
ETSI TR 101 873-3 V1.1.1 (2001-01)
Technical Report

Methods for Testing and Specification (MTS);
The Tree and Tabular Combined Notation version 3;

Part 3: TTCN-3 MSC Presentation Format

ETSI

ETSI TR 101 873-3 V1.1.1 (2001-01)2

Reference
DTR/MTS-00063-3

Keywords
ASN.1, methodology, MSC, MTS, testing, TTCN

ETSI

650 Route des Lucioles
F-06921 Sophia Antipolis Cedex - FRANCE

Tel.: +33 4 92 94 42 00 Fax: +33 4 93 65 47 16

Siret N° 348 623 562 00017 - NAF 742 C
Association à but non lucratif enregistrée à la
Sous-Préfecture de Grasse (06) N° 7803/88

Important notice

Individual copies of the present document can be downloaded from:
http://www.etsi.org

The present document may be made available in more than one electronic version or in print. In any case of existing or
perceived difference in contents between such versions, the reference version is the Portable Document Format (PDF).

In case of dispute, the reference shall be the printing on ETSI printers of the PDF version kept on a specific network drive
within ETSI Secretariat.

Users of the present document should be aware that the document may be subject to revision or change of status.
Information on the current status of this and other ETSI documents is available at http://www.etsi.org/tb/status/

If you find errors in the present document, send your comment to:
editor@etsi.fr

Copyright Notification

No part may be reproduced except as authorized by written permission.
The copyright and the foregoing restriction extend to reproduction in all media.

© European Telecommunications Standards Institute 2001.
All rights reserved.

http://www.etsi.org/
http://www.etsi.org/tb/status
editor@etsi.fr

ETSI

ETSI TR 101 873-3 V1.1.1 (2001-01)3

Contents

Intellectual Property Rights ..7

Foreword..7

Introduction..7

1 Scope..9

2 References ..9

3 Abbreviations ...9

4 Overview..9

5 TSC language concepts...12
5.1 TSC document .. 12
5.1.1 Parameterization of TSC documents... 13
5.1.2 Implicit and explicit typing for components and ports... 13
5.1.2.1 Implicit typing for components and ports .. 13
5.1.2.2 Explicit typing for components and ports .. 13
5.1.3 Importing other TSC documents... 14
5.1.4 Variable declarations.. 14
5.1.5 Data definitions.. 14
5.1.6 Data parenthesis declaration ... 14
5.2 Control part... 14
5.2.1 Parameterization of TSCs... 15
5.2.2 Control variables.. 16
5.2.3 References to test cases .. 16
5.2.4 Control actions... 16
5.2.5 Alternative expressions .. 17
5.3 Test cases.. 17
5.4 Instances ... 18
5.4.1 Test component instances... 18
5.4.2 Explicit port instances .. 18
5.4.3 Implicit port instances .. 19
5.5 Test component handling... 20
5.6 Port handling... 21
5.6.1 Handling of explicit ports... 21
5.6.2 Handling of implicit ports .. 22
5.7 Configurations... 23
5.8 Data .. 24
5.8.1 Declaring data.. 24
5.8.2 Global data .. 24
5.8.3 Static data .. 24
5.8.4 Dynamic data... 25
5.8.4.1 Component variables .. 25
5.8.4.2 Bindings... 25
5.8.4.3 Component initiation .. 25
5.8.4.4 Data in messages .. 25
5.8.4.5 Action boxes .. 25
5.8.4.6 Component and port types .. 25
5.8.5 Guarding conditions... 26
5.8.6 Setting conditions .. 26
5.9 Timers... 26
5.10 Asynchronous communication... 27
5.10.1 Messages ... 27
5.10.2 Receiving any message .. 29
5.10.3 Receiving from any port... 29
5.10.4 Trigger message... 29
5.11 Synchronous communication ... 29

ETSI

ETSI TR 101 873-3 V1.1.1 (2001-01)4

5.11.1 Call, getreply, catch, and timeout.. 30
5.11.2 Getcall, reply, and raise.. 32
5.11.3 Any handling ... 33
5.12 Behaviour ... 34
5.12.1 Sequential behaviour.. 34
5.12.2 Alternative behaviour... 34
5.12.3 Interleaved behaviour... 36
5.12.3.1 Co-regions.. 36
5.12.4 Loops .. 37
5.12.5 Functions... 37
5.12.6 Defaults ... 37
5.12.7 Return statement .. 38
5.12.8 Action Boxes ... 39
5.13 Verdicts .. 39
5.14 High-level TSC (HTSC) .. 40
5.15 Hyper_TSC... 41
5.16 Partial TSC ... 44
5.17 Hybrid_TSC.. 44

Annex A: Used subset of and extensions to MSC ..46

A.1 Overview..46
A.1.2 Test specific extensions ... 47
A.1.2.1 TSC document ... 47
A.1.2.1.1 New document sections .. 47
A.1.2.1.2 Component and port instances... 47
A.1.3 TSC heading ... 48
A.1.4 Test components.. 48
A.1.4.1 MTC as keyword ... 48
A.1.4.2 Self as keyword.. 48
A.1.5 Messages... 48
A.1.6 Trigger.. 49
A.1.7 Check.. 49
A.1.8 Control flow.. 49
A.1.9 Test verdicts within conditions .. 50
A.1.10 Timer .. 50
A.1.11 Create to test components .. 50
A.1.12 Start to test components... 50
A.1.13 Return for functions... 51
A.1.14 Stop on test components .. 51
A.1.14.1 Special meaning of stop on the MTC instance... 51
A.1.14.2 Stop within an operand of an in-line expression .. 51
A.1.15 Clear, start and stop to ports... 52
A.1.16 In-line expressions... 52
A.1.16.1 Propagation of messages to the environment... 52
A.1.16.2 New interleave in-line expression... 52
A.1.17 HTSC.. 53
A.1.18 Hybrid TSCs ... 53
A.1.19 Extensions to the data part ... 53
A.1.19.1 Declaring Data... 53
A.1.19.2 Static Data ... 54
A.1.19.3 Dynamic Data.. 54
A.1.19.4 Bindings .. 54
A.1.20 Hyper TSCs .. 55
A.1.21 Ports ... 55
A.1.22 Default .. 55

Annex B: The TSC forms...56

B.1 Overview..56
B.1.1 An example... 56
B.1.2 Form aspect: vertical split vs. no vertical split .. 57
B.1.3 Form aspect: horizontal split vs. no horizontal split .. 58

ETSI

ETSI TR 101 873-3 V1.1.1 (2001-01)5

B.1.4 Form aspect: explicit vs. implicit port representation.. 60
B.1.5 Form aspect: hybrid vs. not hybrid... 61
B.1.6 Form aspect: partial vs. complete... 62
B.1.7 Summary of TSC forms... 62

Annex C: Subset of the graphical syntax of TSC...63

C.1 Meta-Language for TSC/gr ...63

C.2 Conventions for the syntax description..64

C.3 Relation between TTCN-3 and TSC Files ...64

C.4 The TSC/gr production rules ...65
C.4.1 Test Sequence Chart document .. 65
C.4.2 Groups .. 68
C.4.3 Test Sequence Chart.. 68
C.4.4 Environment and Ports .. 70
C.4.5 Basic TSC... 72
C.4.5.1 Instances (Component and Port Instances) .. 72
C.4.5.2 Messages ... 74
C.4.5.3 Control Flow.. 75
C.4.5.4 Special Messages ... 78
C.4.5.5 Environment and Ports... 78
C.4.5.6 Conditions ... 80
C.4.5.7 Timers ... 81
C.4.5.8 Actions .. 82
C.4.5.9 Defaults ... 82
C.4.5.10 Instance creation .. 83
C.4.5.11 Instance stop .. 83
C.4.6 Structural concepts .. 83
C.4.6.1 Co-regions ... 83
C.4.6.2 In-line expressions ... 84
C.4.6.3 TSC references .. 84
C.4.7 High-level TSC (HTSC) .. 86

Annex D: Mapping TSC to TTCN-3..88

D.1 Description ...88
D.1.1 TSC documents... 88
D.1.1.1 TSCDocument ... 88
D.1.1.2 TSCDocumentHead ... 88
D.1.1.2.1 TTCN3DataDefinitionList .. 89
D.1.1.2.2 TTCN3DataDefinition .. 89
D.1.1.3 ControlPartArea... 89
D.1.1.3.1 TSCControlReferenceList... 90
D.1.1.3.2 TSCFunctionorGroupReferenceList .. 90
D.1.1.3.3 TSCFunctionorGroupRef.. 90
D.1.1.3.4 TSCControlReferenceArea ... 90
D.1.1.4 TestcasePartArea ... 91
D.1.1.4.1 TSCTestcaseorGroupReferenceList .. 91
D.1.1.4.2 TSCTestcaseReferenceArea.. 91
D.1.1.5 FunctionPartArea... 91
D.1.1.5.1 TSCFunctionReferenceArea ... 92
D.1.1.6 NamedAltPartArea... 92
D.1.1.6.1 TSCNamedAltorGroupReferenceList.. 92
D.1.1.6.2 TSCNamedAltReferenceArea ... 92

Annex E: An INRES example in TSC..93

E.1 TSC document ..93

E.2 TSCs for sequential test case...94
E.2.1 First version .. 94
E.2.2 Second version .. 96

ETSI

ETSI TR 101 873-3 V1.1.1 (2001-01)6

E.2.3 Third version... 98

E.3 TSCs for concurrent test case..99

E.4 INRES example in TTCN-3 core language.. 108

History ... 115

ETSI

ETSI TR 101 873-3 V1.1.1 (2001-01)7

Intellectual Property Rights
IPRs essential or potentially essential to the present document may have been declared to ETSI. The information
pertaining to these essential IPRs, if any, is publicly available for ETSI members and non-members, and can be found
in ETSI SR 000 314: "Intellectual Property Rights (IPRs); Essential, or potentially Essential, IPRs notified to ETSI in
respect of ETSI standards", which is available from the ETSI Secretariat. Latest updates are available on the ETSI Web
server (http://www.etsi.org/ipr).

Pursuant to the ETSI IPR Policy, no investigation, including IPR searches, has been carried out by ETSI. No guarantee
can be given as to the existence of other IPRs not referenced in ETSI SR 000 314 (or the updates on the ETSI Web
server) which are, or may be, or may become, essential to the present document.

Foreword
This Technical Report (TR) has been produced by ETSI Technical Committee Methods for Testing and Specification
(MTS).

Introduction
The Message Sequence Chart (MSC) presentation format for TTCN-3 is a graphical format based on the
ITU-T Recommendation Z.120 [2].

This presentation format uses a subset of Message Sequence Charts with test specific extensions and extensions of
general nature. This MSC profile will be in the following referred to as Test Sequence Charts (TSCs). The majority of
extensions are textual extensions only. Graphical extensions are defined to ease the readability of TSC documents. All
graphical extensions have either substitutes within standard MSC or are optional (i.e. need not to be used). This allows
established MSC tools (with some modifications to the textual syntax) to be used for the graphical definition of
TTCN-3 test cases using TSCs. The used subset of and extensions to MSC are described in annex A.

The core language of TTCN-3 is defined in ES 201 873-1 [1] and provides a full text-based syntax, static semantics and
operational semantics as well as defining the use of the language with ASN.1. The TSC presentation format provides an
alternative way of displaying the core language.

TTCN-3
Core
Language

Presentation
formatn

TTCN-3 User

ASN.1
Types &
Values

Other Types
& Values n

Graphical
format

Other Types
& Values 2

Tabular
format

Figure 1: User's view of the core language and the various presentation formats

http://www.etsi.org/ipr

ETSI

ETSI TR 101 873-3 V1.1.1 (2001-01)8

The core language may be used independently of the TSC presentation format. However, the TSC format cannot be
used without the core language. Use and implementation of the TSC presentation format shall be done on the basis of
the core language.

The present document describes how different forms (styles) of Message Sequence Charts (MSC) can be used for
describing test specifications. In doing so, we introduce new language concepts that are necessary for the definition of
test specifications.

The present document defines:

• the language features of TSC;

• the guidelines for the use of TSC;

• the used subset of and extensions to MSC.

Together, these characteristics form the TSC presentation format.

ETSI

ETSI TR 101 873-3 V1.1.1 (2001-01)9

1 Scope
The present document defines the Message Sequence Chart (MSC) presentation format for the TTCN-3 core language
as defined in ES 201 873-1 [1]. This presentation format uses a subset of Message Sequence Charts as defined in [2]
with test specific extensions and extensions of general nature.

The present document is based on the core TTCN-3 language defined in ES 201 873-1 [1]. It is particularly suited to
display tests as TSCs. It is not limited to any particular kind of test specification.

The specification of other formats is outside the scope of the present document.

2 References
For the purposes of this Technical Report (TR) the following references apply:

[1] ETSI ES 201 873-1: "Methods for Testing and Specification (MTS); The Tree and Tabular
Combined Notation version 3; Part 1: TTCN-3 Core Language".

[2] ITU-T Recommendation Z.120 (1999): "Message Sequence Chart (MSC)".

[3] ISO/IEC 9646-3 (1994): "Information technology - Open Systems Interconnection - Conformance
testing methodology and framework - Part 3: The Tree and Tabular Combined Notation (TTCN)".

3 Abbreviations
For the purposes of the present document, the following abbreviations apply:

ASN.1 Abstract Syntax Notation One
BNF Backus-Nauer Form
CATG Computer Aided Test Generation
CORBA Common Object Request Broker Architecture
ETS Executable Test Suite
ETSI European Telecommunication Standards Institute
HTSC High-level Test Sequence Chart
MSC Message Sequence Chart
MTC Master Test Component
PTC Parallel Test Component
SUT System Under Test
TSC Test Sequence Chart
TTCN Tree and Tabular Combined Notation

4 Overview
According to the OSI conformance testing methodology defined in ISO/IEC 9646-3 [3], testing normally starts with the
development of a test purpose, defined as follows.

A prose description of a well-defined objective of testing, focusing on a single conformance requirement or a set of
related conformance requirements as specified in the appropriate OSI specification.

Having developed a test purpose an abstract test suite is developed that comprises of one or more abstract test cases. An
abstract test case defines the actions necessary to achieve part (or all) of the test purpose.

ETSI

ETSI TR 101 873-3 V1.1.1 (2001-01)10

Applying these terms to Message Sequence Charts (MSCs) we can define two categories for their usage:

1) Test Purposes – Typically, a MSC specification that is developed as a use-case or as part of a system
specification. For example, figure 2 illustrates a simple MSC describing the interaction between instances
representing the System Under Test (SUT) and its environment. Such MSC specifications can represent many
different behaviours. Therefore, one or more abstract test cases may be required to ensure that the SUT conforms
to the specification. Note that the inclusion of SUT instances is optional, and that both the SUT and Environment
can be defined using more than one instance. Figure 2 illustrates the typical configuration used during the
development of test purposes.

SUT A B C

a

c
b

d

Figure 2: MSC illustrating how the SUT interacts with its environment

SUT

Environment

A B C

Figure 3: Illustrates the architecture that is normally represented by a test purpose

2) Abstract Test Cases (or Test Suite) – Typically, a MSC written solely for the purpose of describing the behaviour
of a test case. For example, figure 3 illustrates a simple MSC defining the interactions between different
elements of the test configuration e.g. instances can represent test components, ports mapped to the SUT and
ports connected to other test components. Figure 3 illustrates the test configuration used by the MSC
specification.

ETSI

ETSI TR 101 873-3 V1.1.1 (2001-01)11

MTC TC_A TC_BC A B C C1 C2

mandatory optional

d

c

b

a

e

Figure 4: A MSC illustrating both the behaviour and configuration of a test case

MTC

TC_A SUT TC_BC

C1 C2

A C

B

Figure 5: Configuration used by the above MSC

In identifying these two categories of MSC usage two distinct areas of work can be defined see figure 6:

a) Develop a mapping from MSC test purposes to TTCN-3 test cases (or TSC test cases – see next item). However,
it is perceived that such a mapping would be non-trivial, and would involve the development of Computer Aided
Test Generation (CATG) techniques.

b) Develop Test Sequence Charts (TSC) being a test specific profile of MSC for the purpose of specifying abstract
test cases (and test suites) together with a mapping from TSC test cases to TTCN-3.

MSC Test Purpose

TSC Test Suite Specification
contains one or more test cases

TTCN-3 Test Suite

Generation

Mapping

Figure 6: Diagram illustrating the different levels of abstraction for sequence charts

NOTE: Item b) is the focus adopted during the development of the present document.

ETSI

ETSI TR 101 873-3 V1.1.1 (2001-01)12

5 TSC language concepts
This clause explains the language concepts of TSC and indicates their use for the specification of test suites in TSC.

5.1 TSC document
The Test Sequence Chart document defines a test suite and the associated collection of test sequence charts, which
again define traces of test events. An example is illustrated in figure 7.

testcase1

tsc document TestSuite_Example;
...

control

testcases

functions

testcase2
...

control con1 con2

namedalt1

group1

tscgroup group1

group11

testcase11 testcase12

...

...

...

tscgroup group11

...

func1, groupA; groupA:= func2, groupB;

groupB:=func3, func4;

Figure 7: TSC document

The TSC document may contain a collection of Test Sequence Charts (TSCs), together with any declarations needed for
the test suite. Within a TSC document TSCs are grouped according to their function.

The control part, identified using the control keyword, refers to one or more control TSCs, which are defined using the
HTSC notation. These control HTSCs may refer to other control HTSCs, or to TSCs representing test cases. The root
control HTSC is indicated by the keyword control followed by the HTSC identifier.

The test cases part, identified using the test cases keyword, contains TSCs that define the interaction between the ports
and components contained in the TSC document.

The functions part, identified using the functions keyword, contains test behaviour patterns, which are reused by the
test case part.

The named alternatives part, identified using the keyword named alts, contains the named alternatives used in TSCs.

TSCs within the TSC document may be grouped providing a hierarchical structure. A TSC groups references a TSC
group document, denoted using the keyword tscgroup, which in-turn references TSCs or other TSC groups.

TSC references of each part of the TSC document can be denoted either using graphical reference symbols or in the
form of a list of identifiers. The only constraint is that the two representations cannot be mixed within one area.

ETSI

ETSI TR 101 873-3 V1.1.1 (2001-01)13

A TSC document is like a MSC document except of the more fine-grained differentiation into control, test cases,
components and functions TSC parts (as opposed to defining and utility MSC parts only).
Whenever there is no special support for the different TSC document areas, the keywords control, test cases,
functions, and named alts should be put into comment symbols, which serve like the separation line as proposed
above.

5.1.1 Parameterization of TSC documents

A TSC document parameter list defines a set of values that are supplied by the test environment at run-time. During
testing execution these values shall be treated as constants. For example:

tscdocument TestSuiteExample (integer TS_par1, boolean TS_par2);

The data language used with TSC defines the form given to TSC document formal parameters. The syntax given to
formal parameters is taken from TTCN-3.

5.1.2 Implicit and explicit typing for components and ports

Ports facilitate communication between test components, and between test components and the test system interface.
Where, a TSC port instance can support message-based events, procedure-based events or a mixture of both. Test
components then use these ports to communication with other test components or the test system interface.

Where, a port type defines the method of communication that can pass through a port (e.g. message-based,
procedure-based or mixed), including the direction of communication (e.g. in, out or inout).

TSC supports both implicit and explicit typing for components and ports as described in [1].

5.1.2.1 Implicit typing for components and ports

Implicit typing of components and ports is defined using the keyword implicit_typing within the TSC document
header. For example:

tscdocument TestSuiteExample implicit_typing;

Implicit typing means that any typing of ports or components is determined from the message interactions between
ports and component instances.

5.1.2.2 Explicit typing for components and ports

Explicit typing of components and ports is defined using the keyword explicit_typing within the TSC document header.
This means that all port or component types must be given either in the TSC document header, or within instance
headers. For example:

tscdocument TestSuiteExample explicit_typing;
data {

type port MyPortType= {...};
type component MyMTCType= {...};

}

ETSI

ETSI TR 101 873-3 V1.1.1 (2001-01)14

5.1.3 Importing other TSC documents

TSC documents may be imported using an import clause in the document declaration part or by an import statement
within the test case reference. The syntax for the import clause follows that defined in [1].

import testcase
A from moduleA

Figure 8: Example of an imported test case

5.1.4 Variable declarations

Component variables are declared within the TSC document header as part of the declaration contained with the data
definition part, which follows TTCN-3 syntax as defined in [1]. For example:

tscdocument ExampleTestSuite explicit_typing;
data {

type component MyMTC { ...; var MyType1 a, b; var MyPTCType PTC1;... }
type component MyPTC1 { ...; var MyType2 c; var MyType3 d; ...}

}

5.1.5 Data definitions

As described in clause 6.8 the TSC notation can be parameterized with a data language of the users choice. In doing so,
data definitions from the chosen language are given within the TSC document header. For example, if TSC is
parameterized with TTCN-3 data types and values, a TSC document header could look as follows:

tscdocument ExampleTestSuite (SuiteParType par1);
language TTCN-3 data {

type integer SuiteParType;
type enumerated SeqNo { zero (0), one (1) };
type record MyMessageType { integer field1, SeqNo field2 };
template MyMessageType MyTemplateType { 1 , ? };

}

5.1.6 Data parenthesis declaration

Delimiters denoting the start and finish of data strings are declared in the TSC document header (see also clause 6.8).

5.2 Control part
The control part of a TSC document may reference one or more High-level TSCs (HTSC). Together, all HTSCs
referenced within the control part of a TSC document define the execution order (and possibly repetitions) of actual test
cases. One of the control HTSC can be distinguished from other HTSCs using the control keyword. This control HTSC
represents the root of the control structure for the test suite, and may refer to other HTSCs that are also contained within
the control part of the TSC document. Figure 9 illustrates a simple example of a controlling High-level Test Sequence
Chart (HTSC).

import testcase A
from moduleA

ETSI

ETSI TR 101 873-3 V1.1.1 (2001-01)15

tsc Control_Example (MyType1 par1);
var a MyType1;
var result verdicttype;

a:= Par1 + 1

result:=testcase1(a)

[result=fail] [result=pass]

result:=testcase2(a)

log(“termination “)

Figure 9: Example of a control HTSC

Because all the HTSCs contained within the control part of the TSC document represent a single thread of control,
parallel composition is not allowed within a control HTSC, but alternative expressions with guarded conditions are
allowed. Also, all reference expressions are not supported within control HTSCs.

A Control HTSC is similar to a High-level MSC with the addition of formal parameters, local variables, action boxes
containing

A Control HTSC is similar to a High-level MSC with the addition of formal parameters, local variables, action boxes
containing data expressions or log operations, guarded conditions, and references to TSC test cases that return values. Some
restrictions have been applied to the usage of MSC reference expressions.

5.2.1 Parameterization of TSCs

A control HTSC parameter list defines a set of values that are supplied by the test environment at run-time. During
testing execution these values shall be treated as constants. For example:

control ControlExample (integer TS_par1, boolean TS_par2);

The data language used with TSC defines the form given to control TSC formal parameters. In the example illustrated
above the syntax given to formal parameters is taken from TTCN-3 (see also clause 6.8).

ETSI

ETSI TR 101 873-3 V1.1.1 (2001-01)16

5.2.2 Control variables

A controlling HTSC may declare local variables. These variables are different from component variables, as declared
within a TSC document header (see also clause 6.8.4.1), because they are not bound to a single component instance, and
they are not globally visible. Instead controlling variables are declared within the TSC header and are only visible
within the HTSC they are declared.

For example:

control control_example
var integer a:=0;
var verdicttype result1,result2;

As with other data definitions the form given for control variable declarations follows that of the data language used
with TSC. For example, the variable declarations illustrated above are defined using TTCN-3 syntax.

5.2.3 References to test cases

A control HTSC may refer to TSC test cases referenced within the test case part of a TSC document using the reference
symbol. In addition to simple TSC references, a reference symbol may also contain a binding expression.

Binding expressions allow the values returned by TSC test cases to be assigned to a local control variable. The left-hand
side of a binding expression is the identifier of the local control variable, and the right-hand side of the expression is the
test case reference.

For example, figure 10 illustrates a reference to a TSC test case whose value is assigned to the local control variable.

result:=testcase(a)

Figure 10: Example of a test case reference binding expression

A timeout on test execution may be defined either using the time constraint notation of MSC or using the keyword
duration. If the test case fails to complete within the given time constraint an error verdict is returned.

testcase1(a)5E-1 testcase1(a) duration 5E-3

Figure 11: Time supervision of test case execution

5.2.4 Control actions

Action boxes can be used within control HTSCs to introduce expressions, which operate over local control variables, or
to include log statements:

1) a log statement can be introduced into an action box using the TTCN-3 log statement;

2) simple binding expressions that operate over local control variables or parameters can be given in action boxes
contained within a control HTSC. For example, figure 12 illustrates two typical TTCN-3 expressions in which a
local control variable (on the right-hand side) is bound to an expression involving a formal parameter (on the
left-hand side). A semi-colon separates multiple expressions.

ETSI

ETSI TR 101 873-3 V1.1.1 (2001-01)17

varA:=par1;
varB:=par1+1;

Figure 12: Example of an action box containing control expressions

5.2.5 Alternative expressions

Alternative expressions allow choices to be introduced into a control HTSC, where each alternative represents a
different thread of control actions. Within a control HTSC all alternative branches must be guarded using guarding
conditions (see clause 6.8.5). For example, figure 9 illustrates an alternative with two possible choices both of which are
guarded by Boolean conditions. The order in which alternative choices is from top to bottom or from left to right,
respectively. If none of the guarding conditions evaluates to true during run-time then control execution is stopped.

5.3 Test cases
Test cases (see [1]) are represented using Test Sequence Charts (TSCs). A TSC represents the flow of test events
between test component instances, port instances and/or the environment.

A test case declaration is represented by a TSC within a box. The test case identifier is used as the identifier for the
TSC. The component type identifier given after the runs on keyword within TTCN-3, is represented in TSC as the type
of the MTC test component instance, contained inside the instance head symbol (for further details please refer to
clause 6.5). The type declaration for the test system interface is put into the TSC header with the system keyword
(taking the TTCN-3 syntax).

tsc MyTestCaseOne
systemMyTestSystemType

MTC

MyMTCType

Figure 13: TSC for a test case with MTC

The result of an executed test case always is a value of type verdicttype.

ETSI

ETSI TR 101 873-3 V1.1.1 (2001-01)18

A test case is treated like an MSC except of the addition of the system clause to the header information.

5.4 Instances
TSC instances represent either test components or ports (see [1]). In order to differentiate the two kinds of TSC
instances, different graphical symbols are used. TSC instances contained in the TSCs referenced from the control, test
cases, components, or functions part must only be chosen from the list of instances declared in the instance list of the
TSC document.

5.4.1 Test component instances

Figure 14 shows a test component instance. The instance head symbol is an unfilled box, on top of which the identifier
of the test component and inside of which optionally the type of the test component is given. The head symbol is
followed by the instance line (represented as a solid line). The events on this instance line are totally ordered from top
to bottom. The end of a behaviour description for a test component is indicated by the instance end symbol, which is a
filled box.

TC1

TC1_type

Figure 14: Test component instance

There is a special test component instance , denoted using the mtc keyword, which represents the main test component
of a test case (see [1]). It has not to be declared explicitly as it is given implicitly. The concrete MTC type for a test case
is taken from the runs on and/or the type information in the mtc instance head.

A test component instance is treated like an instance in MSC. Test component instances may use the following TSC
constructs: synchronous and asynchronous communication concepts, in-line expressions, co-regions, conditions, action
boxes, timers, instance creation, TSC references, stop and special messages for test component and port handling
(see clauses 6.5 and 6.6).

5.4.2 Explicit port instances

Figure 15 shows an explicit port instance. The instance head symbol is an unfilled box with dashed lines, on top of
which the identifier of the port and inside of which optionally the port type is given. The head symbol is followed by an
port instance line (represented as a dashed line). The end of the behaviour description for a port is indicated by the port
instance end symbol, which is an empty, unfilled box with dashed lines. Also to maintain backward compatibility with
existing MSC tools TSC allows solid lines to be used for representing port instances. In such cases the port keyword is
placed before the port name to distinguish them from control instances.

ETSI

ETSI TR 101 873-3 V1.1.1 (2001-01)19

A

A_type

Figure 15: Explicit port instance

A port instance is graphically treated like an instance in MSC except of the specific port head, port instance line and
port end symbols. In addition, the semantics of a port instance resembles the semantics of ports in TTCN-3: being a
FIFO queue in the receiving direction. Port instances may use synchronous and asynchronous communication TSC
constructs (indicated by an async and sync keyword respectively. In the instance head – a port instance without an
explicit type definition and without this differentiation is assumed to be async) and may share in-line expressions and
TSC references with test component instances. Furthermore, they may have special messages for test port handling
(see clause 6.6).

Whenever there is no support for the special port instance symbol, the MSC instance symbol should be used with the
keyword port in front of the port type, instead.

5.4.3 Implicit port instances

Figure 16 shows an implicit port instance. In fact, there are no graphical symbols for a port that is represented
implicitly. It is rather a specific kind of denoting messages that are exchanged at a port. In case of a sending port, the
message denotation is prefixed with the port identifier and the special symbol ">", whereas in case of a receiving port
the message denotation is postfixes with ">" and the port identifier. Optionally, the port type can be given after the port
identifier separated by a ":". The example given in figure 16 represents that message m is exchanged at port A of type
A_type.

ETSI

ETSI TR 101 873-3 V1.1.1 (2001-01)20

m>A

m>A : A_type

TC1

TC1_type

Figure 16: Implicit port instance (for mapped ports)

If two test component instances have ports which are connected to each other, the name of the sending port is given as
prefix and the name of the receiving port as postfix to the message. In the case that the port names are equal, the postfix
can be omitted.

A: A_type > m> B: B_type

TC1

TC1_type

TC2

TC2_type

Figure 17: Implicit port instance (for connected ports)

5.5 Test component handling
The creation and stop of a test component is shown in the left-hand side of figure 18. The creation of a test component
(see [1]) is represented by a dashed line that is connected to the instance head symbol. Whenever the create line is
directed to a component instance no information shall be attached to it. Otherwise, the identifier of the test component
and "create" are attached to the create symbol.

The stop of a test component, i.e. the termination of a test component (see [1]) is represented by a cross symbol attached
to the instance line.

The right-hand side of figure 18 shows the graphical representation of connect, map, start and done operations for test
components. Connect and/or map operations (see [1]) are given within an action box attached to the instance line of that
test component that performs the connect or map operation. The syntax for the operations is taken from TTCN-3.

ETSI

ETSI TR 101 873-3 V1.1.1 (2001-01)21

The starting of a test component (see [1]) is represented by a dashed arrow connected to the instance line of the started
test component. The identifier of the test component and "start" are attached to the arrow symbol. Whenever the
behaviour function of the test component is described implicitly (i.e. without an explicit TSC reference), the function
identifier shall be given in parenthesis in addition.

The done operation (see [1]) is represented by a guarding condition indicated by a left and right brackets [] (optionally,
the keyword when can be used for a guarding condition as it is done in MSC). The guarding condition has to be put at
the beginning of an operand of an in-line expression, a branch of an HTSC, or a whole TSC. This reflects the typical use
of the done operation in TTCN-3 within flow control statements like if-else and loop statements (see [1]).

TC1

TC1_type

creation and stop: connect, map, start and done:

MTC

MTC_type

TC1

TC1_type

connect (..);
map (..);

TC1.done

start (func)

B > b

a > A

c> C

Figure 18: Test component handling

The treatment of done and start operations for test components are extensions to MSC. Whenever no support for this is
given, action boxes have to be used instead.

5.6 Port handling
The representation of communication operations (see [1]) in TSC depends on the selected form for representing ports.

5.6.1 Handling of explicit ports

The left-hand side of figure 19 represents the operations for controlling communication ports, which are explicitly
represented as port instances (see [1]). A dashed arrow pointing at the porting instance, upon which the operation is to
be performed, is represented by a dashed arrow. The type of port operation (i.e. start, clear, and stop) is attached to this
arrow. The syntax for the port operations is defined with TTCN-3.

The right-hand side of figure 19 represents a sending operation (see [1]) and receiving operation (see [1]). Sending and
receiving operations are represented with a solid arrow having the port instance as destination or, respectively, as
source. The value of information that is sent or received is attached to the arrow. The representation of this information
is described in further details in clauses 6.10 and 6.11.

ETSI

ETSI TR 101 873-3 V1.1.1 (2001-01)22

A

A_type

clear

start

stop

clear, start and stop:

A

A_type

m1

m2

send and receive:

Figure 19: Handling of explicit ports

5.6.2 Handling of implicit ports

The left-hand side of figure 20 represents the operations for controlling communication ports that are implicitly
represented (see [1]). In this case an action box containing the port operations (i.e. start, clear and stop), whose syntax is
defined within TTCN-3.

The right-hand side of figure 20 represents a sending operation (see TTCN-3 [1]) and receiving operation (see [1]).
Sending and receiving operations are represented with a solid arrow having the test component instance that performs
the operation as source or, respectively, as destination. In case of a sending port the port identifier is attached to the
arrow as a prefix (separated with the special symbol ">") to the message denotation. In case of a receiving port, the port
identifier is attached to the arrow as a postfix (separated with the special symbol "<") to the message denotation. The
representation of this information is described in further details in clauses 6.10 and 6.11. Optionally, the port type can
be given in the prefix after the port identifier separated by a ":".

A. clear;
A. stop;
A. start

m1 > A

A> m2

clear, start and stop: send and receive:

TC

TC_type

TC

TC_type

Figure 20: Handling of implicit ports

ETSI

ETSI TR 101 873-3 V1.1.1 (2001-01)23

5.7 Configurations
Test configurations (see [1]) can be graphically represented only if the ports are represented explicitly by port instances:

1) a dashed line to represent the association of a test component with a port instance and;

2) a solid line to represent the connection between two port instances.

The association symbol is always attached to a test component instance and a port instance. The connection symbol is
always attached to two port instances. It is used only if the ports of a test component are represented as separate port
instances (see figure 21).

TC1

TC1_type

A

A_type

TC2

TC2_type

B

B_type

C2

C_type

C1

C_type

Figure 21: Representation of configuration (1)

Two connected ports may be represented by a single multi-port instance. The head of a multi-port instance is split into
several parts by dashed vertical lines, thus allowing the specification of several port identifiers/types. In this case, the
association of test component instances and port instances is used only (see figure 22).

TC1

TC1_type

A

A_type

TC2

TC2_type

B

B_type
C1

C_type C_type
C2

Figure 22: Representation of configuration (2)

ETSI

ETSI TR 101 873-3 V1.1.1 (2001-01)24

The graphical symbols for associations and connections are new to MSC.

Whenever there is no support for these two symbols, the configurations cannot be represented graphically. Instead,
connect and map operations are placed inside an action box.

5.8 Data
The approach adopted for incorporating data into Test Sequence Charts (TSC) has been taken according to MSC [2].
MSC introduced the novel concept of data parameterization allowing users to select the data language of their own
choice. Consequently, TSC reuses this concept, with some minor modifications and extensions, as the basis for
including TTCN-3 data types and values into the TSC language.

However, it must be noted that TSC should not necessarily be restricted to TTCN-3 data types or values. And in
general, it should be possible to parameterize the TSC language with other data languages e.g. Java or C. This will be
worked out in a later version of TSC.

Data is incorporated into TSC in a number of places, such as document parameters, control variables, verdicts,
component and port instance headers, message passing, timers, action boxes, and TSC references. Data is used in two
distinguishable ways: statically, such as in the parameterization of a TSC diagram, or dynamically, such as in the
acquisition of a value through a message receipt. TSC has a number of points in the definition where a string
representing some aspect of data usage is required, such as expressions or type declarations. In order to define the
semantics of TSC with data a number of functions are required that extract the required information from such strings to
interface to the TSC data concepts.

In clause 6.1 we define a set of semantic functions that are required for the use of TTCN-3 data types and values in
TSC.

5.8.1 Declaring data

The declaration of data mostly takes place in a TSC document header clause 6.1, the only exceptions being:

• port and component types, which can be declared within instance headers;

• message types, which can be declared on a message arrow;

• control variables, which are declared local within control TSCs;

• global and component verdict variables, which are declared implicitly.

All declarations are given within the data definition part of the TSC document header. All types and values are taken
directly from the TTCN-3 core notation.

5.8.2 Global data

In general TSC does not support global data. However, implicitly TSC assumes that a verdict variable is declared for
each test case and test component, and that address variables exist for each component. Values for verdict variables are
defined through the mechanisms given in clause 6.12.8, whereas access to address variables is given in clause 6.5.

5.8.3 Static data

Optionally, both TSC documents and TSCs can define formal parameter lists. A corresponding TSC reference must
define a list of actual parameters whose scope is the TSC body. These parameters are treated as constants, whose values
are determined at compile time. Consequently, when a parameter appears in the body, it must only be used in
expressions that reference its value, hence cannot be modified dynamically.

ETSI

ETSI TR 101 873-3 V1.1.1 (2001-01)25

5.8.4 Dynamic data

5.8.4.1 Component variables

Variables are owned by single component instances. This means that only the instance owning a variable can define its
value through the use of bindings or expressions contained within action boxes or message parameters.

5.8.4.2 Bindings

A binding could be considered as an assignment as found in many programming languages. However, if wildcards are
used, permitting under specification, these bindings become simple expressions. Again the notion of a binding is taken
from MSC.

A binding consists of an expression part and a pattern part that are connected by a bind symbol. The bind symbol has
left and right form both of which are equivalent, but which permit more natural reading of a binding associated with a
message. Figure 23 illustrates a simple message interaction in which the variable x, owned by instance TC1, is assigned
to an expression involving the variable y, owned by instance TC2. In all cases the value of a variable should be defined
before it can be used.

TC1 TC2

C > c

tscdocument example1
explicit_typing;
type component TC1_Type { .. var x:integer; ..}
type component TC2_Type { .. var y:integer; ..}

tsc Data_Example

(x:=y+1)

y:=3

Figure 23: Example of a variable binding

5.8.4.3 Component initiation

A parameter list may be passed to a created component via the start message.

5.8.4.4 Data in messages

Dynamic data is permitted in messages via their parameter lists. A list of parameters may be bindings or expressions.

5.8.4.5 Action boxes

Data can appear inside action boxes as a semi-colon separated list of TTCN-3 statements. Such statements are permitted
to use variables, which are owned by the component instance on which the action is placed, or formal parameters.

5.8.4.6 Component and port types

The introduction of component and port types is an extension to the notion of instance kind in MSC. Component and
port types define the type and direction of data that can be communicated by a component over a port. If explicit typing
is used (see clause 6.1.2.2) then all communication events must be consistent with associated component and port types.

ETSI

ETSI TR 101 873-3 V1.1.1 (2001-01)26

5.8.5 Guarding conditions

Guarding conditions in TSC are used to guard choices in alternatives and for the definition of upper bounds in loops.
The Boolean expression placed within a guarding condition is put into brackets. However, in order to keep
compatibility with MSC, the guard can also be preceded with the keyword when.

5.8.6 Setting conditions

Setting conditions in TSC are used to set test verdicts. Test verdicts can have one of five values with the keywords pass,
fail, inconc, none, and error (see clause 6.13).

5.9 Timers
As illustrated in figure 24 the setting, stopping and timeout of a timer are using different graphical symbols. These
events are used to represent the start, stop, and read timer operations and the timeout event (see [1]).

The graphical symbol for a timer looks like an hour-glass. It is attached to the test component instance line with a line
(in the case of the start timer operation) or with an arrow pointing at the test component instance (in the case of a
timeout event). The stop timer operation is represented by a cross, which is attached to the test component instance line.
The graphical symbols are associated with further information like the timer identifier or the timer duration.

MyVar:= MyTimer.read

start timer:

stop timer:

read timer:

timeout:

MyTimer (20E-3)

MyTimer

MyTimer

TC

TC_type

Figure 24: Timer representation

The graphical symbols for timer operations can be combined to give a more compact representation for the timer
handling as shown in figure 25.

ETSI

ETSI TR 101 873-3 V1.1.1 (2001-01)27

start and stop timer:

start timer and timeout:

MyTimer (20E-3)

MyTimer (20E-3)

TC

TC_type

Figure 25: Condensed timer representation

A timer in TSC is treated like a timer in MSC except of the addition of the read timer operation.

5.10 Asynchronous communication
Asynchronous communication comprises of the send, receive, check and trigger operations (see [1]). In general, a
message arrow represents the sending and receiving of a message from or to a component instance. The sending of a
message by a component to it respective port represents a send event, and the receipt of a message by component from
a port represents a receive event.

In TSC, messages are communicated via ports each representing a First-In First-Out (FIFO) buffer. This means that
messages cannot overtake each other.

5.10.1 Messages

In TTCN-3 a message must have a value. Therefore, the type of each message must be declared within the TSC
document header. The value of messages is defined using templates or in-line templates (see [1]). A template is
declared within the TSC document header. In TSC the type of a message is given either by the message name or
implicitly through its template reference, if an in-line template is not used. Figure 26 illustrates the various
combinations of message usage within TSC.

ETSI

ETSI TR 101 873-3 V1.1.1 (2001-01)28

Type Only

Type and Template

Type and In-line

Template Only

MyTypeRef MyTypeRef

{5,MyString,*}

MyTypeRef

MyTemplateRef MyTemplateRef

Figure 26: Combinations of type and template usage for TSC messages

In the case where no template is given the message assumes that any value can be received. When receiving a message
the value keyword can be used to store its value in a local variable. Figure 27 illustrates a receive operation in which the
value of the message is stored in variable x.

MyTypeRef
MyTemplateRef->value x

Port Component

Figure 27: Storing the value of a received message

ETSI

ETSI TR 101 873-3 V1.1.1 (2001-01)29

5.10.2 Receiving any message

Graphically a message arrow labelled with the any keyword shows the receipt of any message. Figure 28 illustrates an
example of the any keyword.

Port Component

any

Figure 28: Example receipt of any message

5.10.3 Receiving from any port

In general the receipt of messages from any port is illustrated using a message coming from a found symbol. Figure 29
illustrates two examples of receiving a message from any port. On the left-hand side a message is shown coming from a
found symbol. This mechanism is used for the no vertical split. On the right-hand side the any keyword is used as an
implicit port.

Component

(MyTemplateRef)

any >MyTypeRef

Component

(MyTemplateRef)

MyTypeRef

Figure 29: Examples of receiving a message from any port

By labelling a message using the any keyword it is possible to receive any message from any port.

5.10.4 Trigger message

A message arrow with the trigger keyword placed above the line represents the trigger operation. The template for the
trigger operation is placed under the line as defined within TTCN-3.

5.11 Synchronous communication
Synchronous communication comprises the send operations call, reply, raise and the receive operations getcall,
getreply, catch (see [1]). Synchronous communication operations are declared within an TSC document in the
declaration part. Their use is represented as events of the respective test component instance.

ETSI

ETSI TR 101 873-3 V1.1.1 (2001-01)30

5.11.1 Call, getreply, catch, and timeout

The call operation is graphically represented by a message arrow starting from a component instance. Above the
message arrow, the keyword call followed by the signature is placed. The signature template is placed underneath the
message arrow. The call operation may be followed by a start timer operation represented by the start timer symbol
together with the timer duration. The call symbol is attached to a subsequent blocking area on the test component. The
blocking area is graphically represented by a tall thin rectangle with dashed vertical border lines. The blocking area
finishes at the reception of a getreply, exception or timeout.

The getreply operation is graphically represented by a message arrow pointing towards a component instance. Above
the message arrow, the keyword getreply followed by the signature is placed. The signature template is placed
underneath the message arrow. Underneath the signature template, the binding of parameter values to variables is
placed. The binding begins with - > (see [1]). The getreply symbol is attached to the end of the blocking area (started by
a call message) on the test component.

The catch operation is graphically represented by a message arrow pointing towards a component instance. Above the
message arrow, the keyword catch followed by the signature is placed. The signature template is placed underneath the
message arrow. Underneath the signature template, the binding of parameter values to variables is placed. The binding
begins with - > (see [1]). The catch symbol is attached to the end of the blocking area (started by a call message) on the
test component. Multiple exceptions within alternative expressions are allowed.

The timeout is represented by a timeout symbol like in MSC. The timeout symbol is attached to the end of the blocking
area on the test component.

In case of a non-blocking call [1], the call operation is not attached to a subsequent blocking area. Instead, a normal
instance line replaces the blocking area.

alt

MTC PCO1
tsc call

call MyProc

getreply MyProc

{MyVar1, MyVar2}

{MyVar1, MyVar2}
-> value Myresult

catch MyProc

MyException

fail

Figure 30: Blocking call with reply and exception

ETSI

ETSI TR 101 873-3 V1.1.1 (2001-01)31

alt

MTC PCO1
tsc call2

call MyProc

getreply MyProc

{MyVar1, MyVar2}

{MyVar1, MyVar2}
-> value Myresult

fail

20E-3

20E-3

Figure 31: Blocking call with reply and timeout

alt

MTC PCO1
tsc call_nowait

call MyProc

getreply MyProc

{MyVar1, MyVar2}

{MyVar1, MyVar2}
-> value Myresult

catch MyProc

MyException

fail

Figure 32: Non-blocking call with reply and exception

ETSI

ETSI TR 101 873-3 V1.1.1 (2001-01)32

5.11.2 Getcall, reply, and raise

The getcall operation is graphically represented by a message arrow pointing towards a component instance. Above the
message arrow, the keyword getcall followed by the signature is placed. The signature template is placed underneath
the message arrow. Underneath the signature template, the binding of parameter values to variables is placed. The
binding begins with - > (see [1]). The getcall symbol is attached to a subsequent activation region on the test
component. The activation region is graphically represented by a tall thin black filled rectangle. The activation region
finishes at the reception of a reply or raise.

The reply operation is graphically represented by a message arrow starting from a component instance. Above the
message arrow, the keyword reply followed by the signature is placed. The signature template is placed underneath the
message arrow. The reply symbol is attached to the end of the activation region (started by a getcall message) on the
test component.

The raise operation is graphically represented by a message arrow starting from a component instance. Above the
message arrow, the keyword raise followed by the signature is placed. The signature template or an expression is
placed underneath the message arrow. The raise symbol is attached to the end of the activation region (started by a
getcall message) on the test component.

alt

MTC PCO1
tsc call3

getcall MyProc

reply MyProc

{5, MyVar}

{5, MyVar}
value 20

raise MyProc

‘Mystring’

-> param (MyPar1Var, MyPar2Var)

Figure 33: Incoming call with reply and exception

ETSI

ETSI TR 101 873-3 V1.1.1 (2001-01)33

5.11.3 Any handling

Accepting any call is represented by a message arrow with getcall any above.

MTC PCO1
tsc call4

getcall any

...

Figure 34: Incoming any call

Getcall on any port is represented by a found message with getcall followed by the signature above and the signature
template underneath.

MTCtsc call5

getcall MyProc

{5, MyVar}
-> param (MyPar1Var, MyPar2Var)

...

Figure 35: Incoming call from any port

Get any reply from a call is represented by a message arrow with getreply followed by the signature and the keyword
any underneath.

Get any reply from any call is a message arrow with getreply followed by the keyword any above and the keyword any
underneath.

Get a reply from any port is represented by a found message with getreply followed by the signature above and the
optional template underneath.

In all cases above, if the port is presented explicitly then the message arrows are drawn from the port instance (in the
case that a concrete port is used). If the ports are represented implicitly, then the port is put in front of getcall and
getreply (separated by a ">" symbol).

Catch any exception is represented by a message arrow with the keyword catch any. Catch on any port is represented
by a found message with the keyword catch above.

ETSI

ETSI TR 101 873-3 V1.1.1 (2001-01)34

5.12 Behaviour
The behavioural program statements (see [1]) cover sequential, alternative, interleaved, default behaviour, and the
return statement. Their representation in TSC is discussed in the following clauses.

5.12.1 Sequential behaviour

Sequential behaviour (see [1]) is implicitly represented as subsequent behaviour on the instance axis of the test
component, which performs the sequential behaviour. For example, the order in which events are placed on the instance
axis is the order in which they occur.

Figure 36 represents that the test component TC1 sends in sequence the messages a and b.

a > A

b > A

TC1

TC1_type

Figure 36: Representation of sequential behaviour

Sequential behaviour in TSC is treated like sequential behaviour in MSC.

5.12.2 Alternative behaviour

Alternative behaviour (see [1]) is represented in the form of an alternative in-line expression (alternatives can also be
represented by an HTSC with choice and guards or, in the HyperTSC form with the enhanced graphical means to
represent alternatives. The exception in-line expression may be used as a shorthand notation for an alternative in-line
expression with the exception part as the first operand and the rest of TSC as the second operand. The alternative in-line
expression is represented in a box, indicating in the left upper corner with the keyword alt that it is an alternative
expression. The alternatives are separated by a dotted line. Guarded alternatives use guarding conditions. The else case
is guarded with an else condition. In order to keep compatibility with MSC, the otherwise keyword can be used instead.
Named alternatives are represented by TSC references with a prefix [expand], which refer to the TSC representing the
named alternative. A TSC that is used as a named alternative, referenced within an expand, must have an alternative
expression on top level.

ETSI

ETSI TR 101 873-3 V1.1.1 (2001-01)35

Within an alternative in-line expression, only local conditions are allowed, but alternative in-line expressions may be
non-local, i.e. covering multiple components. Each component has either only operands with receiving events or with
sending events as first events or an operand may be empty. Sending events must be guarded with deterministic guarding
conditions whereas receiving events may be guarded with guarding conditions. The interpretation of an alternative
in-line expression across multiple components differs from MSC. Non-local alternative in-line expressions covering
multiple components are interpreted as independent local alternative in-line expressions for each component. We allow
non-local alternative in-line expressions as a convenient shorthand notation and a possibility to avoid gates.

alt

[x>1]

else

[] PCO1. receive(MyMessage1);

PCO1 > MyMessage1

[x>1] PCO2. receive(MyMessage2);
PCO2 > MyMessage2

[else] PCO2. receive(MyMessage3);

PCO2 > MyMessage3

[expand] MyNamedAlternative;

[expand] MyNamedAlternative

alt {

}

alt

[x>1]

else

[] PCO1. receive(MyMessage1);

PCO1 > MyMessage1

[x>1] PCO2. receive(MyMessage2);
PCO2 > MyMessage2

[else] PCO2. receive(MyMessage3);

PCO2 > MyMessage3

[expand] MyNamedAlternative;

[expand] MyNamedAlternative

alt {

}

TC1

Figure 37: Representation of alternative behaviour (with implicit ports)

alt

[x>1]

else

[] PCO1. receive(MyMessage1);

MyMessage1

[x>1] PCO2. receive(MyMessage2);
MyMessage2

[else] PCO2. receive(MyMessage3);

MyMessage3

[expand] MyNamedAlternative;

[expand] MyNamedAlternative

alt {

}

PCO1 PCO2TC1

Figure 38: Representation of alternative behaviour (with explicit ports)

ETSI

ETSI TR 101 873-3 V1.1.1 (2001-01)36

Alternative behaviour is either represented within alternative in-line expressions as it is done in MSC or within
HyperTSC, which is an extension to MSC. In addition for user convenience, brackets and the keyword otherwise can
be used within guarding condition.
Alternatives get an additional semantic interpretation: they are interpreted from top to bottom within alternative in-line
expressions and from left to right within HyperTSC. Whenever this is ambiguous, a circled number can be put into the
TSC reference box of a HyperTSC to indicate the priority level for that alternative. The alternatives are evaluated from
smallest to highest numbers.

Whenever there is no support for HyperTSC, alternative in-line expressions can be used only.

5.12.3 Interleaved behaviour

The interleave statement of [1] allows the specification of interleaved occurrences of sequences preserving the
deterministic ordering of sending events. This statement is represented in TSC with an in-line expression having in the
upper left side box the keyword int.

In agreement with TTCN-3, interleave expressions are not allowed within operands of alternative expressions and
interleave expressions may not be guarded. Therefore, initial events for each operand must be a reception statement,
i.e. receive, trigger, getcall, getreply, catch, check.

int

[] PCO1. receive(MyMessage1)
{ … }

PCO1 > MyMessage1

[] PCO2. receive(MyMessage2)
{ … } PCO2 > MyMessage2

interleave {

}

TC1

...

...

Figure 39: Representation of interleaved behaviour

The interleave in-line expression is an extension to MSC. It is like any other MSC in-line expression except that it uses
the keyword int to indicate that it represents interleaved behaviour. Simple interleaved behaviour can be represented in
TSC by the use of co-regions.

5.12.3.1 Co-regions

Co-regions may be used in TSC instead of interleave in-line expressions for the simple case where only reception
events are interleaved, i.e. only reception events (receive, trigger, getcall, getreply, catch, and check) may be placed
within a co-region.

ETSI

ETSI TR 101 873-3 V1.1.1 (2001-01)37

5.12.4 Loops

The for, while, do while statement of (see [1]) allows the specification of cyclic behaviour. In TSC, we support the for
and while statement only. These statements are represented in TSC with a loop in-line expression having in the upper
left side box the keyword loop (loops can also be represented by an HTSC with cyclic connection lines and guards or,
in the HyperTSC form with the enhanced graphical means to represent loops).

In TSC, loops must have a lower boundary. If the lower boundary is not reached or if the lower boundary is greater than
the upper boundary then an error verdict is given. Within loop in-line expressions, only local conditions are allowed, but
loop in-line expressions may be non-local.

A loop exits, if the upper boundary is reached or if a guard becomes false.

The interpretation of in-line loop expressions across multiple components differs from MSC. Similarly to in-line
alternative expressions, non-local loop in-line expressions covering multiple components are interpreted as independent
local loop in-line expressions for each component. We allow non-local loop in-line expressions as a convenient
shorthand notation and a possibility to avoid gates.

m1 > A

A > m2

TC

TC_type

loop <1,3>

Figure 40: Loop behaviour

5.12.5 Functions

Functions are used in TTCN-3 to express test behaviour or to structure computation in a module. Functions may return
a value. [1]. In TSC, functions are represented by means of TSC references. Binding expressions allow the values
returned by TSC test cases to be assigned to a local variable. Note, that values cannot be returned by a function (TSC
reference) crossing multiple components.

5.12.6 Defaults

Defaults (see [1]) are represented by separate TSCs and activated and deactivated by referring to those TSCs within a
special graphical symbol for defaults. The graphical symbol for representing defaults is a parallelogram, which is
attached to the test component instance line. Inside the graphical symbol, the keyword activate or deactivate followed
by the default behaviour in parenthesis are given (as it is done in the TTCN-3 syntax for the activate and deactivate
operations). Named alternatives may take parameters. A list of named alternatives may also be given to the activate
operation. In this case, the named alternatives are expanded in the order given.

ETSI

ETSI TR 101 873-3 V1.1.1 (2001-01)38

activate (Default1)

deactivate (Default1)

activate:

deactivate:

TC

TC_type

Figure 41: Default representation

The default symbol is an extension to MSC for the representation of TTCN-3 defaults. Whenever the new graphical
symbol is not available, an alternative representation would be the action box having the activate or deactivate operation
inside.

5.12.7 Return statement

Return statements (see [1]) for behaviour functions (i.e. those with a runs on keyword in the function header) (see note)
are represented by the instance stop symbol. If a return value is associated, an additional dashed arrow starting at the
instance line of the returning test component is used. The return keyword and the return value are attached to the arrow
symbol. The type identifier for the return is given after the return keyword of the TSC header.

NOTE: Evaluation functions are not represented graphically in TSC, but are contained in the TSC data part with
their textual TTCN-3 definition.

ETSI

ETSI TR 101 873-3 V1.1.1 (2001-01)39

TC1

TC1_type

return verdict.get

tsc MyBehaviour
return verdicttype

Figure 42: Return representation

The treatment of return values for behaviour functions is an extension to MSC: both the additional keyword return in
the header information as well as the dashed arrow for the return value extend MSC.

If this extension is not supported an action box for the return of a value is used instead.

5.12.8 Action Boxes

Apart from assignments, action, boxes may contain TTCN-3 statements like the connect, map or log operation.

5.13 Verdicts
Verdict operations allow test components to set and retrieve local verdict values. Each test component maintains its own
local verdict, which is created for each test component at the time of instantiation. All verdicts can have one of five
values pass, fail, inconc, none, and error where, inconc means an inconclusive verdict. In addition to local verdicts
there is a global verdict for each test case. The value of this verdict is returned by the test case upon termination. The
value of the global verdict is defined by the values of all test components within a test case (i.e. MTC and every PTC).
The rules for determining the global verdict is determine using the overwriting rules defined in [1].

A local verdict can be set in one of two ways: (1) using the verdict operation verdict.set (value), or (2) using a local
condition labelled with one of the following keywords pass, fail, inconc, and none. Figure 43 illustrates the setting of a
local verdict variable.

ETSI

ETSI TR 101 873-3 V1.1.1 (2001-01)40

TC

verdict.set(pass)

TC

pass

Figure 43: Operations that can be used to set a local verdict

The value of a local verdict variable can be retrieved using the operation verdict.get. Figure 44 illustrates the
assignment of the local verdict to a local variable.

TC

x:=verdict.get

Figure 44: An example of how the local verdict variable can be retrieved

5.14 High-level TSC (HTSC)
High-level TSCs are used in the control part of the TSC document (see clause 6.2) or may be used for representing
alternative or cyclic behaviour (see clause 6.15) within test cases. HTSCs provide a means to graphically define how a
set of TSCs can be combined. HTSCS allow the description of sequential, alternative and parallel composition.
Guarding conditions (see clause 6.8.5) are used to guard choices and loops in HTSCs. HTSCs used for the control part
of the TSC document have the following extensions to MSC [2]: formal parameters, local variables, action boxes
containing data expressions , guarded conditions, and references to TSC test cases that return values. Some restrictions
have been applied to the usage of MSC reference expressions. For test case modelling, HTSC contains few extensions
concerning the parallel composition: The parallel frame (rectangle) may be omitted in case where it is redundant and no
ambiguities may occur. In order to explicitly indicate the connection of ports between different reference symbols in
HTSCs, a double line arrow with the port names above can be used. A dashed double line arrow can be used to indicate
a create/start operation between references.

NOTE: the same connection and create/start construct can be used also between TSC references contained in
plain TSCs.

ETSI

ETSI TR 101 873-3 V1.1.1 (2001-01)41

system2

system1 CP_C2

Figure 45: HMSC with parallel composition and connection, create/start symbol

5.15 Hyper_TSC
The most obvious and straightforward way to represent TTCN-3 test cases by TSC diagrams is to use in-line operator
expressions for alternatives, iterations etc. Depending on the test verdict, the representation of alternatives by means of
the exception operator may be more suitable (see clause 6.12.2). Practice has shown that apart from simple cases using
such in-line expressions may lead to diagrams, which are not so easy to read and to understand. As a consequence, it is
not clear whether such a TSC format would mean a progress with respect to the TTCN-3 notation or even a step back.
In particular, in-line operator expressions obscure the message flow of the "standard" cases (pass verdict) by mixing it
with alternative parts. As a rule, in-line expressions should be used only in a very limited manner and should be
restricted to a few alternatives or loops.

In more complex situations, HTSCs are much more transparent since they abstract from details and focus on the
compositional structure. However, if standard HTSCs are used instead of in-line expressions it has the immediate
drawback that the representation appears in a fairly indirect manner. Standard HTSCs consist of TSC references, which
point to TSC definitions by means of reference names. In order to overcome this deficiency, an expanded form of TSC
references within HTSCs is admitted. This is a real extension to the MSC language. If a "mixed" representation is
allowed where some HTSC references appear in expanded form and some not, a very flexible notation is obtained
(see figure 46). In particular, it provides a means to single out the normal (pass-) case. The TSC references referring to
the pass-case may be shown in expanded form, the others as non-expanded TSC references. An immediate
generalization of this idea is to allow also representations where inconclusive- and fail-cases are singled out by
changing the roles.

A test case representation by means of HTSCs where parts of the TSC references appear in expanded form still has the
disadvantage that the non-expanded TSC references do not provide sufficient information without looking at the
corresponding explicit TSC definitions in the TSC document. This is particularly inconvenient in case where many
small TSC definitions are used, which is just typical for test case descriptions. To make HTSCs applicable to test cases,
an additional extension is necessary. It seems to be more appropriate to interpret the TSC referencing mechanism in a
hypertext-like manner assuming a corresponding tool support where the TSC references can be expanded within the
embedding HTSC or possibly also in a separate window. The TSC references, which can be expanded may be indicated
by underlining the text, by coloured text or by a variation of the line width of the symbol lines.

ETSI

ETSI TR 101 873-3 V1.1.1 (2001-01)42

tsc_reference_1

tsc hyper1

MTC PCO1

a

MTC PCO1

b

MTC PCO1

c

Figure 46: Combined use of Hyper TSC and TSC references

Eventually, such a coherent expanded representation of a whole path should be possible not only in a separate window
but also in in-line-form within the HTSC itself. This is advantageous in particular, to show the pass-case in a coherent
manner since in case of many alternatives, a splitting is very disturbing. Therefore, a further extension of HTSCs is
introduced which somehow may be viewed also as a unification of HTSC and BTSC (basic TSC). Several expanded
TSC references may be combined to one coherent expanded TSC reference. As a consequence, the connection points
have to be shifted to the border line of the resulting TSC reference. This procedure is illustrated in figure 47.

ETSI

ETSI TR 101 873-3 V1.1.1 (2001-01)43

MTC PCO1

tsc hyper2

a

b

c

tsc_reference_1

Figure 47: Condensed representation of Hyper TSC

The dashed lines are used in an obvious manner as separators to indicate the clauses to which the branching refers. If
the branching refers to the reception of an event also a more compact notation with the same semantics may be used
where the separation line is a continuation of the message input.

MTC PCO1

tsc hyper3

a

b

c

tsc_reference_1

Figure 48: Shorthand for sectioning in Hyper TSC

The concept of TSC reference expansion is not restricted to HMSCs. It may be used also in any basic TSCs containing
MSC references.

It is important to note that the extension for Hyper TSC merely refers to the graphical representation and does not imply
any semantics changes.

A tag will be used in TSC to indicate whether a TSC shall be represented in expanded or non-expanded form.

ETSI

ETSI TR 101 873-3 V1.1.1 (2001-01)44

5.16 Partial TSC
The analogy with hypertext in HyperTSC leads to another extension of TSC references. Since the TSC reference name
normally does not provide much information about the underlying TSC definition it should be admitted to write pure
comment text together with the test verdict into the TSC reference symbol instead of the TSC reference name thereby,
the TTCN-3 syntax for comments must be used. Please consider figure 49 , which contains a comment only instead of a
concrete reference.

It should be noted, however, that this deviates slightly from the MSC standard: The TSC references do not contain a
name but an arbitrary text. Subsequently, two cases may be distinguished: the TSC reference is undefined or a
corresponding TSC reference definition is provided. In the first case only the comment text together with the test verdict
is assigned to the TSC reference symbols. In the later case, a TSC reference identifier may be specified explicitly in
front of the comment text or otherwise a default identifier is created automatically.

In case where TSC reference definitions are provided the TSC references may be expanded either within the diagram or
in a separate window depending on the special situation. The other way round, expanded TSC references may be closed.
As an additional feature, complete paths in the HTSC may be expanded and shown in expanded form as a coherent TSC
in a separate window.

MTC PCO1

tsc hyper4

a

b

c

Comment
text

Figure 49: Partial TSC (including commented TSC reference)

5.17 Hybrid_TSC
Since TSC can be viewed as a basis for creating TTCN-3 test descriptions, some of the TSC reference definitions may
be provided as well in form of TTCN-3 descriptions instead of TSC diagrams. A TSC containing such a hybrid
description shall be denoted as Hybrid TSC. In a Hybrid TSC, each TSC reference may be defined either in form of a
TSC diagram or in form of a TTCN-3 description.

The choice between both descriptions is left completely to the user. There are two extreme cases of Hybrid TSCs:

1) all TSC references are defined in form of TTCN-3 descriptions; or

2) all TSC references are defined in form of TSC diagrams, which is the normal HyperTSC case.

In practice probably, a mixture is most important where the main path of the test case (pass case) is described in a
coherent manner in form of an expanded TSC diagram while the TSC references describing the side cases
(inconclusive/fail) refer to TTCN-3 descriptions. Such a hybrid representation may be particularly useful for
documentation purposes since it provides a complete test case description with a visualization of the main paths in form
of the TSC format. In case of multiple components, the TSC reference containing a TTCN-3 description must refer to
one single component.

ETSI

ETSI TR 101 873-3 V1.1.1 (2001-01)45

MTC PCO1

tsc hybrid

a

b

c

PCO1.receive (d);

Figure 50: Hybrid TSC (including TTCN-3 core notation)

ETSI

ETSI TR 101 873-3 V1.1.1 (2001-01)46

Annex A:
Used subset of and extensions to MSC

A.1 Overview
Table A.1: Existing MSC constructs with possible extensions/modifications

Feature Used Textual
changes

Graphical
changes

Static
semantics
changes

Dynamic
semantics
changes

Section

MSC Document yes yes yes yes no
Basic MSC

MSC yes yes no yes yes
Instance yes yes yes yes yes
Message yes yes no yes yes
Control Flow yes yes no yes yes
Environment yes no no no no
Gates no
General Ordering no
Condition yes yes no yes yes
Timer yes (without parameters) yes no yes yes
Action yes yes no yes yes
Instance Creation yes yes no yes no
Stop yes no no no yes

Data Concepts
Declaring Data yes yes yes yes yes
Static Data yes yes no no no
Dynamic Data yes yes yes yes yes
Bindings yes yes no no no
Assumed Data Types TTCN-3 data

Time Concepts
Time Constraints yes (for references in

control TSC only)
no no no no

Time Measurements no
Structural Concepts

Co-region yes no no yes no
In-line Expression yes yes no no
MSC Reference Expression no
MSC Reference yes yes no yes no
Instance Decomposition no
High-Level MSC yes yes yes yes yes

ETSI

ETSI TR 101 873-3 V1.1.1 (2001-01)47

Table A.2: TSC specific constructs

Feature Related to existing MSC
Construct

Textual
changes

Graphical
changes

Static
semantics
changes

Dynamic
semantics
changes

Section

Port Instance yes yes yes yes
Start to Test Component Instance Creation yes no yes yes
Return to Function Instance Creation yes no yes yes
Clear to Port Instance Creation yes no yes yes
Start to Port Instance Creation yes no yes yes
Stop to Port Instance Creation yes no yes yes
Trigger Message yes no yes yes
Check Message yes no yes yes
Call Control Flow no no yes no
Getreply Control Flow yes yes yes no
Catch Control Flow yes yes yes yes
Getcall Control Flow yes no yes no
Reply Control Flow yes yes yes no
Raise Control Flow yes yes yes yes
Timer in Calls Timer yes yes yes yes
Functions MSC References yes no yes yes
Defaults Action yes yes yes yes
Hybrid TSC HMSC yes no no no
HyperTSC HMSC yes no no no

A.1.2 Test specific extensions

A.1.2.1 TSC document

Meaning
The TSC document defines the associated collection of TSCs.

A.1.2.1.1 New document sections

Syntax
The TSC document contains document sections for control, test case and functions. This implies the use of new
keywords (textual extension) and additional separator lines (graphical extension). This need not to be used as it eases
the reading only and comments can be used instead as a workaround. TSC allows document parameterization,
i.e. a document head with parameters (textual extension).

Static Semantics
The TSC document must contain references to defined TSCs only. Incomplete TSC specifications containing just
comments are also allowed. Control references may refer to an HTSC only.

Dynamic Semantics
No change.

A.1.2.1.2 Component and port instances

Syntax
Component and port instances are differentiated (by keywords) This implies a new syntax for instance declaration. It
eases readability, but can be realized also with just comments or naming convention as a workaround.

Static Semantics
Port instances or corresponding message prefixes are allowed for declared ports only.

Dynamic Semantics
FIFO order for CPs (= connected ports) and no event structure for PCOs (= mapped ports) is assumed.

ETSI

ETSI TR 101 873-3 V1.1.1 (2001-01)48

A.1.3 TSC heading
Meaning
The TSC head provides the TSC name together with parameter lists.

Syntax
The TSC head contains a system and return keyword (textual extension).

Static Semantics
Return value and return type have to be compatible. Only those ports declared in the test system interface shall be used
as mapped ports. Test system interface and used messages/calls on mapped ports have to be compatible.

Dynamic Semantics
Return becomes a separate control event in the trace semantics.

A.1.4 Test components
Meaning
A test case is executed on test components. Each test case contains exactly one MTC.

A.1.4.1 MTC as keyword

Syntax
MTC/mtc is used as a new keyword (textual extension).

Static Semantics
MTC/mtc may be used only as identifier for "real" instances. There has to be exactly one mtc per test case.

Dynamic Semantics
Stop on an mtc instance has a special meaning, i.e. disrupting all other components.

A.1.4.2 Self as keyword

Syntax
SELF/self is used as a new keyword (textual extension). It can be used whenever the test component identifier is not
known. Alternatively, the test component identifier can be empty in such cases.

Static Semantics
Self may be used only as identifier for "real" instances. There may be at most one self per TSC.

Dynamic Semantics
No change.

A.1.5 Messages
Meaning
Messages describe the asynchronous communication in test cases, i.e. send and receive events at components and ports.

Syntax
Messages are represented by solid arrows. On top of the message, the message type can be given, (optionally) with a
port prefix in case of implicit port representation. Below the message arrow the message template can be given either by
referring to a named message template or by giving an in-line template definition (in parenthesis).

Static Semantics
Template and message/call/etc. types have to match. Port type and message/call/etc. types have to match. Prefixes are
allowed only for communication events.

Dynamic Semantics
For CPs (= connected ports) a FIFO order is defined. No event structure is defined for PCOs (= mapped ports).

ETSI

ETSI TR 101 873-3 V1.1.1 (2001-01)49

A.1.6 Trigger
Meaning
The trigger operation filters messages with certain matching criteria from a stream of received messages on a given
incoming port.

Syntax
In TSC, trigger is defined as a special message with keyword trigger (textual extension to the text syntax of messages).

Static Semantics
The trigger message must always point at a real instance.

Dynamic Semantics
Trigger is interpreted as a separate control event in the trace semantics. Sent messages/calls etc. which are not yet
received at that port and which do not match, are deleted from that port. This is indicated by a special control event:
delete.

A.1.7 Check
Meaning
The check operation allows read access to the top element of message–based and procedure-based incoming port
queues without removing the top element from the queue.

Syntax
In TSC, check is defined as a special message with keyword check (textual extension to the text syntax of messages).

Static Semantics
The check message must always point at a real instance.

Dynamic Semantics
Check is interpreted as a separate control event in the trace semantics. It becomes only then part of a trace if it matches
successfully to the top element of the port.

A.1.8 Control flow
Meaning
Control flow comprises procedure based (synchronous) communication mechanisms defined by means of calls and
replies.

Syntax
TSC uses special keywords for getcall, getreply, catch, raise, reply and special binding to variables for parameters and
return values of a call (textual extension to the text syntax of call messages). For the reply messages getreply, catch,
reply and raise, solid message arrows are used instead of dashed arrows since they are already distinguished from call
messages by keywords (graphical extension). As a workaround dashed message arrows may be used.

Static Semantics
Getcall, getreply and catch must point at real (component) instances only. The corresponding port has to be
synchronous or mixed and must be type compatible. Call, raise and reply must point at port instances only. The port has
to be synchronous or mixed and must be type compatible. Method areas and suspension areas are attached only to "real"
(component) instances.

Dynamic Semantics
Getreply, catch are received at the end of a suspension region or after a non-blocking call, which matches the getreply
and catch. Raise, reply are received at the end of a method symbol or after a non-blocking call, which matches the raise
and reply.

ETSI

ETSI TR 101 873-3 V1.1.1 (2001-01)50

A.1.9 Test verdicts within conditions
Meaning
Test verdicts within conditions denote the result of a test case.

Syntax
TSC employs verdict keywords together with a special handling of their meaning within conditions. However, as any
identifier is allowed within MSC conditions, this does not really impact the syntax of MSC.

Static Semantics
The verdict keywords can be used only in conditions and action boxes, where the verdict of a component is set or read.

Dynamic Semantics
Verdicts can only become worse relative to an instance. Components report implicitly back their verdict to the mtc
when stopping.

A.1.10 Timer
Meaning
In TSC, unnamed timers are used to supervise call operations.

Syntax
A timer start without timer identifier is directly attached to the beginning of a suspension region. A corresponding
timeout is directly attached to the end of a suspension region (graphical extension: extension to the graphical placement
of symbols). A semi-optimal workaround would be to place the start/timeout timer nearby the begin/end of a suspension
region.

Static Semantics:
No other timer events are allowed between start and timeout of the unnamed timer.

Dynamic Semantics:
Timer start at the beginning of a suspension region and the end event of a suspension region become events in the trace.
An end event can be a reply, exception, or unnamed timeout event. No other event can be between start and end.

A.1.11 Create to test components
Meaning
The create operation is used to dynamically create all test components except the MTC.

Syntax
The TSC create construct uses the textual TTCN-3 syntax instead of the textual MSC syntax (textual extension).

Static Semantics
The create arrow may point only to "real" instances (but not to the MTC) or to MSC references or to the environment.
The referenced instance type must have been declared in the declaration part of the TSC document.

Dynamic Semantics
Create just becomes an event in the trace semantics.

A.1.12 Start to test components
Meaning
By means of the start operation the execution of a component's behaviour is started.

Syntax
Graphically, a dashed arrow represents the start operation. This implies a new use of dashed line messages (graphical
extension). As a workaround, standard message arrows can substitute dashed line arrows. The TSC start construct uses
the textual TTCN-3 syntax.

ETSI

ETSI TR 101 873-3 V1.1.1 (2001-01)51

Static Semantics
The start arrow may point only to "real" instances (but not to the MTC) or to MSC references or to the environment.
The referenced instance type must have been declared in the declaration part of the TSC document. Start may only
happen after a create. On the created instance, no event is allowed between create and start.

Dynamic Semantics
Start becomes just an event in the trace semantics.

A.1.13 Return for functions
Meaning
The return operation terminates execution of a function. The return may be optionally associated with a return value.

Syntax
Graphically, a dashed arrow represents the return operation. This implies a new use of dashed line messages (graphical
extension). As a workaround, standard message arrows can substitute the dashed line arrow. The TSC start construct
uses the textual TTCN-3 syntax.

Static Semantics
The return arrow may point only to "real" instances (the calling instance) or to the environment. The referenced instance
type must have been declared in the declaration part of the TSC document.

Dynamic Semantics
Return becomes just an event in the trace semantics.

A.1.14 Stop on test components
Meaning
The stop test component operation explicitly stops the execution of the test component in which the stop is called.

A.1.14.1 Special meaning of stop on the MTC instance

Syntax
At least, this implies a semantic change to cover the disruption of other test components (those which have been created
but are still running when the MTC stops). Possibly, it would be even better to have a specific symbol for this stop
behaviour with disrupt semantics. Either we require the use of that symbol on MTC instances or we use a
pre-processing step to substitute "old" stop symbols on MTC instances with this new symbol and only then apply the
semantics.

Static Semantics:
No change.

Dynamic Semantics
The stop event on an MTC initiates a disrupt for all other active components, i.e. only other stop events are possible
(this does of course not forbid to have further events belonging to the next test case).

A.1.14.2 Stop within an operand of an in-line expression

Syntax
In TSC, a stop of a test component is allowed also within a section of an in-line expression (graphical extension). As a
workaround, in some cases, the sections of the in-line expression may be chosen differently.

Static Semantics
Stop is allowed only for real instances.

Dynamic Semantics
No change.

ETSI

ETSI TR 101 873-3 V1.1.1 (2001-01)52

A.1.15 Clear, start and stop to ports
Meaning
Clear removes the content of an incoming port queue. Start starts listening and gives access to a port. Stop stops
listening and disallows sending operations at a port.

Syntax
Clear/start/stop are special messages to a port. This implies a new use of dashed line messages and new text syntax for
those arrows (graphical and textual extension). As a workaround, dashed line arrows can be substituted by standard
message arrows.

Static Semantics
Clear/Start/Stop may be sent only to declared ports.

Dynamic Semantics
Clear/start/stop are always pointing to port instances. Ports of a component are implicitly started at the start of this
component. A start for a started port is the null operation. Start, clear and stop become control events in the trace
semantics. A receive and a send event on a stopped port is not possible. A start for a stopped port enables again the
receive and send events.

A.1.16 In-line expressions
Meaning
In TSC, in-line expressions are used to define alternative and interleaved behaviour.

A.1.16.1 Propagation of messages to the environment

Syntax
Out- and in-messages point at, respectively come from the in-line expression frame only. This is a graphical syntax
change to MSC, but in fact just an extension to MSC tools. Note that in MSC-96 this propagation of messages to the
next higher environment was allowed, contrary to MSC.

Static Semantics
No change.

Dynamic Semantics
Events coming from or pointing at the in-line expression frame are propagated to the environment (i.e. recursively to
the next higher environment).

A.1.16.2 New interleave in-line expression

Syntax
In TSC, a new keyword int in the left top corner of an in-line expression frame is introduced (textual extension).

Static Semantics
The interleaving in-line expression must always include a component ("real") instance. It is not allowed within alt
expressions and must not include loop expression, activate/deactivate, stop, return and MSC references.

Dynamic Semantics
Interleaving in-line expressions denote full interleaving with "non-interruptible" parts (the receive {send, calculation,
etc.} * sequences). The non-interruptible parts are defined by the TTCN-3 semantics.

ETSI

ETSI TR 101 873-3 V1.1.1 (2001-01)53

A.1.17 HTSC
Meaning
HTSCs (High Level TSCs) define the possible composition of TSCs. HTSCs are used for the description of the module
control part.

Syntax
In TSC, variable declarations are allowed within HTSCs (textual extension to the HMSC header). Action boxes are
included in HTSCs (graphical extension). As a (non-ideal) workaround, a reference to a TSC including the action box
may be used. Value returning TSC references are introduced (textual extension).

These syntax extensions could be even generic. It is problematic, however, for weak sequential composition, which is
fortunately not an issue for TSC, since every test case (mtc instance) has an unambiguous start and end event.

Static Semantics
These extensions may be used for control TSCs only.

Dynamic Semantics
There is implicitly a control instance, which hosts the variables. The sequential composition of test cases does not have
to consider weak composition as stopping/terminating the mtc imposes stopping all running test components and only
then the next test case can be invoked.

A.1.18 Hybrid TSCs
Meaning
Within hybrid TSCs, some of the TSC references may point to TSC reference definitions, which are provided in form of
TTCN-3 descriptions instead of TSC diagrams.

Syntax
MSC references point at "legal" TTCN-3 code fragments (tool issue).

Static Semantics
The code fragments must be consistent (to the environment).

Dynamic Semantics
A code to TSC mapping may be used to handle the semantics for the code fragment or alternatively, the TSC graphics is
mapped to TTCN-3 code with a subsequent evaluation of the whole.

A.1.19 Extensions to the data part

A.1.19.1 Declaring Data

Meaning
Declaration of types and variables used within a TSC.

Syntax
A number of changes have been made to the syntax used for declaring data within TSC:

• Instance, message and timer declarations have been removed from the document header. For TSC, the
declaration of component instance variables is now given within the TTCN-3 data definition string;

• Introduced the concepts of implicit and explicit typing for instances;

• HTSCs can now contain local variable declarations;

• Message names now represent message types, and parameter part now is prefixed with a message template;

• Addition of verdicts;

• Value returning TSC references.

ETSI

ETSI TR 101 873-3 V1.1.1 (2001-01)54

Static Semantics
HTSCs can only contained variable declarations if it is referenced from the control part of a TSC document.
Message names and parameters static rules have changed.
Explicit typing imposes TTCN-3 semantics on the use of component instance events and ports.
Value returning TSC references.

Dynamic Semantics
Addition of verdicts.
Addition of local variables for control HTSCs.
Value returning TSC references.

A.1.19.2 Static Data

Meaning
Parameterization of TSCs constructs.

Syntax
Formal parameter lists now follow TTCN-3 syntax.

Static Semantics
No change.

Dynamic Semantics
No change.

A.1.19.3 Dynamic Data

Meaning
Dynamic data refers to the assignment and reassignment of variables.

Syntax
Local variables, declared within control HTSCs, can be assigned values within High-level TSCs.
TSCs references can return values.
Verdicts.
Wildcards are not need for TTCN-3 parameterization.

Static Semantics
As above.

Dynamic Semantics
TSC has implicit verdict variables, one for each test case and one for each component. The dynamic rules for these
variables are defined by TTCN-3.
Control variables define a possible execution order for control HTSCs.

A.1.19.4 Bindings

Meaning
Bindings are treated as assignments.

Syntax
TSC references can return values.

Static Semantics
No change.

Dynamic Semantics
No change.

ETSI

ETSI TR 101 873-3 V1.1.1 (2001-01)55

A.1.20 Hyper TSCs
Meaning
In HperTSCs, some of the TSC references may appear in expanded form whereby the TSC referencing mechanism is
interpreted in a hypertext-like manner (tool issue). Several expanded TSC references may be combined to one coherent
expanded TSC reference with the connection points being shifted to the borderline of the TSC reference.

Syntax
HyperTSCs admit that only comments are contained in TSC references. The TSC reference name is implicitly defined
by the hyperlink (graphical extension, in particular, tool issues).

Static Semantics
No change.

Dynamic Semantics
No change.

A.1.21 Ports
Meaning
In TSC, communication is effected between the components within the test system and between the components and the
test system interface via communication ports.

Syntax
For ports a special event structure differing from "real" instances may be defined: FIFO/LIFO, no order. In TSC we take
FIFO for CPs and no event structure for PCOs. The explicit port representation uses a new graphical symbol,
i.e. a dashed instance (graphical extension). The implicit port representation uses a message prefix. Therefore, this
extension can just be reflected as a textual extension with message prefix and keyword port, async, etc. in the instance
header (workaround).

Static Semantics
Port instances are allowed for declared ports only.

Dynamic Semantics
An event structure is assumed according to the definition. In TSC this implies FIFO order for CPs (= connected ports)
and no event structure for PCOs (= mapped ports).

A.1.22 Default
Meaning
A default behaviour is an extension to an alt statement or a single receive operation which is defined in a special
manner. A default behaviour has to be activated before it is used and may again be deactivated. This construct may be
used quite generally, e.g. for exception handling or for operations like "onhook" in telecommunication.

Syntax
A new graphical symbol with new keywords (activate/deactivate) is introduced for the default construct. A workaround
for the new default symbol is an action box.

Static Semantics
The default construct may be only attached to component ("real") instances. For the default behaviour, which is
activated or deactivated, a corresponding TSC must be defined.

Dynamic Semantics
The default behaviour defines additional alternative events.

ETSI

ETSI TR 101 873-3 V1.1.1 (2001-01)56

Annex B:
The TSC forms

B.1 Overview
TSC can be used in different forms to represent TTCN-3 test cases. Using a number of simple TSC examples, each
illustrating a different form, we explain those forms.

TSC forms are either for test purpose specifications (these are not considered in the present document) or for test cases.
TSC Forms for test cases can be characterized by the following aspects:

Vertical vs. no vertical split,
i.e. one test component per TSC or combined view on all test components in a TSC.

Horizontal vs. no horizontal split,
i.e. one TSC per function or combined view on the complete behaviour in a TSC.

Explicit vs. implicit port representation,
i.e. port representation with special port instances or port representation as annotations to send and receive operations.

Hybrid vs. no hybrid form,
i.e. references referring to TSC definitions or to TTCN-3 specification parts.

Partial vs. complete form,
i.e. TSC references may contain comments only or all TSC references refer to TSCs.

A TSC specification can make use of hyper facilities. A HyperTSC contains in TSC references hyperlinks to the
defining TSC and supports different views on a TSC to make the test specification more readable and more transparent.

B.1.1 An example
A simple example is taken to express the various forms of TSC specifications . The small example consists of an SUT
that has two interfaces A and B. The test behaviour is to send a message a at interface A and to receive subsequently a
message b at interface B. The test behaviour is realized by two components TC1 and TC2, which are mapped to the SUT
interfaces A and B, respectively. The are co-ordinated via port C by exchanging message c.

SUT
TC1 TC2a

TC1_A A
b

B TC2_B

c

MTC

TC1_C TC2_C

Figure B.1: Simple example for explanation of TSC forms

ETSI

ETSI TR 101 873-3 V1.1.1 (2001-01)57

Those parts of the TTCN-3 example specification that are essential to discuss the various TSC forms, are given below:

MTC: var TC1_type TC1 = create(TC1_type);
var TC2_type TC2 = create(TC2_type);
map(TC1.TC1_A,sut.A); map(TC2.TC2_B,sut.B); connect(TC1.TC1_C,TC2.TC2_C);
TC1.start(behaviour1);
TC2.start(behaviour2);
all component.done;
verdict.set(pass);

behaviour1: TC1_A.send(a);
TC2_C.send;
verdict.set(pass);

behaviour2: TC2_C.receive;
TC2_B.receive(b);
verdict.set(pass);

B.1.2 Form aspect: vertical split vs. no vertical split
In a vertical split form, there are TSCs per test component, which represent the behaviour of the test components. For
example, there is a TSC vertical_split_mtc for the master test component (indicated by the keyword mtc), a TSC
behaviour1 for test component TC1, and a TSC behaviour2 for test component TC2. Per TSC, there is a TSC instance
representing the test component. The TSC instance head contains the identifier of the test component, the keyword mtc
and its type. In the mid of figure 2, there is an unnamed instance of type TC1_type, which acquires the test component
identifier from the create message of the mtc. A test component is started with the special start message (indicated by
the dashed arrow symbol). Afterwards, the behaviour of the test component is represented. In the example, message a is
sent via port TC1_A and message c via port TC1_C. Finally, a test verdict is assigned (in the example, pass is assigned)
and the test component terminates.

tsc behaviour1

TC1_type
start

a > TC1_A

c > TC1_C

pass

tsc behaviour2

TC2_type
start

TC2_C > c

TC2_B > b

pass

map(TC1.TC1_A,sut.A);
map(TC2.TC2_B,sut.B);

connect(TC1.TC1_C, TC2.TC2_C);

TC1.start (behaviour1)

pass

all component.done

mtc

MTC_type

TC1:= TC1_type.create

TC2:= TC2_type.create

tsc vertical_split_mtc

Figure B.2: Vertical split

Without a vertical split, one TSC contains all test components constituting the test case behaviour. In this view, the
communication between TC1 and TC2 with message c transferred from TC1_C to TC2_C becomes apparent. In
addition, the order between test events at different test components is visible. The identifier for the behaviour function
of a test component instance is contained in its start operation.

ETSI

ETSI TR 101 873-3 V1.1.1 (2001-01)58

tsc no_vertical _split

TC1

TC1_type

start (behaviour1)

a > TC1_A

TC1_C > c > TC2_C

pass

TC2

TC2_type

start (behaviour2)

TC2_B > b

pass

mtc
MTC_type

pass

all component.done

map(TC1.TC1_A,sut.A);
map(TC2.TC2_B,sut.B);

connect(TC1.TC1_C, TC2.TC2_C);

Figure B.3: No vertical split

B.1.3 Form aspect: horizontal split vs. no horizontal split
In the horizontal split form, separate TSCs per function called in the behaviour of a test component are defined. Let us
assume, that in the example the behaviour of the test component uses an additional function func1 to perform the
sending and receiving of messages. A separate TSC func1 is defined for this function (right-hand side of figure B.4).
The test component refers to this TSC by means of a TSC reference (a box with round corners containing the TSC
identifier it refers to).

ETSI

ETSI TR 101 873-3 V1.1.1 (2001-01)59

a > TC1_A

c > TC1_C

pass

tsc func1

TC1_type

tsc horizontal_split

TC1_type
start

func1

Figure B.4: Horizontal split

Without horizontal split, the test behaviour of functions is represented in-line at the TSC instance, which represents the
test component that performs a given function. In this form, the information on the structuring of test behaviour into
functions is lost! Whenever this information shall be kept, a Hyper TSC (i.e. one where the TSC reference to a function
is expanded) shall be used instead (see clause B.1.15). In the example, the test behaviour of the function func1 is just
represented in-line at the instance.

tsc no_horizontal_split

TC1_type
start(func1)

a > TC1_A

c > TC1_C

pass

Figure B.5: No horizontal split

ETSI

ETSI TR 101 873-3 V1.1.1 (2001-01)60

B.1.4 Form aspect: explicit vs. implicit port representation
Communication ports can be represented in TSC differently. Either, a port is represented by a special port instance
(indicated by dashed instance head, line and end symbols) or it is represented as a prefix to the message.

Figure B.6 contains an explicit port representation for the ports TC1_A of type A_type and TC1_C of type C_type. The
instance head of port instances contains the port type. Messages, which are sent or received at a port, are represented by
incoming or, respectively, outgoing messages of the port instance. For example, message a that is sent by TC1 to port
TC1_A is represented by a message from instance TC1 to instance TC1_A.

tsc explicit_ports

start
a

c

pass

TC1_type

TC1_A

A_type

TC1_C

C_type

Figure B.6: Explicit ports

Figure B.7 contains an implicit port representation, where the prefix in front of a message indicates the port to which a
message is sent or from which a message is received. The prefix is separated from the message with a ">" symbol. For
example in the figure, TC1_A > a indicates that message a is sent to port TC1_A. Optionally, the port type can be given
in addition such as it is done with TC1_C : C_type > c.

tsc implicit_ports

TC1_type
start

a > TC1_A

c > TC1_C: C_type

pass

Figure B.7: Implicit ports

ETSI

ETSI TR 101 873-3 V1.1.1 (2001-01)61

A combination of different port representation can also be used. In figure B.8 , port TC1_A is represented explicitly and
port TC1_C is given implicitly.

tsc mixed_ports

TC1_type
start

a

c > TC1_C: C_type

pass

TC1_A

A_type

Figure B.8: Combination of different port representation

A tag will be used in TSC to indicate whether a port shall be represented in TSC/gr explicitly or implicitly.

B.1.5 Form aspect: hybrid vs. not hybrid
In hybrid TSC, TTCN-3 code can be used directly inside of TSC references. In figure B.9, the test behaviour is given
textually in terms of TTCN operations and not graphically.

tsc hybrid_tc1

TC1_type
start

tsc func1
{ TC1_A.send(a);

TC1_C.send(c);
}

pass

Figure B.9: Hybrid TSC

ETSI

ETSI TR 101 873-3 V1.1.1 (2001-01)62

The figures given in the previous clauses have not been hybrid.

A tag will be used in TSC to indicate whether a TSC is defined in TSC/gr or in TTCN-3. In fact, both the TSC/gr and
the TTCN-3 code could be used within a TSC definition and either of the two or both can be shown.

B.1.6 Form aspect: partial vs. complete
TSC specifications may be partial only. A TSC may contain inside a TSC reference a comment only (as it is done in
figure B.10). The support of partial TSC specifications is of particular importance for the step-wise development of test
suites within TSC.

tsc partial_tc1

TC1_type
start

// this shall reflect
// the test behavior

pass

Figure B.10: Partial TSC

Complete TSC specifications contain TSC identifiers or TTCN-3 code within TSC references. The figures given in the
previous clauses are complete ones.

B.1.7 Summary of TSC forms
The five different form aspects of TSC result in several different forms for representing test suites in TSC.

The first three aspects, i.e. vertical vs. no vertical split, horizontal vs. No horizontal split, and explicit vs. implicit port
representation, relate to the graphical setting of test specifications in TSC. The hybrid vs. not hybrid aspect relates to the
combined use of TSC and TTCN-3. The partial vs. complete form aspect relates to the level of completeness of a TSC
specification.

Since the graphical representation of test cases in TSC is the main focus of the work, the present document concentrates
on the vertical vs. no vertical split, horizontal vs. no horizontal split, and explicit vs. implicit port representation only.

ETSI

ETSI TR 101 873-3 V1.1.1 (2001-01)63

Annex C:
Subset of the graphical syntax of TSC
This grammar definition for TSC/gr is only partial. It does not cover:

• HyperTSC;

• configuration symbols between test component instances and port instances;

• connection symbols between TSC references;

• stop symbol within operands of in-line expressions.

The graphical syntax definition of TSC/gr uses grammar rules of TTCN-3 and of MSC. Whenever TTCN-3 core
notation production rules are used (for textual annotation of graphical elements) they are referred to as
production_rule_name. Those rules are contained in annex A of [1]. Whenever MSC graphical production rules are
used, they are referred to as < production_rule_name >. Those rules are taken from [2], clause 1. Please note that rules
taken from MSC may have different textual syntax for annotated graphical symbols and may have a modified set of
derived productions within TSC. New rules and rules where the graphical syntax of MSC is changed have no prefix,
i.e. production_rule_name.

C.1 Meta-Language for TSC/gr
The graphical syntax for TSC/gr is defined on the basis of the graphical syntax of MSC [2]. The graphical syntax
definition uses a meta-language, which is explained in clause 1.3.4 of [2]:

"The graphical syntax is not precise enough to describe the graphics such that there are no graphical variations. Small
variations on the actual shapes of the graphical terminal symbols are allowed. These include, for instance, shading of
the filled symbols, the shape of an arrow head and the relative size of graphical elements. Whenever necessary the
graphical syntax will be supplemented with informal explanation of the appearance of the constructions.
The meta-language consists of a BNF-like notation with the special meta-constructions: contains, is followed by, is
associated with, is attached to, above and set. These constructs behave like normal BNF production rules, but
additionally they imply some logical or geometrical relation between the arguments. The is attached to construct
behaves somewhat differently as explained below. The left-hand side of all constructs except above must be a symbol.
A symbol is a non-terminal that produces in every production sequence exactly one graphical terminal. We will
consider a symbol that is attached to other areas or that is associated with a text string as a symbol too. The explanation
is informal and the meta-language does not precisely describe the geometrical dependencies".

See [2] for more details.

ETSI

ETSI TR 101 873-3 V1.1.1 (2001-01)64

C.2 Conventions for the syntax description
Table C.1 defines the meta-notation used to specify the grammar for TSC. It is identical to the meta-notation used by
TTCN-3, but different from the meta-notation used by MSC. In order to ease the readability, the correspondence to the
MSC meta-notation is given in addition and differences are indicated.

Table C.1: The Syntactic Meta-Notation

Meaning TTCN-3 TSC MSC Differences
is defined to be ::= ::= ::=
abc followed by xyz abc xyz abc xyz abc xyz
Alternative | | |
0 or 1 instances of abc [abc] [abc] [abc]
0 or more instances of
abc

{abc} {abc} {abc}* X

1 or more instances of
abc

{abc} + {abc} + {abc} +

Textual grouping (...) (...) {...} X
the non-terminal symbol
abc

Abc abc
(for a TSC non-terminal)
or <abc>
(for a MSC non-terminal)
or abc
(for a TTCN non-terminal)

<abc> X

a terminal symbol abc abc or
"abc"

abc or
"abc"

abc or
<name> or
<character string>

X

C.3 Relation between TTCN-3 and TSC Files
A TTCN-3 Module has as graphical representation a TSC Document. The test case, functions and named alts contained
in a TTCN-3 Module have as graphical representations Test Sequence Charts.

The mapping function from TSC to TTCN-3 core notation defines the underlying core notation for TSC documents and
Test Sequence Charts. The with attribute within the TTCN-3 core notation is used to reference to the TSC Document
and the Test Sequence Charts, respectively. The relation between TSC document and TTCN-3 core notation module is
done via the identical identifier of the TSC document and the TTCN-3 module. The related to attribute within TSC
allows to reference to related system specifications, requirement specifications, etc.

This relation is shown in figure C.1.

module MyModule
{
:
const integer MyConstant := 1;
type record MyMessageType { … };
:
function MyTestStep(){ … }

with display “tsc MyTestStep";
:
testcase MyTestCase(){ … }

with display “tsc MyTestCase";
:
}
with display “tscdocument MyModule";

Figure C.1: Relating TTCN-3 Core Notation to TSC

ETSI

ETSI TR 101 873-3 V1.1.1 (2001-01)65

MyTestCase

tsc document MyModule
related to UMLspec1;
...

testcases

functions

MyTestStep

tsc MyTestStep;tsc MyTestCase
related to Requirement132;

Figure C.2: Relating TSC to TTCN-3 Core Notation

It is a technical issue whether the core notation and the TSC presentations of a TTCN-3 Module are stored in one file or
in several files. This is not defined here.

C.4 The TSC/gr production rules

C.4.1 Test Sequence Chart document
TSCDocumentArea ::=

<frame symbol>
contains TSCDocumentHead
[is followed by ControlPartArea]
[is followed by TestcasePartArea]
[is followed by FunctionPartArea]
[is followed by NamedAltPartArea]

;

TSCDocumentHead ::=
tscdocument TTCN3ModuleId [ModuleParList]
[related to Identifier { “," Identifier }]
[explicit_typing | implicit_typing]
[WithStatement] [“;"]
[[language TTCN-3] data TTCN3DataDefinitionPart]

;

The related to identifier list may refer for example system specifications, requirements specification, etc., which relate
to the TSC document.

The explicit_typing keyword indicates that declarations needed within this TSC document are contained in the module
definition part. The implicit_typing keyword indicates that the declarations have to be generated from the TSCs
contained in this TSC document. If no keyword is used the default is explicit_typing.

TTCN3DataDefinitionPart ::=
“{“ TTCN3DataDefinitionList “}“

;

TTCN3DataDefinitionList ::=
{ TTCN3DataDefinition [WithStatement] }

;

ETSI

ETSI TR 101 873-3 V1.1.1 (2001-01)66

TTCN3DataDefinition ::=
TypeDef | ConstDef |
TemplateDef | FunctionDef | SignatureDef |
ImportDef | TSCGroupDef | ExtFunctionDef |
ExtConstDef

;

Functions defined within TTCN3DataDefinitions shall only use basic statements or function references to functions
defined within TTCN3DataDefinitions or to external functions.

TSCGroupDef ::=
GroupKeyword GroupIdentifier
BeginChar

TTCN3DataDefinitionList
EndChar

;

ControlPartArea ::=
control
(TSCControlReferenceList [“;" TSCFunctionGroupDefList]
| is followed by (TSCControlReferenceArea *) set)
is followed by <separator area>

;

TSCControlReferenceList ::=
TSCControlReference { “,"TSCControlReference }

;

TSCControlReference ::=
([control] FunctionIdentifier) | GroupIdentifier

;

TSCFunctionGroupDefList ::=
TSCFunctionGroupDef { “;" TSCFunctionGroupDef }

;

TSCFunctionGroupDef ::=
GroupIdentifier “:=" TSCFunctionorGroupReferenceList

;

TSCFunctionorGroupReferenceList::=
TSCFunctionorGroupRef { “,"TSCFunctionorGroupRef }

;

TSCFunctionorGroupRef ::=
FunctionIdentifier | GroupIdentifier

;

TSCControlReferenceArea ::=
<msc reference symbol>
contains ([control] FunctionIdentifier | GroupIdentifier)

;

TSC references used in the ControlPartArea shall refer to HTSCs representing TTCN-3 control functions or to groups
that contain other groups or references to control HTSC. Only one control HTSC reference can be prefixed with
control.

TestcasePartArea ::=
testcases
(TSCTestcaseorGroupReferenceList [“;" TSCTestcaseGroupDefList]
| is followed by (TSCTestcaseReferenceArea *) set)
is followed by <separator area>

;

TSCTestcaseorGroupReferenceList::=
TSCTestcaseorGroupRef { “,"TSCTestcaseorGroupRef }

;

TSCTestcaseorGroupRef ::=
TestcaseIdentifier | GroupIdentifier

;

TSCTestcaseGroupDefList::=
TSCTestcaseGroupDef { “;"TSCTestcaseGroupDef }

;

ETSI

ETSI TR 101 873-3 V1.1.1 (2001-01)67

TSCTestcaseGroupDef ::=
GroupIdentifier “:=" TSCTestcaseorGroupReferenceList

;

TSCTestcaseReferenceArea::=
<msc reference symbol>
contains (TestcaseIdentifier | GroupIdentifier)

;

TSC references used in the TestcasePartArea shall refer to TSCs representing TTCN-3 test cases or to groups
containing other groups or test cases only.

FunctionPartArea ::=
functions
(TSCFunctionorGroupReferenceList [“;"TSCFunctionGroupDefList]
| is followed by (TSCFunctionReferenceArea *) set)

;

TSCFunctionReferenceArea::=
<msc reference symbol>
contains (FunctionIdentifier | GroupIdentifier)

;

TSC references used in the FunctionPartArea shall refer to TSCs representing TTCN-3 functions that include behaviour
statements or to groups containing other groups or functions only. Data functions are not graphically represented in
TSC.

NamedAltPartArea ::=
named alts
(TSCNamedAltorGroupReferenceList [“;"TSCNamedAltGroupDefList]
| is followed by (TSCNamedAltReferenceArea *) set)

;

TSCNamedAltGroupDefList ::=
TSCNamedAltGroupDef { “;" TSCNamedAltGroupDef }

;

TSCNamedAltGroupDef ::=
GroupIdentifier “:=" TSCNamedAltorGroupReferenceList

;

TSCNamedAltorGroupReferenceList::=
TSCNamedAltorGroupRef { “,"TSCNamedAltorGroupRef }

;

TSCNamedAltorGroupRef ::=
NamedAltIdentifier | GroupIdentifier

;

TSCNamedAltReferenceArea::=
<msc reference symbol>
contains (NamedAltIdentifier | GroupIdentifier)

;

TSC references used in the NamedAltPartArea shall refer to TSCs representing named alts or to groups containing other
groups or named alts only.

ETSI

ETSI TR 101 873-3 V1.1.1 (2001-01)68

C.4.2 Groups
TSCGroup ::=

TSCControlGroup | TSCTestcaseGroup |
TSCFunctionGroup | TSCNamedAltGroup

;

TSCControlGroup ::=
<msc symbol>
contains TSCGroupHeading
is followed by (TSCControlReferenceArea *) set

;

TSCGroupHeading::=
tscgroup GroupIdentifier

;

TSCTestcaseGroup ::=
<msc symbol>
contains TSCGroupHeading
is followed by (TSCTestcaseReferenceArea *) set

;

TSCFunctionGroup ::=
<msc symbol>
contains TSCGroupHeading
is followed by (TSCFunctionReferenceArea *) set

;

TSCNamedAltGroup ::=
<msc symbol>
contains TSCGroupHeading
is followed by (TSCNamedAltReferenceArea *) set

;

C.4.3 Test Sequence Chart
TSCDiagram ::=

BasicTSCDiagram | HTSCDiagram | HyTSCDiagram
;

BasicTSCDiagram ::=
<msc symbol>
contains TSCHeading <msc body area>

;

HTSCDiagram ::=
<msc symbol>

contains HTSCHeading (HTSCExprArea+) set
;

The use of several HTSC expression areas within one HTSC is a shorthand notation for the parallel expression of those
HTSC expression areas. This shall not be used for HTSCs representing control functions.

HyTSCDiagram ::=
<msc symbol>
contains TSCHeading TSCHyperBodyArea

;

TSCHeading ::=
tsc TSCHead [<end>]

;

TSCHead ::=
(TestcaseIdentifier [“(" [TestcaseFormalParList] ")"]

SystemSpec)
| (FunctionIdentifier [“(" [FunctionFormalParList] ")"]

[ReturnType])
| (NamedAltIdentifier [“("[NamedAltFormalParList] ")"])

;

ETSI

ETSI TR 101 873-3 V1.1.1 (2001-01)69

Local definitions shall be used only for TSCs representing test cases and functions but not for TSCs representing named
alts. Please note that all variable and timer definitions for test cases and functions shall be part of the component type
definition referenced in the runs on and/or the instance head of a test component.

<msc symbol> ::=
<frame symbol>

;

<frame symbol> ::=

;

<msc body area> ::=
(<instance layer> <text layer>

<event layer> <connector layer>) set
;

<instance layer> ::=
(<instance area>*) set

;

<text layer> ::=
(<text area>*) set

;

<event layer> ::=
<event area> | <event area> above <event layer>

;

<connector layer> ::=
(<message area>* | <incomplete message area>* |

TSCSpecialArea* |
<method call area>* | <incomplete method call area>*
<reply area>* | <incomplete reply area>*) set

;

<event area> ::=
<instance event area>

| <shared event area>
| <create area>

;

<instance event area> ::=
(<message event area>

| <method call event area>
| <reply event area>
| <timer area>
| <concurrent area>
| <method area>
| <suspension area>
| <action area>
| <default area>)

;

<shared event area> ::=
| <condition area>
| <msc reference area>
| <in-line expression area>

;

ETSI

ETSI TR 101 873-3 V1.1.1 (2001-01)70

C.4.4 Environment and Ports
Ports represent the interface between a test component and its environment. They are either explicitly represented by
port instance or implicitly within communication messages to the environment (represented as communication to and
from the frame symbol of a TSC).
There is a special TSC management port, which is implicitly given and which allows to gate the TTCN-3 configuration
operations create and start and to gate the TTCN-3 behaviour statement return.

Communication to and from the frame symbol of an in-line expression is a shorthand notation for a communication to
the environment.

TSCIn-linePortArea ::=
TSCIn-lineOutPortArea | TSCIn-lineInPortArea |
TSCIn-lineSpecialOutPortArea | TSCIn-lineSpecialInPortArea |
TSCIn-lineOutCallPortArea | TSCIn-lineInCallPortArea |
TSCIn-lineOutReplyPortArea | TSCIn-lineInReplyPortArea

;

TSCIn-lineOutPortArea ::=
<void symbol>
is attached to <in-line expression symbol>
[is attached to (<message symbol> | <found message symbol>)]

;

TSCIn-lineInPortArea ::=
<void symbol>
is attached to <in-line expression symbol>
[is attached to (<message symbol> | <found message symbol>)]

;

TSCIn-lineOutCallPortArea ::=
<void symbol>
is attached to <in-line expression symbol>
[is attached to (<message symbol>| <found message symbol>)]

;

TSCIn-lineInCallPortArea ::=
<void symbol>
is attached to <in-line expression symbol>
[is attached to (<message symbol> | <found message symbol>)]

;

TSCIn-lineOutReplyPortArea ::=
<void symbol>
is attached to <in-line expression symbol>
[is attached to (<message symbol> | <found message symbol>)]

;

TSCIn-lineInReplyPortArea ::=
<void symbol>
is attached to <in-line expression symbol>
[is attached to (<message symbol> | <found message symbol>)]

;

TSCIn-lineCreateOutPortArea ::=
<void symbol>
is attached to <in-line expression symbol>
[is attached to <createline symbol>]

;

TSCIn-lineCreateInPortArea ::=
<void symbol>
is attached to <in-line expression symbol>
[is attached to <createline symbol>]

;

<def port area> ::=
(<def out port area> |<def in port area>|
<def order out port area> | <def order in port area>
<def out call port area> | <def in call port area>
<def out reply port area> | <def in reply port area>
<def create out port area> | <def create in port area>
<def special out port area> | <def special in port area>)
is attached to <msc symbol>

;

ETSI

ETSI TR 101 873-3 V1.1.1 (2001-01)71

<def out port area> ::=
<void symbol>
is attached to (<message symbol> | <found message symbol>)

;

The <message symbol> or <found message symbol> must have its arrow head end attached to the <def out port area>.

<def in port area> ::=
<void symbol>
is attached to <message symbol>

;

The <message symbol> must have its open end attached to the <def in port area>.

<def out call port area> ::=
<void symbol>
is attached to (<message symbol> | <found message symbol>)

;

The <message symbol> or <found message symbol> must have its arrow head end attached to the <def out call port
area>.

<def in call port area> ::=
<void symbol>
is attached to <message symbol>

;

The <message symbol> must have its open end attached to the <def in call port area>.

<def out reply port area> ::=
<void symbol>
is attached to (<message symbol> | <found message symbol>)

;

The <message symbol> or <found message symbol> must have its arrow head end attached to the <def out reply port
area>.

<def in reply port area> ::=
<void symbol>
is attached to <message symbol>

;

The <message symbol> or <lost message symbol> must have its open end attached to the <def in reply port area>.

<def create out port area> ::=
<void symbol>
is attached to <createline symbol>

;

The <createline symbol> must have its arrow head end attached to the <def create out port area>.

<def create in port area> ::=
<void symbol>
is attached to <createline symbol>

;

The <createline symbol> must have its open end attached to the <def create in port area>.

<def special out port area> ::=
<void symbol>
is attached to TSCSpecialMessageSymbol

;

The TSCSpecialMessageSymbol must have its arrow head end attached to the <def create out port area>.

ETSI

ETSI TR 101 873-3 V1.1.1 (2001-01)72

<def special in port area> ::=
<void symbol>
is attached to TSCSpecialMessageSymbol

;

The TSCSpecialMessageSymbol must have its open end attached to the <def create in port area>.

C.4.5 Basic TSC

C.4.5.1 Instances (Component and Port Instances)
<instance area> ::=

<instance fragment area> [is followed by <instance area>]
;

<instance fragment area> ::=
<instance head area> is followed by <instance body area>

;

<instance head area> ::=
InstanceHeadSymbol
is associated with InstanceHead
contains InstanceType
[is attached to <createline symbol>]
[is attached to (TSCPortInstanceHeadArea *) set]

;

Only instance head areas of port instances shall be attached to each other. The createline symbol shall be attached to
component instance only.

TSCPortInstanceHeadArea ::=
InstanceHeadSymbol
is associated with PortInstanceHead
contains PortInstanceType

;

InstanceHead ::=
ComponentInstanceHead | PortInstanceHead

;

ComponentInstanceHead::=
ComponentIdentifier | mtc | MTC

;

PortInstanceHead ::=
Port

;

InstanceType ::=
ComponentInstanceType | PortInstanceType

;

ComponentInstanceType ::=
ComponentTypeIdentifier

;

PortInstanceType ::=
[port] PortTypeIdentifier

;

InstanceHeadSymbol ::=
<instance head symbol> |
PortInstanceHeadSymbol

;

<instance head symbol> ::=

;

The <instance head symbol> can be used for test component instances and for port instances. In the latter case, the
keyword port (see InstanceType) shall be used in addition.

ETSI

ETSI TR 101 873-3 V1.1.1 (2001-01)73

PortInstanceHeadSymbol ::=

;

The PortInstanceHeadSymbol shall be used for port instances only.

<instance body area> ::=
InstanceAxisSymbol
is followed by (InstanceEndSymbol | <stop symbol>)

;

InstanceAxisSymbol ::=
<instance axis symbol> |
PortInstanceAxisSymbol

;

PortInstanceAxisSymbol ::=

;

The PortInstanceAxisSymbol shall be used for port instances only.

<instance axis symbol> ::=
(<instance axis symbol1> | <instance axis symbol2>)

is attached to (<event area>*) set
;

<instance axis symbol1> ::=

;

<instance axis symbol2> ::=

;

InstanceEndSymbol ::=
<instance end symbol> |
PortInstanceEndSymbol

;

PortInstanceEndSymbol ::=

;

The PortInstanceEndSymbol shall be used for port instances only.

<instance end symbol> ::=

;

ETSI

ETSI TR 101 873-3 V1.1.1 (2001-01)74

C.4.5.2 Messages

<message event area> ::=
<message out area> | <message in area> |
TSCSpecialOutArea | TSCSpecialInArea

;

Message shall never be attached to two port instances.

<message out area> ::=
<message out symbol>
is attached to InstanceAxisSymbol
is attached to <message symbol>

;

<message out symbol> ::=
<void symbol>

;

<void symbol> ::= .
;

<message in area> ::=
<message in symbol>
is attached to InstanceAxisSymbol
is attached to <message symbol>

;

<message in symbol> ::=
<void symbol>

;

<message area> ::=
(<message symbol> [above it TSCMessage_PortsAndType])
[is associated with [“[“] TSCTemplate [“]"]]
is attached to (<message start area> | <message end area>)

;

TSCMessage_PortsAndType ::=
[TSCSourcePort] [Type | any] [TSCDestinationPort]

;

TSCSourcePort::=
[(Port [“:" PortTypeIdentifier “>"]) | any]

;

TSCDestinationPort::=
[“>" Port [“:" PortTypeIdentifier]]

;

<message start area> ::=
<message out area> | <def in port area> | <in-line port area>

;

<message end area> ::=
<message in area> | <def out port area> | <in-line port area>

;

<message symbol> ::=

;

<incomplete message area> ::=
<found message area>

;

<found message area> ::=
(<found message symbol> [above (Type | any)])
[is associated with [“[“] TSCTemplate [“]"]]
[is associated with Port]
is attached to <message end area>

;

At least the type, any or the template shall be given.

ETSI

ETSI TR 101 873-3 V1.1.1 (2001-01)75

TSCTemplate ::=
(TemplateInstance | any) [FromClause] [PortRedirect]

;

<found message symbol> ::=

;

C.4.5.3 Control Flow

<method call area> ::=
(<message symbol>
above (call | getcall | check) [TSCSignatureType | any])
is associated with
(TSCCallSendTemplate | TSCCallReceiveTemplate)
is attached to (<method call start area> | <method call end area>)
is attached to InstanceAxisSymbol
[is attached to (<method area>)]

;

Receive templates and any shall be used only in combination with getcall and check. Method areas shall be attached
only to test component instances.

See [1] for detailed information on the use of call, getcall and check operation.

TSCSignatureType ::=
Signature [[“:"] DerivedDef “:="]

;

TSCCallSendTemplate ::=
(ArrayValueOrAttrib | FieldSpecList) [ToClause]

;

TSCCallReceiveTemplate ::=
[(ArrayValueOrAttrib | FieldSpecList)]
[FromClause] [(PortRedirectWithParam | PortRedirect)]

;

Port redirect shall be used only in combination with check.

<method call start area> ::=
(<call out area> | <def in port area> | <in-line port area>)
is attached to InstanceAxisSymbol
is attached to <message symbol>
[is attached to <suspension symbol>]

;

The suspension symbol can only be used on component instances. Calls without suspension symbol represent nowait
calls. Suspension regions shall be attached only to test component instances.

<method call end area> ::=
(<call in area> | <def out port area> | <in-line port area>)
is attached to InstanceAxisSymbol
is attached to <message symbol>

;

<reply area> ::=
(<message symbol>
above (raise | reply | getreply | catch | check)

[Signature | TSCSignatureType | any])
is associated with
(TSCReplySendTemplate | TSCReplyReceiveTemplate)
is attached to (<reply start area> <reply end area>)

;

Signature shall be used only for raise. Receive templates and any shall be used only in combination with getreply, catch,
and check.

See [1] for detailed information on the use of raise, reply, getreply, catch, and check operation.

ETSI

ETSI TR 101 873-3 V1.1.1 (2001-01)76

TSCReplySendTemplate ::=
(ArrayValueOrAttrib | FieldSpecList) [ReplyValue] [ToClause]

;

Reply value shall be used only in combination with reply.

TSCReplyReceiveTemplate ::=
[(ArrayValueOrAttrib | FieldSpecList)] [ValueMatchSpec]
[FromClause] [(PortRedirectWithParam | PortRedirect)]

;

Port redirect shall be used only in combination with catch or check.

<reply start area> ::=
(<reply out area> | <def in port area> | <in-line port area>)
is attached to InstanceAxisSymbol
is attached to <message symbol>
is attached to <method symbol>

;

The method symbol can only be used on component instances.

<reply end area> ::=
(<reply in area> | <def out port area> | <in-line port area>)
is attached to InstanceAxisSymbol
is attached to <message symbol>
[is attached to <suspension symbol>]

;

For non-blocking calls, the suspension symbol is not attached.

<incomplete method call area> ::=
<found method call area>

;

<found method call area> ::=
(<found message symbol> above getcall [TSCSignatureType | any])
[is associated with TSCCallReceiveTemplate]
[is associated with Port]
is attached to <method call end area>

;

Either the signature template or an any shall be given. The port identifier shall not be used in combination with a
signature template.

<incomplete reply area> ::=
<found reply area>

;

<found reply area> ::=
<found message symbol> is associated with <msg identification>
[is associated with (<instance name> | <port name>)]
is attached to <reply end area>

;

<method call event area> ::=
(<call out area> | <call in area>)

;

<call out area> ::=
<call out symbol>
is attached to InstanceAxisSymbol
is attached to <message symbol>

;

<call out symbol> ::=
<void symbol>

;

ETSI

ETSI TR 101 873-3 V1.1.1 (2001-01)77

<call in area> ::=
<call in symbol>
is attached to InstanceAxisSymbol
is attached to <message symbol>

;

<call in symbol> ::=
<void symbol>

;

<reply event area> ::=
(<reply out area> | <reply in area>)

;

<reply out area> ::=
<reply out symbol>
is attached to InstanceAxisSymbol
is attached to <message symbol>

;

<reply out symbol> ::=
<void symbol>

;

<reply in area> ::=
<reply in symbol>
is attached to InstanceAxisSymbol
is attached to <message symbol>

;

<reply in symbol> ::=
<void symbol>

;

<method area> ::=
<method symbol>
is attached to <instance axis symbol>
[contains <method event layer>]

;

<method event layer>::=
<method event area> | <method event area> above <method event layer>

;

<method event area>::=
<event area>

;

<method symbol> ::=

;

<suspension area> ::=
<suspension symbol>
is attached to <instance axis symbol>
[contains <suspension event layer>]

;

<suspension event layer>::=
<method invocation area>
| <method invocation area> above <suspension event layer>

;

<method invocation area> ::=
<method start area>
is followed by <method area>
is followed by <method end area>

;

<method start area> ::=
<call in area> | <found method call area>

;

ETSI

ETSI TR 101 873-3 V1.1.1 (2001-01)78

<method end area> ::=
<reply out area> | <lost reply area>

;

<suspension symbol> ::=

;

C.4.5.4 Special Messages

TSCSpecialOutArea ::=
<message out symbol>
is attached to <instance axis symbol>
is attached to TSCSpecialMessageSymbol

;

TSCSpecialInArea ::=
<message in symbol>
is attached to <instance axis symbol>
is attached to TSCSpecialMessageSymbol

;

TSCSpecialArea ::=
TSCSpecialMessageSymbol
is associated with TSCSpecialMessages
is attached to (TSCSpecialStartArea | TSCSpecialEndArea)

;

TSCSpecialMessages ::=
([ComponentIdentifier “."] StartKeyword [“(“ FunctionInstance “)"]) |
([ComponentType “."] CreateKeyword) |
([ComponentIdentifier “."] ReturnKeyword [“(“ Expression “)"]) |
([PortOrAll “."] PortClearOp) |
([PortOrAll “."] PortStartOp) |
([PortOrAll “."] PortStopOp)

;

TSCSpecialStartArea ::=
TSCSpecialOutArea | <def in port area> | <in-line port area>

;

TSCSpecialEndArea ::=
TSCSpecialEndArea | <def out port area> | <in-line port area>

;

TSCSpecialMessageSymbol ::=

;

C.4.5.5 Environment and Ports

<in-line port area> ::=
(<in-line out port area> | <in-line in port area> |
<in-line create out port area> | <in-line create in port area> |
<in-line out call port area> | <in-line in call port area> |
<in-line out reply port area> | <in-line in reply port area>)
[is associated with <port identification>]

;

<in-line out port area> ::=
<void symbol>
is attached to <in-line expression symbol>
[is attached to (<message symbol>| <found message symbol>)]
[is attached to (<message symbol> | <lost message symbol>)]

;

ETSI

ETSI TR 101 873-3 V1.1.1 (2001-01)79

<in-line in port area> ::=
<void symbol>
is attached to <in-line expression symbol>
[is attached to (<message symbol> | <lost message symbol>)]
[is attached to (<message symbol> | <found message symbol>)]

;

<in-line out call port area> ::=
<void symbol>
is attached to <in-line expression symbol>
[is attached to (<message symbol>| <found message symbol>)]
[is attached to (<message symbol> | <lost message symbol>)]

;

<in-line in call port area> ::=
<void symbol>
is attached to <in-line expression symbol>
[is attached to (<message symbol> | <lost message symbol>)]
[is attached to (<message symbol> | <found message symbol>)]

;

<in-line out reply port area> ::=
<void symbol>
is attached to <in-line expression symbol>
[is attached to (<message symbol>| <found message symbol>)]
[is attached to (<message symbol> | <lost message symbol>)]

;

<in-line in reply port area> ::=
<void symbol>
is attached to <in-line expression symbol>
[is attached to (<message symbol> | <lost message symbol>)]
[is attached to (<message symbol> | <found message symbol>)]

;

<in-line create out port area> ::=
<void symbol>
is attached to <in-line expression symbol>
[is attached to <createline symbol>]
[is attached to <createline symbol>]

;

<in-line create in port area> ::=
<void symbol>
is attached to <in-line expression symbol>
[is attached to <createline symbol>]
[is attached to <createline symbol>]

;

<in-line order port area> ::=
<in-line order out port area> | <in-line order in port area>

;

<in-line order out port area> ::=
<void symbol>
is attached to <in-line expression symbol>

;

<in-line order in port area> ::=
<void symbol>
is attached to <in-line expression symbol>

;

<def port area> ::=
(<def out port area> |<def in port area>|
<def out call port area> | <def in call port area>
<def out reply port area> | <def in reply port area>
<def create out port area> | <def create in port area>
<def special out port area> | <def special in port area>)
is attached to <msc symbol>

;

<def out port area> ::=
<void symbol>
is attached to (<message symbol> | <found message symbol>)

;

ETSI

ETSI TR 101 873-3 V1.1.1 (2001-01)80

<def in port area> ::=
<void symbol>
is attached to <message symbol>

;

<def out call port area> ::=
<void symbol>
is attached to (<message symbol> | <found message symbol>)

;

<def in call port area> ::=
<void symbol>
is attached to <message symbol>

;

<def out reply port area> ::=
<void symbol>
is attached to (<message symbol> | <found message symbol>)

;

<def in reply port area> ::=
<void symbol>
is attached to <message symbol>

;

<def create out port area> ::=
<void symbol>
is attached to <createline symbol>

;

<def create in port area> ::=
<void symbol>
is attached to <createline symbol>

;

C.4.5.6 Conditions

<condition area> ::=
<condition symbol>
contains <condition text> [<shared>]
is attached to (<instance axis symbol>*) set

;

<condition symbol> ::=

;

If a shared <condition> crosses an <instance axis symbol> which is not involved in this condition the <instance axis
symbol> is drawn through:

<condition text> ::=
<condition name list> |
when (<condition name list> | “(“ BooleanExpression ")") |
“[“ BooleanExpression “]" |
otherwise | else |
pass | PASS | inconc | INCONC |
fail | FAIL | none | NONE | error | ERROR

;

ETSI

ETSI TR 101 873-3 V1.1.1 (2001-01)81

C.4.5.7 Timers

<timer area> ::=
(<timer start area> | <timer stop area> | <timeout area>)

;

<timer start area> ::=
<timer start area1> | <timer start area2>

;

<timer start area1> ::=
<timer start symbol>
is associated with [TimerRef] [TimerValue]
is attached to <instance axis symbol>
[is attached to (<restart symbol> | <timer stop symbol2>
| <timeout symbol3>)]

;

<timer start area2> ::=
<restart symbol>
is associated with [TimerRef] [TimerValue]
is attached to <instance axis symbol>
is attached to <timer start symbol>
[is attached to (<timer stop symbol2> | <timeout symbol3>)]

;

<timer start symbol> ::=
<start symbol1> | <start symbol2>

;

<start symbol1> ::=

;

<start symbol2> ::=

;

<restart symbol> ::=

;

<timer stop area> ::=
<timer stop area1> | <timer stop area2>

;

<timer stop area1> ::=
<timer stop symbol1> [is associated with TimerRef]
is attached to <instance axis symbol>

;

<timer stop area2> ::=
<timer stop symbol2> [is associated with TimerRef]
is attached to <instance axis symbol>
is attached to (<timer start symbol> | <restart symbol>)

;

<timer stop symbol> ::=
<timer stop symbol1> | <timer stop symbol2>

;

<timer stop symbol1> ::=

;

ETSI

ETSI TR 101 873-3 V1.1.1 (2001-01)82

<timer stop symbol2> ::=

;

<timeout area> ::=
<timeout area1> | <timeout area2>

;

<timeout area1> ::=
<timeout symbol> [is associated with TimerRef]
[(<parameter list>)]

is attached to <instance axis symbol>
;

<timeout symbol> ::=
<timeout symbol1> | <timeout symbol2>

;

<timeout symbol1> ::=

;

<timeout symbol2> ::=

;

<timeout area2> ::=
<timeout symbol3> [is associated with TimerRef]
is attached to <instance axis symbol>
is attached to (<timer start symbol> | <restart symbol>)

;

<timeout symbol3> ::=

;

C.4.5.8 Actions

<action area> ::=
<action symbol>
is attached to <instance axis symbol>
contains ({ FunctionStatement }+)

;

<action symbol> ::=

;

C.4.5.9 Defaults

<default area> ::=
<default symbol>
is attached to <instance axis symbol>
contains ([activate | deactivate]"(“ FunctionIdentifier “)")

;

ETSI

ETSI TR 101 873-3 V1.1.1 (2001-01)83

<default symbol> ::=

;

C.4.5.10 Instance creation

<create area> ::=
<createline symbol>
[is associated with [VariableRef “:="]

ComponentType “." CreateKeyword]
is attached to
((<instance axis symbol> | <def create in port area>)
(<instance head area> | <def create out port area>)) set

;

<createline symbol> ::=

;

C.4.5.11 Instance stop

<stop symbol> ::=

;

C.4.6 Structural concepts

C.4.6.1 Co-regions

<concurrent area> ::=
<coregion symbol>
is attached to <instance axis symbol>
contains <coevent layer>

;

<coregion symbol> ::=
<coregion symbol1> | <coregion symbol2>

;

<coevent layer> ::=
<coevent area> |
<coevent area> above <coevent layer>

;

<coevent area> ::=
(<message event area> |
<incomplete message area> | <action area> |
<timer area> | <create area>)*

;

Only receive events are allowed in a coregion.

<coregion symbol1> ::=

;

ETSI

ETSI TR 101 873-3 V1.1.1 (2001-01)84

<coregion symbol2> ::=

;

C.4.6.2 In-line expressions

<in-line expression area> ::=
(<loop area> | <alt area> | <int area>)
[is attached to <msc symbol>]

;

<loop area> ::=
<in-line expression symbol> contains
(loop [<loop boundary>] <operand area>)
is attached to (InstanceAxisSymbol *) set

;

<alt area> ::=
<in-line expression symbol> contains
(alt <operand area>
(is followed by <separator area>

is followed by <operand area>)*)
is attached to (InstanceAxisSymbol *) set

;

<int area> ::=
<in-line expression symbol> contains
(int <operand area>
(is followed by <separator area>

is followed by <operand area>)*)
is attached to (InstanceAxisSymbol *) set

;

<in-line expression symbol> ::=

;

<operand area> ::=
(<event layer>)* set

;

<separator area> ::=
<separator symbol>

;

<separator symbol> ::=

;

C.4.6.3 TSC references

<msc reference area> ::=
<msc reference symbol>
[is attached to <time interval area>]
contains (TSCReference) set
is attached to (InstanceAxisSymbol *) set
is attached to (TSCConnectionArea *) set
is attached to (TSCConnectionArea *) set

;

ETSI

ETSI TR 101 873-3 V1.1.1 (2001-01)85

TSCReference ::=
([VariableRef “:="]

(TestcaseIdentifier | FunctionIdentifier | ([expand] NamedAltIdentifier))
[“(" [FunctionFormalParList] ")"] [duration FloatValue])

| FunctionBody
| Comment

;

An assignment shall be used only for references to test cases, i.e. within control HTSCs. A time interval or duration
shall be used only for references to test cases, i.e. within control HTSCs.

<msc reference symbol> ::=

;

<time interval area> ::=
<int symbol>
is associated with FloatValue
is followed by (<cont interval> | <interval area 2>)

;

<interval area 2> ::=
<int symbol>
[is associated with <time interval>]

;

<cont interval> ::=
<cont int symbol>
is associated with <interval name>

;

<int symbol> ::=
{<int symbol 1> | <int symbol 2> }
is attached to <msc reference symbol>

;

<int symbol 1> ::=

;

<int symbol 2> ::=

;

<cont int symbol> ::=

;

ETSI

ETSI TR 101 873-3 V1.1.1 (2001-01)86

C.4.7 High-level TSC (HTSC)

HTSCHeading ::=
tsc
(FunctionIdentifier [“(" [FunctionFormalParList] ")"]

[ReturnType])
{ VarInstance } [<end>]

;

The HTSC, which defines the control part for the module (indicated with the control keyword within the control area of
the TSC document) shall have neither formal parameters nor a return type. Only those HTSCs that are referenced within
the control part of the TSC document shall have local variables.

HTSCExprArea ::=
(<text layer> <start area> HTSCNodeExpressionArea*
<hmsc end area>*) set

;

<start area> ::=

<hmsc start symbol> is followed by (<alt op area>+) set
;

<hmsc start symbol> ::=

;

<hmsc end area> ::=

<hmsc end symbol> is attached to (<hmsc line symbol>+) set
;

<hmsc end symbol> ::=

;

<hmsc line symbol> ::=
<hmsc line symbol1> | <hmsc line symbol2>

;

<hmsc line symbol1> ::=

;

<hmsc line symbol2> ::=

;

<alt op area> ::=
<hmsc line symbol>
is attached to (HTSCNodeArea | <hmsc end symbol>)

;

HTSCNodeExpressionArea ::=

HTSCNodeArea is followed by (<alt op area>+) set

is attached to (<hmsc line symbol>+) set
;

HTSCNode area ::=
<hmsc reference area>

| <connection point symbol>
| <hmsc condition area>
| <par expr area>
| HTSCActionArea

;

ETSI

ETSI TR 101 873-3 V1.1.1 (2001-01)87

<hmsc reference area> ::= <msc reference symbol>
contains <msc ref expr> [time <time interval>]

;

<connection point symbol> ::=

;

<hmsc condition area> ::=
<condition symbol> contains <condition text>

;

<par expr area> ::=
<par frame symbol>
is attached to <hmsc line symbol>

contains (HTSCExprArea +) set
;

Parallel expressions are not allowed for HTSCs representing a control function.

<par frame symbol> ::=
<frame symbol>

;

HTSCActionArea ::=
<action symbol>
is attached to <hmsc line symbol>
contains { (Assignment | LogStatement)

[“;"(Assignment | LogStatement)] }
;

Actions shall be used only within a HTSC representing a control function.

ETSI

ETSI TR 101 873-3 V1.1.1 (2001-01)88

Annex D:
Mapping TSC to TTCN-3
This annex defines the mapping of TSC/gr to TTCN-3 core notation [1].

D.1 Description
A denotational style for describing the mapping of TSC/gr syntax onto TTCN-3 syntax is used. For each TSC/gr
production rule one or more functions, denoted using "[[" and "]]", each labelled using a permissible syntax for the
production is defined. These functions may also carry parameters. The definition of each function is given by the rules
on the right-hand side, which may in-turn invoke other mapping functions. All rules are terminated with a semi-colon.
For example:

[[group identifier <body>]] par1 := if par1 then
group identifier “{“

[[<body>]]
“}" [“;"]

;

In this example a single function is defined that is labelled with the syntax "group identifier <body>", which takes a
single boolean parameter "par1" as an argument. If the parameter is true the function returns the TTCN-3 syntax for a
simple group definition, otherwise it returns nothing. This function also calls another mapping function for the <body>
production rule, which returns the syntax for the body production. Note that the inclusion of the semi-colon is optional.

D.1.1 TSC documents

D.1.1.1 TSCDocument
[[<frame symbol>

contains TSCDocumentHead
[is followed by ControlPartArea]
[is followed by TestcasePartArea]
[is followed by FunctionPartArea]
[is followed by NamedAltPartArea]

]] ::=
module [[TSCDocumentHead]]
[[TestcasePartArea]]
[[FunctionPartArea]]
[[NamedAltPartArea]]
[[ControlPartArea]]
“}"
with “{“

[removeWithKeyword (TSCDocumentHead.WithStatement)]
display “ETSI TTCN-3 TSC v1.0",
display TSCDocument

“}" [“;"]
;

Where, the removeWithKeyword function allows the merger of with statements by simply removing the with keyword.

D.1.1.2 TSCDocumentHead
[[tscdocument TTCN3ModuleId [ModuleParList]

[related to Identifier { “," Identifier }]
explicit_typing [WithStatement] <end>
[TTCN3DataDefinitionPart]
[<parenthesis declaration>]

]] ::=
TTCN3ModuleId [ModuleParList]
“{“
[[TTCN3DataDefinitionPart]] (explicit_typing)

;
[[tscdocument TTCN3ModuleId [ModuleParList]

[related to Identifier { “," Identifier }]

�eethovengroupdskSTF156STF MembersInaJulySessionTTCN3Parser.html

ETSI

ETSI TR 101 873-3 V1.1.1 (2001-01)89

implicit_typing [WithStatement] <end>
[TTCN3DataDefinitionPart]
[<parenthesis declaration>]

]] ::=
TTCN3ModuleId [ModuleParList]
“{“
[[TTCN3DataDefinitionPart]] (implicit_typing)

;
The ‘related to’ and ‘parenthesis declaration’ productions are not mapped to TTCN-3.
TTCN3DataDefinitionPart
[[BeginChar

TTCN3DataDefinitionList
EndChar

]] (typing) ::=
[[TTCN3DataDefinitionList]]
if typing == implicit_typing then

derive(PortDef) derive (ComponentDef)
;

The derive function determines the typing of ports or components from the message interactions between ports and
component instances.

D.1.1.2.1 TTCN3DataDefinitionList

[[{ TTCN3DataDefinition [WithStatement] }]] ::=
{ [[TTCN3DataDefinition]] [WithStatement] [“;"] }

;

D.1.1.2.2 TTCN3DataDefinition

[[TypeDef | ConstDef | ExtConstDef
TemplateDef | FunctionDef | SignatureDef |
ImportDef | TSCGroupDef | ExtFunctionDef |

]] ::=
TypeDef | ConstDef | ExtConstDef |
TemplateDef | FunctionDef | SignatureDef |
ImportDef | [[TSCGroupDef]] | ExtFunctionDef

;
TSCGroupDef
[[group GroupIdentifier

BeginChar
TTCN3DataDefinitionList
EndChar

]] ::= group GroupIdentifier
“{“
[[TTCN3DataDefinitionList]]
“}"

;

D.1.1.3 ControlPartArea
[[control

TSCControlReferenceList [“;" TSCFunctionGroupDefList]
is followed by <separator area>

]] ::=
[[TSCControlReferenceList]] ([[TSCFunctionGroupDefList]], defs_only)
[[TSCControlReferenceList]] ([[TSCFunctionGroupDefList]], control_only)

;
[[control

is followed by (TSCControlReferenceArea *) set
is followed by <separator area>

]] ::=
for all members of the (TSCControlReferenceArea *) set do [[TSCControlReferenceArea]] (defs_only)
for all members of the (TSCControlReferenceArea *) set do [[TSCControlReferenceArea]]
(control_only)
;

Where, defs_only and control_only are distinct flags to indication type definitions only or control definition
respectively.

�eethovengroupdskSTF156STF MembersInaJulySessionTTCN3Parser.html

ETSI

ETSI TR 101 873-3 V1.1.1 (2001-01)90

D.1.1.3.1 TSCControlReferenceList

[[TSCControlReference { “,"TSCControlReference }]] (e,f) ::=
{ [[TSCControlReference]] (e, f) }

;
TSCControlReference
[[control FunctionIdentifier]] (e,f) ::=

if f == control_only then
control
“{“
[[process_tsc_diagram(FunctionIdentfier)]]
“}" [“;"]

;
[[FunctionIdentifier]] (e,f) ::=

if f == defs_only then
[[process_tsc_diagram (FunctionIdentfier)]] [“;"]

;
[[GroupIdentifier]] (e,f) ::=

if f == defs_only then
group GroupIdentifier
“{“
[[get_group_def(GroupIdentfier,e)]] (e)
“}" [“;"]

;

Where,

• process_tsc_diagram is a function which processes the TSC diagram with the given identity,

• get_group_def is a function that returns the list of group or function identifiers associated with the group.

D.1.1.3.2 TSCFunctionorGroupReferenceList

[[TSCFunctionorGroupRef { “,"TSCFunctionorGroupRef }]] e ::=
[[TSCFunctionorGroupRef]] (e) { [“;"] [[TSCFunctionorGroupRef]] (e) }

;

D.1.1.3.3 TSCFunctionorGroupRef

[[GroupIdentifier]] e ::= group GroupIdentifier
“{“
[[get_group_def(GroupIdentfier,e)]] (e)
“}" [“;"]

;
[[FunctionIdentifier]] e::= function [[process_tsc_diagram (FunctionIdentfier)]] [“;"]
;

D.1.1.3.4 TSCControlReferenceArea

[[{ <msc reference symbol> contains
control FunctionIdentifier

]] f ::=
if f == control_only then

control
“{“
[[process_tsc_diagram (FunctionIdentfier)]]
“}" [“;"]

;
[[<msc reference symbol> contains

FunctionIdentifier

]] f ::=
if f == defs_only then

[[process_tsc_diagram (FunctionIdentfier)]] [“;"]
;

ETSI

ETSI TR 101 873-3 V1.1.1 (2001-01)91

[[<msc reference symbol> contains
GroupIdentifier

]] f ::=
if f == defs_only then

group GroupIdentifier
“{“
for all members group TSC retunred by (get_TSC_Diagram(GroupIdentfier) do

[[TSCControlReferenceArea]] (f)
“}" [“;"]

;

Where, get_TSC_Diagram is a function that returns the TSC with the given identifier.

D.1.1.4 TestcasePartArea
[[testcases

(TSCTestcaseorGroupReferenceList [“;" TSCTestcaseGroupDefList]
is followed by <separator area>

]] ::=
[[TSCTestcaseorGroupReferenceList]] ([[TSCTestcaseGroupDefList]])

;
[[testcases is followed by (TSCTestcaseReferenceArea *) set)

is followed by <separator area>
]] ::=
for all members of the (TSCTestcaseReferenceArea *) set do [[TSCTestcaseReferenceArea]]
;

D.1.1.4.1 TSCTestcaseorGroupReferenceList

[[TSCTestcaseorGroupRef { “,"TSCTestcaseorGroupRef }]] e ::=
[[TSCTestcaseorGroupRef]] (e) { [“;"] [[TSCTestcaseorGroupRef]] (e) }

;
TSCTestcaseorGroupRef
[[GroupIdentifier]] e ::= group GroupIdentifier

“{“
[[get_group_def(GroupIdentfier,e)]] (e)
“}" [“;"]

;
[[TestCaseIdentifier]] e::= testcase [[process_tsc_diagram (TestCaseIdentfier)]] [“;"]
;

D.1.1.4.2 TSCTestcaseReferenceArea

[[<msc reference symbol> contains GroupIdentifier
]] ::=

group GroupIdentifier
“{“
for all members group TSC retunred by (get_TSC_Diagram(GroupIdentfier) do

[[TSCTestcaseReferenceArea]]
“}" [“;"]

;
[[<msc reference symbol> contains TestcaseIdentifier
]] ::=

testcase [[process_tsc_diagram(TestcaseIdentfier)]]
[“;"]

;

D.1.1.5 FunctionPartArea
[[functions

(TSCFunctionorGroupReferenceList [“;" TSCFunctionGroupDefList]
is followed by <separator area>

]] ::=
[[TSCFunctionorGroupReferenceList]] ([[TSCFunctionGroupDefList]])

;
[[functions is followed by (TSCFunctionReferenceArea *) set)

is followed by <separator area>
]] ::=
for all members of the (TSCFunctionReferenceArea *) set do [[TSCFunctionReferenceArea]]
;

ETSI

ETSI TR 101 873-3 V1.1.1 (2001-01)92

D.1.1.5.1 TSCFunctionReferenceArea

[[<msc reference symbol> contains GroupIdentifier
]] ::=

group GroupIdentifier
“{“
for all members group TSC retunred by (get_TSC_Diagram(GroupIdentfier) do

[[TSCFunctionReferenceArea]]
“}" [“;"]

;
[[<msc reference symbol> contains FunctionIdentifier
]] ::=

function [[process_tsc_diagram(FunctionIdentfier)]]
[“;"]

;

D.1.1.6 NamedAltPartArea
[[named alts

(TSCNamedAltorGroupReferenceList [“;" TSCNamedAltGroupDefList]
is followed by <separator area>

]] ::=
[[TSCNamedAltorGroupReferenceList]] ([[TSCNamedAltGroupDefList]])

;
[[named alts is followed by (TSCNamedAltReferenceArea *) set)

is followed by <separator area>
]] ::=
for all members of the (TSCNamedAltReferenceArea *) set do [[TSCNamedAltReferenceArea]]
;

D.1.1.6.1 TSCNamedAltorGroupReferenceList

[[TSCNamedAltorGroupRef { “,"TSCNamedAltorGroupRef }]] e ::=
[[TSCNamedAltorGroupRef]] (e) { [“;"] [[TSCNamedAltorGroupRef]] (e) }

;
TSCNamedAltorGroupRef
[[GroupIdentifier]] e ::= group GroupIdentifier

“{“
[[get_group_def(GroupIdentfier,e)]] (e)
“}" [“;"]

;
[[NamedAltIdentifier]] e ::= named alt [[process_tsc_diagram (NamedAltIdentfier)]] [“;"]
;

D.1.1.6.2 TSCNamedAltReferenceArea

[[<msc reference symbol> contains GroupIdentifier
]] ::=

group GroupIdentifier
“{“
for all members group TSC retunred by (get_TSC_Diagram(GroupIdentfier) do

[[TSCNamedAltReferenceArea]]
“}" [“;"]

;
[[<msc reference symbol> contains NamedAlteIdentifier
]] ::=

named alt [[process_tsc_diagram(NamedAltIdentfier)]]
[“;"]

;

ETSI

ETSI TR 101 873-3 V1.1.1 (2001-01)93

Annex E:
An INRES example in TSC
The TSC example provided here uses the TTCN-3 specification given in annex A which provides sequential and
concurrent test cases for the INRES protocol. The sequential test cases define identical test behaviour but reflect the
various specification styles of TTCN-3 core notation. These styles can also be reflected in TSC. See annex B for further
information.

E.1 TSC document
The TSC document for the INRES example includes the declaration for the module and declares the various TSCs for
test cases and functions, which are presented in subsequent clauses.

mi_synch1_seq1

tscdocument InresExample (ISDUType TestsuitePar);
explicit_typing;
language TTCN-3
{
import all type; import all const;
//importing all types and constants from the underlying module in TTCN-3 core
notation
import all template;
//importing all templates from the underlying module in TTCN-3 core notation
}

testcases

functions

mi_synch1_seq2

Synchronization

mi_synch1_seq2a mi_synch1_seq3

mi_synch1_conc1

Func_PTC_ISAP1 Func_PTC_MSAP2

OtherwiseFail ReceiveIDISind

Figure E.1: TSC document for the INRES Example

ETSI

ETSI TR 101 873-3 V1.1.1 (2001-01)94

E.2 TSCs for sequential test case

E.2.1 First version
The sequential test cases use the test component MTC and two port instances ISAP1 and MSAP2. After the default
activation, the main test sequence leading to PASS is represented. An Hyper-TSC is used to represent alternatives to the
PASS path. The TTCN-3 core notation description of this test case has a stop operation and the test verdict within all
branches of the "behaviour tree". In case of the TSC representation, this kind of description is not supported. Instead,
the verdict assignment and stop is represented only once.

MTC_Type PCO_type1 PCO_type2

disconnection
indication
(inconc)

activate
OtherwiseFail

ICONreq

MTC

Medium_Connection_Request()

ISAP1 MSAP2

Medium_Connection_Confirmation()

ICONconf

medium
connection
request
(inconc)

Data_Request(TestSuitePar)

medium
data
transfer
(inconc)

IDISreq

IDISind

Medium_Disconnection_Request()

tsc mi_synch1_seq1

IDISind
Medium_Disconnection_Request()

alt

MDATreq

Medium_Data_Transfer()

pass

Figure E.2: INRES: sequential test case, first version

This TSC defines the default used throughout this example. Whenever any other message is received from ISAP1 or
MSAP2, a fail verdict is assigned and the test case stops.

ETSI

ETSI TR 101 873-3 V1.1.1 (2001-01)95

MTC_Type PCO_type1 PCO_type2

MTC ISAP1 MSAP2

any

tsc OtherwiseFail

any

alt

fail

Figure E.3: INRES: sequential test case, default

ETSI

ETSI TR 101 873-3 V1.1.1 (2001-01)96

E.2.2 Second version
The second version of the test case contains only minor modifications. This is mainly due to the fact, that the
differences in the TTCN-3 core notation for the two test cases are not visible on TSC level, but rather it is transparent
that the two reflect the same test behaviour.

MTC_Type PCO_type1 PCO_type2

disconnection
indication
(inconc)

activate
OtherwiseFail

ICONreq

MTC

Medium_Connection_Request()

ISAP1 MSAP2

Medium_Connection_Confirmation()

ICONconf

medium
connection
request
(inconc)

Data_Request(TestSuitePar)

medium
data
transfer
(inconc)

IDISreq

IDISind

Medium_Disconnection_Request()

tsc mi_synch1_seq2

IDISind
Medium_Disconnection_Request()

alt

MDATreq

Medium_Data_Transfer()

pass

Figure E.4: INRES: sequential test case, second version

The above TSC can be represented even more condensed by using a co-region (which resembles the interleave
operation of TTCN-3, but is more powerful) instead of the alternative expression at the bottom.

ETSI

ETSI TR 101 873-3 V1.1.1 (2001-01)97

MTC_Type PCO_type1 PCO_type2

disconnection
indication
(inconc)

activate

ICONreq

MTC

Medium_Connection_Request()

ISAP1 MSAP2

Medium_Connection_Confirmation()

ICONconf

medium
connection
request
(inconc)

Data_Request(TestSuitePar)

medium
data
transfer
(inconc)

IDISreq

IDISind

Medium_Disconnection_Request()

tsc mi_synch1_seq2a

MDATreq

Medium_Data_Transfer()

pass

Figure E.5: INRES: sequential test case, second version (condensed)

ETSI

ETSI TR 101 873-3 V1.1.1 (2001-01)98

E.2.3 Third version
Within the third case, named alternatives are used which are represented as TSC references in TSC.

MTC_Type PCO_type1 PCO_type2

ReceiveIDISind
(inconc)

activate
OtherwiseFail()

ICONreq

MTC

Medium_Connection_Request()

ISAP1 MSAP2

Medium_Connection_Confirmation()

ICONconf

medium
connection
request
(inconc)

Data_Request(TestSuitePar)

medium
data
transfer
(inconc)

IDISreq

IDISind

Medium_Disconnection_Request()

tsc mi_synch1_seq3

Medium_Disconnection_Request()

alt

MDATreq

Medium_Data_Transfer()

pass

ReceiveIDISind (pass)

Figure E.6: INRES: sequential test case, third version

ETSI

ETSI TR 101 873-3 V1.1.1 (2001-01)99

E.3 TSCs for concurrent test case
In figure E.7, the vertical split form is chosen for the representation of test components, i.e. for each test component
there is one TSC. The TSC for PTC_ISAP1 is provided in figure E.12, the TSC for PTC_MSAP2 in figure E.14.
Function "Synchronization" is presented using the horizontal split form. The corresponding TSC is provided in
figure E.11.

MTC

tsc mi_synch1_conc1 system TSIType

MTCType_conc

activate
(OtherwiseFail)

connect(MTC:CP_ISAP1 , PTC_ISAP1:CP_ISAP1);
connect (MTC:CP_MSAP2 , PTC_MSAP2:CP_MSAP2);
map(PTC_ISAP1:ISAP1, system:TSI_ISAP1);
map(PTC_MSAP2:MSAP2, system:TSI_MSAP2);

PTC_ISAP1:= PTCType_ISAP1.create

PTC_MSAP2:= PTCType_MSAP2.create

PTC_ISAP1.start(func_PTC_ISAP1 ())

PTC_MSAP2.start(func_PTC_MSAP 2 ())

Synchronization()

log (“Correct Termination“)

all component.done

Figure E.7: INRES: concurrent test case (MTC, vertical split)

ETSI

ETSI TR 101 873-3 V1.1.1 (2001-01)100

In figure E.8, the behaviour of the test components MTC, PTC_ISAP1 and PTC_MSAP2 is integrated within one TSC
(no vertical split). For the behaviour definition , the following functions "Synchronization", "Func_PTC_ISAP1", and
"Func_PTC_MSAP2" are used. Their definition is provided in figures E.11, E.13 and E.15, respectively.

In figure E.8, the message exchange between these functions is not shown explicitly, contrary to figure E.9. We take the
view that the representation of the message exchange should be optional.

MTC

tsc mi_synch1_conc1 system TSIType

MTCType_conc

activate
(OtherwiseFail)

connect(MTC:CP_ISAP1, PTC_ISAP1:CP_ISAP1);
connect(MTC:CP_MSAP2, PTC_MSAP2:CP_MSAP2);
map(PTC_ISAP1:ISAP1, system:TSI_ISAP1);
map(PTC_MSAP2:MSAP2, system:TSI_MSAP2);

PTC_ISAP1.start
PTC_MSAP2.start

PTC_ISAP1

PTCType_ISAP

PTC_MSAP2

PTCType_MSAP

Func_PTC_MSAP 2()Synchronization()Func_PTC_ISAP 1()

all component.done

log (“Correct Termination“)

Figure E.8: INRES: concurrent test case (no vertical split)

In figure E.9, the same presentation is shown as in figure E.8, except that the message exchange between the functions
is provided explicitly.

ETSI

ETSI TR 101 873-3 V1.1.1 (2001-01)101

MTC

tsc mi_synch1_conc1 system TSIType

MTCType_conc

activate
(OtherwiseFail)

PTC_ISAP1.start PTC_MSAP2.start

all component.done

PTC_ISAP1

PTCTypeISAP1
PTC_MSAP2

PTCTypeMSAP2

Func_PTC_MSAP 2()Synchronization()Func_PTC_ISAP 1()
CP_MSAPCP_ISAP

connect(MTC:CP_ISAP1,
PTC_ISAP1:CP_ISAP1);
connect(MTC:CP_MSAP2,
PTC_MSAP2:CP_MSAP2);
map(PTC_ISAP1:ISAP1, system:TSI_ISAP1);
map(PTC_MSAP2:MSAP2, system:TSI_MSAP2);

log (“Correct Termination“)

Figure E.9: INRES: concurrent test case (no vertical split, message exchange made explicit)

ETSI

ETSI TR 101 873-3 V1.1.1 (2001-01)102

Figure E.10 is obtained from figure E.9 by expanding the MSC reference "Synchronization".

MT

tsc mi_synch1_conc1 system TSIType

MTCType_conc

activate
OtherwiseFail

PTC_ISAP1.start PTC_MSAP2.start

PTC_ISAP1

PTCTypeISAP1
PTC_MSAP2

PTCTypeMSAP2

Func_PTC_MSAP 2()Func_PTC_ISAP 1()
CP_MSAP2 >
Ready_Indication

CP_ISAP1
Ready_Indication

> CP_ISAP1
Proceed_Indication

connect(MTC:CP_ISAP1,
PTC_ISAP1:CP_ISAP1);
connect(MTC:CP_MSAP2,
PTC_MSAP2:CP_MSAP2);
map(PTC_ISAP1:ISAP1, system:TSI_ISAP1);
map(PTC_MSAP2:MSAP2, system:TSI_MSAP2);

Synchronization

all component.done

CP_ISAP
CP_MSAP

log (“Correct Termination“)

Figure E.10: INRES: concurrent test case (no vertical split with expanded function)

ETSI

ETSI TR 101 873-3 V1.1.1 (2001-01)103

In figure E.11, the behaviour specification of function "Synchronization" is provided.

MTC

tsc Synchronization

MTCType_conc

CP_MSAP2 >
Ready_Indication

CP_ISAP1 >
Ready_Indication

> CP_ISAP1
Proceed_Indication

Figure E.11: INRES: concurrent test case (TSC Synchronization)

ETSI

ETSI TR 101 873-3 V1.1.1 (2001-01)104

In figure E.12, the behaviour specification of PTC_ISAP1 is provided.

PTC_ISAP1

tsc PTC_ISAP1

PTCType_ISAP1

activate
(OtherwiseFail)

Connection_Request
> ISAP1

ISAP1 >

Connection_Confirmation

> ISAP1

DataRequest(TestSuitePar)

> CP_ISAP1

Ready_Indication

CP_ISAP1 >

Proceed_Indication

> ISAP1

Disconnection_Request

ISAP1 >

Disconnection_Indication

pass

disconnection
indication
(inconc)

start(Func_PTC_ISAP1)

Figure E.12: INRES: concurrent test case (TSC PTC_ISAP1, vertical split)

ETSI

ETSI TR 101 873-3 V1.1.1 (2001-01)105

In figure E.13, the behaviour specification of function "Func_PTC_ISAP1" is provided.

tsc Func_PTC_ISAP1

activate
OtherwiseFail

Connection_Request
> ISAP1

ISAP1 >

Connection_Confirmation

> ISAP1

DataRequest(TestSuitePar)

> CP_ISAP1

Ready_Indication

CP_ISAP1 >

Proceed_Indication

> ISAP1

Disconnection_Request

ISAP1 >

Disconnection_Indication

pass

disconnection
indication
(inconc)

PTCType_ISAP1

Figure E.13: INRES: concurrent test case (TSC Func_PTC_ISAP1)

In figure E.14, the behaviour specification of PTC_MSAP2 is provided.

ETSI

ETSI TR 101 873-3 V1.1.1 (2001-01)106

tsc PTC_MSAP2

activate
OtherwiseFail

PTC_MSAP2

PTCType_MSAP2

MSAP2

>

MSAP2 >

> MSAP2

> CP_MSAP2

pass

Medium_Connection_Request

Medium_Connection_Confirmation

Medium_Data_Transfer

Ready_Indication

Medium_Disconnection_Request

Medium
connection request
(inconc)

Medium
data transfer
(inconc)

start (Func_PTC_MSAP2)

Figure E.14: INRES: concurrent test case (TSC PTC_MSAP2, vertical split)

ETSI

ETSI TR 101 873-3 V1.1.1 (2001-01)107

In figure E.15, the behaviour specification of function "Func_PTC_MSAP2" is provided.

tsc PTC_MSAP2

activate
OtherwiseFail

PTC_MSAP2

PTCType_MSAP2

MSAP2 >

> MSAP2

MSAP2 >

> MSAP2

> MSAP2

> CP_MSAP2

pass

Medium_Connection_Request

Medium_Connection_Confirmation

Medium_Data_Transfer

cmi_synch1

Ready_Indication

Medium_Disconnection_Request

Medium
connection request
(inconc)

Medium
data transfer
(inconc)

PTC_MSAP2.start

Figure E.15: INRES: concurrent test case (TSC Func_PTC_MSAP2)

ETSI

ETSI TR 101 873-3 V1.1.1 (2001-01)108

In figure E.16, a merge of the TSCs in figures E.13, E.7 and E.15 is shown explicitly by means of an HMSC with
parallel merge.

tsc mi_synch1_system

func_PTC_MSAP 2()mi_system_conc1func_PTC_ISAP 1() CP_MSAPCP_ISAP

Figure E.16: INRES: concurrent test case (Test Case with TSC References)

E.4 INRES example in TTCN-3 core language

module InresExample (ISDUType TestsuitePar) {
// General Type Definitions

group TypeAndConstantDefinitions {

type integer ISDUType ;
type enumerated Sequencenumber { zero(1), one(2) };
type enumerated IPDUType { CR(1), CC(2), DR(3), DT(4), AK(5) };

// Module Constants
const Sequencenumber TestSuiteConst := 1;

}
//End TypeAndConstantDefinitions

// ASP Type Definitions for Medium Interface
group MediumServiceASPTypes {

type record MDATreq {
IPDUType iPDUType1 ,
Sequencenumber sequencenumber2,
ISDUType iSDUType3

}
type record MDATind {

IPDUType iPDUType1,
Sequencenumber sequencenumber2,
ISDUType iSDUType3

}

} with display “ASP Type Definitions";
//End MediumServiceASPTypes

ETSI

ETSI TR 101 873-3 V1.1.1 (2001-01)109

// ASP Type Definitions for Inres Interface (Initiator side)
group InitiatorSideInresASPTypes {

type record ICONreq {};
type record IDATreq { ISDUType iSDUType1 };
type record IDISreq {};
type record ICONconf {};
type record IDISind {}

} with display “ASP Type Definitions";
//End InitiatorSideInresASPTypes

// Template Definitions
group TemplateDefinitions {

template IDATreq DataRequest (template ISDUType Par1):= {
iSDUType1:= Par1

};
template MDATreq Medium_Connection_Confirmation := {

iPDUType1:= CC,
sequencenumber2:= *,
iSDUType3:= *

};
template MDATind Medium_Connection_Request := {

iPDUType1:= CR,
sequencenumber2:= *,
iSDUType3:= *

};
template MDATind Medium_Data_Transfer := {

iPDUType1:= DT,
sequencenumber2:= TestSuiteConst,
iSDUType3:= TestSuitePar

};
template MDATind Medium_Disconnection_Request := {

iPDUType1:= DR,
sequencenumber2:= *,
iSDUType3:= *

}
template MDATreq cmi_synch1 := {

iPDUType1:= AK,
sequencenumber2:= one,
iSDUType3:= 55

}
}
//End TemplateDefinitions

//named alternative used as default for the following test cases
named alt OtherwiseFail {

[] ISAP1.receive {
verdict.set(fail);
stop;

}
[] MSAP2.receive {

verdict.set(fail);
stop;

}
} with display “default";

named alt ReceiveIDISind (verdict result) {
[] ISAP1.receive(IDISind: {})

{ verdict.set(result); }
} with display “test step"; // End ReceiveIDISind

// Configuration Definitions
group SequentialConfigurationDefinitions {

// Port Type Definitions
type port PCO_Type1 message {

in ICONconf, IDISind; //received from SUT
out ICONconf, IDATreq, IDISreq; //send to SUT

} with display “PCO Type, role := UT";
type port PCO_Type2 message {

in MDATind; //received from SUT
out MDATreq; //send to SUT

ETSI

ETSI TR 101 873-3 V1.1.1 (2001-01)110

} with display “PCO Type, role = LT";
// MTC Type Definition (is equal to Test System Interface)
type component MTCType {

PCO_Type1 ISAP1;
PCO_Type2 MSAP2;

}
} //End SequentialConfigurationDefinitions

group Sequential {
testcase mi_synch1_seq1() runs on MTCType
{

activate (OtherwiseFail); //Default activation
ISAP1.send(ICONreq: {}); //In-line template definition
alt {

[] MSAP2.receive(Medium_Connection_Request) //use of a template
{

MSAP2.send(Medium_Connection_Confirmation);
alt {

[] ISAP1.receive (ICONconf: {})
{

ISAP1.send (Data_Request(TestSuitePar));
alt {

[] MSAP2.receive (Medium_Data_Transfer)
{

ISAP1.send (IDISreq: {});
alt {
[] ISAP1.receive (IDISind: {})

{ //PASS
MSAP2.receive (Medium_Disconnection_Request)

}
[] MSAP2.receive (Medium_Disconnection_Request)

{ ISAP1.receive(IDISind: {})
//PASS

}
}

}
[] ISAP1.receive(IDISind: {})

{
verdict.set(inconc);
stop

}
}

}
[] MSAP2.receive(Medium_Connection_Request)

{
verdict.set(inconc);
stop;

}
[] ISAP1.receive(IDISind: {})

{
verdict.set(inconc);
stop

}
}

}
[] ISAP1.receive(IDISind: {})
{

verdict.set(inconc);
stop;

}
}
verdict.set(pass);

}
// End testcase mi_synch1_seq1

/* This is a slight transformation of the previous test case. It makes use of the ‘sequential' character of TTCN-3. The
stop operation is not copied to all branches of the ‘behaviour tree'. Instead it is only executed at the end of the test case.
Furthermore, the verdict is initialized with the verdict pass. During the test execution it can be overwritten by
inconclusive or, in the default, by fail. The places where a pass has been assigned before are indicated by comments */

ETSI

ETSI TR 101 873-3 V1.1.1 (2001-01)111

testcase mi_synch1_seq2 () runs on MTCType
{

activate (OtherwiseFail);
//Default activation
ISAP1.send(ICONreq: {});
verdict.set(pass);
alt {
[] MSAP2.receive(Medium_Connection_Request)

{
MSAP2.send (Medium_Connection_Confirmation);
alt {

[]ISAP1.receive (ICONconf: {})
{
ISAP1.send (Data_Request(TestSuitePar));
alt {

[] MSAP2.receive (Medium_Data_Transfer)
{

ISAP1.send (IDISreq: {});
alt {

[] ISAP1.receive (IDISind: {})
{ //PASS
MSAP2.receive (Medium_Disconnection_Request)
}

[] MSAP2.receive (Medium_Disconnection_Request)
{ ISAP1.receive(IDISind: {})
//PASS

}
[] MSAP2.receive (Medium_Data_Transfer)

{ verdict.set(inconc) }
}

}
[] ISAP1.receive(IDISind: {})

{ verdict.set(inconc) }
}

}
[]MSAP2.receive(Medium_Connection_Request)

{ verdict.set(inconc) }
[]ISAP1.receive(IDISind: {})

{ verdict.set(inconc) }
}

}
[] ISAP1.receive(IDISind: {})

{ verdict.set(inconc) }
}
stop

}
//End testcase mi_synch1_seq2

/* This is a slight transformation of the previous test case. It shows the usage of named alternatives. A named
alternative is a special "macro" construct which allows to extend the alternative construct by adding new alternatives. It
is comparable to the TTCN-2 feature of tree attachment in sets of alternatives */

testcase mi_synch1_seq3 () runs on MTCType
{

activate (OtherwiseFail);
//Default activation
ISAP1.send(ICONreq: {});
verdict.set(pass);
alt {

[]MSAP2.receive(Medium_Connection_Request)
{

MSAP2.send (Medium_Connection_Confirmation);
alt {

[]ISAP1.receive (ICONconf: {})
{
ISAP1.send (Data_Request(TestSuitePar))
alt {

[]MSAP2.receive (Medium_Data_Transfer)
{

ISAP1.send (IDISreq: {});
alt {

[]ISAP1.receive (IDISind: {}) // PASS
{ MSAP2.receive (Medium_Disconnection_Request); }

[]MSAP2.receive (Medium_Disconnection_Request)
{ ReceiveIDISind(pass); } // direct call of named alt

[]MSAP2.receive (Medium_Data_Transfer)

ETSI

ETSI TR 101 873-3 V1.1.1 (2001-01)112

{ verdict.set(inconc); }
};

}
[expand] ReceiveIDISind(inconc); // use of named alternative
};

}
[]MSAP2.receive(Medium_Connection_Request)

{ verdict.set(inconc); }
[expand] ReceiveIDISind(inconc);
};

}
[expand] ReceiveIDISind(inconc);

};
stop;

} // End testcase mi_synch1_seq3

}
//End group Sequential

group ConcurrentConfigurationDefinitions {

// Port Type Definitions
type port CP_Type message {

inout CM;
} with display “CP Type";

// MTC Type Definition (is now different to Test System Interface)
type component TSIType_conc {

PCO_Type1 TSI_ISAP1;
PCO_Type2 TSI_MSAP2;

}

type component MTCType_conc {
CP_Type CP_ISAP1;
CP_Type CP_MSAP2;
timer MyTimer:= 5;

}

//PTCs
type component PTCType_ISAP1 {

PCO_Type1 ISAP1;
CP_Type CP_ISAP1;

}

type component PTCType_MSAP2 {
PCO_Type2 MSAP2;
CP_Type CP_MSAP2;

}
} //End ConcurrentConfigurationDefinitions

// CM Type Definitions
group CoordinationMessages {

type record CM { charstring message1 };
} with display “CM Type Definitions";
// End CM Type Definitions

// CM Template Definitions
group CoordinationTemplateDefinitions {

template CM Proceed_Indication := {
message1:= “PROCEED"

};

template CM Ready_Indication := {
message1:= “READY"

};
} // End CM Template Definitions

// Now, we consider a concurrent version of the INRES Example
group Concurrent {

// Synchronization function
function Synchronization () runs on MTCType_conc
{

ETSI

ETSI TR 101 873-3 V1.1.1 (2001-01)113

interleave {
[] CP_MSAP2.receive(Ready_Indication);
[] CP_ISAP1.receive(Ready_Indication);
}
CP_ISAP1.send(Proceed_Indication);

} // End Synchronization function

function Func_PTC_ISAP1 () runs on PTCType_ISAP1
{

activate (OtherwiseFail); // Default activation
ISAP1.send(Connection_Request);
alt {

[] ISAP1.receive(Connection_Confirmation)
{

ISAP1.send(Data_Request(TestSuitePar));
CP_ISAP1.send(Ready_Indication);
alt {
[] CP_ISAP1.receive(Proceed_Indication)

{
ISAP1.send(Disconnection_Request);
ISAP1.receive(Disconnection_Indication);
verdict.set(pass)

}
[] ISAP1.receive(Disconnection_Indication)

{
verdict.set(inconc);

}
}

}
[] ISAP1.receive(Disconnection_Indication)

{
verdict.set(inconc);

}
}

} //End Func_PTC_ISAP1

function Func_PTC_MSAP2 () runs on PTCType_MSAP2
{

activate (OtherwiseFail); // Default activation
MSAP2.receive(Medium_Connection_Request);
MSAP2.send(Medium_Connection_Confirmation);
alt {

[] MSAP2.receive(Medium_Data_Transfer)
{

MSAP2.send(cmi_synch1);
CP_MSAP2.send(Ready_Indication);
alt {

[] MSAP2.receive(Medium_Disconnection_Req)
{

verdict.set(pass);
}

[] MSAP2.receive(Medium_Data_Transfer)
{

verdict.set(inconc);
}

}
}

[] MSAP2.receive(Medium_Connection_Request)
{

verdict.set(inconc);
}

}
} //End Func_PTC_MSAP2

// Concurrent Testcase
testcase mi_synch1_conc1 () runs on MTCType_conc system TSIType
{

activate (OtherwiseFail); // Default activation
verdict.set(pass);
var PTCType_ISAP1 PTC_ISAP1:= PTCType_ISAP1.create;
var PTCType_MSAP2 PTC_MSAP2:= PTCType_MSAP2.create;

connect(PTC_ISAP1:CP_ISAP1,mtc:CP_ISAP1);
connect(PTC_MSAP2:CP_MSAP2,mtc:CP_MSAP2);
map(PTC_ISAP1:ISAP1, system:TSI_ISAP1);
map(PTC_MSAP2:MSAP2, system:TSI_MSAP2);

ETSI

ETSI TR 101 873-3 V1.1.1 (2001-01)114

PTC_ISAP1.start(func_PTC_ISAP1());
PTC_MSAP2.start(func_PTC_MSAP2());

Synchronization();
all component.done;
log(“Correct Termination");

} // End Concurrent Testcase
}
//End group Concurrent
// end module InresExample
}

ETSI

ETSI TR 101 873-3 V1.1.1 (2001-01)115

History

Document history

V1.1.1 January 2001 Publication

	Intellectual Property Rights
	Foreword
	Introduction
	1 Scope
	2 References
	3 Abbreviations
	4 Overview
	5 TSC language concepts
	5.1 TSC document
	5.1.1 Parameterization of TSC documents
	5.1.2 Implicit and explicit typing for components and ports
	5.1.2.1 Implicit typing for components and ports
	5.1.2.2 Explicit typing for components and ports

	5.1.3 Importing other TSC documents
	5.1.4 Variable declarations
	5.1.5 Data definitions
	5.1.6 Data parenthesis declaration

	5.2 Control part
	5.2.1 Parameterization of TSCs
	5.2.2 Control variables
	5.2.3 References to test cases
	5.2.4 Control actions
	5.2.5 Alternative expressions

	5.3 Test cases
	5.4 Instances
	5.4.1 Test component instances
	5.4.2 Explicit port instances
	5.4.3 Implicit port instances

	5.5 Test component handling
	5.6 Port handling
	5.6.1 Handling of explicit ports
	5.6.2 Handling of implicit ports

	5.7 Configurations
	5.8 Data
	5.8.1 Declaring data
	5.8.2 Global data
	5.8.3 Static data
	5.8.4 Dynamic data
	5.8.4.1 Component variables
	5.8.4.2 Bindings
	5.8.4.3 Component initiation
	5.8.4.4 Data in messages
	5.8.4.5 Action boxes
	5.8.4.6 Component and port types

	5.8.5 Guarding conditions
	5.8.6 Setting conditions

	5.9 Timers
	5.10 Asynchronous communication
	5.10.1 Messages
	5.10.2 Receiving any message
	5.10.3 Receiving from any port
	5.10.4 Trigger message

	5.11 Synchronous communication
	5.11.1 Call, getreply, catch, and timeout
	5.11.2 Getcall, reply, and raise
	5.11.3 Any handling

	5.12 Behaviour
	5.12.1 Sequential behaviour
	5.12.2 Alternative behaviour
	5.12.3 Interleaved behaviour
	5.12.3.1 Co-regions

	5.12.4 Loops
	5.12.5 Functions
	5.12.6 Defaults
	5.12.7 Return statement
	5.12.8 Action Boxes

	5.13 Verdicts
	5.14 High-level TSC (HTSC)
	5.15 Hyper_TSC
	5.16 Partial TSC
	5.17 Hybrid_TSC

	Annex A: Used subset of and extensions to MSC
	A.1 Overview
	A.1.2 Test specific extensions
	A.1.2.1 TSC document
	A.1.2.1.1 New document sections
	A.1.2.1.2 Component and port instances

	A.1.3 TSC heading
	A.1.4 Test components
	A.1.4.1 MTC as keyword
	A.1.4.2 Self as keyword

	A.1.5 Messages
	A.1.6 Trigger
	A.1.7 Check
	A.1.8 Control flow
	A.1.9 Test verdicts within conditions
	A.1.10 Timer
	A.1.11 Create to test components
	A.1.12 Start to test components
	A.1.13 Return for functions
	A.1.14 Stop on test components
	A.1.14.1 Special meaning of stop on the MTC instance
	A.1.14.2 Stop within an operand of an in-line expression

	A.1.15 Clear, start and stop to ports
	A.1.16 In-line expressions
	A.1.16.1 Propagation of messages to the environment
	A.1.16.2 New interleave in-line expression

	A.1.17 HTSC
	A.1.18 Hybrid TSCs
	A.1.19 Extensions to the data part
	A.1.19.1 Declaring Data
	A.1.19.2 Static Data
	A.1.19.3 Dynamic Data
	A.1.19.4 Bindings

	A.1.20 Hyper TSCs
	A.1.21 Ports
	A.1.22 Default

	Annex B: The TSC forms
	B.1 Overview
	B.1.1 An example
	B.1.2 Form aspect: vertical split vs. no vertical split
	B.1.3 Form aspect: horizontal split vs. no horizontal split
	B.1.4 Form aspect: explicit vs. implicit port representation
	B.1.5 Form aspect: hybrid vs. not hybrid
	B.1.6 Form aspect: partial vs. complete
	B.1.7 Summary of TSC forms

	Annex C: Subset of the graphical syntax of TSC
	C.1 Meta-Language for TSC/gr
	C.2 Conventions for the syntax description
	C.3 Relation between TTCN-3 and TSC Files
	C.4 The TSC/gr production rules
	C.4.1 Test Sequence Chart document
	C.4.2 Groups
	C.4.3 Test Sequence Chart
	C.4.4 Environment and Ports
	C.4.5 Basic TSC
	C.4.5.1 Instances (Component and Port Instances)
	C.4.5.2 Messages
	C.4.5.3 Control Flow
	C.4.5.4 Special Messages
	C.4.5.5 Environment and Ports
	C.4.5.6 Conditions
	C.4.5.7 Timers
	C.4.5.8 Actions
	C.4.5.9 Defaults
	C.4.5.10 Instance creation
	C.4.5.11 Instance stop

	C.4.6 Structural concepts
	C.4.6.1 Co-regions
	C.4.6.2 In-line expressions
	C.4.6.3 TSC references

	C.4.7 High-level TSC (HTSC)

	Annex D: Mapping TSC to TTCN-3
	D.1 Description
	D.1.1 TSC documents
	D.1.1.1 TSCDocument
	D.1.1.2 TSCDocumentHead
	D.1.1.2.1 TTCN3DataDefinitionList
	D.1.1.2.2 TTCN3DataDefinition

	D.1.1.3 ControlPartArea
	D.1.1.3.1 TSCControlReferenceList
	D.1.1.3.2 TSCFunctionorGroupReferenceList
	D.1.1.3.3 TSCFunctionorGroupRef
	D.1.1.3.4 TSCControlReferenceArea

	D.1.1.4 TestcasePartArea
	D.1.1.4.1 TSCTestcaseorGroupReferenceList
	D.1.1.4.2 TSCTestcaseReferenceArea

	D.1.1.5 FunctionPartArea
	D.1.1.5.1 TSCFunctionReferenceArea

	D.1.1.6 NamedAltPartArea
	D.1.1.6.1 TSCNamedAltorGroupReferenceList
	D.1.1.6.2 TSCNamedAltReferenceArea

	Annex E: An INRES example in TSC
	E.1 TSC document
	E.2 TSCs for sequential test case
	E.2.1 First version
	E.2.2 Second version
	E.2.3 Third version

	E.3 TSCs for concurrent test case
	E.4 INRES example in TTCN-3 core language

	History

