type definitions only or control definition
respectively.

ETSI

�eethovengroupdskSTF156STF MembersInaJulySessionTTCN3Parser.html

90 ETSI TR 101 873-3 V1.1.1 (2001-01)

D.1.1.3.1 TSCControlReferenceList

[[TSCControl Reference { “,"TSCControl Reference }]] (e, f) ::
{ [[TSCControl Reference]] (e, f) 1}

TSCCont r ol Ref erence
[[control Functionldentifier 1] (e, f) ::=
if f == control _only then
control
wge
[[process_tsc_diagran{Functionldentfier)]]

}

[[Functionldentifier 1] (e, f) ::=
if f == defs_only then
[[process_tsc_diagram (Functionldentfier)]] [“;" 1]
[[Goupldentifier 1] (e, f) ::=
if f == defs_only then
group Groupldentifier

{
[[get_group_def(Goupldentfier,e)]] (e)
S T

Where
e process tsc_diagramis afunction which processes the TSC diagram with the given identity,

e get_group_defisafunction that returnsthe list of group or function identifiers associated with the group.

D.1.1.3.2 TSCFunctionorGroupReferencelList

[[TSCFunctionor GroupRef { “,"TSCFunctionorGoupRef }]] e ::=
[[TSCFunctionorGoupRef 11 (e) { [“;" 1 [[TSCFunctionorG oupRef]] (e) }

D.1.1.3.3 TSCFunctionorGroupRef
[[Goupldentifier]] e ::= group Groupldentifier
wge

[[get_group_def (G oupldentfier,e) 1] (e)
S
i[Functionldentifier]] e::= function [[process_tsc_diagram (Functionldentfier) 1] [“;"]

D.1.1.34 TSCControlReferenceArea

[[{ <nmsBc reference synbol > contains
control Functionldentifier
11 f ::=
if f == control _only then
control
wge
[[process_tsc_diagram (Functionldentfier)]]

}

[[<nsc reference synbol > contains
Functionl dentifier

11 f ::=
if f == defs_only then
[[process_tsc_diagram (Functionldentfier)]] [“;" 1]

ETSI

91 ETSI TR 101 873-3 V1.1.1 (2001-01)

[[<nsc reference synbol > contains
Groupldentifier
11 f ::=
if f == defs_only then
group Groupldentifier
for all nenbers group TSC retunred by (get_TSC Di agran(G oupldentfier) do
[[TSCControl ReferenceArea]] (f)
T S

Where get_TSC_Diagramisafunction that returns the TSC with the given identifier.

D.1.1.4 TestcasePartArea

[[testcases
(TSCTest caseor GroupRef erenceList [“;" TSCTestcaseG oupDefList]
is foll owed by <separator area>
17 =
[[TSCTest caseor GroupRef erenceList]] ([[TSCTestcaseG oupDefList]])

i[testcases is followed by (TSCTestcaseReferenceArea *) set)
is foll owed by <separator area>

11 =
for all nenbers of the (TSCTestcaseReferenceArea *) set do [[TSCTestcaseReferenceArea]]

D.1.1.41 TSCTestcaseorGroupReferenceList

[[TSCTest caseor GroupRef { “,"TSCTestcaseor G oupRef }]] e ::=

[[TSCTestcaseorGroupRef 1] (e) { [“;"] [[TSCTestcaseorGoupRef]] (e) }
1I'SCTest caseor Gr oupRef
[[Goupldentifier]] e ::= group Groupldentifier
wge
[[get_group_def(Goupldentfier,e)]] (e)
S T
i[TestCaseldentifier]] e::= testcase [[process_tsc_diagram (TestCaseldentfier) 1] [“;"]

D.1.1.4.2 TSCTestcaseReferenceArea

[[<nsc reference synbol > contains G oupldentifier
17 =

group Groupldentifier

I

for all nenbers group TSC retunred by (get_TSC Di agran(G oupldentfier) do
[[TSCTest caseRef erenceArea]]

B B

[[<nsc reference synbol > contains Testcaseldentifier
11 :=

testcase [[process_tsc_diagram Testcaseldentfier)]]

[“5"]

D.1.1.5 FunctionPartArea

[[functions
(TSCFunctionor GroupRef erenceList [“;" TSCFunctionG oupDefList]
is foll owed by <separator area>
17 =
[[TSCFunctionor GroupRef erenceList]] ([[TSCFunctionG oupDefList]])

i[functions is followed by (TSCFunctionReferenceArea *) set)
is foll owed by <separator area>

11
for all nenmbers of the (TSCFunctionReferenceArea *) set do [[TSCFuncti onReferenceArea]]

ETSI

92 ETSI TR 101 873-3 V1.1.1 (2001-01)

D.1.15.1 TSCFunctionReferenceArea

[<msc reference synbol > contains G oupldentifier
] 1=

group Groupldentifier

s

for all nenbers group TSC retunred by (get_TSC Di agran(G oupldentfier) do
[[TSCFunctionReferenceArea]]

B

[[<nsc reference synbol > contains Functionldentifier
11 ::

function [[process_tsc_diagram Functionldentfier)]]

[“5"]

D.1.1.6 NamedAltPartArea

[[naned alts
(TSCNanedAl t or G oupRef erenceList [“;" TSCNanmedAl t GroupDef Li st]
is foll owed by <separator area>
17 =
[[TSCNamedAl t or GroupRef erenceList]] ([[TSCNanedAlt G oupDefList]])

i[named alts is followed by (TSCNanedAl t Ref erenceArea *) set)
is foll owed by <separator area>

11 ::
for all nenbers of the (TSCNanedAlt ReferenceArea *) set do [[TSCNanedAl t Ref erenceArea]]

D.1.16.1 TSCNamedAltorGroupReferenceList

[[TSCNanedAl t or GroupRef { “,"TSCNanmedAltor GroupRef }]] e ::=

[[TSCNamedAltorGroupRef 1] (e) { [“;"] [[TSCNanedAltorG oupRef]] (e) }
ll'SCNamedAl t or G oupRef
[[Goupldentifier]] e ::= group Groupldentifier

wge

[[get_group_def(Goupldentfier,e)]] (e)

S T
i[NanEdAltldentifier]] e ::= naned alt [[process_tsc_diagram (NamedAltldentfier) 1] [“;"]

D.1.1.6.2 TSCNamedAltReferenceArea

[[<nsc reference synbol > contains G oupldentifier
17 =

group Groupldentifier

W

for all nenbers group TSC retunred by (get_TSC Di agran({G oupldentfier) do
[[TSCNanedAl t Ref erenceArea]]

B B

<msc reference synbol > contains NamedAl teldentifier

named alt [[process_tsc_diagran(NanmedAl tldentfier)]]
[“:"]

ETSI

93 ETSI TR 101 873-3 V1.1.1 (2001-01)

Annex E:
An INRES example in TSC

The TSC example provided here uses the TTCN-3 specification given in annex A which provides sequential and
concurrent test cases for the INRES protocol. The sequential test cases define identical test behaviour but reflect the
various specification styles of TTCN-3 core notation. These styles can also be reflected in TSC. See annex B for further
information.

E.1 TSC document

The TSC document for the INRES example includes the declaration for the module and declares the various TSCs for
test cases and functions, which are presented in subsequent clauses.

tscdocument InresExample (ISDUType TestsuitePar);
explicit_typing;
| anguage TTCN- 3

import all type; inport all const;

/linporting all types and constants fromthe underlying nmodule in TTCN-3 core
not ati on

import all tenplate;

{/inporting all tenplates fromthe underlying nodule in TTCN-3 core notation

testcases

m _synchl_seql) m _synchl_seq2 m _synchl_seq2a m _synchl_seq3

o J
-

m _synchl_concl

G J

functions
)) N N
Synchr oni zati on Func_PTC | SAP1 { Func_PTC_MBAP2 }

J Y,
. . N . .
O herwi seFai | Recei vel DI Si nd
J Y,

Figure E.1: TSC document for the INRES Example

ETSI

94 ETSI TR 101 873-3 V1.1.1 (2001-01)

E.2 TSCs for sequential test case

E.2.1 First version

The sequentid test cases use the test component MTC and two port instances ISAP1 and MSAP2. After the default
activation, the main test sequence leading to PASS is represented. An Hyper-TSC is used to represent alternatives to the
PASS path. The TTCN-3 core notation description of this test case has a stop operation and the test verdict within all
branches of the "behaviour tree”. In case of the TSC representation, thiskind of description isnot supported. Instead,
the verdict assignment and stop is represented only once.

tsc mi_synchl_seql Y
MTC ISAPL MSAP2
o [rooume

activate i i
Otherwi seFail : !
| |
disconnection ICONreq h: i
indication : !
i < 1 1
(inconc) h Mediurh_Connection_Request()
MDATreq | o
Medium_Connection_Canfirmation() i
| |
| i
ICONconf | i
< | |
R s
medium Data_Request(TestSui e{Par) i
connection ! !
request i :
(inconc) ! i
< I I
Med um_Data_Transfer()
| |
| |
IDISreq > |
medium i i
data i |
transfer) i i
(inconc) ay |4 IDISind : i
P i i
b Medium_Disconnection_Request() |

|
p | ;
o . . . |
Medium_Disconnection_Request():
IDISind ! :
<K : |
i I
i i
pass i i

Figure E.2: INRES: sequential test case, first version

This TSC defines the default used throughout this example. Whenever any other messageisreceived from ISAPL or
MSAP2, afail verdict isassigned and the test case stops.

ETSI

95 ETSI TR 101 873-3 V1.1.1 (2001-01)

tsc OtherwiseFall <
/ MTC ISAPL MSAP2
MTC_Type | PCO_typel ! | PCO_type2 !
_______ AR LT
[} [}
alt any : :
< | l
| |
____________________________ N
any ! |
< ! !
| |
| l
[} [}
[} [}
fail !
A

Figure E.3: INRES: sequential test case, default

ETSI

96 ETSI TR 101 873-3 V1.1.1 (2001-01)

E.2.2 Second version

The second version of thetest case contains only minor modifications. Thisismainly due to the fact, that the
differences in the TTCN-3 core notation for the two test cases are not visible on TSC leve, but rather it istransparent
that the two reflect the same test behaviour.

indication
(inconc) <

tsc mi_synchl_seq?2 Y
MTC ISAP1 MSAP2

MTC_Type | PCO_typel ! \PCO type2 |
| ettt Tm————— e R |

activate i i

OtherwiseFail i :

]]

]

ICONreqg »i i

!

]

]

]

:

i
disconnection @@ E

Medi ur:n_Connecti on_Request()
MDATreq ! !
Medium_Connecti on_Ccinfi rmation() !

< ICONconf

)
medium Data_Request(TestSufdPar)

]

]

connection !
request D) i
]

]

]

]

(inconc)

[}
[}
[}
i
i
[}
[}
[}
[}
[}
[}
[}
[}
]
i
< !
Medium_Data_Transfer()!
[} [}
[} [}
[}
IDISreqg »i |
[} [}
medium i :
data ' i
transfer . ' i
(inconc) a]}' <IDIS|nd E i
< i i
Medium_Disconnection_Request()!
]
p | |
N . HE . |
Medium_Disconnection_Request() :
IDISind | :
4 | 1
x

Figure E.4: INRES: sequential test case, second version

The above TSC can be represented even more condensed by using a co-region (which resembles the interleave
operation of TTCN-3, but ismore powerful) instead of the alternative expression at the bottom.

ETSI

97 ETSI TR 101 873-3 V1.1.1 (2001-01)

tsc mi_synchl seg2a Y
MTC ISAPL MSAPZ\
oo | oo pe |
activate i
1
!
| ICONreg
1
< > i
disconnection pass i
indication :
(ineend N Medi urfn_Connecti on_Request()
1

Medium_Connecti on_Cénfi rmation()

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
;
MDATreq | i
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
|
1
1
1

- ICONconf |
i
e
medium Data_Request(TestSui ! ar)
connection i
request i
(inconc) :
]
h Medium_Data_Transfer()
! :
]]
IDISreq ! i
VI |
medium !
data i
transfer i
(inconc) B !
| ¢/D!Sind !
|]
! !
| 1
i
|

X by

Figure E.5: INRES: sequential test case, second version (condensed)

ETSI

98 ETSI TR 101 873-3 V1.1.1 (2001-01)

E.2.3 Third version

Within thethird case, named alternatives are used which arerepresented as TSC referencesin TSC.

tsc mi_synchl_seq3 Y
MTC ISAP1 MSAP2
| Poowpel {1 Pco yper |
——————— T——————J ._______________I
| 1
activate i |
OtherwiseFail () : i
| 1
ICONreq > i
| 1
| [}
s > i i
ReceivelDISind | g i |
. i 1
(inconc) A Mediurn_Connection_Request() |
A MDATreq ! >
Medi um_Connection_Co:nfi rmation() !
[}
O . i ;
< ICONconf i i
1
i s
medium Data_Request(T&stSui?elPar) :
connection I i
request i E
(inconc) ! i
< ! i
b Medium_Data_Transfer()!
| 1
i i
IDISK | i
= > i
medium ! !
data > ! i
transfer - : i
(inconc) aIIJ 4IDISmd | |
| 1
< i :
b Medium_bisconnection_Request() !
1
p i |
Y . Hg . |
Medlum_Plsconnedlon_Request() :
1
‘ Receivel DISind (pass) 5
T 1
T
[}

Figure E.6: INRES: sequential test case, third version

ETSI

99 ETSI TR 101 873-3 V1.1.1 (2001-01)

E.3 TSCs for concurrent test case

InfigureE.7, the vertical split form is chosen for the representation of test components, i.e. for each test component
thereisone TSC. The TSC for PTC_ISAPL isprovided in figure E.12, the TSC for PTC_MSAP2 in figure E.14.
Function "Synchronization" is presented using the horizontal split form. The corresponding TSC is provided in
figure E.11.

tsc mi_synchl concl system TSIType

MTC
MTCType conc

activate
(OtherwiseFail)

PTC_ISAP1:= PTCType |SAP1.create »

connect(MTC:CP_ISAPL, PTC_ISAP1:CP_ISAPY);
connect (MTC:CP_MSAP2 , PTC_MSAP2:CP_MSAP2);
map(PTC_ISAPL:ISAPL, sysem: TS| _ISAPL);
map(PTC_MSAP2:MSAP2, system:TSI_MSAP2);

PTC_ISAP1.dtart(func_PTC_ISAP1 ())

Synchronization()

all component.done

log (“Correct Termination®)

Figure E.7: INRES: concurrent test case (MTC, vertical split)

ETSI

100 ETSI TR 101 873-3 V1.1.1 (2001-01)

In figure E.8, the behaviour of the test componentsMTC, PTC_ISAP1 and PTC_MSAP2 isintegrated within one TSC
(no vertical split). For the behaviour definition , the following functions " Synchronization”, "Func_PTC_ISAP1", and
"Func_PTC_MSAP2" areused. Their definition is provided in figures E.11, E.13 and E.15, respectively.

In figure E.8, the message exchange between these functionsis not shown explicitly, contrary to figure E.9. We take the
view that the representation of the message exchange should be optional.

tsc mi_synchl concl system TSIType

MTC
MTCType_conc

activate
(OtherwiseFail)

PTC_ISAP1 PTC_MSAP2

PTCType ISAP |~ pemmmmmmmmmmoo- | PTCType MSAP

connect(MTC.CP_ISAP1, PTC_ISAPL.CP_ISAP1);
connect(MTC:CP_MSAP2, PTC_MSAP2:.CP_MSAP2);
map(PTC_ISAPL:ISAPL, system:TSI_ISAPL);
map(PTC_MSAP2:MSAP2, system:TSI_MSAP2);

PTC_|SAPLstart
-1 L PTC_MSAP2 start

{ Func_PTC_ISAP 1()] [Synchroni zation() J [Func PTC_MSAP 2(}

all component.done

log (“Correct Terminati on“)l

X

Figure E.8: INRES: concurrent test case (no vertical split)

In figure E.9, the same presentation is shown asin figure E.8, except that the message exchange between the functions
is provided explicitly.

ETSI

101 ETSI TR 101 873-3 V1.1.1 (2001-01)

tsc mi_synchl concl system TSIType

MTC

activate
(OtherwiseFail)

PTC ISAP1 PTC_MSAP2

IS ¢ D m— o] FrcTypensarz |

connect(MTC:CP_ISAPL,

PTC_ISAPL:CP ISAPY);
connect(MTC:CP_MSAP2,
PTC_MSAP2:CP_MSAF2);
map(PTC_ISAPLISAPL, sysem:TS_ISAP1);
map(PTC_MSAP2MSAP2, system:TSI_MSAF2);

g---mmmmmmoo PTCISAPLSaNt | PTC_MSAP2.start

Func PTC_ISAP1() Func_PTC_MSAP 2()

all component.done

log (“Correct Terminati on“j

Figure E.9: INRES: concurrent test case (no vertical split, message exchange made explicit)

ETSI

102 ETSI TR 101 873-3 V1.1.1 (2001-01)

Figure E.10 is obtained from figure E.9 by expanding the MSC reference " Synchronization”.

tsc mi_synchl concl system TSIType
MT

MTCType _conc
I

activate

PTC_MSAP2

PTCTYPOISAPL |@-------mmmmmemmmmoeesioonc] »| Frcrypemsarz |

connect(MTC:CP_ISAPY,
PTC_ISAPL:CP_ISAPL);
connect(MTC:CP_MSAP2,
PTC_MSAP2:CP_MSAP2);
map(PTC_ISAPLISAPL, system:TSI_ISAPL);
map(PTC_MSAP2:MSAP2, sysem:TSI_MSAP2);

e PTCISAPLSAY | pre vsap2.art
___ _>
/&/nchronization)
CPISAPL o CP MSAP
CP_ISAP Ready Indication CP—MSAP? > 4 _
Func_PTC_ISAP1() = Ready_Indication Func_PTC_MSAP 2()
> CP_ISAP1 I
Proceed _Indication
N /

all component.done

| log (“Correct Termination“*

Figure E.10: INRES: concurrent test case (no vertical split with expanded function)

ETSI

103 ETSI TR 101 873-3 V1.1.1 (2001-01)

In figure E.11, the behaviour specification of function " Synchronization™ is provided.

tSC Synchronization
MTC
MTCType_conc

:_ CP_MSAP2 >
< Ready Tndication
[}
i CP_ISAP1 >
4 Ready_Tndication
i
> CP_ISAPL
Procead Tndication >

Figure E.11: INRES: concurrent test case (TSC Synchronization)

ETSI

104

In figure E.12, the behaviour specification of PTC_ISAPL is provided.

ETSI TR 101 873-3 V1.1.1 (2001-01)

tsc PTC ISAPL

disconnection
indication
(inconc)

A

Y

o

PTC ISAPL

~

PTCType ISAP1

activate
(OtherwiseFail)

/

> |SAPL >
Connection_Request
ISAPL >
QT < , —
Connection_Confirmation
> |SAPL q
DataRequest(TestSuitePar)
> CP_ISAP1L
Q- — >
Ready_|Indication
< CP_ISAP1 >
Proceed_Indication
> |SAPL
>
Disconnection_Request
ISAPL >
>
Disconnection_Indication

<

pass

>

X

/

A

Figure E.12: INRES: concurrent test case (TSC PTC_ISAP1, vertical split)

ETSI

105

ETSI TR 101 873-3 V1.1.1 (2001-01)

In figure E.13, the behaviour specification of function "Func_PTC_ISAP1" is provided.

tsc Func_PTC_ISAPL

disconnection
indication
(inconc)

A

Y

~,

PTCType ISAPL

activate
OtherwiseFail

> 1SAPL >

Connection_Reguest
ISAPL >

Connection_Confirmation
> |SAP1

DataRequest(TestSuitePar)
> CP_ISAP1

<

Ready Indication

CP_|SAP1 >

Proceed_Indication
> |SAP1

Disconnection_Request

ISAPL >

Disconnection_Indication

— Y

Figure E.13: INRES: concurrent test case (TSC Func_PTC_ISAP1)

In figure E.14, the behaviour specification of PTC_MSAP2 is provided.

ETSI

106

ETSI TR 101 873-3 V1.1.1 (2001-01)

tsc PTC_MSAP2

PTC_MSAP2

PTCType MSAPZ

activate

OtherwiseFail

/

MSAP2

>

>

Medium_Connection_Request

Medium_Connection_Confirmation

MSAP2 > >
Medium_Data Transfer
< >CP_MSAP2
Ready_|ndication
> MSAP2
>

Medium_Disconnection Request

-

>

Medium
connection request
(inconc)

A

Medium
data transfer
(inconc)

A

Figure E.14: INRES: concurrent test case (TSC PTC_MSAP2, vertical split)

ETSI

107

ETSI TR 101 873-3 V1.1.1 (2001-01)

In figure E.15, the behaviour specification of function "Func_PTC_MSAP2" is provided.

tsc PTC_MSAP2 V

- e\

frmm e »| PTCType MSAP2

activate
OtherwiseFail

MSAP2 >

Medium_Connection Request >

> MSAP2

Medium_Connection_Confirmation

MSAP2 >
Medium_Data Transfer

> MSAP2

P

< cmi_synchl

>CP_MSAP2

Ready_Indication

> MSAP2

Medium_Disconnection_Request

o

Medium
connection request
(inconc)

A

Medium

| datatransfer
(inconc)

A

Figure E.15: INRES: concurrent test case (TSC Func_PTC_MSAP2)

ETSI

108 ETSI TR 101 873-3 V1.1.1 (2001-01)

In figure E.16, amerge of the TSCsin figures E.13, E.7 and E.15 is shown explicitly by means of an HMSC with
parale merge.

tsc mi_synchl system

A . 2

CP_MSAP func_PTC_MSAP 2()

I CP_ISAP I mi_system_concl |

func_PTC_ISAP 1()

B S —r D

Figure E.16: INRES: concurrent test case (Test Case with TSC References)

E.4 INRES example in TTCN-3 core language

nodul e I nresExanpl e (| SDUType TestsuitePar) {
/1 General Type Definitions

group TypeAndConst ant Definitions {

type integer |SDUType ;
type enunerated Sequencenunber { zero(1l), one(2) };
type enunerated | PDUType { CR(1), CC(2), DR(3), DT(4), AK(5) };

/1 Modul e Constants
const Sequencenunber Test SuiteConst := 1;

}
// End TypeAndConst ant Definitions

/1 ASP Type Definitions for Medium Interface
group Medi unBSer vi ceASPTypes {
type record MDATreq {
| PDUType i PDUTypel ,
Sequencenunber sequencenunber 2,
| SDUType i SDUType3
}
type record MDATI nd {
| PDUType i PDUTypel,
Sequencenunber sequencenunber 2,
| SDUType i SDUType3

}

} with display “ASP Type Definitions";
// End Medi unSer vi ceASPTypes

ETSI

109 ETSI TR 101 873-3 V1.1.1 (2001-01)

/1 ASP Type Definitions for Inres Interface (Initiator side)
group I nitiatorSidel nresASPTypes {

type record | CONreq {};

type record | DATreq { |SDUType i SDUTypel };

type record IDI Sreq {};

type record | CONconf {};

type record IDI Sind {}

} with display “ASP Type Definitions";
//End InitiatorSidel nresASPTypes

/1 Tenplate Definitions
group Tenpl ateDefinitions {
tenpl ate | DATreq Dat aRequest (tenplate | SDUType Parl):= {
i SDUTypel: = Parl

tenpl at e MDATreq Medi um Connection_Confirmation := {
i PDUTypel: = CC,
sequencenunber2: = *,
i SDUType3: = *

tenpl at e MDATi nd Medi um Connecti on_Request := {
i PDUTypel: = CR,
sequencenunber2: = *,
i SDUType3: = *

tenpl at e MDATIi nd Medi um Data_Transfer := {
i PDUTypel: = DT,
sequencenunber 2: = Test Sui t eConst,
i SDUType3: = Test Sui t ePar

t enpl at e MDATIi nd Medi um Di sconnecti on_Request : = {
i PDUTypel: = DR,
sequencenunber2: = *,
i SDUType3: = *

}

tenpl ate MDATreq cm _synchl := {
i PDUTypel: = AK,
sequencenunber 2: = one,
i SDUType3: = 55

}

}
/1 End Tenpl at eDefi nitions

//named alternative used as default for the follow ng test cases
named alt Ot herw seFail {
[T [ISAPl.receive {
verdict.set(fail);
st op;

}
[l MBAP2.receive {
verdict.set(fail);
st op;

}
} with display “default”;

nanmed alt Receivel D Sind (verdict result) {
[T [ISAPl.receive(ID Sind: {})
{ verdict.set(result); }
} with display “test step"; // End Receivel D Si nd

// Configuration Definitions
group Sequenti al ConfigurationDefinitions {
/1 Port Type Definitions
type port PCO Typel nessage {
in | CONconf, |DlSind; /lreceived from SUT
out | CONconf, |DATreq, |Dl Sreq; //send to SUT
} with display “PCO Type, role := UT";
type port PCO Type2 nessage {
in MDATI nd; /lreceived from SUT
out MDATreq; //send to SUT

ETSI

110 ETSI TR 101 873-3 V1.1.1 (2001-01)

} with display “PCO Type, role = LT";
/1 MIC Type Definition (is equal to Test System Interface)
type conponent MICType {

PCO Typel | SAP1;

PCO_Type2 MSAPZ;

} //End Sequenti al ConfigurationDefinitions

group Sequential {
testcase m _synchl_seql() runs on MICType

activate (OQtherw seFail); /I Default activation
| SAP1. send(|1 CONreq: {}); //1n-l1ine tenplate definition
alt {
[1 MSAP2.receive(Medium Connection_Request) /luse of a tenplate
MSAP2. send(Medi um Connection_Confirmation);
alt {
[T I'SAPl.receive (ICONconf: {})
| SAP1. send (Data_Request(TestSuitePar));
alt {
[T MSAP2.receive (MediumData_Transfer)
| SAP1.send (ID Sreq: {});
alt {
[T ISAPl.receive (ID Sind: {})
{ /1PASS
MSAP2. recei ve (Medi um Di sconnecti on_Request)
}
[T MSAP2.receive (MediumDi sconnecti on_Request)
{ ISAPl.receive(ID Sind: {})
/ | PASS
}
}
} . .
[T ISAPl.receive(ID Sind: {})
verdi ct. set (i nconc);
stop
}
}
} ‘ ‘ ‘
[T MSAP2.receive(Medium Connection_Request)
verdi ct.set (i nconc);
st op;
} ‘ ‘
[T ISAPl.receive(ID Sind: {})
verdi ct.set (i nconc);
stop
}
}

}
[T ISAPl.receive(ID Sind: {})
{

verdi ct. set (i nconc);
st op;

}

verdi ct. set (pass);

// End testcase m _synchl_seql

I* Thisisadight transformation of the previous test case. It makes use of the ‘sequentia’ character of TTCN-3. The
stop operation isnot copied to al branches of the ‘behaviour tree. Instead it isonly executed at the end of the test case.
Furthermore, the verdict isinitialized with the verdict pass. During the test execution it can be overwritten by
inconclusive or, in the default, by fail. The places where a pass has been assigned before areindicated by comments*/

ETSI

111 ETSI TR 101 873-3 V1.1.1 (2001-01)

testcase m _synchl_seq2 () runs on MICType
{
activate (Qtherw seFail);
/I Default activation
| SAP1. send(|1 CONreq: {});
verdi ct. set (pass);
al t
[1 MSAP2.receive(Medium Connection_Request)

{
MSAP2. send (Medi um Connection_Confirmation);
al t
[11 SAPl.receive (I CONconf: {})

{
| SAP1. send (Data_Request(TestSuitePar));
alt {

[T MSAP2.receive (MediumData_Transfer)

| SAP1. send (1D Sreq: {});
al t
[T ISAPl.receive (ID Sind: {})
{ /1PASS
MSAP2. recei ve (Medi um Di sconnecti on_Request)

[T MSAP2.receive (MediumDisconnecti on_Request)
{ ISAPl.receive(ID Sind: {})
/| PASS

}
[T MSAP2.receive (MediumData_Transfer)
{ verdict.set(inconc) }

}

}

[T ISAPl.receive(ID Sind: {})
{ verdict.set(inconc) }

}

}

[1MSAP2. recei ve(Medi um Connecti on_Request)
{ verdict.set(inconc) }

[11SAPl.receive(ID Sind: {})
{ verdict.set(inconc) }

}

}
[T ISAPl.receive(ID Sind: {})
{ verdict.set(inconc) }

st op

//End testcase m _synchl_seq2

/* Thisisadight transformation of the previous test case. It shows the usage of named alternatives. A named
aternativeis a special "macro” construct which allows to extend the alternative construct by adding new alternatives. It
is comparable to the TTCN-2 feature of tree attachment in sets of alternatives*/

testcase m _synchl_seq3 () runs on MICType
{
activate (O herw seFail);
//Default activation
| SAP1. send(|1 CONreq: {});
verdi ct. set (pass);
alt {
[1MSAP2. recei ve(Medi um Connecti on_Request)

MSAP2. send (Medi um Connecti on_Confirnation);
alt {
[11SAPl.receive (ICONconf: {})

{
| SAP1. send (Dat a_Request (Test SuitePar))
alt {

[1MSAP2. receive (MediumData_Transfer)

| SAP1.send (ID Sreq: {});
al t
[TJ1SAPl.receive (ID Sind: {}) // PASS
{ MSAP2.receive (MediumDi sconnection_Request); }
[1MSAP2. receive (Medi um Di sconnecti on_Request)
{ Receivel DI Si nd(pass); } /1 direct call of naned alt
[1MSAP2. receive (MediumData_Transfer)

ETSI

112 ETSI TR 101 873-3 V1.1.1 (2001-01)

{ verdict.set(inconc); }

}s

[expand] Recei vel DI Si nd(i nconc); // use of named alternative

}s

}

[1MSAP2. recei ve(Medi um Connecti on_Request)
{ verdict.set(inconc); }

[expand] Recei vel DI Si nd(i nconc);

b
[expand] Recei vel DI Si nd(i nconc);

st op;
} // End testcase m _synchl_seq3

}
/1 End group Sequenti al
group Concurrent ConfigurationDefinitions {

/1 Port Type Definitions

type port CP_Type nessage {
i nout CM

} with display “CP Type";

/1 MIC Type Definition (is now different to Test System Interface)
type conponent TSI Type_conc {

PCO Typel TSI _| SAP1,;

PCO _Type2 TSI _MSAP2;

}

type conponent MICType_conc {
CP_Type CP_| SAP1;
CP_Type CP_NMSAP2;
timer MyTinmer:= 5;

}

/1 PTCs

type conponent PTCType_l SAP1 {
PCO_Typel | SAP1;
CP_Type CP_I| SAP1;

}

type conponent PTCType_MSAP2 {
PCO_Type2 NMSAP2;
CP_Type CP_MSAP2;

} //End Concurrent ConfigurationDefinitions

/1 CM Type Definitions
group Coordi nati onMessages {

type record CM { charstring nessagel };
} with display “CM Type Definitions";
// End CM Type Definitions

// CM Tenpl ate Definitions
group Coordinati onTenpl at eDefinitions {
tenpl ate CM Proceed_I ndication := {
nmessagel: = “ PROCEED"
b

tenpl ate CM Ready_l ndication := {
nmessagel: = “ READY"
b
} // End CM Tenpl ate Definitions

// Now, we consider a concurrent version of the |INRES Exanple
group Concurrent {

/1 Synchroni zation function

function Synchroni zation () runs on MICType_conc

{

ETSI

113 ETSI TR 101 873-3 V1.1.1 (2001-01)

terl eave {
CP_MBSAP2. recei ve(Ready_lndication);
CP_| SAP1. recei ve(Ready_lndication);
| SAP1. send(Proceed_| ndication);
} // End Synchronization function
function Func_PTC_I SAP1 () runs on PTCType_| SAP1
{
activate (OGtherwiseFail); // Default activation
| SAP1. send(Connection_Request);

al t
[1 I SAPLl.receive(Connection_Confirmation)
{
| SAP1. send(Dat a_Request (TestSuitePar));
CP_I SAP1. send(Ready_lI ndication);
al t
[T CP_ISAP1.receive(Proceed_|ndication)
| SAP1. send(Di sconnecti on_Request);
| SAP1. recei ve(Di sconnection_Ilndication);
verdi ct.set(pass)
[T I'SAPLl. receive(Disconnection_Indication)
verdi ct. set (i nconc);
}
}
[T I'SAPL. receive(Disconnection_Indication)
{
verdi ct. set (i nconc);
}

}
} //End Func_PTC_| SAP1

function Func_PTC_MSAP2 () runs on PTCType_MSAP2
{
activate (OGtherwiseFail); // Default activation
MSAP2. r ecei ve(Medi um Connecti on_Request);
MSAP2. send(Medi um Connection_Confirmation);
alt {
[T MSAP2.receive(MediumData_Transfer)

MSAP2. send(cm _synchl);
CP_MSAP2. send(Ready_lI ndication);
alt {
[T MSAP2.receive(MediumDisconnection_Req)

verdi ct. set (pass);
}
[T MSAP2.receive(MediumData_Transfer)

verdi ct. set (i nconc);

}
}

}
[T MSAP2.receive(Medium Connection_Request)

verdi ct.set (i nconc);

}

}
} //End Func_PTC_MBAP2

/1 Concurrent Testcase
testcase m _synchl_concl () runs on MICType_conc system TSI Type
{

activate (OtherwiseFail); // Default activation

verdi ct. set (pass);

var PTCType_I| SAP1 PTC_| SAP1:

var PTCType_NMSAP2 PTC_MSAP2:

PTCType_I| SAPL. create;
PTCType_MSAP2. creat e;

connect (PTC_I SAP1: CP_| SAP1, nt c: CP_| SAP1) ;
connect (PTC_MSAP2: CP_MSAP2, nt c: CP_MSAP2) ;
map(PTC_| SAP1: | SAP1, system TSI _| SAP1);
map(PTC_MSAP2: MSAP2, system TSI _MSAP2);

ETSI

114 ETSI TR 101 873-3 V1.1.1 (2001-01)

PTC | SAP1. start (func_PTC | SAP1());
PTC_MBAP2. start (func_PTC_MSAP2());

Synchroni zation();

all conponent. done;

l og(“Correct Termination");
} // End Concurrent Testcase

}
/1 End group Concurrent
/1 end nodul e |nresExanple

}

ETSI

115

ETSI TR 101 873-3 V1.1.1 (2001-01)

History

Document history

V111

January 2001

Publication

ETSI

	Intellectual Property Rights
	Foreword
	Introduction
	1 Scope
	2 References
	3 Abbreviations
	4 Overview
	5 TSC language concepts
	5.1 TSC document
	5.1.1 Parameterization of TSC documents
	5.1.2 Implicit and explicit typing for components and ports
	5.1.2.1 Implicit typing for components and ports
	5.1.2.2 Explicit typing for components and ports

	5.1.3 Importing other TSC documents
	5.1.4 Variable declarations
	5.1.5 Data definitions
	5.1.6 Data parenthesis declaration

	5.2 Control part
	5.2.1 Parameterization of TSCs
	5.2.2 Control variables
	5.2.3 References to test cases
	5.2.4 Control actions
	5.2.5 Alternative expressions

	5.3 Test cases
	5.4 Instances
	5.4.1 Test component instances
	5.4.2 Explicit port instances
	5.4.3 Implicit port instances

	5.5 Test component handling
	5.6 Port handling
	5.6.1 Handling of explicit ports
	5.6.2 Handling of implicit ports

	5.7 Configurations
	5.8 Data
	5.8.1 Declaring data
	5.8.2 Global data
	5.8.3 Static data
	5.8.4 Dynamic data
	5.8.4.1 Component variables
	5.8.4.2 Bindings
	5.8.4.3 Component initiation
	5.8.4.4 Data in messages
	5.8.4.5 Action boxes
	5.8.4.6 Component and port types

	5.8.5 Guarding conditions
	5.8.6 Setting conditions

	5.9 Timers
	5.10 Asynchronous communication
	5.10.1 Messages
	5.10.2 Receiving any message
	5.10.3 Receiving from any port
	5.10.4 Trigger message

	5.11 Synchronous communication
	5.11.1 Call, getreply, catch, and timeout
	5.11.2 Getcall, reply, and raise
	5.11.3 Any handling

	5.12 Behaviour
	5.12.1 Sequential behaviour
	5.12.2 Alternative behaviour
	5.12.3 Interleaved behaviour
	5.12.3.1 Co-regions

	5.12.4 Loops
	5.12.5 Functions
	5.12.6 Defaults
	5.12.7 Return statement
	5.12.8 Action Boxes

	5.13 Verdicts
	5.14 High-level TSC (HTSC)
	5.15 Hyper_TSC
	5.16 Partial TSC
	5.17 Hybrid_TSC

	Annex A: Used subset of and extensions to MSC
	A.1 Overview
	A.1.2 Test specific extensions
	A.1.2.1 TSC document
	A.1.2.1.1 New document sections
	A.1.2.1.2 Component and port instances

	A.1.3 TSC heading
	A.1.4 Test components
	A.1.4.1 MTC as keyword
	A.1.4.2 Self as keyword

	A.1.5 Messages
	A.1.6 Trigger
	A.1.7 Check
	A.1.8 Control flow
	A.1.9 Test verdicts within conditions
	A.1.10 Timer
	A.1.11 Create to test components
	A.1.12 Start to test components
	A.1.13 Return for functions
	A.1.14 Stop on test components
	A.1.14.1 Special meaning of stop on the MTC instance
	A.1.14.2 Stop within an operand of an in-line expression

	A.1.15 Clear, start and stop to ports
	A.1.16 In-line expressions
	A.1.16.1 Propagation of messages to the environment
	A.1.16.2 New interleave in-line expression

	A.1.17 HTSC
	A.1.18 Hybrid TSCs
	A.1.19 Extensions to the data part
	A.1.19.1 Declaring Data
	A.1.19.2 Static Data
	A.1.19.3 Dynamic Data
	A.1.19.4 Bindings

	A.1.20 Hyper TSCs
	A.1.21 Ports
	A.1.22 Default

	Annex B: The TSC forms
	B.1 Overview
	B.1.1 An example
	B.1.2 Form aspect: vertical split vs. no vertical split
	B.1.3 Form aspect: horizontal split vs. no horizontal split
	B.1.4 Form aspect: explicit vs. implicit port representation
	B.1.5 Form aspect: hybrid vs. not hybrid
	B.1.6 Form aspect: partial vs. complete
	B.1.7 Summary of TSC forms

	Annex C: Subset of the graphical syntax of TSC
	C.1 Meta-Language for TSC/gr
	C.2 Conventions for the syntax description
	C.3 Relation between TTCN-3 and TSC Files
	C.4 The TSC/gr production rules
	C.4.1 Test Sequence Chart document
	C.4.2 Groups
	C.4.3 Test Sequence Chart
	C.4.4 Environment and Ports
	C.4.5 Basic TSC
	C.4.5.1 Instances (Component and Port Instances)
	C.4.5.2 Messages
	C.4.5.3 Control Flow
	C.4.5.4 Special Messages
	C.4.5.5 Environment and Ports
	C.4.5.6 Conditions
	C.4.5.7 Timers
	C.4.5.8 Actions
	C.4.5.9 Defaults
	C.4.5.10 Instance creation
	C.4.5.11 Instance stop

	C.4.6 Structural concepts
	C.4.6.1 Co-regions
	C.4.6.2 In-line expressions
	C.4.6.3 TSC references

	C.4.7 High-level TSC (HTSC)

	Annex D: Mapping TSC to TTCN-3
	D.1 Description
	D.1.1 TSC documents
	D.1.1.1 TSCDocument
	D.1.1.2 TSCDocumentHead
	D.1.1.2.1 TTCN3DataDefinitionList
	D.1.1.2.2 TTCN3DataDefinition

	D.1.1.3 ControlPartArea
	D.1.1.3.1 TSCControlReferenceList
	D.1.1.3.2 TSCFunctionorGroupReferenceList
	D.1.1.3.3 TSCFunctionorGroupRef
	D.1.1.3.4 TSCControlReferenceArea

	D.1.1.4 TestcasePartArea
	D.1.1.4.1 TSCTestcaseorGroupReferenceList
	D.1.1.4.2 TSCTestcaseReferenceArea

	D.1.1.5 FunctionPartArea
	D.1.1.5.1 TSCFunctionReferenceArea

	D.1.1.6 NamedAltPartArea
	D.1.1.6.1 TSCNamedAltorGroupReferenceList
	D.1.1.6.2 TSCNamedAltReferenceArea

	Annex E: An INRES example in TSC
	E.1 TSC document
	E.2 TSCs for sequential test case
	E.2.1 First version
	E.2.2 Second version
	E.2.3 Third version

	E.3 TSCs for concurrent test case
	E.4 INRES example in TTCN-3 core language

	History

