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Intellectual Property Rights 
IPRs essential or potentially essential to the present document may have been declared to ETSI. The information 
pertaining to these essential IPRs, if any, is publicly available for ETSI members and non-members, and can be found 
in ETSI SR 000 314: "Intellectual Property Rights (IPRs); Essential, or potentially Essential, IPRs notified to ETSI in 
respect of ETSI standards", which is available from the ETSI Secretariat. Latest updates are available on the ETSI Web 
server (http://webapp.etsi.org/IPR/home.asp). 

Pursuant to the ETSI IPR Policy, no investigation, including IPR searches, has been carried out by ETSI. No guarantee 
can be given as to the existence of other IPRs not referenced in ETSI SR 000 314 (or the updates on the ETSI Web 
server) which are, or may be, or may become, essential to the present document. 

Foreword 
This Technical Report (TR) has been produced by ETSI Technical Committee Electromagnetic compatibility and Radio 
spectrum Matters (ERM). 

The present document has been split into two parts, due to practical limitations. 

In the second edition, the area of data communication measurement uncertainties has been addressed and added to the 
work on analogue measurement uncertainties found in the first edition of the present document; in addition the diagrams 
had been standardized and minor editorial corrections had been carried out. 

A presentation has been also added in order to provide a general overview of the approach used in the present document 
(see file "MeasurementUncertainties_V141c.ppt") which is available in tr_10002802v010401p0.zip. 

Introduction 
The present document has been written to clarify the many problems associated with the calculation, interpretation and 
application of measurement uncertainty and is expected to be used, in particular, by accredited test laboratories 
performing measurements. 

The present document is intended to provide, for the relevant standards, methods of calculating the measurement 
uncertainty relating to the assessment of the performance of radio equipment. The present document is not intended to 
replace any test methods in the relevant standards although clauses 5, 6 and 7 (in TR 100 028-1 [6]) contain brief 
descriptions of each measurement (such descriptions are just intended to support the explanations relating to the 
evaluation of the uncertainties). 

More precisely, the basic purpose of the present document is to: 

- provide the method of calculating the total measurement uncertainty (see, in particular annex D and clauses 1 to 
5 of TR 100 028-1 [6]; 

- provide the maximum acceptable "window" of measurement uncertainty (see table B.1), when calculated using 
the methods described in the present document; 

- provide the equipment under test dependency functions (see table F.1) which shall be used in the calculations 
unless these functions are evaluated by the individual laboratories; 

- provide a recommended method of applying the uncertainties in the interpretation of the results (see annex C). 

Although the present document has been written in a way to cover a larger spread of equipment than what is actually 
stated in the scope (in order to help as much as possible) the particular aspects needed regarding some technologies such 
as TDMA may have been left out, even though the general approach to measurement uncertainties and the theoretical 
background is, in principle, independent of the technology. 

Hence, the present document is applicable to measurement methodology in a broad sense but care should be taken when 
using it to draft new standards or when applying it to a particular technology such as TDMA or CDMA. 

http://webapp.etsi.org/IPR/home.asp
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In an attempt to help the user and in order to clarify the particular aspects of each method, a number of examples have 
been given (including spread sheets relating to clause 7 of TR 100 028-1 [6] and clause 4 of the present document). 

However, these examples may have been drafted by different authors. In a number of cases, simplifications may have 
been introduced (e.g. Log (1 + x) = x: simplifications and, hopefully, not real errors), in order to reach practical 
conclusions, while avoiding supplementary complications. 

As a result, examples covering similar areas may not be fully consistent. The reader is therefore expected to understand 
fully the theoretical basis underlying the present document (annex D provides the basis for the theoretical approach) and 
to exercise his own judgement while using the present document. 

As a result, under no circumstances, could ETSI be held for responsible for any consequence of the usage of the present 
document. 
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1 Scope 
The present document provides a method to be applied to all the applicable deliverables, and supports TR 100 027 [1]. 

It covers the following aspects relating to measurements: 

a) methods for the calculation of the total uncertainty for each of the measured parameters; 

b) recommended maximum acceptable uncertainties for each of the measured parameters; 

c) a method of applying the uncertainties in the interpretation of the results. 

The present document provides the methods of evaluating and calculating the measurement uncertainties and the 
required corrections on measurement conditions and results (these corrections are necessary in order to remove the 
errors caused by certain deviations of the test system due to its known characteristics (such as the RF signal path 
attenuation and mismatch loss, etc.)). 

2 References 
For the purposes of this Technical Report (TR), the following references apply: 

[1] ETSI TR 100 027: "Electromagnetic compatibility and Radio spectrum Matters (ERM); Methods 
of measurement for private mobile radio equipment". 

[2] ETSI TR 102 273 (all parts): "Electromagnetic compatibility and Radio spectrum Matters (ERM); 
Improvement of radiated methods of measurement (using test sites) and evaluation of the 
corresponding measurement uncertainties". 

[3] ITU-T Recommendation O.41: "Psophometer for use on telephone-type circuits". 

[4] EN 55020: "Electromagnetic Immunity of Broadcast Receivers and Associated Equipment". 

[5] ETSI ETR 028: "Radio Equipment and Systems (RES); Uncertainties in the measurement of 
mobile radio equipment characteristics". 

[6] ETSI TR 100 028-1: "Electromagnetic compatibility and Radio spectrum Matters (ERM); 
Uncertainties in the measurement of mobile radio equipment characteristics; Part 1". 

3 Definitions, symbols and abbreviations 

3.1 Definitions 
For the purposes of the present document, the following terms and definitions apply: 

accuracy: this term is defined, in relation to the measured value, in clause 4.1.1 of TR 100 028-2; it has also been used 
in the rest of the document in relation to instruments 

AF load: is normally a resistor of sufficient power rating to accept the maximum audio output power from the EUT 

NOTE: The value of the resistor should be that stated by the manufacturer and should be the impedance of the 
audio transducer at 1 000 Hz. 

 In some cases it may be necessary to place an isolating transformer between the output terminals of the 
receiver under test and the load. 
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AF termination: any connection other than the audio frequency load which may be required for the purpose of testing 
the receiver (i.e. in a case where it is required that the bit stream be measured, the connection may be made, via a 
suitable interface, to the discriminator of the receiver under test) 

NOTE: The termination device should be agreed between the manufacturer and the testing authority and details 
should be included in the test report. If special equipment is required then it should be provided by the 
manufacturer. 

antenna: part of a transmitting or receiving system that is designed to radiate or to receive electromagnetic waves 

antenna factor: quantity relating the strength of the field in which the antenna is immersed to the output voltage across 
the load connected to the antenna 

NOTE: When properly applied to the meter reading of the measuring instrument, yields the electric field strength 
in V/m or the magnetic field strength in A/m. 

antenna gain: ratio of the maximum radiation intensity from an (assumed lossless) antenna to the radiation intensity 
that would be obtained if the same power were radiated isotropically by a similarly lossless antenna 

bit error ratio: ratio of the number of bits in error to the total number of bits 

combining network: multipole network allowing the addition of two or more test signals produced by different sources 
(e.g. for connection to a receiver input) 

NOTE: Sources of test signals should be connected in such a way that the impedance presented to the receiver 
should be 50 Ω. The effects of any intermodulation products and noise produced in the signal generators 
should be negligible. 

correction factor: numerical factor by which the uncorrected result of a measurement is multiplied to compensate for 
an assumed systematic error 

confidence level: probability of the accumulated error of a measurement being within the stated range of uncertainty of 
measurement 

directivity: ratio of the maximum radiation intensity in a given direction from the antenna to the radiation intensity 
averaged over all directions (i.e. directivity = antenna gain + losses) 

duplex filter: device fitted internally or externally to a transmitter/receiver combination to allow simultaneous 
transmission and reception with a single antenna connection 

error of measurement (absolute): result of a measurement minus the true value of the measurand 

error (relative): ratio of an error to the true value 

estimated standard deviation: From a sample of n results of a measurement the estimated standard deviation is given 
by the formula: 
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xi being the ith result of measurement (i = 1,2,3, ...,n) and x the arithmetic mean of the n results considered. 

A practical form of this formula is: 
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Where X is the sum of the measured values and Y is the sum of the squares of the measured values.  
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The term standard deviation has also been used in the present document to characterize a particular probability 
density. Under such conditions, the term standard deviation may relate to situations where there is only one result for a 
measurement. 

expansion factor: multiplicative factor used to change the confidence level associated with a particular value of a 
measurement uncertainty 

NOTE: The mathematical definition of the expansion factor can be found in clause D.5.6.2.2. 

extreme test conditions: defined in terms of temperature and supply voltage 

NOTE: Tests should be made with the extremes of temperature and voltage applied simultaneously 

 The upper and lower temperature limits are specified in the relevant deliverable. The test report should 
state the actual temperatures measured. 

error (of a measuring instrument): indication of a measuring instrument minus the (conventional) true value 

free field: field (wave or potential) which has a constant ratio between the electric and magnetic field intensities 

free space: region free of obstructions and characterized by the constitutive parameters of a vacuum 

impedance: measure of the complex resistive and reactive attributes of a component in an alternating current circuit 

impedance (wave): complex factor relating the transverse component of the electric field to the transverse component 
of the magnetic field at every point in any specified plane, for a given mode 

influence quantity: quantity which is not the subject of the measurement but which influences the value of the quantity 
to be measured or the indications of the measuring instrument 

intermittent operation: manufacturer should state the maximum time that the equipment is intended to transmit and 
the necessary standby period before repeating a transmit period 

isotropic radiator: hypothetical, lossless antenna having equal radiation intensity in all directions 

limited frequency range: is a specified smaller frequency range within the full frequency range over which the 
measurement is made 

NOTE: The details of the calculation of the limited frequency range should be given in the relevant deliverable. 

maximum permissible frequency deviation: maximum value of frequency deviation stated for the relevant channel 
separation in the relevant deliverable 

measuring system: complete set of measuring instruments and other equipment assembled to carry out a specified 
measurement task 

measurement repeatability: closeness of the agreement between the results of successive measurements of the same 
measurand carried out subject to all the following conditions: 

- the same method of measurement; 

- the same observer; 

- the same measuring instrument; 

- the same location; 

- the same conditions of use; 

- repetition over a short period of time. 
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measurement reproducibility: closeness of agreement between the results of measurements of the same measurand, 
where the individual measurements are carried out changing conditions such as: 

- method of measurement; 

- observer; 

- measuring instrument; 

- location; 

- conditions of use; 

- time. 

measurand: quantity subjected to measurement 

noise gradient of EUT: function characterizing the relationship between the RF input signal level and the performance 
of the EUT, e.g. the SINAD of the AF output signal 

nominal frequency: one of the channel frequencies on which the equipment is designed to operate 

nominal mains voltage: declared voltage or any of the declared voltages for which the equipment was designed 

normal test conditions: defined in terms of temperature, humidity and supply voltage stated in the relevant deliverable 

normal deviation: frequency deviation for analogue signals which is equal to 12 % of the channel separation 

psophometric weighting network: should be as described in ITU-T Recommendation O.41 

polarization: figure traced as a function of time by the extremity of the electric vector at a fixed point in space, for an 
electromagnetic wave 

quantity (measurable): attribute of a phenomenon or a body which may be distinguished qualitatively and determined 
quantitatively 

rated audio output power: maximum output power under normal test conditions, and at standard test modulations, as 
declared by the manufacturer 

rated radio frequency output power: maximum carrier power under normal test conditions, as declared by the 
manufacturer 

shielded enclosure: structure that protects its interior from the effects of an exterior electric or magnetic field, or 
conversely, protects the surrounding environment from the effect of an interior electric or magnetic field 

SINAD sensitivity: minimum standard modulated carrier-signal input required to produce a specified SINAD ratio at 
the receiver output 

stochastic (random) variable: variable whose value is not exactly known, but is characterized by a distribution or 
probability function, or a mean value and a standard deviation (e.g. a measurand and the related measurement 
uncertainty) 

test load: 50 Ω substantially non-reactive, non-radiating power attenuator which is capable of safely dissipating the power 
from the transmitter 

test modulation: test modulating signal is a baseband signal which modulates a carrier and is dependent upon the type of 
EUT and also the measurement to be performed 

trigger device: circuit or mechanism to trigger the oscilloscope timebase at the required instant 

It may control the transmit function or inversely receive an appropriate command from the transmitter. 

uncertainty: parameter, associated with the result of a measurement, that characterizes the dispersion of the values that 
could reasonably be attributed to that measurement 

uncertainty (random): component of the uncertainty of measurement which, in the course of a number of 
measurements of the same measurand, varies in an unpredictable way (and has not being considered otherwise) 
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uncertainty (systematic): component of the uncertainty of measurement which, in the course of a number of 
measurements of the same measurand remains constant or varies in a predictable way 

uncertainty (Type A): uncertainties evaluated using the statistical analysis of a series of observations 

uncertainty (Type B): uncertainties evaluated using other means than the statistical analysis of a series of observations 

uncertainty (limits of uncertainty of a measuring instrument): extreme values of uncertainty permitted by 
specifications, regulations etc. for a given measuring instrument 

NOTE: This term is also known as "tolerance". 

uncertainty (standard): expression characterizing the uncertainty for that component, for each individual uncertainty 
component 

NOTE: It is the standard deviation of the corresponding distribution. 

uncertainty (combined standard): uncertainty characterizing the complete measurement or part thereof, it is 
calculated by combining appropriately the standard uncertainties for each of the individual contributions identified in 
the measurement considered or in the part of it which has been considered 

NOTE: In the case of additive components (linearly combined components where all the corresponding 
coefficients are equal to one) and when all these contributions are independent of each other (stochastic), 
this combination is calculated by using the Root of the Sum of the Squares (the RSS method). A more 
complete methodology for the calculation of the combined standard uncertainty is given in annex D; see, 
in particular, clause D.3.12. 

uncertainty (expanded): expanded uncertainty is the uncertainty value corresponding to a specific confidence level 
different from that inherent to the calculations made in order to find the combined standard uncertainty 

NOTE: The combined standard uncertainty is multiplied by a constant to obtain the expanded uncertainty limits 
(see TR 100 028-1 [6], clause 5.3 and also clause D.5 (and more specifically clause D.5.6.2). 

upper specified AF limit: maximum audio frequency of the audio pass-band and is dependent on the channel separation 

wanted signal level: level of +6 dB/µV emf referred to the receiver input under normal test conditions, for conducted 
measurements 

NOTE 1: Under extreme test conditions the value is +12 dB/µV emf. 

NOTE 2: For analogue measurements the wanted signal level has been chosen to be equal to the limit value of the 
measured usable sensitivity. For bit stream and message measurements the wanted signal has been chosen 
to be +3 dB above the limit value of measured usable sensitivity. 

3.2 Symbols 
For the purposes of the present document, the following symbols apply: 

β 2π/λ (radians/m) 
γ incidence angle with ground plane (°) 
λ wavelength (m) 
φH phase angle of reflection coefficient (°) 

η 120π Ω - the intrinsic impedance of free space (Ω) 
µ permeability (H/m) 
AFR antenna factor of the receive antenna (dB/m) 

AFT antenna factor of the transmit antenna (dB/m) 

AFTOT mutual coupling correction factor (dB) 

Ccross cross correlation coefficient 

D(θ,φ) directivity of the source 
d distance between dipoles (m) 
δ skin depth (m) 
d1 an antenna or EUT aperture size (m) 
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d2 an antenna or EUT aperture size (m) 

ddir path length of the direct signal (m) 

drefl path length of the reflected signal (m) 
E electric field intensity (V/m) 
EDH

max calculated maximum electric field strength in the receiving antenna height scan from a half 

wavelength dipole with 1 pW of radiated power (for horizontal polarization) (µV/m) 
EDV

max calculated maximum electric field strength in the receiving antenna height scan from a half 

wavelength dipole with 1 pW of radiated power (for vertical polarization) (µV/m) 
eff antenna efficiency factor 

φ angle (°) 
∆f bandwidth (Hz) 
f frequency (Hz) 
G(θ,φ) gain of the source (which is the source directivity multiplied by the antenna efficiency factor) 
H magnetic field intensity (A/m) 
I0 the (assumed constant) current (A) 

Im the maximum current amplitude 

k 2π/λ 
k a factor from Student's t distribution 
k Boltzmann's constant (1,38 x 10-23 J/°K) 
K relative dielectric constant 
l the length of the infinitesimal dipole (m) 
L the overall length of the dipole (m) 
l the point on the dipole being considered (m) 
λ wavelength (m) 
Pe (n) probability of error n 

Pp (n) probability of position n 

Pr antenna noise power (W) 

Prec power received (W) 

Pt power transmitted (W) 

θ angle (°) 
ρ reflection coefficient 
r the distance to the field point (m) 
ρg reflection coefficient of the generator part of a connection 

ρl reflection coefficient of the load part of the connection 

Rs equivalent surface resistance (Ω) 

σ conductivity (S/m) 
σ standard deviation 
SNRb* signal to noise ratio at a specific BER 

SNRb signal to noise ratio per bit 

TA antenna temperature (°K) 

U the expanded uncertainty corresponding to a confidence level of x %: U = k × uc 

uc the combined standard uncertainty 

ui general type A standard uncertainty 

ui01 random uncertainty 

uj general type B uncertainty 

uj01 reflectivity of absorbing material: EUT to the test antenna 

uj02 reflectivity of absorbing material: substitution or measuring antenna to the test antenna 

uj03 reflectivity of absorbing material: transmitting antenna to the receiving antenna 

uj04 mutual coupling: EUT to its images in the absorbing material 

uj05 mutual coupling: de-tuning effect of the absorbing material on the EUT 

uj06 mutual coupling: substitution, measuring or test antenna to its image in the absorbing material 

uj07 mutual coupling: transmitting or receiving antenna to its image in the absorbing material 

uj08 mutual coupling: amplitude effect of the test antenna on the EUT 
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uj09 mutual coupling: de-tuning effect of the test antenna on the EUT 

uj10 mutual coupling: transmitting antenna to the receiving antenna 

uj11 mutual coupling: substitution or measuring antenna to the test antenna 

uj12 mutual coupling: interpolation of mutual coupling and mismatch loss correction factors 

uj13 mutual coupling: EUT to its image in the ground plane 

uj14 mutual coupling: substitution, measuring or test antenna to its image in the ground plane 

uj15 mutual coupling: transmitting or receiving antenna to its image in the ground plane 

uj16 range length 

uj17 correction: off boresight angle in the elevation plane 

uj18 correction: measurement distance 

uj19 cable factor 

uj20 position of the phase centre: within the EUT volume 

uj21 positioning of the phase centre: within the EUT over the axis of rotation of the turntable 

uj22 position of the phase centre: measuring, substitution, receiving, transmitting or test antenna 

uj23 position of the phase centre: LPDA 

uj24 stripline: mutual coupling of the EUT to its images in the plates 

uj25 stripline: mutual coupling of the 3-axis probe to its image in the plates 

uj26 stripline: characteristic impedance 

uj27 stripline: non-planar nature of the field distribution 

uj28 stripline: field strength measurement as determined by the 3-axis probe 

uj29 stripline: Transform Factor 

uj30 stripline: interpolation of values for the Transform Factor 

uj31 stripline: antenna factor of the monopole 

uj32 stripline: correction factor for the size of the EUT 

uj33 stripline: influence of site effects 

uj34 ambient effect 

uj35 mismatch: direct attenuation measurement 

uj36 mismatch: transmitting part 

uj37 mismatch: receiving part 

uj38 signal generator: absolute output level 

uj39 signal generator: output level stability 

uj40 insertion loss: attenuator 

uj41 insertion loss: cable 

uj42 insertion loss: adapter 

uj43 insertion loss: antenna balun 

uj44 antenna: antenna factor of the transmitting, receiving or measuring antenna 

uj45 antenna: gain of the test or substitution antenna 

uj46 antenna: tuning 

uj47 receiving device: absolute level 

uj48 receiving device: linearity 

uj49 receiving device: power measuring receiver 

uj50 EUT: influence of the ambient temperature on the ERP of the carrier 

uj51 EUT: influence of the ambient temperature on the spurious emission level 

uj52 EUT: degradation measurement 

uj53 EUT: influence of setting the power supply on the ERP of the carrier 

uj54 EUT: influence of setting the power supply on the spurious emission level 

uj55 EUT: mutual coupling to the power leads 

uj56 frequency counter: absolute reading 

uj57 frequency counter: estimating the average reading 

uj58 Salty man/Salty-lite: human simulation 
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uj59 Salty man/Salty-lite: field enhancement and de-tuning of the EUT 

uj60 Test Fixture: effect on the EUT 

uj61 Test Fixture: climatic facility effect on the EUT 

Vdirect received voltage for cables connected via an adapter (dBµV/m) 

Vsite received voltage for cables connected to the antennas (dBµV/m) 

W0 radiated power density (W/m2) 

Other symbols which are used only in annexes D or E of the present document are defined in the corresponding 
annexes. 

3.3 Abbreviations 
For the purposes of the present document, the following abbreviations apply: 

AF Audio Frequency 
BER Bit Error Ratio 
BIPM International Bureau of Weights and Measures (Bureau International des Poids et Mesures) 
c calculated on the basis of given and measured data 
d derived from a measuring equipment specification 
emf Electromotive force 
EUT Equipment Under Test 
m measured 
p power level value 
v voltage level value 
r indicates rectangular distribution 
RF Radio Frequency 
RSS Root-Sum-of-the-Squares 
u indicates U-distribution 
VSWR Voltage Standing Wave Ratio 

4 Receiver measurement examples 
The following clauses show example measurement uncertainty calculations for a range of test configurations involving 
a variety of uncertainty contributions. Components essential for the measurement uncertainty calculations are shown in 
the accompanying drawings. Influence quantities (such as supply voltage and ambient temperature) are not shown in the 
drawings although they are present in the examples. 

Symbols and abbreviations used in the examples are explained in clauses 3.2 and 3.3 of TR 100 028-1 [6]. The test 
configuration, uncertainty contributions and the calculations are only examples and may not include all the possibilities. 
It is important that, where applicable, the errors are identified as either systematic or random for the purpose of making 
the calculations. Each example is calculated for a confidence level of 95 %. 

Many of the calculations on the following pages have been reproduced in spreadsheet form to provide the reader with a 
structured and time-saving approach to calculating measurement uncertainty. The spreadsheets also allow the reader to 
make modifications to the calculations to meet individual needs where the effects of each contribution can be assessed 
more effectively. Where the related spreadsheet has been made available by ETSI, an appropriate reference has been 
included in the text. 
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4.1 Conducted 

4.1.1 Maximum usable sensitivity 

4.1.1.1 Maximum usable sensitivity for analogue speech 

a) Methodology 

cable
Psophometric weighting

network and
SINAD meter

AF
load

Receiver
under
test

Signal
generator

 

Figure 1: Maximum usable sensitivity measurement configuration (Analogue Speech) 

A signal generator is connected to the antenna connector of a receiver under test via a cable (see figure 1). The low 
frequency output of the receiver is suitably terminated and fed to a psophometric filter connected to a SINAD meter. 
The signal generator is modulated with normal modulation. The level is adjusted until the SINAD meter reading is 
20 dB. Maximum usable sensitivity is recorded as the signal generator level after correction for cable loss. 

b) Measurement uncertainty 

Mismatch uncertainty: 

- signal generator reflection coefficient is 0,2 (d); 

- receiver reflection coefficient (table F.1) is 0,2; 

- cable reflection coefficients are 0,1 (m). 

In the calculation of mismatch uncertainty the cable attenuation is assumed to be 0,0 dB (x1 linear). 
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The combined standard uncertainty for mismatch is: 
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RF level uncertainty: 

Signal generator level uncertainty is ±1 dB (d)(r): 
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Uncertainty of the cable attenuation is ±0,104 dB (c)(σ). 

The combined standard uncertainty for the level is: 
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SINAD and deviation uncertainty: 

SINAD meter uncertainty is ±1 dB (d)(r): 

 dB 0,577
3
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Deviation uncertainty is ±5,3 % (d)(r) 
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NOTE: Deviation and SINAD uncertainties can be combined directly (with the same units) as the relationship is 
linear. 

The combined standard uncertainty for SINAD is: 
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SINAD uncertainty is converted to an RF level uncertainty by means of formula 5.2 (of TR 100 028-1 [6]) and 
table F.1. Dependency values found in table F.1 are: 

- mean value of 1,0 % RF level/% SINAD; 

- standard deviation of 0,2 % RF level/% SINAD. 

Dependency values must be converted from percentage to dBs using table 1 in clause 5.2 of TR 100 028-1 [6]. Since 
like units are involved (i.e. % per %), the dependency values can be considered as: 

- mean value of 1,0 dB RF level/dB SINAD; 

- standard deviation of 0,2 dB RF level /dB SINAD. 

Therefore: 

 ( ) ( ) ( )( ) dB 0,648=20016350 222
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Uncertainty due to temperature: 

Ambient temperature uncertainty is ±3°C. 

Ambient temperature uncertainty is converted to a level uncertainty by means of formula 5.2 (of TR 100 028-1 [6]) and 
table F.1. Dependency values found in table F.1 are: 

- mean value of 2,5 % V/°C; 

- standard deviation of 1,2 % V/°C. 

Therefore: 
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Random uncertainty: 

Random uncertainty is 0,2 dB (m)(σ). 

The combined standard uncertainty for maximum usable sensitivity is: 
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Using an expansion factor (coverage factor) of k = 1,96, the expanded measurement uncertainty is 
±1,96 × 1,034 dB = 2,03 dB (see clause D.5.6.2). 

c) Spreadsheet implementation of measurement uncertainty 

This calculation has been implemented in a corresponding spreadsheet (see file "Maximum usable sensitivity.xls") and 
is available in tr_10002802v010401p0.zip. 

4.1.1.2 Maximum usable sensitivity for a bit stream 

a) Methodology 

cable Receiver
under
test

Termination
AF

Bit error
measuring

test set

Bit
stream

generator

Signal
generator

 

Figure 2: Maximum usable sensitivity measurement configuration (Bit Stream) 

A signal generator is connected to the antenna connector of a receiver via a cable (see figure 2). The signal generator is 
set to the nominal frequency of the receiver and modulated by appropriate test modulation. The amplitude of the signal 
from the generator is adjusted until a bit error ratio of 10-2 is obtained from a sample size of 2 500 bits. The maximum 
usable sensitivity for a bit stream is recorded as the signal generator level after correction for the cable loss. 

b) Measurement uncertainty 

Mismatch uncertainty: 

- signal generator reflection coefficient is 0,2 (d); 

- receiver reflection coefficient (see table F.1) is 0,2; 

- cable reflection coefficients are 0,1 (m). 

In the calculation of mismatch uncertainty the cable attenuation is assumed to be 0,0 dB (x1 linear). 
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The combined standard uncertainty for mismatch is: 

 (v) % 4643828241414141u 222
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RF level uncertainty: 

Signal generator level uncertainty ±1 dB (d)(r): 
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Uncertainty of the cable attenuation is ±0,104 dB (c)(σ). 

The combined standard uncertainty for the level is: 

  dB,,,
,

,
659001405770

511

4643
u 22

2

level c =++






=  

Uncertainty due to temperature: 

Ambient temperature uncertainty is ±3°C. 

Ambient temperature uncertainty is converted to a level uncertainty by means of formula 5.2 (see TR 100 028-1 [6]) 
and table F.1. Dependency values found in table F.1 are: 

- mean value of 2,5 % V/°C; 

- standard deviation of 1,2 % V/°C. 

Therefore: 
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Random uncertainty: 

Random uncertainty is 0,2 dB (σ)(m). 

BER uncertainty: 

Case 1: Error associated with digital non-coherent direct modulation 

In this case the RF signal is directly modulated. It has been assumed that the SNRb is proportional to the RF input level. 

σBER must be transformed to an RF input level uncertainty by means of the SNRb(BER) function. 

The BER uncertainty is calculated using formula 6.10: 

 3102
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,  ,
 = u ××

 

The theoretical signal to noise ratio for a BER of 10-2 is calculated using formula 6.19: 

 SNRb = -2 × ln (2 × 0,01) = 7,824. 

At a BER of 10-2 the slope of the BER function is 0,5 × BER = 0,5 × 10-2 (formula 6.21). 

The resulting level uncertainty (formula 6.16) is: 
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This RF level uncertainty is then combined with the rest of the part uncertainties to give the total RF level uncertainty. 
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Case 2a: Error associated with digital non-coherent sub-carrier modulation above the knee point 

For above the knee point case 1 applies because the C/N to S/N ratio is still 1:1. 

Case 2b: Error associated with digital non-coherent sub-carrier modulation below the knee point 

RF level uncertainty due to the sub-carrier modulation is determined by applying the dependency values from table F.1 
(for the equivalent analogue measurements) to the results of case 1 (5,11 % power) using formula 5.2 (of 
TR 100 028-1 [6]). Dependency values found in table F.1 (noise gradient, below the knee point) are: 

- mean value of 0,375 % RF level/% SINAD; 

- standard deviation of 0,075 % RF level/% SINAD. 

Therefore: 

 ( ) ( ) ( )( ) (p) % 954107503750115u 222
BERconvertedj ,= / % %, / % %, %,= SINADelRF i/p levSINADelRF i/p lev +×  

This RF level uncertainty is then combined with the rest of the part uncertainties to give the total RF level uncertainty. 

Case 3: Error associated with digital coherent direct modulation 

The BER uncertainty is calculated using formula 6.10: 

 3102
2500

990010 -
j BER   =

,,
u ××=  

The theoretical signal to noise ratio for a BER of 10-2 is read from figure 18 where SNRb(0,01) = 2,7. 

At this signal-to-noise ratio, the slope of the BER function is 0120
722

1
 = 72 , =  e 

, π   
,-×

××
 (formula 6.14) 

The BER uncertainty is then transformed to level uncertainty using formula 6.16: 

 6,97%(p)=100% x 
x2,81010,25x

102x
=

3-

-3

levelσ  

This RF level uncertainty is then combined with the rest of the part uncertainties to give the total RF level uncertainty. 

Case 4a: Error associated with digital coherent sub-carrier modulation operating above the knee point 

For above the knee point case 3 applies. 

Case 4b: Error associated with digital coherent sub-carrier modulation below the knee point 

RF level uncertainty due to the sub-carrier modulation is determined by applying the dependency values from table F.1 
(for the equivalent analogue measurements) to the results of case 3 (6,17 % power) using formula 5.2 (of 
TR 100 028-1 [6]). Dependency values found in table F.1 (noise gradient, below the knee point) are: 

- mean value of 0,375 % RF level/% SINAD; 

- standard deviation of 0,075 % RF level/% SINAD. 

Therefore: 

 ( ) ( ) ( )( ) (p)% 362%%0750%%3750176u 222
BERconverted j ,= /  , /  , %, SINADelRF i/p levSINADelRF i/p lev +×=  

This RF level uncertainty is then combined with the rest of the part uncertainties to give the total RF level uncertainty. 

The combined standard uncertainty for maximum usable sensitivity (for a bit stream) is: 

 2
BERconvertedj

2
randomj

2
ambientconvertedj

2
levelcysensitivit maximum c uuuuu +++=  
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Combined standard uncertainty: 

Total uncertainty: Case 1 and case 2a 

 dB 0,84=
023

115
20

511

84
6590

2
2

2
2 







++






+=
,

,
,

,

,
,u sitivityaximun senc m  

Using an expansion factor (coverage factor) of k = 1,96, the expanded measurement uncertainty is 
±1,96 × 0,84 dB = ±1,65 dB (see clause D.5.6.2). 

Total uncertainty: Case 2b 

  dB,=
,

,
,

,

,
, 810

023

9541
20

511

84
6590u

2
2

2
2

ysensitivitaximun m c 






++






+=  

Using an expansion factor (coverage factor) of k = 1,96, the expanded measurement uncertainty is 
±1,96 × 0,81 dB = ±1,59 dB (see clause D.5.6.2). 

Total uncertainty: Case 3 and case 4a 

  dB,=
,

,
,

,

,
, 850

023

176
20

511

84
6590u

2
2

2
2

ysensitivitaximun m c 






++






+=  

Using an expansion factor (coverage factor) of k = 1,96, the expanded measurement uncertainty is 
±1,96 × 0,85 dB = ±1,67 dB (see clause D.5.6.2). 

Total uncertainty: Case 4b 

  dB,=
,

,
,

,

,
, 810

023

362
20

511

84
6590u

2
2

2
2

ysensitivitaximun m c 






++






+=  

Using an expansion factor (coverage factor) of k = 1,96, the expanded measurement uncertainty is 
±1,96 × 0,81 dB = ±1,59 dB (see clause D.5.6.2). 

4.1.1.3 Maximum usable sensitivity for messages 

a) Methodology 

A signal generator is connected to the antenna connector of a receiver under test via a cable (see figure 3). The signal 
generator is at the nominal frequency of the receiver and is modulated by appropriate modulation. The test signal is 
applied repeatedly until the specified success calling rate is achieved. The maximum usable sensitivity is recorded as 
the average level from the signal generator (from 10 samples) after correction for the loss of the cable. 

cable Receiver
under
test

Termination
AF

Response
measuring

test set

Signal
generator

Message
generator

 

Figure 3: Measured usable sensitivity measurement configuration (Messages) 
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b) Measurement uncertainty 

Mismatch uncertainty: 

- signal generator reflection coefficient is 0,2 (d); 

- receiver reflection coefficient (see table F.1) is 0,2; 

- cable reflection coefficients are 0,1 (m). 

In the calculation of mismatch uncertainty the cable attenuation is assumed to be 0,0 dB. 

 (v) % 4141
2

1001020
u cable andgenerator  :mismatch j ,

%,, =××=  

 (v) %4141
2

1002010
u receiver and cable :mismatch j  ,

%,, =××=  

 (v) % 8282
2

10012020
u

2

receiver andgenerator  :mismatch j ,
%,, =×××=  

The combined standard uncertainty for mismatch is: 

 (v) %4643828241414141u 222
:mismatch c  ,,,, =++=  

RF level uncertainty: 

Signal generator level uncertainty is ±1 dB (d)(r): 

 dB 0,577
3

01 == ,
u evelenerator lj signal g  

Uncertainty of the cable attenuation is 0,104 dB (c)(σ). 

The combined standard uncertainty for the level is: 

  dB,,,
,

,
659010405770

511

4643
u 22

2

level c =++






=  

Uncertainty due to methodology: 

The standard uncertainty for the measurement methodology (as the result is the average value of 10 samples) of 0,28 dB 
is taken from clause 6.7.4 of TR 100 028-1 [6] and is used in this example (m)(σ). 

Uncertainty due to temperature: 

Ambient temperature uncertainty is ±3°C. 

Ambient temperature uncertainty is converted to a level uncertainty by means of formula 5.2 (see TR 100 028-1 [6]) 
and table F.1. Dependency values found in table F.1 are: 

- mean value of 2,5 %V/°C; 

- standard deviation of 1,2 %V/°C. 

Therefore: 

 ( ) ( ) ( ) (v) % 842152
3

3
u

22
2

ambientconverted j ,= C % / ,C % / ,
C 








 +×













= oo

o
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Random uncertainty: 

Random uncertainty 0,2 dB (m)(σ). 

The combined standard uncertainty for maximum usable sensitivity (for messages) is: 

 2
randomj

2
ambientconvertedj

2
ymethodologj

2
levelcysensitivit maximum c uuuuu +++=  

  dB, = ,
,

,
,, 853020

511

84
2806590u 2

2
22

ysensitivit ximumma c +






++=  

Using an expansion factor (coverage factor) of k = 1,96, the expanded measurement uncertainty is 
±1,96 × 0,853 dB = ±1,67 dB (see clause D.5.6.2). 

4.1.2 Co-channel rejection 

4.1.2.1 Co-channel rejection for analogue speech 

a) Methodology 

A receiver under test is connected to two signal generators through a combining network. A 6 dB attenuator is inserted 
between generator A and the combiner to reduce mismatch uncertainty when the test configuration is used for other 
tests involving out of band signals. The audio frequency output from the receiver is connected, suitably terminated, to a 
SINAD meter through a psophometric filter (see figure 4). Co-channel rejection is recorded (for a given SINAD 
reading) as the difference between the signal levels from generator A and generator B after correction for the attenuator. 

Receiver
under
test

AF load or
accoustic coupler

Signal
generator A

Signal
generator B

6 dB
att.

Resistive
combiner

6 dB

Psophometric
   weighting
 network and
SINAD meter

 

Figure 4: Co-channel rejection measurement configuration for analogue speech 

b) Measurement uncertainty 

Generator A level uncertainty (wanted signal) is ±1 dB (d)(r): 

 dB 0,577 
3

1 ==ignalj wanted su  

Generator B level uncertainty (unwanted signal) is ±1 dB (d)(r): 

 dB 0,577 
3

1 == signalj unwantedu  

6 dB attenuator uncertainty is 0,2 dB (c)(σ). 

Combiner nominal insertion loss is 6 dB (x 0,5 linear - required for mismatch calculations). 
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Combiner tracking is ±0,1 dB: 

 dB 0,058 
3

1,0 ==trackingj combineru  

Mismatch uncertainty 

- generator reflection coefficients (A and B) are 0,2 (d); 

- combiner reflection coefficients are 0,1 (d); 

- receiver under test reflection coefficient (see table F.1) is 0,2; 

- attenuator reflection coefficients are 0,1 (d). 

As each port of the combiner combines two other ports, the mismatch uncertainty in any one path will also be affected 
by the third port. 

Mismatch between generator A and EUT: 

 (v) %414,1%
2

1001,02,0
u attandAgenerator:mismatchj =××=  

 (v) %7070%
2

1001,01,0
u combinerandatt:mismatchj ,=××=  

 (v) %414,1%
2

1002,01,0
u EUTandbinercom:mismatchj =××=  

 (v)%354,0%
2

1005,01,02,0
u

2

combinerandAgenerator:mismatchj =×××=  

 (v) %354,0%
2

1005,02,01,0
u

2

EUTandatt:mismatchj =×××=  

 (v) %177,0%
2

1005,05,02,02,0
u

22

EUTandAgeneratorj =××××=  

Uncertainty contribution due to the third combiner port: 

 (v) %177,0%
2

1005,05,02,02,0
u

22

BgeneratorandAgenerator:mismatchj =××××=  

 (v) %354,0%
2

1005,02,01,0
u

2

Bgeneratorandattenuator:mismatchj =×××=  

 (v) %707,0%
2

1005,02,02,0
u

2

EUTandBgenerator:mismatchj =×××=  

Uncertainty due to the reflection coefficient at the third port: 

 (v) %071,7%
25,0

1005,05,02,0
u Bgenerator:mismatchj =

×
×××=  

Total mismatch uncertainty from generator A to EUT: 

 0,65dB
5,11

071,7707,0354,0177,0177,0354,0354,0414,1707,0414,1 2222222222
=+++++++++=EUTtoAgencu  



 

ETSI 

ETSI TR 100 028-2 V1.4.1 (2001-12)28 

Mismatch between generator B and EUT: 

 (v) %414,1%
2

1001,02,0
u combinerandBgeneratormismatch:j =××=  

 (v) %414,1%
2

1002,01,0
u EUTandcombiner:mismatchj =

××
=  

 (v) %707,0%
2

1005,02,02,0
u

2

EUTandBgenerator:mismatchj =×××=  

Uncertainty contribution due to the third combiner port: 

 (v) %354,0%
2

1005,01,02,0
u

2

attenuatorandBgenerator:mismatchj =×××=  

 (v) %354,0%
2

1005,01,02,0
u

2

attandEUT:mismatchj =×××=  

 (v) %177,0%
2

1005,05,02,02,0
u

22

AgeneratorandBgenerator:mismatchj =××××=  

 (v) %177,0%
2

1005,05,02,02,0
u

22

AgeneratorandEUT:mismatchj =××××=  

Uncertainty due to the reflection coefficient at the third port: 

 (v) %536,3%
25,0

1005,05,01,0
u att:mismatchj =

×
×××=  

 (v) %768,1%
25,0

1005,05,05,02,0
u

2

Agenerator:mismatchj =
×

××××=  

Total mismatch uncertainty from generator B to EUT: 

 dB,
,

,,,,,,,,,
390

511

768153631770177035403540707041414141
u

222222222

EUT to Bgen  :mismatch c =++++++++=  

The combined standard uncertainty for mismatch is: 

 2
EUT to Bgen  c

2
EUT toA gencmismatch c uuu +=  

 dB 0,76 39,065,0 22 =+=c mismatchu  

Total level difference uncertainty: 

 22222
mismatchctrackingcombinerjattenjsignalunwantedjsignalwantedjfferencec level di uuuuuu ++++=  

 1,13dB =760058,02,057705770 22222  ,,,u fferencec level di ++++=  

Total level uncertainty of wanted signal: 

 222
EUTtoAgencattenuatorjsignalwantedjsignalc wanted uuuu ++=  

 dB 0,892 =650205770 222  ,,, = u ignalc wanted s ++  
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The wanted level uncertainty is converted to an RF level difference uncertainty by means of formula 5.2 (of 
TR 100 028-1 [6]) and table F.1. Dependency values found in table F.1 are: 

- mean value of 0,5 % RF level/% RF level; 

- standard deviation of 0,2 % RF level/% RF level. 

Dependency values must be converted from percentage to dBs using table 1 in clause 5.2 of TR 100 028-1 [6]. Since 
like units are involved (i.e. % per %), the dependency values can be considered as: 

- mean value of 0,5 dB RF level/dB RF level; 

- standard deviation of 0,2 dB RF level/dB RF level. 

Therefore: 

 ( ) ( ) ( )( ) dB 0,480 =/dBdB20/dBdB 50dB 8920u 2
level RFlevel RF

2
level RFlevel RF

2
wantedconverted c  ,,  ,= +×  

SINAD uncertainty: 

SINAD meter uncertainty ±1 dB (d): 

 dB 0,577 
3

1 =terj SINAD meu  

Deviation uncertainty (wanted signal) is ±5,3 % (d)(r): 

 % 3,06 
3

3,5
==ignaln wanted sj deviatiou  

Deviation uncertainty (unwanted signal) is ±5,3 % (d)(r). 

Deviation is assumed to be 3 kHz so deviation uncertainty in Hz = (5,3 %/100) x 3,0 kHz = ±159 Hz. 

Deviation uncertainty of the unwanted signal is converted to a SINAD uncertainty by means of formula 5.2 (of 
TR 100 028-1 [6]) and table F.1. Dependency values found in table F.1 are: 

- mean value of 0,05 % SINAD/Hz; 

- standard deviation of 0,02 % SINAD/Hz. 

Therefore: 

 ( ) ( ) ( )( ) % 4,94 =020050
3

159 22
2

  % / Hz, % / Hz,  
 Hz

 = u to SINAD converted n j deviatio +×













 

The combined standard uncertainty for the SINAD is: 

 dB 0,767 =
511

944

511

063
5770

22
2  

,

,

,

,
, = uc SINAD 







+






+  

SINAD uncertainty is converted to an RF level uncertainty by means of formula 5.2 (of TR 100 028-1 [6]) and 
table F.1. Dependency values found in table F.1 are: 

- mean value of 0,7 % RF level/% SINAD; 

- standard deviation of 0,2 % RF level/% SINAD. 
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Dependency values must be converted from percentage to dBs using table 1 in clause 5.2 of TR 100 028-1 [6]. Since 
like units are involved (i.e. % per %), the dependency values can be considered as: 

-  mean value of 0,7 dB RF level/dB SINAD; 

- standard deviation of 0,2 dB RF level /dB SINAD. 

Therefore: 

 ( ) ( ) ( )( ) dB 0,558=207,07670u 222
Deviation&SINAD converted c  /dB dB,/dB dB dB, SINADelRF i/p levSINADelRF i/p lev +×=  

Random uncertainty: 

Random uncertainty is 0,2 dB (σ)(m). 

The combined standard uncertainty for co-channel rejection (analogue speech) is: 

 2
randomj

2
deviation & SINAD convertedc

2
wantedconvertedc

2
differencelevelcrejectionchannelco c uuuuu +++=−  

  dB, = ,,,, 3612055804800131u 2222
rejectionchannelco c +++=−  

Using an expansion factor (coverage factor) of k = 1,96, the expanded measurement uncertainty is 
±1,96 × 1,36 dB = ±2,67 dB (see clause D.5.6.2). 

c) Spreadsheet implementation of measurement uncertainty 

This calculation has been implemented in a corresponding spreadsheet (see file "Co-channel rejection.xls") and is 
available in tr_10002802v010401p0.zip. 

4.1.2.2 Co-channel rejection for bit stream 

a) Methodology 

A receiver under test is connected to two signal generators through a combining network (see figure 5). A 6 dB 
attenuator is inserted between generator A and the combiner to reduce mismatch uncertainty when the test configuration 
is used for other tests involving out of band signals. Signal generator A is set to a suitable level at the nominal 
frequency of the receiver and modulated by appropriate modulation. Signal generator B, also modulated by appropriate 
modulation, is adjusted until a bit error ratio of 10-2 is obtained from a sample size of 2 500 bits. Co-channel rejection is 
recorded as the difference between the signal levels from generator A and generator B after correction for the 
attenuator. 

Bit error

test set
measuring Termination

Receiver
under
test

Bit stream
generator

Signal
generator A

Signal
generator B

6 dB
att.

Resistive
combiner

6 dB

 

Figure 5: Co-channel rejection measurement configuration for bit stream 
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b) Measurement uncertainty 

Generator A level uncertainty (wanted signal) ±1 dB (d)(r): 

 0,577dB 
3

1
==ignalj wanted su  

Generator B level uncertainty (unwanted signal) ±1 dB (d)(r): 

 dB, 5770
3

1
u signal unwanted j ==  

6 dB attenuator uncertainty is 0,2 dB (c)(σ). 

Combiner nominal insertion loss is 6 dB (x 0,5 linear - required for mismatch calculations). 

Combiner tracking ±0,1 dB: 

 dB 0,058 
3

1,0 ==trackingj combineru  

Mismatch uncertainty 

- generator reflection coefficients (for A and B) are 0,2 (d); 

- combiner reflection coefficients are 0,1 (d); 

- receiver under test reflection coefficient (see table F.1) is 0,2; 

- attenuator reflection coefficients are 0,1 (d). 

Mismatch for a bit stream is calculated in the same way as for analogue speech (clause 4.1.2.1) where: 

Total mismatch uncertainty from generator A to EUT: 

 dB,
,

,,,,,,,,,,
650

511

0717707035401770177035403540414170704141
u

2222222222

EUT toA gen  c =+++++++++=  

Total mismatch uncertainty from generator B to EUT: 

 dB,
,

,,,,,,,,,
390

511

768153631770354017703540707041414141
u

222222222

EUT to Bgen  c =++++++++=  

The combined standard uncertainty for mismatch is: 

 22
EUTtoBgencEUTtoAgencc mismatch uuu +=  

 dB 0,76 39,065,0 22 =+=c mismatchu  

Total level difference uncertainty: 

 22222
mismatchctrackingcombinerjattenjsignalunwantedjsignalwantedjfferencec level di uuuuuu ++++=  

 1,13dB =760058,02,057705770 22222  ,,,u fferencec level di ++++=  
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Total level uncertainty of wanted signal: 

 222
EUTtoAgencattenuatorjsignalwantedjsignalc wanted uuuu ++=  

 dB 0,892 =650205770 222  ,,, = u ignalc wanted s ++  

The wanted level uncertainty is then converted to an RF level difference uncertainty by means of formula 5.2 (of 
TR 100 028-1 [6]) and table F.1. Dependency values found in table F.1 are: 

- mean value of 0,5 % RF level/% RF level; 

- standard deviation of 0,2 % RF level/% RF level. 

Dependency values must be converted from percentage to dBs using table 1 in clause 5.2 of TR 100 028-1 [6]. Since 
like units are involved (i.e. % per %), the dependency values can be considered as: 

- mean value of 0,5 dB RF level/dB RF level; 

- standard deviation of 0,2 dB RF level /dB RF level. 

Therefore: 

 ( ) ( ) ( )( ) dB 0,480 =/dBdB20/dBdB 50dB 8920u 2
level RFlevel RF

2
level RFlevel RF

2
wantedconverted c  ,,  ,= +×  

Random uncertainty: 

Random uncertainty (valid for all measurements) is 0,2 dB (m)(σ). 

BER uncertainty: 

Case 1: Error associated with digital non-coherent direct modulation 

In this case the RF signal is directly modulated. It has been assumed that the SNRb is proportional to the RF input level. 

σ BER must be transformed to an RF input level uncertainty by means of the SNRb(BER) function. 

The BER uncertainty is calculated using formula 6.10: 

 3102
2500

990010 -
j BER    = 

,  ,
 = u ××

 

The theoretical signal to noise ratio for a BER of 10-2 is calculated using formula 6.19: 

 SNRb = -2 × ln (2 × 0,01) = 7,824. 

At a BER of 10-2 the slope of the BER function is 0,5 × BER = 0,5 × 10-2 (formula 6.21). 

The resulting level uncertainty (formula 6.16) is: 

 %(p) 115100
82471050

102
u

2

3

BERconverted j , % =  
,    ,

  
 = 

-

-

××
×  

This RF level uncertainty is then combined with the rest of the part uncertainties to give the total RF level uncertainty. 

Case 2a: Error associated with digital non-coherent sub-carrier modulation above the knee point 

For above the knee point case 1 applies because the C/N to S/N ratio is still 1:1. 
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Case 2b: Error associated with digital non-coherent sub-carrier modulation below the knee point 

RF level uncertainty due to the sub-carrier modulation is determined by applying the dependency values from table F.1 
(for the equivalent analogue measurements) to the results of case 1 (5,11 % power) using formula 5.2 
(see TR 100 028-1 [6]). Dependency values found in table F.1 (noise gradient, below the knee point) are: 

- mean value of 0,7 % RF level/% SINAD; 

- standard deviation is 0,2 % RF level/% SINAD. 

Therefore: 

 ( ) ( ) ( )( ) (p)% 72032070115u 222
BERconvertedj ,= / % %, / % %, %,= SINADelRF i/p levSINADelRF i/p lev +×  

This RF level uncertainty is then combined with the rest of the part uncertainties to give the total RF level uncertainty. 

Case 3: Error associated with digital coherent direct modulation 

The BER uncertainty is calculated using formula 6.10: 

 3102
2500

990010 -
j BER   =

,,
u ××=  

The theoretical signal to noise ratio for a BER of 10-2 is read from figure 18 where SNRb(0,01) = 2,7. 

At this signal to noise ratio, the slope of the BER function is 0120
722

1
 72 , =  e 

, π   
= ,-×

××
 (formula 6.14). 

The BER uncertainty is then transformed to level uncertainty using formula 6.16: 

 6,97%(p)=100% x 
x2,81010,25x

102x
=

3-

-3

levelσ  

This RF level uncertainty is then combined with the rest of the part uncertainties to give the total RF level uncertainty. 

Case 4a: Error associated with digital coherent sub-carrier modulation operating above the knee point 

For above the knee point case 3 applies. 

Case 4b: Error associated with digital coherent sub-carrier modulation below the knee point 

RF level uncertainty due to the sub-carrier modulation is determined by applying the dependency values from table F.1 
(for the equivalent analogue measurements) to the results of case 3 (6,17 % power) using formula 5.2 (of 
TR 100 028-1 [6]). Dependency values found in table F.1 (noise gradient, below the knee point) are: 

- mean value of 0,7 % RF level/% SINAD; 

- standard deviation of 0,2 % RF level/% SINAD. 

Therefore: 

 ( ) ( ) ( )( ) (p)% 4942070176u 222
BERconverted j ,= / % %, / % %, %, SINADelRF i/p levSINADelRF i/p lev +×=  

This RF level uncertainty is then combined with the rest of the part uncertainties to give the total RF level uncertainty. 

The combined standard uncertainty for co-channel rejection (for a bit stream) is: 

 2
BERconvertedj

2
randomj

2
wantedconvertedc

2
differencelevelcrejectionchannelco c uuuuu +++=−  
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Total uncertainty: Case 1 and 2a 

 dB 1,26 = 
023

115
204800131

2
222  

,

,
,,,u rejectionchannelc co 







+++=−  

Using an expansion factor (coverage factor) of k = 1,96, the expanded measurement uncertainty is 
±1,96 × 1,26 dB = ±2,47 dB (see clause D.5.6.2). 

Total uncertainty: Case 2b 

 dB 251
023

7203
204800131u

2
222

rejectionchannelco c , = 
,

,
,,, 







+++=−  

Using an expansion factor (coverage factor) of k = 1,96, the expanded measurement uncertainty is 
±1,96 × 1,25 dB = ±2,45 dB (see clause D.5.6.2). 

Total uncertainty: Case 3 and 4a 

 dB 271
023

176
204800131u

2
222

rejectionchannelco c , = 
,

,
,,, 







+++=−  

Using an expansion factor (coverage factor) of k = 1,96, the expanded measurement uncertainty is 
±1,96 × 1,27 dB = ±2,49 dB (see clause D.5.6.2). 

Total uncertainty: Case 4b 

 

dB u rejectionchannelco c 26,1 = 
0,23

49,4
2,0480,013,1

2

222 






+++=−

 

Using an expansion factor (coverage factor) of k = 1,96, the expanded measurement uncertainty is 
±1,96 × 1,26 dB = ±2,47 dB (see clause D.5.6.2). 

4.1.2.3 Co-channel rejection for messages 

a) Methodology 

A receiver under test is connected to two signal generators through a combining network (see figure 6). A 6 dB 
attenuator is inserted between generator A and the combiner to reduce mismatch uncertainty when the test configuration 
is used for other tests involving out of band signals. Signal generator A is set to a suitable level at the nominal 
frequency of the receiver and modulated by appropriate modulation. The signal from generator B, also modulated by 
appropriate modulation, is then varied in level until the specified success calling rate is achieved. Co-channel rejection 
is recorded as the difference between the average level of generator A (from 10 samples) and generator B, after 
correction for the 6 dB attenuator. 

Response

test set
measuring Termination

Receiver
under
test

Message
generator

Signal
generator A

Signal
generator B

resistive
6 dB

att.
6 dB

combiner

 

Figure 6: Co-channel rejection measurement configuration for messages 
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b) Measurement uncertainty 

Generator A level uncertainty (wanted signal) ±1 dB (d)(r): 

 0,577dB 
3

1 ==ignalj wanted su  

Generator B level uncertainty (unwanted signal) ±1 dB (d)(r): 

 dB, 5770
3

1
u signal unwanted j ==  

6 dB attenuator uncertainty is 0,2 dB (m)(σ). 

Combiner nominal insertion loss is 6 dB (x 0,5 linear - required for mismatch calculations). 

Combiner tracking ±0,1 dB: 

 dB 0,058 
3

1,0 ==trackingj combineru  

Mismatch uncertainty 

- generator reflection coefficients (for A and B) are 0,2 (d); 

- combiner reflection coefficients are 0,1 (d); 

- receiver under test reflection coefficient (see table F.1) is 0,2; 

- attenuator reflection coefficients are 0,1 (d). 

Mismatch for messages is calculated in the same way as for analogue speech (clause 4.1.2.1) where: 

Total mismatch uncertainty from generator A to EUT: 

 0,65dB
5,11

071,7707,0354,0177,0177,0354,0354,0414,1707,0414,1 2222222222
=+++++++++=EUTtoAgencu  

Total mismatch uncertainty from generator B to EUT: 

 0,39dB
5,11

768,1536,3177,0354,0177,0354,0707,0414,1414,1 222222222
=++++++++=EUTtoBgencu  

The combined standard uncertainty for mismatch is: 

 22
EUTtoBgencEUTtoAgencc mismatch uuu +=  

 dB 0,76 39,065,0 22 =+=c mismatchu  

Total level difference uncertainty: 

 2
mismatchc

2
trackingcombinerj

2
attenj

2
signalunwantedj

2
signalwantedjdifference level c uuuuuu ++++=  

 1,13dB =760058,02,057705770 22222  ,,,u fferencec level di ++++=  
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Total level uncertainty of wanted signal: 

 222
EUTtoAgencattenuatorjsignalwantedjsignalc wanted uuuu ++=  

 dB 0,892 =650205770 222  ,,, = u ignalc wanted s ++  

The wanted level uncertainty is then converted to an RF level difference uncertainty by means of formula 5.2 (of 
TR 100 028-1 [6]) and table F.1. Dependency values found in table F.1 are: 

- mean value of 0,5 % RF level/% RF level; 

- standard deviation of 0,2 % RF level/% RF level. 

Dependency values must be converted from percentage to dBs using table 1 in clause 5.2 of TR 100 028-1 [6]. Since 
like units are involved (i.e. % per %), the dependency values can be considered as: 

- mean value of 0,5 dB RF level/dB RF level; 

- standard deviation of 0,2 dB RF level/dB RF level. 

Therefore: 

 ( ) ( ) ( )( ) dB 0,480 =/dBdB20/dBdB 50dB 8920u 2
level RFlevel RF

2
level RFlevel RF

2
wantedconverted c  ,,  ,= +×  

Uncertainty of methodology: 

The standard uncertainty of the measurement methodology (as the result is the average value of 10 samples) of 0,28 dB 
is taken from clause 6.7.4 of TR 100 028-1 [6] and is used in this example (m)(σ). 

Random uncertainty: 

Random uncertainty 0,2 dB (c)(σ). 

The combined standard uncertainty for co-channel rejection is: 

 2
ymethodologjrandomj

2
wantedconvertedc

2
differencelevelcrejectionchannelco c uuuuu +++=−  

 dB 1,28 = 28,02,0480,013,1 2222 +++=− rejectionchannelc cou  

Using an expansion factor (coverage factor) of k = 1,96, the expanded measurement uncertainty is 
±1,96 × 1,28 dB = ±2,51 dB (see clause D.5.6.2). 

4.1.3 Adjacent channel selectivity 

4.1.3.1 Adjacent channel selectivity for analogue speech 

The only difference between this test and the co-channel rejection test in clause 4.1.2.1 is that the interfering signal 
resides in the adjacent channel. All other factors are the same and, assuming the single side-band phase noise of the 
interfering signal generator does not adversely effect adjacent channel performance the calculation of measurement 
uncertainty is the same as for clause 4.1.2.1. 

4.1.3.2 Adjacent channel selectivity for bit streams 

The only difference between this test and the co-channel rejection test in clause 4.1.2.2 is that the interfering signal 
resides in the adjacent channel. All other factors are the same, and assuming the single side-band phase noise of the 
interfering signal generator does not adversely effect adjacent channel performance the calculation of measurement 
uncertainty is the same as for clause 4.1.2.2. 
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4.1.3.3 Adjacent channel selectivity for messages 

The only difference between this test and the co-channel rejection test in clause 4.1.2.3 is that the interfering signal 
resides in the adjacent channel. All other factors are the same, and assuming the single side-band phase noise of the 
interfering signal generator does not adversely effect adjacent channel performance the calculation of measurement 
uncertainty is the same as for clause 4.1.2.3. 

4.1.4 Spurious response immunity 

4.1.4.1 Spurious response immunity measurements for analogue speech 

A receiver under test is connected to two signal generators through a combining network (see figure 7). A 6 dB 
attenuator is inserted between generator A and the combiner to reduce out of band mismatch uncertainty. The audio 
frequency output from the receiver is connected, suitably terminated to a SINAD meter through a psophometric filter. 
Spurious response immunity is recorded (for a given SINAD reading) as the difference between the signal levels from 
generator A and generator B, after correction for the attenuator. 

Receiver
under
test

AF load or
accoustic coupler

Signal
generator A

Signal
generator B

6 dB
att.

Resistive
combiner

6 dB

Psophometric
   weighting
 network and
SINAD meter

 

Figure 7: Spurious response immunity measurement configuration for analogue speech 

4.1.4.1.1 In band measurements 

a) Measurement uncertainty 

Generator A level uncertainty (wanted signal) is ±1 dB (d)(r): 

 dB 0,577 
3

1 ==ignalj wanted su  

Generator B level uncertainty (unwanted signal) is ±1 dB (d)(r): 

 dB 0,577 
3

1 == signalj unwantedu  

6 dB attenuator uncertainty is 0,2 dB (c)(σ). 

Attenuator loss is 6dB (x 0,5 linear - required for mismatch calculations). 

Combiner nominal insertion loss is 6 dB (required for mismatch calculations). 

Combiner tracking is ±0,1 dB: 

 dB 0,058 
3

1,0 ==trackingj combineru  
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Mismatch uncertainty (in band) 

- generator reflection coefficients (A and B) are 0,2 (d); 

- combiner reflection coefficients are 0,1 (d); 

- receiver under test reflection coefficient (see table F.1) is 0,2; 

- attenuator reflection coefficients are 0,1 (d). 

As each port of the combiner combines two other ports, the mismatch uncertainty in any one path will also be affected 
by the third port. 

Mismatch between generator A and EUT: 

 (v) %414,1%
2

1001,02,0
u att and Agenerator :mismatch j =××=  

 (v) %707,0%
2

1001,01,0
u combiner and att :mismatch j =××=  

 (v) %414,1%
2

1002,01,0
u EUT andbiner com :mismatch j =××=  

 (v) %354,0%
2

1005,01,02,0
u

2

combiner andA generator  :mismatch j =×××=  

 (v) %354,0%
2

1005,02,01,0
u

2

EUT andatt  :mismatch j =×××=  

 (v) %177,0%
2

1005,05,02,02,0
u

22

EUT and Agenerator  :mismatch j =××××=  

Uncertainty contribution due to the third combiner port: 

 (v) %177,0%
2

1005,05,02,02,0
u

22

Bgenerator  andA generator  :mismatch j =××××=  

 (v) %354,0%
2

1005,02,01,0
u

2

Bgenerator  and attenuator :mismatch j =×××=  

 (v) %707,0%
2

1005,02,02,0
u

2

EUT and Bgenerator  :mismatch j =×××=  

Uncertainty due to the reflection coefficient at the third port: 

 (v) %071,7%
25,0

1005,05,02,0
u Bgenerator  :mismatch j =

×
×××=  

Total mismatch uncertainty from generator A to EUT: 

 dB,
,

,,,,,,,,,,
650

511

0717707035401770177035403540414170704141
u

2222222222

EUT A togen  c =+++++++++=  
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Mismatch between generator B and EUT: 

 (v) %414,1%
2

1001,02,0
u combiner and Bgenerator  :mismatch j =××=  

 (v) %414,1%
2

1002,01,0
u EUT andcombiner  :mismatch j =

××
=  

 (v) %707,0%
2

1005,02,02,0
u

2

EUT and Bgenerator  :mismatch j =×××=  

Uncertainty contribution due to the third combiner port: 

 (v) %354,0%
2

1005,01,02,0
u

2

attenuator and Bgenerator  :mismatch j =×××=  

 (v) %354,0%
2

1005,01,02,0
u

2

att and EUT:mismatch j =×××=  

 (v) %177,0%
2

1005,05,02,02,0
u

22

Agenerator  and Bgenerator  :mismatch j =××××=  

 (v) %177,0%
2

1005,05,02,02,0
u

22

Agenerator  and EUT :mismatch j =××××=  

Uncertainty due to the reflection coefficient at the third port: 

 (v) %536,3%
25,0

1005,05,01,0
u att :mismatch j =

×
×××=  

 (v) %768,1%
25,0

1005,05,05,02,0
u

2

Agenerator  :mismatch j =
×

××××=  

Total mismatch uncertainty from generator B to EUT: 

 dB,
,

,,,,,,,,,
390

511

768153631770177035403540707041414141
u

222222222

EUT  toBgen  c =++++++++=  

The combined standard uncertainty for mismatch (in band) is: 

 2
EUT  toBgen  c

2
EUT A togen  cmismatch c uuu +=  

 dB 0,76 39,065,0 22 =+=c mismatchu  

Total level difference uncertainty: 

 22222
mismatchctrackingcombinerjattenjsignalunwantedjsignalwantedjfferencec level di uuuuuu ++++=  

 1,13dB =760058,02,057705770 22222  ,,,u fferencec level di ++++=  

Total level uncertainty of wanted signal: 

 222
EUTtoAgencattenuatorjsignalwantedjsignalc wanted uuuu ++=  

 dB 0,892 =650205770 222  ,,, = u ignalc wanted s ++  
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The wanted level uncertainty is then converted to an RF level difference uncertainty by means of formula 5.2 (see 
TR 100 028-1 [6]) and table F.1. Dependency values found in table F.1 are: 

- mean value of 0,5 % RF level/% RF level; 

- standard deviation of 0,2 % RF level/% RF level. 

Dependency values must be converted from percentage to dBs using table 1 in clause 5.2 of TR 100 028-1 [6]. Since 
like units are involved (i.e. % per %), the dependency values can be considered as: 

- mean value of 0,5 dB RF level/dB RF level; 

- standard deviation of 0,2 dB RF level/dB RF level. 

Therefore: 

 ( ) ( ) ( )( ) dB 0,480 =/dBdB20/dBdB 50dB 8920u 2
level RFlevel RF

2
level RFlevel RF

2
wantedconverted c  ,,  ,= +×  

SINAD uncertainty: 

SINAD meter uncertainty is ±1 dB (d)(r): 

 dB 0,577 
3

1 ==terj SINAD meu  

Deviation uncertainty (wanted signal) is ±5,3 % (d)(r): 

 % 3,06 
3

3,5
==ignaln wanted sj deviatiou  

Deviation uncertainty (unwanted signal) is ±5,3 % (d)(r). 

Deviation is assumed to be 3 kHz so deviation uncertainty in Hz = (5,3 %/100) x 3,0 kHz = ±159 Hz. 

The deviation uncertainty of the unwanted signal is converted to a SINAD uncertainty by means of formula 5.2 (of 
TR 100 028-1 [6]) and table F1. Dependency values found in table F.1 are: 

- mean value of 0,05 % SINAD/Hz; 

- standard deviation of 0,02 % SINAD/Hz. 

Therefore: 

 ( ) ( ) ( )( ) % 4,94 =020050
3

159 22
2

  % / Hz, % / Hz,  
 Hz

 = u to SINAD converted n j deviatio +×













 

The combined standard uncertainty for the SINAD is: 

 dB 0,767 =
511

944

511

063
5770

22
2  

,

,

,

,
, = uc SINAD 







+






+  

SINAD uncertainty is converted to an RF level uncertainty by means of formula 5.2 (of TR 100 028-1 [6]) and 
table F.1. Dependency values found in table F.1 are: 

- mean value of 0,7 % RF level/% SINAD; 

- standard deviation of 0,2 % RF level/% SINAD. 
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Dependency values must be converted from percentage to dBs using table 1 in clause 5.2 of TR 100 028-1 [6]. Since 
like units are involved (i.e. % per %), the dependency values can be considered as: 

- a mean value of 0,7 dB RF level/dB SINAD; 

- a standard deviation of 0,2 dB RF level/dB SINAD. 

Therefore: 

 ( ) ( ) ( )( )  dB, =  , ,  dB,= 5580dB / dB20dB / dB707670u 2
SINADlevel i/p RF

2
SINADlevel i/p RF

2
SINADconvertedc +×  

Random uncertainty: 

Random uncertainty (valid for all measurements) 0,2 dB (m)(σ). 

The combined standard uncertainty for in-band spurious response immunity (analogue speech) is: 

 2
randomj

2
SINADconvertedc

2
wantedconvertedc

2
differencelevelcimmunity response spurious c uuuuu +++=  

  dB, = ,,,, 3612055804800131u 2222
immunity responsespurious c +++=  

Using an expansion factor (coverage factor) of k = 1,96, the expanded measurement uncertainty is 
±1,96 × 1,36 dB = ±2,67 dB (see clause D.5.6.2). 

b) Spreadsheet implementation of measurement uncertainty 

This calculation has been implemented in a corresponding spreadsheet (see file "Spurious response in band.xls") and is 
available in tr_10002802v010301p0.zip. 

4.1.4.1.2 Out of band measurements 

a) Measurement uncertainty 

Generator A level uncertainty (wanted signal) is ±1 dB (d)(r): 

 dB 0,577 
3

1 ==ignalj wanted su  

As generator B (unwanted signal) will go beyond 1 GHz, the level uncertainty is ±1,5 dB (d)(r): 

 dB 0,866 
3

5,1 == signalj unwantedu  

6 dB attenuator uncertainty is 0,2 dB (m)(σ). 

Attenuator loss is 6 dB (x 0,5 linear - required for mismatch calculations). 

Combiner nominal insertion loss is 6 dB (x 0,5 linear - required for mismatch calculations). 

Combiner tracking is ±0,6 dB: 

 dB 0,346 
3

6,0 ==trackingj combineru  

In this example (out-of-band) tracking uncertainty is much higher due to the fact that the two signals are at different 
frequencies. 
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Mismatch uncertainty (in band) 

- generator A reflection coefficient is 0,2 (d); 

- generator B reflection coefficient is 0,2 (d); 

- combiner reflection coefficients are 0,1 (d); 

- receiver under test reflection coefficient (see table F.1) is 0,2; 

- attenuator reflection coefficients are 0,1 (d). 

Mismatch uncertainty (out of band) 

- generator A reflection coefficient is 0,35 (d); 

- generator B reflection coefficient is 0,35 (d); 

- combiner reflection coefficients are 0,2 (d); 

- receiver under test reflection coefficient (see table F.1) is 0,8; 

- attenuator reflection coefficients are 0,2 (d). 

As each port of the combiner combines two other ports, the mismatch uncertainty in any one path will also be affected 
by the third port. 

Mismatch between generator A and EUT: 

 (v) 414,1%
2

1001,02,0
u att andA generator  :mismatch j %=

××
=  

 (v) %707,0%
2

1001,01,0
u combiner andatt  :mismatch j =

××
=  

 (v) %414,1%
2

1002,01,0
u EUT andbiner com :mismatch j =

××
=  

 (v) %354,0%
2

1005,01,02,0
u

2

combiner andA generator  :mismatch j =×××=  

 (v) %354,0%
2

1005,02,01,0
u

2

EUT andatt  :mismatch j =×××=  

 (v) %177,0%
2

1005,05,02,02,0
u

22

EUT andA generator  :mismatch j =××××=  

Uncertainty contribution due to the third combiner port: 

 (v) %354,0%
2

1005,02,01,0
u

2

Bgenerator  and attenuator :mismatch j =×××=  

 (v) %707,0%
2

1005,02,02,0
u

2

EUT and Bgenerator  :mismatch j =×××=  

 (v) %177,0%
2

1005,05,02,02,0
u

22

Bgenerator  andA generator  :mismatch j =××××=  

Uncertainty due to the reflection coefficient at the third port: 

 (v) %071,7%
25,0

1005,05,02,0
u Bgenerator  :mismatch j =

×
×××=  
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Total mismatch uncertainty from generator A to EUT: 

 dB,
,

,,,,,,,,,,
650

511

0717707035401770177035403540414170704141
u

2222222222

EUT A togen  c =+++++++++=  

Mismatch between generator B and EUT: 

 (v) %950,4%
2

1002,035,0
u combiner and Bgenerator  :mismatch j =××=  

 (v) %314,11%
2

1008,02,0
u EUT andcombiner  :mismatch j =××=  

 (v) %950,4%
2

1005,08,035,0
u

2

EUT and Bgenerator  :mismatch j =×××=  

Uncertainty contribution due to the third combiner port: 

 (v) %237,1%
2

1005,02,035,0
u

2

attenuator and Bgenerator  :mismatch j =×××=  

 (v) %828,2%
2

1005,02,08,0
u

2

att and EUT :mismatch j =×××=  

 (v) %541,0%
2

1005,05,035,035,0
u

22

Agenerator  and Bgenerator  :mismatch j =××××=  

 (v) %237,1%
2

1005,05,035,08,0
u

22

Agenerator  and EUT:mismatch j =××××=  

Uncertainty due to the reflection coefficient at the third port: 

 (v) %071,7%
25,0

1005,05,02,0
u att :mismatch j =

×
×××=  

 (v) %094,3%
25,0

1005,05,05,035,0
u

2

Agenerator  :mismatch j =
×

××××=  

Total mismatch uncertainty from generator B to EUT: 

 dB,
,

,,,,,,,,,
371

511

0943071723718282541023719504314119504
u

222222222

EUT to Bgen  c =++++++++=  

The combined standard uncertainty for mismatch (in band) is: 

 22
EUTtoBgencEUTtoAgencc mismatch uuu +=  

 dB 1,516 37,165,0 22 =+=c mismatchu  

Total level difference uncertainty: 

 22222
mismatchctrackingcombinerjattenjsignalunwantedjsignalwantedjfferencec level di uuuuuu ++++=  

 1,88dB =5161346,02,086605770 22222  ,,,u fferencec level di ++++=  
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Total level uncertainty of wanted signal: 

 2
EUTtoAgenmismatch:c

2
attenuatorj

2
signalwantedjsignal wantedc uuuu ++=  

 dB 0,892 =650205770 222  ,,, = u ignalc wanted s ++  

The wanted level uncertainty is then converted to an RF level difference uncertainty by means of formula 5.2 (of 
TR 100 028-1 [6]) and table F.1. Dependency values found in table F.1 are: 

- mean value of 0,5 % RF level/% RF level; 

- standard deviation of 0,2 % RF level/% RF level. 

Dependency values must be converted from percentage to dBs using table 1 in clause 5.2 of TR 100 028-1 [6]. Since 
like units are involved (i.e. % per %), the dependency values can be considered as: 

- a mean value of 0,5 dB RF level/dB RF level; 

- a standard deviation of 0,2 dB RF level /dB RF level. 

Therefore: 

 ( ) ( ) ( )( ) dB 0,480 =/dBdB20/dBdB 50dB 8920u 2
level RFlevel RF

2
level RFlevel RF

2
wantedconverted c  ,,  ,= +×  

SINAD uncertainty: 

SINAD meter uncertainty is ±1 dB (d): 

dB 0,577 
3

1 ==terj SINAD meu  

Deviation uncertainty (wanted signal) is ±5,3 % (r)(d): 

% 3,06 
3

3,5
==ignaln wanted sj deviatiou  

Deviation uncertainty (unwanted signal) is ±5,3 % (r)(d). 

Deviation is assumed to be 3 kHz so deviation uncertainty in Hz = (5,3 %/100) x 3,0 kHz = ±159 Hz. 

The deviation uncertainty of the unwanted signal is converted to a SINAD uncertainty by means of formula 5.2 (of 
TR 100 028-1 [6]) and table F.1. Dependency values found in table F.1 are: 

- mean value of 0,05 % SINAD/Hz; 

- standard deviation of 0,02 % SINAD/Hz. 

Therefore: 

 ( ) ( ) ( )( ) % 4,94 =020050
3

159 22
2

  % / Hz, % / Hz,  
 Hz

 = u to SINAD converted n j deviatio +×













 

The combined standard uncertainty for the SINAD is: 

 dB 0,767 =
511

944

511

063
5770

22
2  

,

,

,

,
, = uc SINAD 







+






+  
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SINAD uncertainty is converted to an RF level uncertainty by means of formula 5.2 (of TR 100 028-1 [6]) and 
table F.1. Dependency values found in table F.1 are: 

- mean value of 0,7 % RF level/% SINAD; 

- standard deviation of 0,2 % RF level/% SINAD. 

Dependency values must be converted from percentage to dBs using table 1 in clause 5.2 of TR 100 028-1 [6]. Since 
like units are involved (i.e. % per %), the dependency values can be considered as: 

- mean value of 0,7 dB RF level/dB SINAD; 

- standard deviation of 0,2 dB RF level/dB SINAD. 

Therefore: 

 ( ) ( ) ( )( )  dB, =  / dB dB, / dB dB,  dB,= SINADelRF i/p levSINADelRF i/p lev 558020707670u 222
SINADconvertedc +×  

Random uncertainty: 

Random uncertainty (valid for all measurements) 0,2 dB (c)(σ). 

The combined standard uncertainty for out of band spurious response immunity (analogue speech) is: 

 2
randomj

2
SINADconvertedc

2
wantedconvertedc

2
differencelevelcimmunity reponse spurious c uuuuu +++=  

  dB, = ,,,,s 0322055804800881u 2222
immunity response purious c +++=  

Using an expansion factor (coverage factor) of k = 1,96, the expanded measurement uncertainty is 
±1,96 × 2,03 dB = ±3,98 dB (see clause D.5.6.2). 

NOTE: The uncertainty could be further reduced by inserting a 6 dB attenuator between generator B and the 
combiner. 

b) Spreadsheet implementation of measurement uncertainty 

This calculation has been implemented in a corresponding spreadsheet (see file "Spurious response out of band.xls") 
and is available in tr_10002802v010401p0.zip. 

4.1.4.2 Spurious response immunity measurements for bit stream 

A receiver under test is connected to two signal generators through a combining network (see figure 8). A 6 dB 
attenuator is inserted between generator A and the combiner to reduce out of band mismatch uncertainty. Signal 
generator A is set to a suitable level at the nominal frequency of the receiver and modulated by appropriate modulation. 
Signal generator B, also modulated by appropriate modulation, is adjusted until a bit error ratio of 10-2 is obtained from 
a sample size of 2 500 bits. Spurious response immunity is recorded as the difference between the signal levels from 
generator A and generator B after correction for the attenuator. 
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Figure 8: Spurious response immunity measurement configuration for bit stream 

4.1.4.2.1 In band measurements 

Generator A level uncertainty (wanted signal) is ±1 dB (d)(r): 

 dB 0,577 
3

1 ==ignalj wanted su  

Generator B level uncertainty (unwanted signal) is ±1 dB (d)(r): 

 dB 0,577 
3

1 == signalj unwantedu  

6 dB attenuator uncertainty is 0,2 dB (c)(σ). 

Attenuator loss is 6 dB (x 0,5 linear - required for mismatch calculations). 

Combiner nominal insertion loss is 6 dB (x 0,5 linear - required for mismatch calculations). 

Combiner tracking is ±0,1 dB: 

 dB 0,058 
3

1,0 ==trackingj combineru  

Mismatch uncertainty (in band) 

- generator reflection coefficients (A and B) are 0,2 (d); 

- combiner reflection coefficients are 0,1 (d); 

- receiver under test reflection coefficient (see table F.1) is 0,2; 

- attenuator reflection coefficients are 0,1 (d). 

As each port of the combiner combines two other ports, the mismatch uncertainty in any one path will also be affected 
by the third port. 

Mismatch for a bit stream (in-band) is calculated in the same way as for analogue speech (see clause 4.1.4.1.1) where: 

Total mismatch uncertainty from generator A to EUT: 

 dB,
,

,,,,,,,,,,
650

511

0717707035401770177035403540414170704141
u

2222222222

EUT A togen  c =+++++++++=  

Total mismatch uncertainty from generator B to EUT: 

 dB,
,

,,,,,,,,,
390

511

768153631770354017703540707041414141
u

222222222

EUT  toBgen  c =++++++++=  
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The combined standard uncertainty for mismatch (in band) is: 

 2
EUT  toBgen  c

2
EUT A togen  cmismatch c uuu +=  

 dB 0,76 39,065,0 22 =+=c mismatchu  

Total level difference uncertainty: 

 22222
mismatchctrackingcombinerjattenjsignalunwantedjsignalwantedjfferencec level di uuuuuu ++++=  

 1,13dB =760058,02,057705770 22222  ,,,u fferencec level di ++++=  

Total level uncertainty of wanted signal: 

 222
EUTtoAgencattenuatorjsignalwantedjsignalc wanted uuuu ++=  

 dB 0,892 =650205770 222  ,,, = u ignalc wanted s ++  

The wanted level uncertainty is then converted to an RF level difference uncertainty by means of formula 5.2 (of 
TR 100 028-1 [6]) and table F.1. Dependency values found in table F.1 are: 

- mean value of 0,5 % RF level/% RF level; 

- standard deviation of 0,2 % RF level/% RF level. 

Dependency values must be converted from percentage to dBs using table 1 in clause 5.2 of TR 100 028-1 [6]. Since 
like units are involved (i.e. % per %), the dependency values can be considered as: 

- a mean value of 0,5 dB RF level/dB RF level; 

- a standard deviation of 0,2 dB RF level /dB RF level. 

Therefore: 

 ( ) ( ) ( )( ) dB 0,480 =/dBdB20/dBdB 50dB 8920u 2
level RFlevel RF

2
level RFlevel RF

2
wantedconverted c  ,,  ,= +×  

Random uncertainty: 

Random uncertainty (valid for all measurements) 0,2 dB (m)(σ). 

BER uncertainty: 

Case 1: Error associated with digital non-coherent direct modulation 

In this case the RF signal is directly modulated. It has been assumed that the SNRb is proportional to the RF input level. 

σBER must be transformed to an RF input level uncertainty by means of the SNRb(BER) function. 

The BER uncertainty is calculated using formula 6.10 (clause 6.6 of TR 100 028-1 [6]): 

 3102
2500

990010 -
j BER    = 

,  ,
 = u ××

 

The theoretical signal to noise ratio for a BER of 10-2 is calculated using formula 6.19: 

 SNRb = -2 × ln (2 × 0,01) = 7,824. 

At a BER of 10-2 the slope of the BER function is 0,5 × BER = 0,5 × 10-2 (formula 6.21). 



 

ETSI 

ETSI TR 100 028-2 V1.4.1 (2001-12)48 

The resulting level uncertainty (formula 6.16) is: 

 (p) 115100
82471050

102
u

2

3

BERconverted j  %, % =  
,    ,

  
 = 

-

-

××
×  

This RF level uncertainty is then combined with the rest of the part uncertainties to give the total RF level uncertainty. 

Case 2a: Error associated with digital non-coherent sub-carrier modulation above the knee point 

For above the knee point case 1 applies because the C/N to S/N ratio is still 1:1. 

Case 2b: Error associated with digital non-coherent sub-carrier modulation below the knee point 

RF level uncertainty due to the sub-carrier modulation is determined by applying the dependency values from table F.1 
(for the equivalent analogue measurements) to the results of case 1 (5,11 % power) using formula 5.2 (of 
TR 100 028-1 [6]). Dependency values found in table F.1 (noise gradient, below the knee point) are: 

- mean value of 0,7 % RF level/% SINAD; 

- standard deviation of 0,2 % RF level/% SINAD. 

Therefore: 

 ( ) ( ) ( )( ) (p) % 3,720=2070115u 222
BER converted j SINADelRF i/p levSINADelRF i/p lev  / % %, / % %, %,= +×  

This RF level uncertainty is then combined with the rest of the part uncertainties to give the total RF level uncertainty. 

Case 3: Error associated with digital coherent direct modulation 

The BER uncertainty is calculated using formula 6.10 (clause 6.6 of TR 100 028-1 [6]): 

 3102
2500

990010 -
j BER   =

,,
u ××=  

The theoretical signal to noise ratio for a BER of 10-2 is read from figure 8 where SNRb(0,01) = 2,7. 

At this signal to noise ratio, the slope of the BER function is 0120
722

1 72 , =  e 
, π   

= ,-×
××

 (formula 6.14). 

The BER uncertainty is then transformed to level uncertainty using formula 6.16: 

 %(p) 176 = %100
720120

102
u

3

BERcoinverted j ,  
,,

 
 = 

-

×
×  

This RF level uncertainty is then combined with the rest of the part uncertainties to give the total RF level uncertainty. 

Case 4a: Error associated with digital coherent sub-carrier modulation operating above the knee point 

For above the knee point case 3 applies. 

Case 4b: Error associated with digital coherent sub-carrier modulation below the knee point 

RF level uncertainty due to the sub-carrier modulation is determined by applying the dependency values from table F.1 
(for the equivalent analogue measurements) to the results of case 3 (6,17 % power) using formula 5.2 (of 
TR 100 028-1 [6]). Dependency values found in table F.1 (noise gradient, below the knee point) are: 

- mean value of 0,7 % RF level/% SINAD; 

- standard deviation of 0,2 % RF level/% SINAD. 

Therefore: 

 ( ) ( ) ( )( ) (p)% 4942070176u 222
BERconverted j ,= / % %, / % %, %, SINADelRF i/p levSINADelRF i/p lev +×=  
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This RF level uncertainty is then combined with the rest of the part uncertainties to give the total RF level uncertainty: 

The combined standard uncertainty for spurious response immunity (for a bit stream) is: 

 2
BERconverted j

2
random j

2
 wantedconverted j

2
difference level cimmunity response spurious c uuuuu +++=  

Total uncertainty: Case 1 and case 2a 

 dB 1,26 = 
023

115
20480131

2
222  

,

,
,,,u immunityresponsec spurious 







+++=  

Using an expansion factor (coverage factor) of k = 1,96, the expanded measurement uncertainty is 
±1,96 × 1,26 dB = ±2,47 dB (see clause D.5.6.2). 

Total uncertainty: Case 2b 

 dB 1,25 = 
023

72,3
20480131

2
222  

,
,,,u immunityresponsec spurious 







+++=  

Using an expansion factor (coverage factor) of k = 1,96, the expanded measurement uncertainty is 
±1,96 × 1,25 dB = ±2,45 dB (see clause D.5.6.2). 

Total uncertainty: Case 3 and case 4a 

  dB,  = 
,

,
,,, 271

023

176
20480131u

2
222

immunityresponsespurious c 






+++=  

Using an expansion factor (coverage factor) of k = 1,96, the expanded measurement uncertainty is 
±1,96 × 1,27 dB = ±2,4 dB (see clause D.5.6.2). 

Total uncertainty: Case 4b 

  dB,  = 
,

,
,,, 261

023

494
20480131u

2
222

immunityresponsespurious c 






+++=  

Using an expansion factor (coverage factor) of k = 1,96, the expanded measurement uncertainty is 
±1,96 × 1,26 dB = ±2,47 dB (see clause D.5.6.2). 

4.1.4.2.2 Out of band measurements 

Generator A level uncertainty (wanted signal) is ±1 dB (d)(r): 

 dB 0,577 
3

1 ==ignalj wanted su  

As generator B (unwanted signal) will go beyond 1 GHz, the level uncertainty is ±1,5 dB (d)(r): 

 dB 0,866 
3

5,1 == signalj unwantedu  

6 dB attenuator uncertainty is 0,2 dB (σ)(m). 

Attenuator loss is 6 dB (x 0,5 linear - required for mismatch calculations). 

Combiner nominal insertion loss is 6 dB (x 0,5 linear - required for mismatch calculations). 

Combiner tracking is ±0,6 dB: 

 dB 0,346 
3

6,0 ==trackingj combineru  
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In this example (out-of-band) tracking uncertainty is much higher due to the fact that the two signals are at different 
frequencies. 

Mismatch uncertainty (in band) 

- generator A reflection coefficient is 0,2 (d); 

- generator B reflection coefficient is 0,2 (d); 

- combiner reflection coefficients are 0,1 (d); 

- receiver under test reflection coefficient (see table F.1) is 0,2; 

- attenuator reflection coefficients are 0,1 (d). 

Mismatch uncertainty (out of band) 

- generator A reflection coefficient is 0,35 (d); 

- generator B reflection coefficient is 0,35 (d); 

- combiner reflection coefficients are 0,2 (d); 

- receiver under test reflection coefficient (see table F.1) is 0,8; 

- attenuator reflection coefficients are 0,2 (d). 

As each port of the combiner combines two other ports, the mismatch uncertainty in any one path will also be affected 
by the third port. 

Mismatch for a bit stream (out-of-band) is calculated in the same way as for analogue speech (see clause 4.1.4.1.2) 
where: 

Total mismatch uncertainty from generator A to EUT: 

 0,65dB
5,11

071,7707,0354,0177,0177,0354,0354,0414,1707,0414,1 2222222222
=+++++++++=EUTtoAgencu  

Total mismatch uncertainty from generator B to EUT: 

 1,37dB
5,11

094,3071,7237,1828,2541,0237,1950,4314,11950,4 222222222
=++++++++=EUTtoBgencu  

The combined standard uncertainty for mismatch (in band) is: 

 2
EUT  toBgen  c

2
EUT A togen  cmismatch c uuu +=  

 dB 1,516 37,165,0 22 =+=c mismatchu  

Total level difference uncertainty: 

 22222
mismatchctrackingcombinerjattenjsignalunwantedjsignalwantedjfferencec level di uuuuuu ++++=  

 1,88dB =5161346,02,086605770 22222  ,,,u fferencec level di ++++=  

Total level uncertainty of wanted signal: 

 222
EUTtoAgencattenuatorjsignalwantedjsignalc wanted uuuu ++=  

 dB 0,892 =650205770 222  ,,, = u ignalc wanted s ++  
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The wanted level uncertainty is converted to an RF level difference uncertainty by means of formula 5.2 (of 
TR 100 028-1 [6]) and table F1. Dependency values found in table F.1 are: 

- mean value of 0,5 % RF level/% RF level; 

- standard deviation of 0,2 % RF level/% RF level. 

Dependency values must be converted from percentage to dBs using table 1 in clause 5.2 TR 100 028-1 [6]. Since like 
units are involved (i.e. % per %), the dependency values can be considered as: 

- mean value of 0,5 dB RF level/dB RF level; 

- standard deviation of 0,2 dB RF level/dB RF level. 

Therefore: 

 ( ) ( ) ( )( ) dB 0,480 =/dBdB20/dBdB 50dB 8920u 2
level RFlevel RF

2
level RFlevel RF

2
wantedconverted c  ,,  ,= +×  

Random uncertainty: 

Random uncertainty (valid for all measurements) 0,2 dB (m)(σ). 

BER uncertainty: 

Case 1: Error associated with digital non-coherent direct modulation 

In this case the RF signal is directly modulated. It has been assumed that the SNRb is proportional to the RF input level. 

σBER must be transformed to an RF input level uncertainty by means of the SNRb(BER) function. 

The BER uncertainty is calculated using formula 6.10 (clause 6.6 of TR 100 028-1 [6]): 

 3102
2500

990010 -
j BER    = 

,  ,
 = u ××

 

The theoretical signal to noise ratio for a BER of 10-2 is calculated using formula 6.19: 

 SNRb = -2 × ln (2 × 0,01) = 7,824. 

At a BER of 10-2 the slope of the BER function is 0,5 × BER = 0,5 × 10-2 (formula 6.21). 

The resulting level uncertainty (formula 6.16) is: 

 %(p) 5,11 = % 100
82471050

102
2

3
 

,    ,

  
 = u

-

-

BERedj coinvert
××

×  

This RF level uncertainty is then combined with the rest of the part uncertainties to give the total RF level uncertainty. 

Case 2a: Error associated with digital non-coherent sub-carrier modulation above the knee point 

For above the knee point case 1 applies because the C/N to S/N ratio is still 1:1. 

Case 2b: Error associated with digital non-coherent sub-carrier modulation below the knee point 

RF level uncertainty due to the sub-carrier modulation is determined by applying the dependency values from table F.1 
(for the equivalent analogue measurements) to the results of case 1 (5,11 % power) using formula 5.2 (of 
TR 100 028-1 [6]). Dependency values found in table F.1 (noise gradient, below the knee point) are: 

- mean value is 0,7 % RF level/% SINAD; 

- standard deviation is 0,2 % RF level/% SINAD. 

Therefore: 

 ( ) ( ) ( )( ) (p)% 72032070115u 222
BERconvertedj ,= / % %, / % %, %,= SINADelRF i/p levSINADelRF i/p lev +×  
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This RF level uncertainty is then combined with the rest of the part uncertainties to give the total RF level uncertainty. 

Case 3: Error associated with digital coherent direct modulation 

The BER uncertainty is calculated using formula 6.10: 

 3102
2500

990010 -
j BER   =

,,
u ××=  

The theoretical signal to noise ratio for a BER of 10-2 is read from figure 8 where SNRb(0,01) = 2,7. 

At this signal to noise ratio, the slope of the BER function is 0120
722

1 72 , =  e 
, π   

= ,-×
××

. 

The BER uncertainty is then transformed to level uncertainty using formula 6.16: 

 %(p) 176 = %100
720120

102
u

3

BERconverted j ,  
,,

 
 = 

-

×
×  

This RF level uncertainty is then combined with the rest of the part uncertainties to give the total RF level uncertainty. 

Case 4a: Error associated with digital coherent sub-carrier modulation operating above the knee point 

For above the knee point case 3 applies. 

Case 4b: Error associated with digital coherent sub-carrier modulation below the knee point 

RF level uncertainty due to the sub-carrier modulation is determined by applying the dependency values from table F.1 
(for the equivalent analogue measurements) to the results of case 3 (6,17 % power) using formula 5.2 (of 
TR 100 028-1 [6]). Dependency values found in table F.1 (noise gradient, below the knee point) are: 

- mean value is 0,7 % RF level/% SINAD; 

- standard deviation is 0,2 % RF level/% SINAD. 

Therefore: 

 ( ) ( ) ( )( ) (p)% 4,49=%%20%%70176u 222
BERconverted j SINADelRF i/p levSINADelRF i/p lev  /  , /  , %, +×=  

This RF level uncertainty is then combined with the rest of the part uncertainties to give the total RF level uncertainty: 

The combined standard uncertainty for spurious response immunity (for a bit stream) is: 

 2
BERconvertedj

2
randomj

2
 wantedconvertedj

2
difference levelcimmunity response spurious c uuuuu +++=  

Total uncertainty: Case 1 and case 2a 

 dB 1,96 = 
023

115
204800881

2
222  

,

,
,,,u immunityresponsec spurious 







+++=  

Using an expansion factor (coverage factor) of k = 1,96, the expanded measurement uncertainty is 
±1,96 × 1,96 dB = ±3,84 dB (see clause D.5.6.2). 

Total uncertainty: Case 2b 

 dB 1,96 = 
023

72,3
204800881

2
222  

,
,,,u immunityresponsec spurious 







+++=  

Using an expansion factor (coverage factor) of k = 1,96, the expanded measurement uncertainty is 
±1,96 × 1,96 dB = ±3,84 dB (see clause D.5.6.2). 
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Total uncertainty: Case 3 and case 4a 

  dB,  = 
,

,
,,, 971

023

176
204800881u

2
222

immunityresponsespurious c 






+++=  

Using an expansion factor (coverage factor) of k = 1,96, the expanded measurement uncertainty is 
±1,96 × 1,97 dB = ±3,86 dB (see clause D.5.6.2). 

Total uncertainty: Case 4b 

  dB,  = 
,

,,, 961
023

49,4
204800881u

2
222

immunityresponsespurious c 






+++=  

Using an expansion factor (coverage factor) of k = 1,96, the expanded measurement uncertainty is 
±1,96 × 1,96 dB = ±3,84 dB (see clause D.5.6.2). 

NOTE: The uncertainty could be further reduced by inserting a 6 dB attenuator between generator B and the 
combiner. 

4.1.4.3 Spurious response immunity measurements for messages 

A receiver under test is connected to two signal generators through a combining network (see figure 9). A 6 dB 
attenuator is inserted between generator A and the combiner to reduce out of band mismatch uncertainty. Signal 
generator A is set to a suitable level at the nominal frequency of the receiver and modulated by appropriate modulation. 
The signal from generator B, also modulated by appropriate modulation, is then varied in level until the specified 
success calling rate is achieved. Co-channel rejection is recorded as the difference between the average level of 
generator A (from 10 samples) and generator B, after correction for the 6 dB attenuator. 

Response

test set
measuring Termination

Receiver
under
test

Message
generator

Signal
generator A

Signal
generator B

resistive
6 dB

att.
6 dB

combiner

 

Figure 9: Spurious response immunity measurement configuration for messages 

4.1.4.3.1 In band measurements 

Generator A level uncertainty (wanted signal) is ±1 dB (d)(r): 

 dB 0,577 
3

1 ==ignalj wanted su  

Generator B level uncertainty (unwanted signal) is ±1 dB (d)(r): 

 dB 0,577 
3

1 == signalj unwantedu  

6 dB attenuator uncertainty is 0,2 dB (m)(σ). 

Attenuator loss is 6 dB (x 0,5 linear - required for mismatch calculations). 

Combiner nominal insertion loss is 6 dB (x 0,5 linear - required for mismatch calculations). 
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Combiner tracking is ±0,1 dB: 

 dB 0,058 
3

1,0 ==trackingj combineru  

Mismatch uncertainty (in band) 

- generator reflection coefficients (A and B) are 0,2 (d); 

- combiner reflection coefficients are 0,1 (d); 

- receiver under test reflection coefficient (table F.1) is 0,2; 

- attenuator reflection coefficients are 0,1 (d). 

As each port of the combiner combines two other ports, the mismatch uncertainty in any one path will also be affected 
by the third port. 

Mismatch for messages (in-band) is calculated in the same way as for analogue speech (see clause 4.1.4.1.1) where: 

Total mismatch uncertainty from generator A to EUT: 

 0,65dB
5,11

071,7707,0354,0177,0177,0354,0354,0414,1707,0414,1 2222222222
=+++++++++=EUTtoAgencu  

Total mismatch uncertainty from generator B to EUT: 

 0,39dB
5,11

768,1536,3177,0354,0177,0354,0707,0414,1414,1 222222222
=++++++++=EUTtoBgencu  

The combined standard uncertainty for mismatch (in band) is: 

 2
EUT  toBgen c

2
EUT A togen  cmismatch c uuu +=  

 dB 0,76 39,065,0 22 =+=c mismatchu  

Total level difference uncertainty: 

 2
mismatchc

2
trackingcombinerj

2
attenj

2
signalunwantedj

2
signalwantedjdifference level c u uuuuu ++++=  

 1,13dB =760058,02,057705770 22222  ,,,u fferencec level di ++++=  

Total level uncertainty of wanted signal: 

 222
EUTtoAgencattenuatorjsignalwantedjsignalc wanted uuuu ++=  

 dB 0,892 =650205770 222  ,,, = u ignalc wanted s ++  

The wanted level uncertainty is then converted to an RF level difference uncertainty by means of formula 5.2 (of 
TR 100 028-1 [6]) and table F.1. Dependency values found in table F.1 are: 

- mean value of 0,5 % RF level/% RF level; 

- standard deviation of 0,2 % RF level/% RF level. 
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Dependency values must be converted from percentage to dBs using table 1 in clause 5.2 of TR 100 028-1 [6]. Since 
like units are involved (i.e. % per %), the dependency values can be considered as: 

- mean value of 0,5 dB RF level/dB RF level; 

- standard deviation of 0,2 dB RF level/dB RF level. 

Therefore: 

 ( ) ( ) ( )( ) dB 0,480 =/dBdB20/dBdB 50dB 8920u 2
level RFlevel RF

2
level RFlevel RF

2
wantedconverted c  ,,  ,= +×  

Uncertainty of methodology: 

The standard uncertainty of the measurement methodology (as the result is the average value of 10 samples) of 0,28 dB 
is taken from clause 6.7.4 of TR 100 028-1 [6] and is used in this example (m)(σ). 

Random uncertainty: 

Random uncertainty (valid for all measurements) is 0,2 dB (m)(σ). 

The combined standard uncertainty for in-band spurious response immunity (messages) is: 

 2
ymethodologj

2
randomc

2
wantedconvertedc

2
differencelevelcimmunityresponsespurious c uuuuu +++=  

 dB 1,28 =28,02,0480,013,1u 2222
immunityresponsespurious c  +++=  

Using an expansion factor (coverage factor) of k = 1,96, the expanded measurement uncertainty is 
±1,96 × 1,28 dB = ±2,5 dB (see clause D.5.6.2). 

4.1.4.3.2 Out of band measurements 

Generator A level uncertainty (wanted signal) is ±1 dB (d)(r): 

 dB 0,577 
3

1 ==ignalj wanted su  

As generator B (unwanted signal) will go beyond 1 GHz, the level uncertainty is ±1,5 dB (d)(r): 

 dB 0,866 
3

5,1 == signalj unwantedu  

6 dB attenuator uncertainty is 0,2 dB (c)(σ). 

Attenuator loss is 6 dB (x 0,5 linear - required for mismatch calculations). 

Combiner nominal insertion loss is 6 dB (x 0,5 linear - required for mismatch calculations). 

Combiner tracking is ±0,6 dB: 

 dB 0,346 
3

6,0 ==trackingj combineru  

In this example (out-of-band) tracking uncertainty is much higher due to the fact that the two signals are at different 
frequencies. 
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Mismatch uncertainty (in band) 

- generator A reflection coefficient is 0,2 (d); 

- generator B reflection coefficient is 0,2 (d); 

- combiner reflection coefficients are 0,1 (d); 

- receiver under test reflection coefficient (see table F.1) is 0,2; 

- attenuator reflection coefficients are 0,1 (d). 

Mismatch uncertainty (out of band) 

- generator A reflection coefficient is 0,35 (d); 

- generator B reflection coefficient is 0,35 (d); 

- combiner reflection coefficients are 0,2 (d); 

- receiver under test reflection coefficient (see table F.1) is 0,8; 

- attenuator reflection coefficients are 0,2 (d). 

As each port of the combiner combines two other ports, the mismatch uncertainty in any one path will also be affected 
by the third port. 

Mismatch for a bit stream (out-of-band) is calculated in the same way as for analogue speech (see clause 4.1.4.1.2) 
where: 

Total mismatch uncertainty from generator A to EUT: 

 0,65dB
5,11

071,7707,0354,0177,0177,0354,0354,0414,1707,0414,1 2222222222
=+++++++++=EUTtoAgencu  

Total mismatch uncertainty from generator B to EUT: 

 1,37dB
5,11

094,3071,7237,1828,2541,0237,1950,4314,11950,4 222222222
=++++++++=EUTtoBgencu  

The combined standard uncertainty for mismatch (in band) is: 

 2
EUT  toBgen  c

2
EUT A togen  cmismatch c uuu +=  

 dB 1,516 37,165,0 22 =+=c mismatchu  

Total level difference uncertainty: 

 22222
mismatchctrackingcombinerjattenjsignalunwantedjsignalwantedjfferencec level di uuuuuu ++++=  

 1,88dB =5161346,02,086605770 22222  ,,,u fferencec level di ++++=  

Total level uncertainty of wanted signal: 

 222
EUTtoAgencattenuatorjsignalwantedjsignalc wanted uuuu ++=  

 dB 0,892 =650205770 222  ,,, = u ignalc wanted s ++  
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The wanted level uncertainty is then converted to an RF level difference uncertainty by means of formula 5.2 (of 
TR 100 028-1 [6]) and table F.1. Dependency values found in table F.1 are: 

- mean value of 0,5 % RF level/% RF level; 

- standard deviation of 0,2 % RF level/% RF level. 

Dependency values must be converted from percentage to dBs using table 1 in clause 5.2 of TR 100 028-1 [6]. Since 
like units are involved (i.e. % per %), the dependency values can be considered as: 

- mean value of 0,5 dB RF level/dB RF level; 

- standard deviation of 0,2 dB RF level/dB RF level. 

Therefore: 

 ( ) ( ) ( )( ) dB 0,480 =/dBdB20/dBdB 50dB 8920u 2
level RFlevel RF

2
level RFlevel RF

2
wantedconverted c  ,,  ,= +×  

Uncertainty of methodology: 

The standard uncertainty of the measurement methodology (as the result is the average value of 10 samples) of 0,28 dB 
is taken from clause 6.7.4 of TR 100 028-1 [6] and is used in this example (m)(σ). 

Random uncertainty: 

Random uncertainty (valid for all measurements) 0,2 dB (m)(σ). 

The combined standard uncertainty for out of band measurements is: 

 2
ymethodologj

2
randomc

2
wantedconvertedc

2
differencelevelcimmunityresponsespurious c uuuuu +++=  

 dB 1,97 =28,02,0480,088,1 2222  u immunityresponsec spurious +++=  

Using an expansion factor (coverage factor) of k = 1,96, the expanded measurement uncertainty is 
±1,96 × 1,97 dB = ±3,86 dB (see clause D.5.6.2). 

NOTE: The uncertainty could be further reduced by inserting a 6 dB attenuator between generator B and the 
combiner. 

4.1.5 Intermodulation immunity 

4.1.5.1 Intermodulation immunity (analogue speech) 

a) Methodology 

Three signal generators are connected via three cables to a combining network, in this case a hybrid coupler, whose 
output is connected directly to a 10 dB attenuator (with a low VSWR) in order to have a good isolation between the 
three generators. The output of the attenuator is connected to the antenna connection of the receiver under test through a 
cable, as illustrated in figure 10. 
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Figure 10: Intermodulation immunity measurement configuration (analogue speech) 

Generator A (f0 ± d) and generator B (f0 ± 2 × d) are used to produce two unwanted signals with sufficient level to 

cause 3rd order intermodulation in the wanted channel of the receiver due to non linearities. Generator C is used to 
produce a wanted signal f0. 

NOTE 1: f0 is the receive channel frequency and d is a selected frequency (normally 2 or 4 channel separations) 

from f0. 

The audio frequency output from the receiver is connected to a suitable termination and a SINAD meter via a 
psophometric filter. The unwanted signals are adjusted in level (equally) until a given reduction in SINAD reading is 
achieved. Intermodulation immunity is recorded as the ratio of the signal level from the wanted signal generator to the 
(equal) signal levels of the unwanted signal generators. 

b) Measurement uncertainty: 

Generator level uncertainty is ±1 dB (d)(r): 

  dB, 5770
3

1
u A/B/Cgenj ==  (applicable to all generators) 

In this example calculation, insertion loss for the cables, coupler and attenuator have been individually measured and 
the standard uncertainty calculated from the various components of uncertainty attributed during their measurement. 

Cable attenuation (for each cable) is 0,1 dB and uncertainty: 

 uj cable loss = ±0,1 dB (m)(σ) 

Coupler attenuation is 3,0 dB and uncertainty: 

 uj coupler att = ±0,15 dB (m)(σ) 

Attenuator attenuation is 10 dB (x 0,316 linear - required for mismatch calculations) and uncertainty: 

 uj att = 0,1 dB (m)(σ) 

NOTE 2: In this example case, the three signal generators are identical and are connected to the receiver under test 
in an identical way. As a consequence, the RF level uncertainties at the input of the receiver under test 
from each generator are assumed to be the same i.e. uc signal A = uc signal B = uc signal C. Therefore, only 
the level of the signal from generator A will be calculated in detail. 
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c) Mismatch uncertainty contributions 

- signal generator reflection coefficients are 0,20 (d); 

- coupler reflection coefficients are 0,07 (d); 

- cable reflection coefficients are 0,10 (d); 

- attenuator reflection coefficients are 0,07 (d); 

- receiver under test reflection coefficients are 0,20 (d). 

Mismatch uncertainty generator A to the EUT. 

NOTE 3: The hybrid coupler provides isolation between the generators of greater than 30 dB (d) making any 
interaction negligible and associated mismatch calculations unnecessary. Cable insertion loss has been 
assumed to be 0 dB (multiplication by 1 in linear terms) in the following calculations. Coupler loss of 
3 dB (multiplication by 0,708 in linear terms) is taken into consideration in the following calculations. 
The cable connecting generator A to the coupler is referred to as the input cable, and the cable connecting 
the coupler to the receiver under test is referred to as the output cable. 

Mismatch uncertainty between signal generator A and the receiver under test is calculated from the following: 

 (v) %414,1%
2

1001,02,0
u cableinput  andgenerator :mismatch j =××=  

 (v) %495,0%
2

10007,01,0
u coupler and cableinput  :mismatch j =××=  

 (v) %346,0%
2

10007,007,0
u att andcoupler  :mismatch j =××=  

 (v) %495,0%
2

1001,007,0
u cableoutput  andatt  :mismatch j =××=  

 (v) %414,1%
2

1002,01,0
u EUT and cableoutput :mismatch j =××=  

 (v) %99,0%
2

100107,02,0
u

2

coupler andA generator  :mismatch j =×××=  

 (v) %248,0%
2

100708,007,01,0
u

2

att and cableinput  :mismatch j =×××=  

 (v) %049,0%
2

100316,01,007,0
u

2

cableoutput  andcoupler :mismatch j =×××=  

 (v) %99,0%
2

10012,007,0
u

2

EUT andatt  :mismatch j =×××=  

 (v) %496,0%
2

100708,0107,02,0
u

22

att andA generator  :mismatch j =××××=  

 (v) %035,0%
2

100316,0708,01,01,0
u

22

cableoutput  and cableinput  :mismatch j =××××=  

 (v) %099,0%
2

1000,1316,02,007,0
u

22

EUT andcoupler  :mismatch j =××××=  
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 (v) %071,0%
2

100316,0708,00,11,02,0
u

222

cableoutput  andA generator  :mismatch j =×××××=  

 (v) %071,0%
2

1000,1316,0708,02,01,0
u

222

EUT and cableinput  :mismatch j =×××××=  

 (v) %142,0%
2

1001316,0708,00,12,02,0
u

2222

EUT andA generator  :mismatch j =××××××=  

As the isolation between input ports is > 30 dB any mismatch uncertainty components from the other input ports are 
negligible. The RSS of all the mismatch uncertainty components detailed above = 2,63 %. 

The total mismatch uncertainty from any generator to the receiver under test = 2,63/11,5 = 0,23 dB. 

The total level uncertainty of the signal from generator A at the receiver input is: 

 2
attenuatorj

2
mismatchj

2
coupleri

2
(output)losscablej

2
(input)losscablej

2
AGenjAsignal c uuuuuuu +++++=  

 dB,,+,+,+,+,= 66,0102301501001005770 u 222222
A signal c =+  

As previously stated uc signal A = uc signal B = uc signal C therefore: uc signal. B = 0,66 dB and uc signal C = 0,66 dB. 

Intermodulation product level uncertainties: 

Uncertainty due to unwanted signal level (Generator A): 

In clause 6.5.5.2.1 it is shown that the dependency function for the unwanted signal (from signal generator A) at 
frequency f0 ± d is 2/3 (see clauses D.3.4.5.2 and D.5). The uncertainty of the measured result due to the level of signal 

A (uj level due to A) is therefore 0,66 × 2/3 = 0,44 dB. 

Uncertainty due to unwanted signal level (Generator B): 

In clause 6.5.5.2.1 it is also shown that the dependency function for the unwanted signal (from signal generator B) at 
frequency f0 ± 2 × d is 1/3 (see clauses D.3.4.5.2 and D.5). The uncertainty of the measured result due to the level of 

signal B (uj level due to B) is therefore 0,66 × 1/3 = 0,22 dB. 

Uncertainty due to wanted signal level (Generator C): 

In clause 6.5.5.2.2 it is shown that the dependency function of the wanted signal (from signal generator C) is 1/3 (see 
clauses D.3.4.5.2 and D.5). The uncertainty of the measured result due to the level of signal C is therefore: 
0,66 × 1/3 dB = 0,22 dB. 

Random uncertainty: 

The standard deviation of random uncertainty is taken as 0,2 dB (m)(σ). 

SINAD measurement uncertainty: 

SINAD meter uncertainty is ±1 dB (d)(r): 

 dB 0,577 
3

1 ==terj SINAD meu  

Deviation uncertainty (wanted signal) is ±5 % (d)(r): 

 2,89% 
3

5 ==signalwantednj Deviatiou  
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The combined standard uncertainty for SINAD is: 

 0,63dB
5,11

89,2
577,0

2
2 =







+=deviationandSINADcu  

Two cases will now be considered for this example, above and below the knee point. 

For the case above the knee point: 

SINAD uncertainty is converted to a signal to noise ratio uncertainty at the receiver input by means of formula 5.2 (see 
TR 100 028-1 [6]). Dependency values found in table F.1 are: 

- mean value of 1,0 % RF level/% SINAD; 

- standard deviation of 0,2 % RF level/% SINAD. 

Dependency values must be converted from percentage to dBs using table 1 in clause 5.2 of TR 100 028-1 [6]. Since 
like units are involved (i.e. % per %), the dependency values can be considered as: 

- mean value of 1,0 dB RF level/dB SINAD; 

- standard deviation of 0,2 dB RF level /dB SINAD. 

Therefore: 

 ( ) ( ) ( )( ) dB 0,64=2001630 222  /dB dB,/dB dB, dB,u SINADelRF i/p levSINADelRF i/p levc SNR +×=  

Changes in the signal to noise ratio uncertainty at the receiver input must now be related to changes in the equal level of 
the unwanted signals. In clause 6.5.5.3 it is shown that the dependency function for signal-to-noise ratio uncertainty is 
1/3 (a change in signal to noise ratio will result in 1/3 as much of a change in the level of the two equal unwanted 
signals). The uncertainty of the measured result due to the SINAD uncertainty is therefore: 

 uj level due to SINAD = 0,64 × 1/3 dB = 0,21 dB 

For the case below the knee point: 

SINAD uncertainty is converted to a signal to noise ratio uncertainty at the receiver input by means of formula 5.2 (see 
TR 100 028-1 [6]). Dependency values are found in table F.1 are: 

- mean value of 0,375 % RF level/% SINAD; 

- standard deviation of 0,075 % RF level/% SINAD. 

Dependency values must be converted from percentage to dBs using table 1 in clause 5.2 of TR 100 028-1 [6]. Since 
like units are involved (i.e. % per %), the dependency values can be considered as: 

- mean value of 0,375 dB RF level/dB SINAD; 

- standard deviation of 0,075 dB RF level /dB SINAD. 

Therefore: 

 ( ) ( ) ( )( ) dB 0,24=0750375,0630 222  /dB dB,/dB dB dB,u SINADelRF i/p levSINADelRF i/p levc SNR +×=  

Changes in the signal to noise ratio uncertainty at the receiver input must now be related to changes in the equal level of 
the unwanted signals. In clause 6.5.5.3 it is shown that the dependency function for signal-to-noise ratio uncertainty is 
1/3 (a change in signal to noise ratio will result in 1/3 as much of a change in the level of the two equal unwanted 
signals). The uncertainty of the measured result due to the SINAD uncertainty is therefore: 

 uj level due to SINAD = 0,24 × 1/3 dB = 0,08 dB 
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Combined standard uncertainty: 

The combined standard uncertainty for intermodulation immunity is: 

 2
SINADtoduelevelj

2
randomi

2
C  todue level c

2
B  todue levelc

2
A todue level cimmunityation intermodul c uuuuuu ++++=  

Combined uncertainty above the knee point: 

  dB,  = ,,,,, 61021020220220440u 22222
immunityation intermodul c ++++=  

Using an expansion factor (coverage factor) of k = 1,96, the expanded measurement uncertainty is 
±1,96 × 0,61 dB = ±1,20 dB (see clause D.5.6.2). 

Combined uncertainty below the knee point: 

  dB,  = ,,,,, 58008020220220440u 22222
immunityyation intermodul c ++++=  

Using an expansion factor (coverage factor) of k = 1,96, the expanded measurement uncertainty is 
±1,96 × 0,58 dB = ±1,14 dB (see clause D.5.6.2). 

c) Spreadsheet implementation of measurement uncertainty 

The 'above the knee' calculation has been implemented in a corresponding spreadsheet (see file "Intermodulation 
immunity.xls") and is available in tr_10002802v010301p0.zip. 

4.1.5.2 Intermodulation immunity (bit stream) 

a) Methodology 

Three signal generators are connected via three cables to a combining network, in this case a hybrid coupler, whose 
output is connected directly to a 10 dB attenuator (with a low VSWR) in order to have a good isolation between the 
three generators. The output of the attenuator is connected to the antenna connection of the receiver under test through a 
cable, as illustrated in figure 11. 

Unwanted signal
generator A

f0 ± d

generator B
Unwanted signal

f0 ± 2*d

generator C
Wanted signal

 f0

Bit stream
generator

Bit error
measuring

test set

Termination

EUT

cable

cable

cable

10 dB
att .

cable

 

Figure 11: Intermodulation response measurement configuration (bit stream) 

Generator A (f0 ± d) and generator B (f0 ± 2 × d) are used to produce two unwanted signals with sufficient level to 

cause 3rd order intermodulation in the wanted channel of the receiver due to non linearities. Generator C is used to 
produce a wanted signal f0. 
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NOTE 1: f0 is the receive channel frequency and d is a selected frequency (normally 2 or 4 channel separations) 

from f0. 

The data output from the receiver is connected to a bit error tester. The unwanted signals are adjusted in level (equally) 
until a BER of 10-2 is achieved from a sample size of 10 000 bits. Intermodulation immunity is recorded as the ratio of 
the signal level of the wanted signal generator to the (equal) signal levels of the unwanted signal generators. 

b) Measurement uncertainty 

Generator level uncertainty is ±1 dB (d)(r): 

  dB, 5770
3

1
u A/B/Cgen j ==  (applicable to all generators) 

In this example calculation, insertion loss for the cables, coupler and attenuator have been individually measured and 
the standard uncertainty calculated from the various components of uncertainty attributed during their measurement. 

Cable loss (for each cable) is 0,1 dB and uncertainty: 

 uj cable loss = ±0,1 dB (m)(σ) 

Coupler attenuation is 3,0 dB and uncertainty: 

 uj coupler att = ±0,15 dB (m)(σ) 

Attenuator attenuation is 10 dB (x 0,316 linear - required for mismatch calculations) and uncertainty: 

 uj att = 0,1 dB (m)(σ) 

NOTE 2: In this example case, the three signal generators are identical and are connected to the receiver under test 
in an identical way. As a consequence, the RF level uncertainties at the input of the receiver under test 
from each generator are assumed to be the same i.e. uc signal A = uc signal B = uc signal C. Therefore, only 
the level uncertainty of signal generator A will be calculated in detail. 

Mismatch contributions: 

- signal generator reflection coefficients are 0,20 (d); 

- coupler reflection coefficients are 0,07 (d); 

- cable reflection coefficients are 0,10 (d); 

- attenuator reflection coefficients are 0,07 (d); 

- receiver under test reflection coefficients are 0,20 (d). 

Mismatch uncertainty generator A to the EUT. 

NOTE 3: The hybrid coupler provides isolation between the generators of greater than 30 dB making any 
interaction negligible and associated mismatch calculations unnecessary. Cable insertion loss has been 
assumed to be 0 dB (multiplication by 1 in linear terms) in the following calculations. Coupler loss of 
3 dB (multiplication by 0,708 in linear terms) is however taken into consideration in the following 
calculations. The cable connecting generator A to the coupler is referred to as the input cable, and the 
cable connecting the coupler to the receiver under test is referred to as the output cable. 

Mismatch uncertainty between signal generator A and the receiver under test is calculated from the following: 

 (v) %414,1%
2

1001,02,0
u cableinput  andgenerator  :mismatch j =

××
=  

 (v) %495,0%
2

10007,01,0
u coupler and cableinput  :mismatch j =

××
=  
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 (v) %346,0%
2

10007,007,0
u att andcoupler  :mismatch j =

××
=  

 (v) %495,0%
2

1001,007,0
u cableoutput  andatt  :mismatch j =

××
=  

 (v) %414,1%
2

1002,01,0
u EUT and cableoutput  :mismatch j =

××
=  

 (v) %99,0%
2

100107,02,0
u

2

coupler andgenerator  :mismatch j =×××=  

 (v) %248,0%
2

100708,007,01,0
u

2

att and cableinput  :mismatch j =×××=  

 (v) %049,0%
2

100316,01,007,0
u

2

cableoutput  andcoupler  :mismatch j =×××=  

 (v) %99,0%
2

10012,007,0
u

2

EUT andatt  :mismatch j =×××=  

 (v) %496,0%
2

100708,0107,02,0
u

22

att andgenerator  :mismatch j =××××=  

 (v) %035,0%
2

100316,0708,01,01,0
u

22

cableoutput  and cableinput  :mismatch j =××××=  

 (v) %099,0%
2

1000,1316,02,007,0
u

22

EUT andcoupler  :mismatch j =××××=  

 (v) %071,0%
2

100316,0708,00,11,02,0
u

222

cableoutput  andgenerator :mismatch j =×××××=  

 (v) %071,0%
2

1000,1316,0708,02,01,0
u

222

EUT and cableinput :mismatch j =×××××=  

 (v) %142,0%
2

1001316,0708,00,12,02,0
u

2222

EUT andgenerator  :mismatch j =××××××=  

As the isolation between input ports is > 30 dB any mismatch uncertainty components from the other input ports are 
negligible. The RSS of all the mismatch uncertainty components detailed above = 2,63 %. 

The total mismatch uncertainty from any generator to the receiver under test uj mismatch = 2,63/11,5 = 0,23 dB. 

The total level uncertainty of signal generator A at the receiver input is: 

 2
attenuatorj

2
mismatchj

2
coupleri

2
(output)losscablej

2
(input)losscablej

2
AGenjA signal c uuuuuuu +++++=  

 dB,,,+,+,+,+, 660102301501001005770= u 222222
A signal c =+  

As previously stated uc signal A = uc signal B = uc signal C therefore: uc signal. B = 0,66 dB and uc signal C = 0,66 dB. 
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Intermodulation product level uncertainties: 

Uncertainty due to unwanted signal level (Generator A): 

In clause 6.5.5.2.1 it is shown that the dependency function for the unwanted signal (from signal generator A) at 
frequency f0 ± d is 2/3 (see clauses D.3.4.5.2 and D.5). The uncertainty of the measured result due to the level of signal 

A (uj level due to A) is therefore 0,66 × 2/3 = 0,44 dB. 

Uncertainty due to unwanted signal level (Generator B): 

In clause 6.5.5.2.1 it is also shown that the dependency function for the unwanted signal (from signal generator B) at 
frequency f0 ± 2 × d is 1/3 (see clauses D.3.4.5.2 and D.5). The uncertainty of the measured result due to the level of 

signal B (uj level due to B) is therefore 0,66 × 1/3 = 0,22 dB. 

Uncertainty due to wanted signal level (Generator C): 

In clause 6.5.5.2.2 it is shown that the dependency function of the wanted signal (from signal generator C) is 1/3 (see 
clauses D.3.4.5.2 and D.5). The uncertainty of the measured result due to the level of signal C (uj level due to C) is 

therefore: 0,66 × 1/3 dB = 0,22 dB. 

Random uncertainty: 

The standard deviation of the random uncertainty is taken as 0,2 dB (m)(σ). 

BER uncertainty: 

Case 1: Uncertainty associated with digital non-coherent direct modulation 

BER uncertainty is calculated using formula 6.10: 

 310995,0
10000

)01,01(01,0 −×=−×=BERju  

The theoretical signal to noise ratio per bit for a BER of 10-2 is calculated using formula 6.19: 

 SNRb = -2 × ln (2 × 0,01) = 7,824. 

At a BER of 10-2, the slope of the BER function is 0,5 × BER = 0,005 (formula 6.21). 

BER uncertainty is then converted to signal-to-noise ratio uncertainty using formula 6.16: 

 )(%54,2%100
824,7005,0

10995,0 3
p

SNRslope

u
u

b

BERj
SNRj =×

×
×=

×
=

−
 

This is converted to dB: 

 0,11dB = 
23

54,2
 = u j SNR  

Changes in the signal to noise ratio uncertainty at the receiver input must now be related to changes in the equal level of 
the unwanted signals. In clause 6.5.5.3 it is shown that the dependency function for signal-to-noise ratio uncertainty is 
1/3 (a change in signal to noise ratio will result in 1/3 as much of a change in the level of the two equal unwanted 
signals). The uncertainty of the unwanted signals due to the BER uncertainty is therefore: 

 uj level due to BER = 0,11 × 1/3 dB = 0,04 dB 

This RF level uncertainty is then combined with the rest of the part uncertainties to give the total RF level uncertainty. 
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Case 2a: Uncertainty associated with digital non-coherent sub-carrier modulation above the knee point 

In this case the calculations in case 1 apply and relate to the signal-to-noise ratio of the sub carrier. However as the 
signal-to-noise ratio dependency function is 1 dB/dB above the knee point, the calculations and the result from case 1 
apply directly (0,04 dB). This RF level uncertainty is then combined with the rest of the part uncertainties to give the 
total RF level uncertainty. 

Case 2b: Uncertainty associated with digital non-coherent sub-carrier modulation below the knee point 
(see clause 6.6.4.6) 

As in the previous case, the calculations in case 1 apply and relate to the signal-to-noise ratio of the sub carrier. 
However for measurements below the knee point, a dependency function must be applied to convert the sub-carrier 
signal-to-noise ratio uncertainty (2,54 % determined in case 1) to signal-to-noise ratio in the receiving channel. The 
conversion is performed by means of formula 5.2 (of TR 100 028-1 [6]). Dependency values (noise gradient) found in 
table F.1 are: 

- mean value of 0,375 %/% SINAD; 

- standard deviation of 0,075 %/% SINAD. 

Therefore: 

 ( ) ( ) ( )( ) (p)% 1,08=%%20%/%375054,2 222
SINADSINADSNRconvertedj  /  , , %=u +×  

 0,05dB = 
23

08,1
 = u j BER  

Changes in the signal to noise ratio uncertainty at the receiver input must now be related to changes in the equal level of 
the unwanted signals. In clause 6.5.5.3 it is shown that the dependency function for signal-to-noise ratio uncertainty is 
1/3 (a change in signal to noise ratio will result in 1/3 as much of a change in the level of the two equal unwanted 
signals). The uncertainty of the two unwanted signals due to the BER uncertainty is therefore: 

 uj level due to BER = 0,05 × 1/3 dB = 0,02 dB 

This RF level uncertainty is then combined with the rest of the part uncertainties to give the total RF level uncertainty. 

Case 3: Uncertainty associated with digital coherent direct modulation (see clause 6.6.4.2) 

BER uncertainty is calculated using formula 6.10: 

 310995,0
10000

)01,01(01,0 −×=−×=BERju  

The theoretical signal to noise ratio per bit for a BER of 10-2 is found from figure 8 and is 2,7. 

The slope of the BER function is 012,0
7,22

1

2

1 7,2 =×
××

=×
××

−− ee
SNR

SNR

ππ
(formula 6.14). 

BER uncertainty is then converted to signal-to-noise ratio uncertainty using formula 6.16: 

 )(%07,3%100
7,2012,0

10995,0 3
p

SNRslope

u
u

b

BERj
SNRj =×

×
×=

×
=

−
 

This is converted to dB: 

 dB, = 
,

 = 130
23

073
u SNR j  
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Changes in the signal to noise ratio uncertainty at the receiver input must now be related to changes in the equal level of 
the unwanted signals. In clause 6.5.5.3 it is shown that the dependency function for signal-to-noise ratio uncertainty is 
1/3 (a change in signal to noise ratio will result in 1/3 as much of a change in the level of the two equal unwanted 
signals). The uncertainty of the unwanted signals due to the BER uncertainty is therefore: 

 uj level due to BER = 0,13 × 1/3 dB = 0,04 dB 

This RF level uncertainty is then combined with the rest of the part uncertainties to give the total RF level uncertainty. 

Case 4a: Uncertainty associated with digital coherent sub-carrier modulation above the knee point 

In this case the calculations in case 3 apply and relate to the signal-to-noise ratio of the sub carrier. However as the 
signal-to-noise ratio dependency function is 1 dB/dB above the knee point, the calculations and the result from case 3 
apply directly (0,04 dB). This RF level uncertainty is then combined with the rest of the part uncertainties to give the 
total RF level uncertainty. 

Case 4b: Uncertainty associated with digital coherent sub-carrier modulation below the knee point 

As in the previous case, the calculations in case 3 apply and relate to the signal-to-noise ratio of the sub-carrier. 
However for measurements below the knee point, a dependency function must be applied to convert the sub-carrier 
signal-to-noise ratio uncertainty (3,44 % determined in case 3) to signal-to-noise ratio in the receiving channel. The 
conversion is performed by means of formula 5.2 (of TR 100 028-1 [6]). Dependency values (noise gradient) found in 
table F.1 are: 

- mean value of 0,375 %/% SINAD; 

- standard deviation is 0,075 %/% SINAD. 

Therefore: 

 ( ) ( ) ( )( ) (p)% 301203750073u 222
SNRconvertedj ,= % / %, %/%, %,= SINADSINAD +×  

 dB060
23

301
u BER j , = 

,
 =  

Changes in the signal to noise ratio uncertainty at the receiver input must now be related to changes in the equal level of 
the unwanted signals. In clause 6.5.5.3 it is shown that the dependency function for signal-to-noise ratio uncertainty is 
1/3 (a change in signal to noise ratio will result in 1/3 as much of a change in the level of the two equal unwanted 
signals). The uncertainty of the two unwanted signals due to the BER uncertainty is therefore: 

 uj level due to BER = 0,06 × 1/3 dB = 0,02 dB 

This RF level uncertainty is then combined with the rest of the part uncertainties to give the total RF level uncertainty. 

The combined standard uncertainty for intermodulation response rejection (for a bit stream) is: 

 2
BERtoduelevelj

2
randomi

2
C  todue level c

2
B  todue level c

2
A  todue levelcimmunityationintermodul c uuuuuu ++++=  

Total uncertainty: Case 1 and case 2a 

  dB,  = ,,,,, 58004020220220440u 22222
immunityation intermodul c ++++=  

Using an expansion factor (coverage factor) of k = 1,96, the expanded measurement uncertainty is 
±1,96 × 0,58 dB = ±1,14 dB (see clause D.5.6.2). 

Total uncertainty: Case 2b 

  dB,  = ,,,,, 58002020220220440u 22222
immunityation intermodul c ++++=  

Using an expansion factor (coverage factor) of k = 1,96, the expanded measurement uncertainty is 
±1,96 × 0,58 dB = ±1,14 dB (see clause D.5.6.2). 
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Total uncertainty: Case 3 and case 4a 

  dB,  = ,,,,, 58004020220220440u 22222
immunityation intermodul c ++++=  

Using an expansion factor (coverage factor) of k = 1,96, the expanded measurement uncertainty is 
±1,96 × 0,58 dB = ±1,14 dB (see clause D.5.6.2). 

Total uncertainty: Case 4b 

  dB,  = ,,,,, 58002020220220440u 22222
immunityation intermodul c ++++=  

Using an expansion factor (coverage factor) of k = 1,96, the expanded measurement uncertainty is 
±1,96 × 0,58 dB = ±1,14 dB (see clause D.5.6.2). 

4.1.5.3 Intermodulation immunity (messages) 

a) Methodology 

Three signal generators are connected via three cables to a combining network, in this case a hybrid coupler, whose 
output is connected directly to a 10 dB attenuator (with a low VSWR) in order to have a good isolation between the 
three generators. The output of the attenuator is connected to the antenna connection of the receiver under test through a 
cable, as illustrated in figure 12. 

Unwanted signal
generator A

f0 ± d

generator B
Unwanted signal

f0 ± 2*d

generator C
Wanted signal

 f0

Termination

Response
measuring

test set
Message
generator

EUT

cable

cable

cable

10 dB
att .

cable

 

Figure 12: Intermodulation immunity measurement configuration (messages) 

Generator A (f0 ± d) and generator B (f0 ± 2 × d) are used to produce two unwanted signals with sufficient level to 

cause 3rd order intermodulation in the wanted channel of the receiver due to non linearities. Generator C is used to 
produce a wanted signal f0. 

NOTE 1: f0 is the receive channel frequency and d is a selected frequency (normally 2 or 4 channel separations) 

from f0. 

The data output from the receiver is connected to a response measuring test set and the test message applied repeatedly 
with various levels of (equal) unwanted signal until the specified message acceptance ratio is achieved. Intermodulation 
immunity is recorded as the average ratio of the signal level from the wanted signal generator to the (equal) signal 
levels of the unwanted signal generators over 10 measurements. 

In this example the message consists of 50 bits. 

One bit error can be corrected. 
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b) Uncertainty calculations 

Generator level uncertainty is ±1 dB (d)(r): 

 dB 0,58 
3

1
u A/B/Cgen j ==  (applicable to all generators) 

In this example calculation, insertion loss for the cables, coupler and attenuator have been individually measured and 
the standard uncertainty calculated from the various components of uncertainty attributed during their measurement. 

Cable loss (for each cable) is 0,1 dB and uncertainty: 

 uj cable loss = ±0,1 dB (m)(σ) 

Coupler attenuation is 3,0 dB and uncertainty: 

 uj coupler att = ±0,15 dB (m)(σ) 

Attenuator attenuation is 10 dB (x 0,316 linear - required for mismatch calculations) and uncertainty: 

 uj att = 0,1 dB (m)(σ) 

NOTE 2: In this example case, the three signal generators are identical and are connected to the receiver under test 
in an identical way. As a consequence the RF level uncertainties at the input of the receiver under test 
from each generator are assumed to be the same i.e. uc signal A = uc signal B = uc signal C. Therefore, only 
the level uncertainty of signal generator A will be calculated in detail. 

Mismatch contributions: 

- signal generator reflection coefficients are 0,20 (d); 

- coupler reflection coefficients are 0,07 (d); 

- cable reflection coefficients are 0,10 (d); 

- attenuator reflection coefficients are 0,07 (d); 

- receiver under test reflection coefficients are 0,20 (d). 

Mismatch uncertainty generator A to the EUT. 

NOTE 3: The hybrid coupler provides isolation between the generators of greater than 30 dB making any 
interaction negligible and associated mismatch calculations unnecessary. Cable insertion loss has been 
assumed to be 0 dB (multiplication by 1 in linear terms) in the following calculations. Coupler loss of 
3 dB (multiplication by 0,708 in linear terms) is however taken into consideration in the following 
calculations. The cable connecting generator A to the coupler is referred to as the input cable, and the 
cable connecting the coupler to the receiver under test is referred to as the output cable. 

Mismatch uncertainty between signal generator A and the receiver under test is calculated from the following: 

 (v) %414,1%
2

1001,02,0
u cableinput  andgenerator  :mismatch j =

××
=  

 (v) %495,0%
2

10007,01,0
u coupler and cableinput  :mismatch j =

××
=  

 (v) %347,0%
2

10007,007,0
u att andcoupler  :mismatch j =

××
=  

 (v) %495,0%
2

1001,007,0
u cableoutput  andatt  :mismatch j =

××
=  

 (v) %414,1%
2

1002,01,0
u EUT and cableoutput  :mismatch j =

××
=  
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 (v) %99,0%
2

100107,02,0
u

2

coupler andgenerator  :mismatch j =×××=  

 (v) %247,0%
2

100708,007,01,0
u

2

att and cableinput  :mismatch j =×××=  

 (v) %049,0%
2

100316,01,007,0
u

2

cableoutput  andcoupler  :mismatch j =×××=  

 (v) %99,0%
2

10012,007,0
u

2

EUT andatt  :mismatch j =×××=  

 (v) %496,0%
2

100708,0107,02,0
u

22

att andgenerator  :mismatch j =××××=  

 (v) %035,0%
2

100316,0708,01,01,0
u

22

cableoutput  and cableinput  :mismatch j =××××=  

 (v) %099,0%
2

1000,1316,02,007,0
u

22

EUT andcoupler  :mismatch j =××××=  

 (v) %071,0%
2

100316,0708,00,11,02,0
u

222

cableoutput  andgenerator  :mismatch j =×××××=  

 (v) %071,0%
2

1000,1316,0708,02,01,0
u

222

EUT and cableinput  :mismatch j =×××××=  

 (v) %142,0%
2

1001316,0708,00,12,02,0
u

2222

EUT andgenerator  :mismatch j =××××××=  

As the isolation between input ports is > 30 dB, any mismatch uncertainty components from the other input ports are 
negligible. The RSS of all the mismatch uncertainty components detailed above = 2,63 %. 

The total mismatch uncertainty from any generator to the receiver under test uj mismatch = 2,63/11,5 = 0,23 dB. 

The total level uncertainty of the signal from generator A at the receiver input is: 

 2
attenuatorj

2
mismatchj

2
coupleri

2
(output)losscablej

2
(input)losscablej

2
AgjA signalc uuuuuuu +++++= en  

 dB,,+,+,+,+, 66,010230150100100580= u 222222
Asignal c =+  

As previously stated uc signal A = uc signal B = uc signal C therefore: uc signal. B = 0,66 dB and uc signal C = 0,66 dB. 

Intermodulation product level uncertainties: 

Uncertainty due to unwanted signal level (Generator A): 

In clause 6.5.5.2.1 it is shown that the dependency function for the unwanted signal (from signal generator A) at 
frequency f0 ± d is 2/3. The uncertainty of the measured result due to the level of signal A (uj level due to A) is therefore 

0,66 × 2/3 = 0,44 dB. 

Uncertainty due to unwanted signal level (Generator B): 

In clause 6.5.5.2.1 it is also shown that the dependency function for the unwanted signal (from signal generator B) at 
frequency f0 ± 2 × d is 1/3. The uncertainty of the measured result due to the level of signal B (uj level due to B) is 

therefore 0,66 × 1/3 = 0,22 dB. 
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Uncertainty due to wanted signal level (Generator C): 

In clause 6.5.5.2.2 it is shown that the dependency function of the wanted signal (from signal generator C) is 1/3. The 
uncertainty of the measured result due to the level of signal C (uj level due to C) is therefore: 0,66 × 1/3 dB = 0,22 dB. 

Random uncertainty: 

The standard deviation of random uncertainty is taken as 0,2 dB (m)(σ). 

Message acceptance measurement uncertainty: 

Case 1: Uncertainty associated with digital non-coherent direct modulation 

In the following calculation the signal-to-noise ratio of the receiver is assumed to change 3 dB per dB level change of 
the two unwanted signals due to the third order function. 

The calculations are carried out using signal-to-noise ratio values, but the uncertainties involved are applicable to the 
measured values (the actual ratios between the wanted signal level and the unwanted signal levels). 

The straddle (up-down) method level recordings are "generator settings" between 1 dB and 4 dB corresponding to 
receiver signal-to-noise levels between 1 dB and 12 dB. 

The corresponding message acceptance at these signal-to-noise ratios are: 

(The calculation method is shown in clause 6.6.4.5 of TR 100 028-1 [6], and the corresponding receiver 
signal-to-noise ratios are used.) 

Message acceptance at reading = 1 dB. 

The receiver signal-to-noise ratio is 3 dB corresponding to 1,995. The BER corresponding to this value is: 

 1844,05,0 995,15,0 =×= ×−eBER  and the message acceptance 

 00046,0))1844,01(1844,050()1844,01()1()0()1( 4950 =−××+−=+= ppMa  

Message acceptance at reading = 2 dB. 

The receiver signal-to-noise ratio is 6 dB corresponding to 3,98. The BER corresponding to this value is: 

 0683,05,0 98,35,0 =×= ×−eBER  and the message acceptance 

 1356,0))0683,01(0683,050()0683,01()1()0()2( 4950 =−××+−=+= ppMa  

Message acceptance at reading = 3 dB. 

The receiver signal-to-noise ratio is 9 dB corresponding to 7,94. The BER corresponding to this value is: 

 0094,05,0 94,75,0 =×= ×−eBER  and the message acceptance 

 9192,0))0094,01(0094,050()0094,01()1()0()3( 4950 =−××+−=+= ppMa  

Message acceptance at reading = 4 dB. 

The receiver signal-to-noise ratio is 12 dB corresponding to 15,85. The BER corresponding to this value is: 

 00018,05,0 85,155,0 =×= ×−eBER  and the message acceptance 

 9999,0))00018,01(00018,050()00018,01()1()0()4( 4950 =−××+−=+= ppMa  

Based on these 4 values, the probabilities of each reading can be calculated. 
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The method is given in clause 6.7 of TR 100 028-1 [6]: 

1 dB: Probability of going up = 1 - 0,000463 = 1,00 

 Probability of going down = 0,000463 = 9,7 × 10-11 

2 dB: Probability of going up = 1 - 0,13563 = 0,998 

 Probability of going down = 0,13563 = 0,0025 

3 dB: Probability of going up = 1 - 0,91923 = 0,2233 

 Probability of going down = 0,91923 = 0,7767 

4 dB: Probability of going up = 1 - 0,99993 = 0,0003 

 Probability of going down = 0,99993 = 0,9997 

Based on these 4 sets of probabilities, the probability of each reading can be calculated: 

(as the probability of going down to 1 dB from 2 dB is 0,0025, the 1 dB reading is disregarded in the following, leaving 
3 equations) 

- p(2 dB) = p(3 dB) × 0,7767; 

- p(3 dB) = p(2 dB) × 1,0 + p(4 dB) × 1,0; 

- p(4 dB) = p(3 dB) × 0,2233; 

- In addition p(2 dB) + p(3 dB) + p(4 dB) = 1,0. 

The results are: 

- p(2 dB) = 0,388; 

- p(3 dB) = 0,500; 

- p(4 dB) = 0,112. 

From these values the standard deviation of the uncertainty caused by the straddle method is calculated: 

- X = 2 × 0,388 + 3 × 0,500 + 4 × 0,112 = 2,72 dB; 

- Y = 22 × 0,388 + 32 × 0,500 + 42 × 0,112 = 7,84 dB. 

 dB 0,211
10

72,284,7

10

22
=

−
=−= XY

u straddlej  

Case 2a: Uncertainty associated with digital non-coherent sub-carrier based modulation above the knee point  

As the signal-to-noise ratio dependency function is 1 dB/dB above the knee point the calculations and the result from 
Case 1 applies. 

Case 2b: Uncertainty associated with digital non-coherent sub-carrier based modulation below the knee point  

Below the knee point the receiver signal-to-noise ratio will change 3 dB per dB unwanted signal level change. In 
addition the signal-to-noise ratio of the sub-carrier will change approximately 3 dB per dB receiver signal-to-noise ratio. 
This causes the signal-to-noise ratio of the sub-carrier to change approximately 9 dB per dB unwanted signal level 
change. 

The straddle method will therefore be switching between two level settings of the unwanted signal levels: one where the 
message acceptance is approximately 1,0 and one where the message acceptance is approximately 0,0. 

The result will be the average of these two settings, but the correct value can be anywhere between the two settings. 
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Therefore the measurement uncertainty limits are ±0,5 dB with a rectangular distribution giving the standard deviation: 

 dB 0,29
3

5,0 ==straddleju  

Case 3: Uncertainty associated with digital coherent direct modulation 

In the following calculation the signal-to-noise ratio of the receiver is assumed to change 3 dB per dB level change of 
the two unwanted signals due to the third order function. 

The calculations are carried out using signal-to-noise ratio values, but the uncertainties involved are applicable to the 
measured values (the actual ratios between the wanted signal level and the unwanted signal levels). 

The straddle (up-down) method level recordings are "generator settings" between 0 dB and 3 dB corresponding to 
receiver signal-to-noise levels between 0 dB and 9 dB. 

The corresponding message acceptance at these signal-to-noise ratios are (the calculation method is shown in 
clause 6.6.4.2 of TR 100 028-1 [6], and the corresponding receiver signal-to-noise ratios are used). 

Message acceptance at reading = 0 dB. 

The receiver signal-to-noise ratio is 0 dB corresponding to 1,0. The BER corresponding to this value is read from 
figure 21 to be 0,08 and the message acceptance: 

 08,0))08,01(08,050()08,01()1()0()0( 4950 =−××+−=+= ppMa  

Message acceptance at reading = 1 dB. 

The receiver signal-to-noise ratio is 3 dB corresponding to 2,00. The BER corresponding to this value is read from 
figure 21 to be 0,024 and the message acceptance: 

 662,0))024,01(024,050()024,01()1()0()1( 4950 =−××+−=+= ppMa  

Message acceptance at reading = 2 dB. 

The receiver signal-to-noise ratio is 6 dB corresponding to 3,98. The BER corresponding to this value is read from 
figure 21 to be 0,0024 and the message acceptance. 

 994,0))0024,01(0024,050()0024,01()1()0()2( 4950 =−××+−=+= ppMa  

Message acceptance at reading = 3 dB. 

The receiver signal-to-noise ratio is 9 dB corresponding to 7,94. The BER corresponding to this value is read from 
figure 21 to be 0,00003 and the message acceptance. 

 0,1))00003,01(00003,050()00003,01()1()0()3( 4950 =−××+−=+= ppMa  

Based on these 4 values, the probabilities of each reading can be calculated. The method is given in clause 6.7 of 
TR 100 028-1 [6]: 

0 dB: Probability of going up = 1 - 0,083 = 0,9995; 

 Probability of going down = 0,083 = 0,0005; 

1 dB: Probability of going up = 1 - 0,6623 = 0,710; 

 Probability of going down = 0,6623 = 0,290; 

2 dB: Probability of going up = 1 - 0,9943 = 0,018; 

 Probability of going down = 0,9943 = 0,982; 
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3 dB: Probability of going up = 1 - 0,999993 = 0,00003; 

 Probability of going down = 0,999993 = 0,99997. 

Based on these 4 sets of probabilities, the probability of each reading can be calculated: (as the probability of going up 
to 3 dB from 2 dB is 0,018, the 3 dB reading is disregarded in the following, leaving 3 equations): 

- p(0 dB) = p(1 dB) × 0,290; 

- p(1 dB) = p(0 dB) × 1,0 + p(2 dB) × 1,0; 

- p(2 dB) = p(1 dB) × 0,710; 

- In addition p(2 dB) + p(3 dB) + p(4 dB) = 1,0. 

The results are: 

- p(0 dB) = 0,145; 

- p(1 dB) = 0,500; 

- p(2 dB) = 0,355. 

From these values the standard deviation of the uncertainty caused by the straddle method is calculated: 

- X = 0 × 0,145 + 1 × 0,500 + 2 × 0,355 = 1,21 dB; 

- Y = 02 × 0,145 + 12 × 0,500 + 22 × 0,355 = 1,92 dB. 

 dB 0,213
10

21,192,1

10

22
=

−
=−= XY

u straddlej  

Case 4a: Uncertainty associated with digital non-coherent sub-carrier based modulation above the knee point  

As the signal-to-noise ratio dependency function is 1 dB/dB above the knee point the calculations and the result from 
Case 1 applies. 

Case 4b: Uncertainty associated with digital non-coherent sub-carrier based modulation below the knee point  

Below the knee point the receiver signal-to-noise ratio will change 3 dB per dB unwanted signal level change. In 
addition the signal-to-noise ratio of the sub-carrier will change approximately. 3 dB per dB receiver signal-to-noise 
ratio. 

This causes the signal-to-noise ratio of the sub-carrier to change approximately 9 dB per dB unwanted signal level 
change. 

The straddle method will therefore be a switching between two level settings of the unwanted signal levels: one where 
the message acceptance is approximately. 1,0 and one where the message acceptance is approximately 0,0. 

The result will be the average of these two settings, but the correct value can be anywhere between the two settings. 

Therefore the measurement uncertainty limits are ± 0,5 dB with a rectangular distribution giving the standard deviation  

 dB 0,29
3

5,0 ==straddleju  

The combined standard uncertainty for intermodulation response rejection (for message acceptance) is: 

 2
straddlej

2
randomi

2
C  todue levelc

2
B  todue levelc

2
A  todue levelcimmunityation intermodul c uuuuuu ++++=  

Total uncertainty: Case 1 and case 2a 

  dB,  = ,,,,, 610211020220220440u 22222
immunityation intermodul c ++++=  
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Using an expansion factor (coverage factor) of k = 1,96, the expanded measurement uncertainty is 
±1,96 × 0,61 dB = ±1,2 dB (see clause D.5.6.2). 

Total uncertainty: Case 2b 

  dB,  = ,,,,, 64029020220220440u 22222
immunityation intermodul c ++++=  

Using an expansion factor (coverage factor) of k = 1,96, the expanded measurement uncertainty is 
±1,96 × 0,64 dB = ±1,25 dB (see clause D.5.6.2). 

Total uncertainty: Case 3 and case 4a 

  dB,  = ,,,,, 610213020220220440u 22222
immunityation intermodul c ++++=  

Using an expansion factor (coverage factor) of k = 1,96, the expanded measurement uncertainty is 
±1,96 × 0,61 dB = ±1,2 dB (see clause D.5.6.2). 

Total uncertainty: Case 4b 

 dB 0,64 = 29,020220220440u 22222
immunityation intermodul c  ,,,, ++++=  

Using an expansion factor (coverage factor) of k = 1,96, the expanded measurement uncertainty is 
±1,96 × 0,64 dB = ±1,25 dB (see clause D.5.6.2). 

4.1.6 Blocking immunity or desensitization 

4.1.6.1 Blocking immunity or desensitization for analogue speech 

The only difference between this test and the spurious response immunity test in clause 4.1.4.1 is that the interfering 
signal has a narrower frequency sweep. All other factors are the same and, assuming the single side-band phase noise of 
the interfering signal generator does not adversely effect performance, the calculation of measurement uncertainty is the 
same as for clause 4.1.4.1. 

4.1.6.2 Blocking immunity or desensitization for bit streams 

The only difference between this test and the spurious response immunity test in clause 4.1.4.2 is that the interfering 
signal has a narrower frequency sweep. All other factors are the same and, assuming the single side-band phase noise of 
the interfering signal generator does not adversely effect performance, the calculation of measurement uncertainty is the 
same as for clause 4.1.4.2. 

4.1.6.3 Blocking immunity or desensitization for messages 

The only difference between this test and the spurious response immunity test in clause 4.1.4.3 is that the interfering 
signal has a narrower frequency sweep. All other factors are the same and, assuming the single side-band phase noise of 
the interfering signal generator does not adversely effect performance, the calculation of measurement uncertainty is the 
same as for clause 4.1.4.3. 
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4.1.7 Conducted spurious emissions 

a) Direct reading method 

A spectrum analyser is calibrated from its internal reference source using a cable with negligible loss at the calibration 
reference frequency. The receiver under test is then connected to the spectrum analyser (see figure 13a) and an absolute 
reading for each spurious signal obtained on the analyser. The levels are corrected for cable loss (which becomes 
significant at the higher spurious frequencies) and recorded as the results for a direct reading. For this example, 
measurement uncertainty must include components of uncertainty for the spectrum analyser, cable loss and various 
mismatches between the receiver, cables and spectrum analyser. 

cable

alternative cable
position when calibrating

Spectrum analyserReceiver
under test

cal ref o/p

 

Figure 13a: Conducted spurious emission measurement configuration (direct method) 

b) Measurement uncertainty for the direct method 

Mismatch uncertainty: 

Mismatch uncertainty when calibrating the spectrum analyser: 

- spectrum analyser calibration reference output reflection coefficient is 0,2 (d); 

- spectrum analyser input reflection coefficient is 0,1 (d); 

- calibration cable reflection coefficient is 0,2 (d). 

For calculation of mismatch, attenuation of the calibration cable is assumed to be 0,00 dB (x 1 linear): 

 (v) %828,2
2

1002020
u cableandoutput referencen calibratio :mismatch j  

%,, =××=  

 (v) %414,1
2

1002010
u cable andinput analyser   spectrum :mismatch j   

%,, =××=  

 (v) %414,1
2

1000,12010
u

2

output calanalyzer  spectrumandinputanalyser spectrum :mismatch j   
%,, =×××=  

The combined standard uncertainty for mismatch during calibration is: 

 (v) %464,3414,1828,24141u 222
ncalibratio :mismatch j   , =++=  

Mismatch uncertainty when measuring the receiver spurious: 

- receiver reflection coefficient is 0,7 (see table F.1); 

- measurement cable reflection coefficient is 0,2 (d); 

- spectrum analyser input reflection coefficient is 0,1 (d). 
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For the calculation of mismatch, measurement cable attenuation is assumed to be 0,00 dB (x1 linear - providing worst 
case mismatch). 

 (v) %8999
2

1002070
u cable andreceiver  :mismatch j  ,

%,, =××=  

 (v) %4141
2

1001020
u analyser spectrum and cable :mismatch j  , 

%,,
=

××
=  

 (v) %950,4
2

1000,11070
u

2

analyser spectrum andreceiver  :mismatch j   
%,, =×××=  

The combined standard uncertainty for mismatch with the receiver connected is: 

 (v) %158,11950,44141899,9u 222
connectedreceiver  :mismatch j   , =++=  

The combined standard uncertainty for mismatch is: 

 (v) %683,11464,3158,11u 22
:mismatch j   = +=  

Uncertainty when making the measurement on the spectrum analyser: 

  dB,
,

1730
3

30
u referencen calibratio j ==  

  dB,
,

4431
3

52
u responsefrequency  j ==  

  dB,
,

2890
3

50
u switchingbandwidth  j ==  

  dB,
,

8660
3

51
u fidelity log j ==  

  dB,1150
3

2,0
u switching attenuatorinput j ==  

Standard uncertainty of measurement cable is 0,2 dB (m)(σ). 

NOTE 1: The uncertainty of the cable loss during calibration of the spectrum analyser is assumed to be negligible. 

Random uncertainty: 

Random uncertainty is ±0,2 dB (m)(σ). 

Uncertainty due to supply voltage:  

Supply voltage uncertainty is ±100 mV (r). 

Supply voltage uncertainty must be converted to an RF level uncertainty by means of formula 5.2 (of TR 100 028-1 [6]) 
and table F.1. Dependency values found in table F.1 are: 

- mean value of 10 % (p)/V; 

- standard deviation of 3 % (p)/V. 

Therefore: 

 ( ) ( ) ( )( )  )(+×













)( % 6030 = V / % 0,3V / % 010  

3

V 1,0
u 22

2

voltagesupplyconverted j σp,, =  
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The combined standard uncertainty is: 

  (dB) = 
,

,
,,,,,,,

,
018,2

023

6030
202011508660289044311730

511

683,11
u

2
2222222

2

emission spurious conducted c 






++++++++






=  

Using an expansion factor (coverage factor) of k = 1,96, the expanded measurement uncertainty is 
±1,96 × 2,018 dB = ±3,96 dB (see clause D.5.6.2). 

c) Spreadsheet implementation of measurement uncertainty 

This calculation has been implemented in a corresponding spreadsheet (see file "Rx conducted spurious emissions 
(direct).xls") and is available in tr_10002802v010301p0.zip. 

d) Substitution method 

In order to reduce measurement uncertainty, the receiver may be substituted by a signal generator and the level from the 
generator increased until the same reading (as obtained with the receiver) is obtained again on the analyser. The level on 
the signal generator is then recorded as the result using substitution. In this case, the large uncertainty of the spectrum 
analyser is replaced with the much lower uncertainty of the signal generator, and the cable uncertainty can also be 
ignored since it is common to both measurements. 

cable

alternative cable position
when substituting

Spectrum analyser

Signal
generator

Receiver
under test

 

Figure 13b: Conducted spurious emission measurement configuration (substitution method) 

e) Measurement uncertainty for the substitution method 

Mismatch uncertainty 

- receiver reflection coefficient is 0,7 (table F.1); 

- measurement cable reflection coefficient is 0,2 (m); 

- spectrum analyser input reflection coefficient is 0,1 (d); 

- signal generator reflection coefficient is 0,35 (d). 

For the calculation of mismatch, cable attenuation is assumed to be 0,00 dB (x 1 linear - providing a worst case 
mismatch). 

 (v) %899,9
2

1002070
u cable andreceiver  :mismatch j  

%,, =××=  

 (v) %4141
2

1001020
u analyser spectrum and cable :mismatch j  , 

%,,
=

××
=  

 (v) %950,4
2

1000,11070
u

2

analyser spectrum andreceiver  :mismatch j   
%,, =×××=  
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 (v) %9504
2

10020350
u cable andgenerator  :mismatch j  ,

%,,
=

××
=  

 (v) %475,2
2

1000,110350
u

2

analyserspectrum andgenerator  :mismatch j  
%,, =×××=  

The combined standard uncertainty for mismatch is: 

 (v) %455,12475,2950,4950,44141899,9u 22222
mismatch c   , =++++=  

Uncertainty when making the measurement: 

Signal generator (substitution signal) uncertainty ±1,5 dB (d): 

  dB, 
,

u eneratorj Signal g 8660
3

51 ==  

Random uncertainty: 

Random uncertainty is 0,2 dB (m)(σ). 

Uncertainty due to supply voltage: 

Supply voltage uncertainty is ±100 mV (r). 

Supply voltage uncertainty must be converted to an RF level uncertainty by means of formula 5.2 
(see TR 100 028-1 [6]) and table F.1. Dependency values found in table F.1 are: 

- mean value of 10 % (p)/V; 

- standard deviation of 3 % (p)/V. 

Therefore: 

 ( ) ( ) ( )( )  )(+×
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+++






  

Using an expansion factor (coverage factor) of k = 1,96, the expanded measurement uncertainty is 
±1,96 × 1,401 dB = ±2,75 dB (see clause D.5.6.2). 

NOTE 2: The substitution example has a far lower measurement uncertainty than the direct example. 

4.1.8 Amplitude characteristic for analogue speech 

a) Methodology 

The receiver under test is connected to a signal generator via a cable. The output from the receiver is connected to an 
AF voltmeter and load. The signal generator is adjusted to produce an appropriate level (usually near the threshold of 
limiting) and a reading on the AF voltmeter obtained. The signal generator is then adjusted to produce a considerably 
higher level and a second reading on the AF voltmeter obtained. The amplitude characteristic is recorded as the ratio (in 
dBs) between the two readings. 
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Figure 14: Amplitude characteristic measurement configuration 

Uncertainty contributions affecting RF input level must be included for the first measurement (combined and converted 
to AF level uncertainty by an appropriate dependency function) because at low RF levels below limiting, a small change 
in receiver RF input level may result in a relatively large change in AF output. In the second measurement (well above 
limiting) the resulting change at in AF output will usually be relatively small and the uncertainty of the RF input signal 
therefore considered negligible. 

b) Measurement uncertainty 

Mismatch uncertainty: 

- signal generator reflection coefficient is 0,2 (d); 

- receiver reflection coefficient (see table F.1) is 0,2; 

- cable reflection coefficients are 0,1 (d). 

In the calculation of mismatch uncertainty the cable attenuation is assumed to be 0,0 dB (x 1 linear). 

 (v) %4141
2

1001020
u cable andgenerator  :mismatch j  ,

%,, =××=  

 (v) % 4141
2

1002010
u receiver and cable :mismatch j ,

%,, =××=  

 (v) %8282
2

10012020
u

2

receiver andgenerator  :mismatch j  ,
%,, =×××=  

The combined standard uncertainty is: 

 (v) %4643828,2414,1414,1u 222
:mismatch c  ,=++=  

AF level uncertainty: 

Signal generator level uncertainty 1 dB (d)(r): 

  dB,
,

5770
3

01
u levelgenerator  signal j =±=  

Uncertainty of the cable attenuation is 0,1 dB (m)(σ). 

The combined standard uncertainty for the level is: 

  dB659,01,0577,0
5,11

464,3
u 22

2

:level c =++






=  
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RF level uncertainty is converted to AF level uncertainty by means of formula 5.2 (of TR 100 028-1 [6]) and table F.1. 
Dependency values found in table F.1 are: 

- mean value is 0,05 %/%; 

- standard deviation is 0,02 %/% level. 

Dependency values must be converted from percentage to dBs using table 1 in clause 5.2 of TR 100 028-1 [6]. Since 
like units are involved (i.e. % per %), the dependency values can be considered as: 

- mean value of 0,05 dB/dB; 

- standard deviation of 0,02 dB/dB level. 

Therefore: 

 ( ) ( )( )  dB,=  dB / dB, dB / dB,dB, 03500200506590u 222
level AF j +×=  

In the first measurement there may be some variation in the AF voltmeter reading due to noise. 

Noise variation at low RF level is 0,2 dB (m)(σ). 

In the second measurement the AF level is well above the system noise floor and the variation therefore negligible. 

AF volt meter uncertainty is ±0,2 dB (d) (r) (Must be allowed for twice): 

 dB 0,115 
3

0,2
u meter voltj ==  

The combined standard uncertainty for amplitude characteristic is: 

  dB, ,,,, 260011501150200350u 2222
sticcharacteri amplitude c =+++=  

Using an expansion factor (coverage factor) of k = 1,96, the expanded measurement uncertainty is 
±1,96 × 0,260 dB = ±0,51 dB (see TR 100 028-1 [6], clause D.5.6.2). 

c) Spreadsheet implementation of measurement uncertainty 

This calculation has been implemented in a corresponding spreadsheet (see file "Amplitude characteristic.xls") and is 
available in tr_10002802v010301p0.zip. 

4.1.9 Audio frequency response for analogue speech 

Example not provided. 

4.1.10 Harmonic distortion for analogue speech 

Example not provided. 

4.1.11 Hum and noise for analogue speech 

Example not provided. 

4.1.12 Multi-path sensitivity 

Example not provided. 

4.1.13 Bit error ratio 

Example not provided. 
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4.1.14 Opening delay for data 

Example not provided. 

4.2 Radiated 

4.2.1 Sensitivity tests (30 MHz to 1 000 MHz) 

A fully worked example illustrating the methodology to be used can be found in TR 102 273 [2], part 1, clause 11. 

4.2.1.1 Anechoic Chamber 

For receiver sensitivity measurement two stages of test are involved. 

4.2.1.1.1 Uncertainty contributions: Stage one: Determination of Transform Factor 

The first stage (determining the Transform Factor) involves placing a measuring antenna as shown in figure 15 and 
determining the relationship between the signal generator output power level and the resulting field strength (the shaded 
areas in figure 15 represent components common to both stages of the test). 
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Figure 15: Stage 1: Transform Factor 

All the uncertainty components which contribute to this stage of the test are listed in table 1. Annex A should be 
consulted for the sources and/or magnitudes of the uncertainty contributions. 
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Table 1: Contributions for the transform factor 

uj or i Description of uncertainty contributions dB 

uj36 mismatch: transmitting part 0,00 

uj37 mismatch: receiving part  

uj38 signal generator: absolute output level  

uj39 signal generator: output level stability  

uj19 cable factor: measuring antenna cable  

uj19 cable factor: test antenna cable 0,00 

uj41 insertion loss: measuring antenna cable  

uj41 insertion loss: test antenna cable 0,00 

uj40 insertion loss: measuring antenna attenuator  

uj40 insertion loss: test antenna attenuator 0,00 

uj47 receiving device: absolute level  

uj16 range length 0,00 

uj02 reflectivity of absorber material: measuring antenna to the test antenna 0,00 

uj44 antenna: antenna factor of the measuring antenna  

uj45 antenna: gain of the test antenna 0,00 

uj46 antenna: tuning of the measuring antenna  

uj46 antenna: tuning of the test antenna 0,00 

uj22 position of the phase centre: measuring antenna  

uj06 mutual coupling: measuring antenna to its images in the absorbing material  

uj06 mutual coupling: test antenna to its images in the absorbing material 0,00 

uj11 mutual coupling: measuring antenna to the test antenna 0,00 

uj12 mutual coupling: interpolation of mutual coupling and mismatch loss correction factors 0,00 

ui01 random uncertainty  
 

The standard uncertainties from table 1 should be combined by RSS in accordance with TR 102 273 [2], part 1, 
sub-part 1, clause 5. This gives the combined standard uncertainty (uc contributions from the Transform Factor) for the 
Transform Factor in dB. 

4.2.1.1.2 Uncertainty contributions: Stage two: EUT measurement 

The second stage (the EUT measurement) is to determine the minimum signal generator output level which produces 
the required response from the EUT as shown in figure 16 (the shaded areas represent components common to both 
stages of the test). 
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Figure 16: Stage 2: EUT measurement 

All the uncertainty components which contribute to this stage of the test are listed in table 2. Annex A should be 
consulted for the sources and/or magnitudes of the uncertainty contributions. 
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Table 2: Contributions from the EUT measurement 

uj or i Description of uncertainty contributions dB 
uj36 mismatch: transmitting part  

uj37 mismatch: receiving part  

uj38 signal generator: absolute output level  

uj39 signal generator: output level stability  

uj19 cable factor: test antenna cable 0,00 

uj41 insertion loss: test antenna cable 0,00 

uj40 insertion loss: test antenna attenuator 0,00 

uj20 position of the phase centre: within the EUT volume  

uj22 positioning of the phase centre: within the EUT over the axis of rotation of the turntable  

uj52 EUT: modulation detection  

uj16 range length 0,00 

uj01 reflectivity of absorber material: EUT to the test antenna  

uj45 antenna: gain of the test antenna 0,00 

uj46 antenna: tuning of the test antenna 0,00 

uj55 EUT: mutual coupling to the power leads  

uj08 mutual coupling: amplitude effect of the test antenna on the EUT 0,00 

uj04 mutual coupling: EUT to its images in the absorbing materials  

uj06 mutual coupling: test antenna to its images in the absorbing material 0,00 

ui01 random uncertainty  

 

The standard uncertainties from table 2 should be combined by RSS in accordance with TR 102 273 [2], part 1, 
sub-part 1, clause 5. This gives the combined standard uncertainty (uc contribution from the EUT measurement) for the EUT 

measurement in dB. 

4.2.1.1.3 Expanded uncertainty of the receiver sensitivity measurement 

The combined uncertainty of the sensitivity measurement is the combination of the components outlined in 
clauses 4.2.1.1.1 and 4.2.1.1.2. The components to be combined are uc contribution from the Transform Factor and 

uc contribution from the EUT measurement: 

 u u uc c contribution fromthe Transform Factor c contribution fromthe EUT measurement= +2 2 =  _ _ ,_ _  dB  

Using an expansion factor (coverage factor) of k = 1,96, the expanded measurement uncertainty is 
±1,96 × uc = ±__,__ dB (see clause D.5.6.2). 

4.2.1.2 Anechoic Chamber with a ground plane 

A fully worked example illustrating the methodology to be used can be found in TR 102 273 [2], part 1, sub-part 2, 
clause 4. 

4.2.1.2.1 Uncertainty contributions: Stage one: Determination of Transform Factor 

The first stage (determining the Transform Factor) involves placing a measuring antenna as shown in figure 17 and 
determining the relationship between the signal generator output power level and the resulting field strength (the shaded 
areas in figure 17 represent components common to both stages of the test). 
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Figure 17: Stage one: Determination of Transform Factor 

All the uncertainty components which contribute to this stage of the test are listed in table 3. Annex A should be 
consulted for the sources and/or magnitudes of the uncertainty contributions. 

Table 3: Contributions for the Transform Factor 

uj or i Description of uncertainty contributions dB 
uj36 mismatch: transmitting part  

uj37 mismatch: receiving part  

uj38 signal generator: absolute output level 0,00 

uj39  signal generator: output level stability  

uj19 cable factor: measuring antenna cable  

uj19 cable factor: test antenna cable  

uj41 insertion loss: measuring antenna cable  

uj41 insertion loss: test antenna cable 0,00 

uj40 insertion loss: measuring antenna attenuator  

uj40 insertion loss: test antenna attenuator 0,00 

uj47 receiving device: absolute level  

uj16 range length  

uj02 reflectivity of absorbing material: measuring antenna to the test antenna  

uj44 antenna: antenna factor of the measuring antenna  

uj45 antenna: gain of the test antenna  

uj46 antenna: tuning of the measuring antenna  

uj46 antenna: tuning of the test antenna 0,00 

uj22 position of the phase centre: measuring antenna  

uj06 mutual coupling: measuring antenna to its images in the absorbing material  

uj06 mutual coupling: test antenna to its images in the absorbing material  

uj14 mutual coupling: measuring antenna to its images in the ground plane  

uj14 mutual coupling: test antenna to its images in the ground plane  

uj11 mutual coupling: measuring antenna to the test antenna  

uj12 mutual coupling: interpolation of mutual coupling and mismatch loss correction factors  

ui01 random uncertainty  

 

The standard uncertainties from table 18 should be combined by RSS in accordance with TR 102 273 [2], part 1, 
sub-part 1, clause 5. This gives the combined standard uncertainty (uc contributions from the Transform Factor) for the 

Transform Factor in dB. 
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4.2.1.2.2 Uncertainty contributions: Stage two: EUT measurement 

The second stage (the EUT measurement) is to determine the minimum signal generator output level which produces 
the required response from the EUT as shown in figure 18 (the shaded areas represent components common to both 
stages of the test). 
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Figure 18: Stage 2: EUT measurement 

All the uncertainty components which contribute to this stage of the test are listed in table 4. Annex A should be 
consulted for the sources and/or magnitudes of the uncertainty contributions. 

Table 4: Contributions from the EUT measurement 

uj or i Description of uncertainty contributions dB 
uj36 mismatch: transmitting part  

uj38 signal generator: absolute output level 0,00 

uj39  signal generator: output level stability  

uj19 cable factor: test antenna cable  

uj41 insertion loss: test antenna cable 0,00 

uj40 insertion loss: test antenna attenuator 0,00 

uj20 position of the phase centre: within the EUT volume  

uj21 positioning of the phase centre: within the EUT over the axis of rotation of the turntable  

uj52 EUT: modulation detection  

uj16 range length  

uj01 reflectivity of absorbing material: EUT to the test antenna  

uj45 antenna: gain of the test antenna 0,00 

uj46 antenna: tuning of the test antenna 0,00 

uj55 EUT: mutual coupling to the power leads  

uj08 mutual coupling: amplitude effect of the test antenna on the EUT  

uj04 mutual coupling: EUT to its images in the absorbing materials  

uj13 mutual coupling: EUT to its image in the ground plane  

uj06 mutual coupling: test antenna to its images in the absorbing material  

uj14 mutual coupling: test antenna to its image in the ground plane  

ui01 random uncertainty  

 

The standard uncertainties from table 4 should be combined by RSS in accordance with TR 102 273 [2], part 1, 
sub-part 1, clause 5. This gives the combined standard uncertainty (uc contribution from the EUT measurement) for the EUT 
measurement in dB. 
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4.2.1.2.3 Expanded uncertainty of the receiver sensitivity measurement 

The combined uncertainty of the sensitivity measurement is the combination of the components outlined in 
clauses 4.2.1.2.1 and 4.2.1.2.2. The components to be combined are uc contribution from the Transform Factor and 

uc contribution from the EUT measurement: 

u u uc c contribution fromthe Transform factor c contribution fromthe EUT measurement= +2 2 =  _ _ ,_ _  dB  

Using an expansion factor (coverage factor) of k = 1,96, the expanded measurement uncertainty is 
±1,96 × uc = ±__,__ dB (see clause D.5.6.2). 

4.2.1.3 Open Area Test Site  

A fully worked example illustrating the methodology to be used can be found in TR 102 273 [2], part 1, sub-part 2, 
clause 4. For receiver sensitivity measurement two stages of test are involved. 

4.2.1.3.1 Uncertainty contributions: Stage one: Transform Factor 

The first stage (determining the Transform Factor) involves placing a measuring antenna as shown in figure 19 and 
determining the relationship between the signal generator output power level and the resulting field strength (the shaded 
areas in figure 19 represent components common to both stages of the test). 
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Figure 19: Stage 1: Transform Factor 

All the uncertainty components which contribute to this stage of the test are listed in table 5. 
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Table 5: Contributions for the Transform Factor 

uj or i Description of uncertainty contributions dB 
uj36 mismatch: transmitting part  

uj37 mismatch: receiving part  

uj38 signal generator: absolute output level 0,00 

uj39 signal generator: output level stability  

uj19 cable factor: measuring antenna cable  

uj19 cable factor: test antenna cable  

uj41 insertion loss: measuring antenna cable  

uj41 insertion loss: test antenna cable 0,00 

uj40 insertion loss: measuring antenna attenuator  

uj40 insertion loss: test antenna attenuator 0,00 

uj47 receiving device: absolute level  

uj16 range length  

uj44 antenna: antenna factor of the measuring antenna  

uj45 antenna: gain of the test antenna  

uj46 antenna: tuning of the measuring antenna  

uj46 antenna: tuning of the test antenna 0,00 

uj22 position of the phase centre: measuring antenna  

uj14 mutual coupling: measuring antenna to its images in the ground plane  

uj14 mutual coupling: test antenna to its images in the ground plane  

uj11 mutual coupling: measuring antenna to the test antenna  

uj12 mutual coupling: interpolation of mutual coupling and mismatch loss correction factors  

ui01 random uncertainty  

 

The standard uncertainties from table 5 should be combined by RSS in accordance with TR 102 273 [2], part 1, 
sub-part 1, clause 5. This gives the combined standard uncertainty (uc contributions from the Transform Factor) for the 
Transform Factor in dB. 

4.2.1.3.2 Uncertainty contributions: Stage two: EUT measurement 

The second stage (the EUT measurement) is to determine the minimum signal generator output level which produces 
the required response from the EUT as shown in figure 20 (the shaded areas represent components common to both 
stages of the test). 
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Figure 20: Stage 2: EUT measurement 

All the uncertainty components which contribute to this stage of the test are listed in table 6. Annex A should be 
consulted for the sources and/or magnitudes of the uncertainty contributions. 
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Table 6: Contributions from the EUT measurement 

uj or i Description of uncertainty contributions dB 
uj36 mismatch: transmitting part  

uj38 signal generator: absolute output level 0,00 

uj39  signal generator: output level stability  

uj19 cable factor: test antenna cable  

uj41 insertion loss: test antenna cable 0,00 

uj40 insertion loss: test antenna attenuator 0,00 

uj20 position of the phase centre: within the EUT volume  

uj21 positioning of the phase centre: within the EUT over of the axis of rotation of the turntable  

uj52 EUT: modulation detection  

uj16 range length  

uj45 antenna: gain of the test antenna 0,00 

uj46 antenna: tuning of the test antenna 0,00 

uj55 EUT: mutual coupling to the power leads  

uj08 mutual coupling: amplitude effect of the test antenna on the EUT  

uj13 mutual coupling: EUT to its image in the ground plane  

uj14 mutual coupling: test antenna to its image in the ground plane  

ui01 random uncertainty  

 

The standard uncertainties from table 6 should be combined by RSS in accordance with TR 102 273 [2], part 1, 
sub-part 1, clause 5. This gives the combined standard uncertainty (uc contribution from the EUT measurement) for the EUT 
measurement in dB. 

4.2.1.3.3 Expanded uncertainty of the receiver sensitivity measurement 

The combined uncertainty of the sensitivity measurement is the combination of the components outlined in 
clauses 4.2.1.3.1 and 4.2.1.3.2. The components to be combined are uc contribution from the Transform Factor and uc contribution 

from the EUT measurement: 

 u u uc c contribution fromthe Transform factor c contribution fromthe EUT measurement= +2 2 =  _ _ ,_ _  dB  

Using an expansion factor (coverage factor) of k = 1,96, the expanded measurement uncertainty is 
±1,96 × uc = ±__,__ dB (see clause D.5.6.2). 

4.2.1.4 Striplines 

For tests in which the results of the verification procedure have been used, the test will have comprised only a single 
measurement stage. Otherwise, two measurement stages of the test would have been involved. 

A fully worked example calculation can be found in TR 102 273 [2], part 1, sub-part 2, clause 5. 

4.2.1.4.1 Uncertainty contributions: Stage 1: EUT measurement 

The first stage involves the measurement set-up as shown in figure 21. 
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Figure 21: Stage 1 schematic: EUT Measurement 

Table 7 lists the uncertainty contributions involved in this stage of the test. Annex A should be consulted for the sources 
and/or magnitudes of the uncertainty contributions. 

Table 7: Uncertainty contributions from the EUT measurement 

uj or i Description of uncertainty contributions dB 
uj36 mismatch: transmitting part  

uj37 mismatch: receiving part  

uj38 signal generator: absolute output level  

uj39 signal generator: output level stability  

uj19 cable factor: signal generator 0,00 

uj41 insertion loss: signal generator cable 0,00 

uj40 insertion loss: signal generator attenuator 0,00 

uj47 receiving device: absolute level 0,00 

uj48 receiving device: linearity 0,00 

uj32 Stripline: correction factor for the size of the EUT  

uj24 Stripline: mutual coupling of the EUT to its images in the plates  

uj55 EUT: mutual coupling to the power leads  

uj26 Stripline: characteristic impedance  

uj27 Stripline: non-planar nature of the field distribution  

uj33 Stripline: influence of site effects  

uj34 ambient effect  

uj52 EUT: modulation detection  

ui01 random uncertainty  

 

The standard uncertainties from table 7 should be combined by RSS in accordance with TR 102 273 [2], part 1, 
sub-part 1, clause 5. This gives the combined standard uncertainty, uc EUT measurement, for the EUT measurement in dB. 

4.2.1.4.2 Uncertainty contributions: Stage 2: Field measurement 

For tests using the results of the verification procedure 

As stated above, for tests in which the results of the verification procedure are used, this second stage does not really 
exist. In terms of its contribution to the overall uncertainty of this test, the verification procedure contributes the full 
value of its overall uncertainty. So, in this case, the standard deviation of the verification procedure is taken as the 
contribution uc field measurement. 

For the Monopole 

Figure 22 shows schematically the equipment set-up for this stage of the test. The uncertainty contributions resulting are 
given in table 23. Annex A should be consulted for the sources and/or magnitudes of the uncertainty contributions. 
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Figure 22: Stage 2 schematic: Monopole field measurement 

Table 8: Uncertainty contributions from the Monopole field measurement 

uj or i Description of uncertainty contributions dB 
uj36 mismatch: transmitting part  

uj37 mismatch: receiving part  

uj47 signal generator: absolute output level  

uj48 signal generator: output level stability  

uj19 cable factor: signal generator 0,00 

uj19 cable factor: monopole cable 0,00 

uj41 insertion loss: signal generator cable 0,00 

uj41 insertion loss: monopole cable 0,00 

uj40 insertion loss: signal generator attenuator 0,00 

uj40 insertion loss: monopole attenuator 0,00 

uj47 receiving device: absolute level 0,00 

uj48 receiving device: linearity 0,00 

uj31 Stripline: antenna factor of the monopole  

uj32 Stripline: correction factor for the size of the EUT  

uj24 Stripline: mutual coupling of the EUT to its images in the plates  

uj26 Stripline: characteristic impedance  

uj27 Stripline: non-planar nature of the field distribution  

uj33 Stripline: influence of site effects  

uj34 ambient effect  

ui01 random uncertainty  

 

The standard uncertainties from table 8 should be combined by RSS in accordance with TR 102 273 [2], part 1, 
sub-part 1, clause 5. This gives the combined standard uncertainty, uc field measurement, for the Monopole field 
measurement in dB. 

For the 3-axis probe 

The uncertainty contributions for this configuration during the test are as given in table 9. Annex A should be consulted 
for the sources and/or magnitudes of the uncertainty contributions. 
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Table 9: Uncertainty contributions from the field measurement 

uj or i Description of uncertainty contributions dB 
uj36 mismatch: transmitting part  

uj38 signal generator: absolute output level  

uj39 signal generator: output level stability  

uj19 cable factor: signal generator 0,00 

uj41 insertion loss: signal generator cable 0,00 

uj40 insertion loss: signal generator attenuator 0,00 

uj28 Stripline: field strength measurement as determined by the 3-axis probe  

uj32 Stripline: correction factor for the size of the EUT  

uj24 Stripline: mutual coupling of the EUT to its images in the plates  

uj26 Stripline: characteristic impedance  

uj27 Stripline: non-planar nature of the field distribution  

uj33 Stripline: influence of site effects  

uj34 ambient effect  

uj25 Stripline: mutual coupling of the 3-axis probe to its image in the plates  

ui01 random uncertainty  

 

The standard uncertainties from table 9 should be combined by RSS in accordance with TR 102 273 [2], part 1, 
sub-part 1, clause 5. This gives the combined standard uncertainty, uc field measurement, for the 3-axis probe field 
measurement in dB. 

4.2.1.4.3 Expanded uncertainty for the Receiver sensitivity measurement 

The combined standard uncertainty of the results of the receiver sensitivity measurement is the RSS combination of the 
components outlined in clauses 4.2.1.4.1 and 4.2.4.1.2 above. The components to be combined are uc EUT measurement 
and uc field measurement. 

 u  = u  + u  = __,__c c EUT  measurement c field measurement    dB2 2  

Using an expansion factor (coverage factor) of k = 1,96, the expanded measurement uncertainty is 
±1,96 × uc = ±__,__ dB (see clause D.5.6.2). 

4.2.1.5 Test Fixture 

Tests in a test fixture differ to radiated tests on all other types of site in that there is only one stage to the test. All 
uncertainty contributions for the test can, therefore, be incorporated into one table and these are given in table 10. 

4.2.1.5.1 Uncertainty contributions 

All the uncertainty contributions for the test are listed in table 10. 

Table 10: Contributions from the measurement 

uj or i Description of uncertainty contributions dB 
uj38 signal generator: absolute output level  

uj39 signal generator: output level stability  

uj60 Test Fixture: effect on the EUT  

uj61 Test Fixture: climatic facility effect on the EUT  

ui01 random uncertainty  
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The standard uncertainties from table 10 should be given values according to annex A. They should then be combined 
by RSS in accordance with TR 102 273 [2], part 1, sub-part 1, clause 5. This gives the combined standard uncertainty 
(uc contributions from the measurement) for the EUT measurement in dB. 

4.2.1.5.2 Expanded uncertainty of the Maximum usable sensitivity measurement 

Tests in a Test Fixture differ to radiated tests on all other types of site in that there is only one stage to the test. 
However, the Test Fixture measurement could be considered as stage two of a test in which stage one was on an 
accredited Free-Field Test Site. The combined standard uncertainty of the maximum usable sensitivity measurement is 
therefore, simply the RSS combination of the value for uc contributions from the measurement derived above and the combined 

uncertainty of the Free-Field Test Site uc contribution from the Free-Field Test Site. 

 dB____,2
       

2
    =+= sitetestfieldfreethefromonscontributictmeasurementhefromonscontributicc uuu  

Using an expansion factor (coverage factor) of k = 1,96, the expanded measurement uncertainty is 
±1,96 × uc = ±__,__ dB (see clause D.5.6.2). 

4.2.1.6 Salty Man/Salty lite 

4.2.1.6.1 Anechoic Chamber 

A fully worked example illustrating the methodology to be used can be found in TR 102 273 [2], part 1, sub-part 2, 
clause 4. 

The receiver sensitivity measurement involves two stages of testing. 

4.2.1.6.1.1 Uncertainty contributions: Stage one: Transform factor measurement 

The first stage (determining the Transform Factor) involves placing a measuring antenna as shown in figure 23 and 
determining the relationship between the signal generator output power level and the resulting field strength (the shaded 
areas in figure 23 represent components common to both stages of the test). 
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Figure 23: Stage 1: Transform Factor 

All the uncertainty components which contribute to this stage of the test are listed in table 11. Annex A should be 
consulted for the sources and/or magnitudes of the uncertainty contributions. 
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Table 11: Contributions for the Transform Factor 

uj or i Description of uncertainty contributions dB 
uj36 mismatch: transmitting part 0,00 

uj37 mismatch: receiving part  

uj38 signal generator: absolute output level  

uj39 signal generator: output level stability  

uj19 cable factor: measuring antenna cable  

uj19 cable factor: test antenna cable 0,00 

uj41 insertion loss: measuring antenna cable  

uj41 insertion loss: test antenna cable 0,00 

uj40 insertion loss: measuring antenna attenuator  

uj40 insertion loss: test antenna attenuator 0,00 

uj47 receiving device: absolute level  

uj16 range length 0,00 

uj02 reflectivity of absorber material: measuring antenna to the test antenna 0,00 

uj44 antenna: antenna factor of the measuring antenna  

uj45 antenna: gain of the test antenna 0,00 

uj46 antenna: tuning of the measuring antenna  

uj46 antenna: tuning of the test antenna 0,00 

uj22 position of the phase centre: measuring antenna  

uj06 mutual coupling: measuring antenna to its images in the absorbing material  

uj06 mutual coupling: test antenna to its images in the absorbing material 0,00 

uj11 mutual coupling: measuring antenna to the test antenna 0,00 

uj12 mutual coupling: interpolation of mutual coupling and mismatch loss correction factors 0,00 

ui01 random uncertainty  

 

The standard uncertainties from table 11 should be combined by RSS in accordance with TR 102 273 [2], part 1, 
sub-part 1, clause 5. This gives the combined standard uncertainty (uc contributions from the Transform Factor) for the 
Transform Factor in dB. 

4.2.1.6.1.2 Uncertainty contributions: Stage two: EUT measurement 

The second stage (the EUT measurement) is to determine the minimum signal generator output level which produces 
the required response from the EUT as shown in figure 24 (the shaded areas represent components common to both 
stages of the test). 
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Figure 24: Stage 2: EUT measurement 

All the uncertainty components which contribute to this stage of the test are listed in table 12. Annex A should be 
consulted for the sources and/or magnitudes of the uncertainty contributions. 
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Table 12: Contributions from the EUT measurement 

uj or i Description of uncertainty contributions dB 
uj36 mismatch: transmitting part 0,00 

uj37 mismatch: receiving part  

uj38 signal generator: absolute output level  

uj39 signal generator: output level stability  

uj19 cable factor: measuring antenna cable  

uj19 cable factor: test antenna cable 0,00 

uj41 insertion loss: measuring antenna cable  

uj41 insertion loss: test antenna cable 0,00 

uj40 insertion loss: measuring antenna attenuator  

uj40 insertion loss: test antenna attenuator 0,00 

uj47 receiving device: absolute level  

uj16 range length 0,00 

uj02 reflectivity of absorber material: measuring antenna to the test antenna 0,00 

uj44 antenna: antenna factor of the measuring antenna  

uj45 antenna: gain of the test antenna 0,00 

uj46 antenna: tuning of the measuring antenna  

uj46 antenna: tuning of the test antenna 0,00 

uj22 position of the phase centre: measuring antenna  

uj06 mutual coupling: measuring antenna to its images in the absorbing material  

uj06 mutual coupling: test antenna to its images in the absorbing material 0,00 

uj11 mutual coupling: measuring antenna to the test antenna 0,00 

uj12 mutual coupling: interpolation of mutual coupling and mismatch loss correction factors 0,00 

uj58 Salty man/salty-lite: human simulation  

uj59 Salty man/salty-lite: field enhancement and de-tuning of the EUT  

ui01 random uncertainty  

 

The standard uncertainties from table 13 should be combined by RSS in accordance with TR 102 273 [2], part 1, 
sub-part 1, clause 5. This gives the combined standard uncertainty (uc contribution from the EUT measurement) for the EUT 

measurement in dB. 

4.2.1.6.1.3 Expanded uncertainty 

The combined uncertainty of the sensitivity measurement is the combination of the components outlined in 
clauses 4.2.1.6.1.1 and 4.2.1.6.1.2. The components to be combined are uc contribution from the Transform Factor and 

uc contribution from the EUT measurement. 

 u u uc ccontribution fromtheTransform Factor ccontribution fromthe EUT measurement= +2 2 =  _ _ , _ _  dB  

Using an expansion factor (coverage factor) of k = 1,96, the expanded measurement uncertainty is 
±1,96 × uc = ±__,__ dB (see clause D.5.6.2). 

4.2.1.6.2 Anechoic Chamber with a ground plane 

A fully worked example illustrating the methodology to be used can be found in TR 102 273 [2], part 1, sub-part 2, 
clause 4. 

The receiver sensitivity measurement involves two stages of testing. 
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4.2.1.6.2.1 Uncertainty contributions: Stage one: Determination of Transfer Factor 

The first stage (determining the Transform Factor) involves placing a measuring antenna as shown in figure 25 and 
determining the relationship between the signal generator output power level and the resulting field strength (the shaded 
areas in figure 25 represent components common to both stages of the test). 
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Figure 25: Stage 1: Transform Factor 

All the uncertainty components which contribute to this stage of the test are listed in table 13. Annex A should be 
consulted for the sources and/or magnitudes of the uncertainty contributions. 

Table 13: Contributions for the Transform Factor 

uj or i Description of uncertainty contributions dB 
uj36 mismatch: transmitting part  

uj37 mismatch: receiving part  

uj38 signal generator: absolute output level 0,00 

uj39  signal generator: output level stability  

uj19 cable factor: measuring antenna cable  

uj19 cable factor: test antenna cable  

uj41 insertion loss: measuring antenna cable  

uj41 insertion loss: test antenna cable 0,00 

uj40 insertion loss: measuring antenna attenuator  

uj40 insertion loss: test antenna attenuator 0,00 

uj47 receiving device: absolute level  

uj16 range length  

uj02 reflectivity of absorbing material: measuring antenna to the test antenna  

uj44 antenna: antenna factor of the measuring antenna  

uj45 antenna: gain of the test antenna  

uj46 antenna: tuning of the measuring antenna  

uj46 antenna: tuning of the test antenna 0,00 

uj22 position of the phase centre: measuring antenna  

uj06 mutual coupling: measuring antenna to its images in the absorbing material  

uj06 mutual coupling: test antenna to its images in the absorbing material  

uj14 mutual coupling: measuring antenna to its images in the ground plane  

uj14 mutual coupling: test antenna to its images in the ground plane  

uj11 mutual coupling: measuring antenna to the test antenna  

uj12 mutual coupling: interpolation of mutual coupling and mismatch loss correction factors  

ui01 random uncertainty  

 

The standard uncertainties from table 13 should be combined by RSS in accordance with TR 102 273 [2], part 1, 
sub-part 1, clause 5. This gives the combined standard uncertainty (uc contributions from the Transform Factor) for the 

Transform Factor in dB. 
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4.2.1.6.2.2 Uncertainty contributions: Stage two: EUT measurement 

The second stage (the EUT measurement) is to determine the minimum signal generator output level which produces 
the required response from the EUT as shown in figure 26 (the shaded areas represent components common to both 
stages of the test). 
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Figure 26: Stage 2: EUT measurement 

All the uncertainty components which contribute to this stage of the test are listed in table 14. Annex A should be 
consulted for the sources and/or magnitudes of the uncertainty contributions. 

Table 14: Contributions from the EUT measurement 

uj or i Description of uncertainty contributions dB 
uj36 mismatch: transmitting part  

uj38 signal generator: absolute output level 0,00 

uj39  signal generator: output level stability  

uj19 cable factor: test antenna cable  

uj41 insertion loss: test antenna cable 0,00 

uj40 insertion loss: test antenna attenuator 0,00 

uj20 position of the phase centre: within the EUT volume  

uj21 positioning of the phase centre: within the EUT over the axis of rotation of the turntable  

uj52 EUT: modulation detection  

uj16 range length  

uj01 reflectivity of absorbing material: EUT to the test antenna  

uj45 antenna: gain of the test antenna 0,00 

uj46 antenna: tuning of the test antenna 0,00 

uj55 EUT: mutual coupling to the power leads  

uj08 mutual coupling: amplitude effect of the test antenna on the EUT  

uj04 mutual coupling: EUT to its images in the absorbing materials  

uj13 mutual coupling: EUT to its image in the ground plane  

uj06 mutual coupling: test antenna to its images in the absorbing material  

uj14 mutual coupling: test antenna to its image in the ground plane  

uj58 Salty man/salty-lite: human simulation  

uj59 Salty man/salty-lite: field enhancement and de-tuning of the EUT  

ui01 random uncertainty  

 

The standard uncertainties from table 14 should be combined by RSS in accordance with TR 102 273 [2], part 1, 
sub-part 1, clause 5. This gives the combined standard uncertainty (uc contribution from the EUT measurement) for the EUT 
measurement in dB. 
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4.2.1.6.2.3 Expanded uncertainty 

The combined uncertainty of the sensitivity measurement is the combination of the components outlined in 
clauses 4.2.1.6.2.1 and 4.2.1.6.2.2. The components to be combined are uc contribution from the Transform Factor and 

uc contribution from the EUT measurement. 

 u u uc ccontribution fromtheTransform Factor ccontribution fromthe EUT measurement= +2 2 =  _ _ , _ _  dB  

Using an expansion factor (coverage factor) of k = 1,96, the expanded measurement uncertainty is 
±1,96 × uc = ±__,__ dB (see clause D.5.6.2). 

4.2.1.6.3 Open Area Test Site  

A fully worked example illustrating the methodology to be used can be found in TR 102 273 [2], part 1, sub-part 2, 
clause 4. 

The receiver sensitivity measurement involves two stages of testing. 

4.2.1.6.3.1 Uncertainty contributions: Stage one: Transfer Factor 

The first stage (determining the Transform Factor) involves placing a measuring antenna as shown in figure 27 and 
determining the relationship between the signal generator output power level and the resulting field strength (the shaded 
areas in figure 27 represent components common to both stages of the test). 
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Figure 27: Stage 1: Transform Factor 

All the uncertainty components which contribute to this stage of the test are listed in table 15. Annex A should be 
consulted for the sources and/or magnitudes of the uncertainty contributions. 
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Table 15: Contributions for the Transform Factor 

uj or i Description of uncertainty contributions dB 
uj36 mismatch: transmitting part  

uj37 mismatch: receiving part  

uj38 signal generator: absolute output level 0,00 

uj39  signal generator: output level stability  

uj19 cable factor: measuring antenna cable  

uj19 cable factor: test antenna cable  

uj41 insertion loss: measuring antenna cable  

uj41 insertion loss: test antenna cable 0,00 

uj40 insertion loss: measuring antenna attenuator  

uj40 insertion loss: test antenna attenuator 0,00 

uj47 receiving device: absolute level  

uj16 range length  

uj44 antenna: antenna factor of the measuring antenna  

uj45 antenna: gain of the test antenna  

uj46 antenna: tuning of the measuring antenna  

uj46 antenna: tuning of the test antenna 0,00 

uj22 position of the phase centre: measuring antenna  

uj14 mutual coupling: measuring antenna to its images in the ground plane  

uj14 mutual coupling: test antenna to its images in the ground plane  

uj11 mutual coupling: measuring antenna to the test antenna  

uj12 mutual coupling: interpolation of mutual coupling and mismatch loss correction factors  

ui01 random uncertainty  

 

The standard uncertainties from table 15 should be combined by RSS in accordance with TR 102 273 [2], part 1, 
sub-part 1, clause 5. This gives the combined standard uncertainty (uc contributions from the Transform Factor) for the 
Transform Factor in dB. 

4.2.1.6.3.2 Uncertainty contributions: Stage two: EUT measurement 

The second stage (the EUT measurement) is to determine the minimum signal generator output level which produces 
the required response from the EUT as shown in figure 28 (the shaded areas represent components common to both 
stages of the test). 
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Figure 28: Stage 2: EUT measurement 

All the uncertainty components which contribute to this stage of the test are listed in table 16. Annex A should be 
consulted for the sources and/or magnitudes of the uncertainty contributions. 
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Table 16: Uncertainty contributions from the EUT measurement 

uj or i Description of uncertainty contributions dB 
uj36 mismatch: transmitting part  

uj38 signal generator: absolute output level 0,00 

uj39  signal generator: output level stability  

uj19 cable factor: test antenna cable  

uj41 insertion loss: test antenna cable 0,00 

uj40 insertion loss: test antenna attenuator 0,00 

uj20 position of the phase centre: within the EUT volume  

uj21 positioning of the phase centre: within the EUT over of the axis of rotation of the turntable  

uj52 EUT: modulation detection  

uj16 range length  

uj45 antenna: gain of the test antenna 0,00 

uj46 antenna: tuning of the test antenna 0,00 

uj55 EUT: mutual coupling to the power leads  

uj08 mutual coupling: amplitude effect of the test antenna on the EUT  

uj13 mutual coupling: EUT to its image in the ground plane  

uj14 mutual coupling: test antenna to its image in the ground plane  

uj58 Salty man/salty-lite: human simulation  

uj59 Salty man/salty-lite: field enhancement and de-tuning of the EUT  

ui01 random uncertainty  

 

The standard uncertainties from table 16 should be combined by RSS in accordance with TR 102 273 [2], part 1, 
sub-part 1, clause 5. This gives the combined standard uncertainty (uc contribution from the EUT measurement) for the EUT 
measurement in dB. 

4.2.1.6.3.3 Expanded uncertainty 

The combined uncertainty of the sensitivity measurement is the combination of the components outlined in 
clauses 4.2.1.6.3.1 and 4.2.1.6.3.2. The components to be combined are uc contribution from the Transform Factor and 

uc contribution from the EUT measurement. 

 u u uc ccontribution fromtheTransform Factor ccontribution fromthe EUT measurement= +2 2 =  _ _ , _ _  dB  

Using an expansion factor (coverage factor) of k = 1,96, the expanded measurement uncertainty is 
±1,96 × uc = ±__,__ dB (see clause D.5.6.2). 

4.2.2 Co-channel rejection 

4.2.2.1 Test fixture 

Tests in a test fixture differ to radiated tests on all other types of site in that there is only one stage to the test. All 
uncertainty contributions for the test can, therefore, be incorporated into one table and these are given in table 17. 
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4.2.2.1.1 Uncertainty contributions 

All the uncertainty contributions for the test are listed in table 17. 

Table 17: Contributions from the measurement 

uj or i Description of uncertainty contributions dB 
uj60 Test Fixture: effect on the EUT  

uj61 Test Fixture: climatic facility effect on the EUT  

ui01 random uncertainty  

uj38 signal generator A: absolute output level   

uj38 signal generator B: absolute output level   

uj39 signal generator A: output level stability  

uj39 signal generator B: output level stability  

 

The standard uncertainties from table 17 should be given values according to annex A. They should then be combined 
by RSS in accordance with TR 102 273 [2], part 1, sub-part 1, clause 5. This gives the combined standard uncertainty 
(uc contributions from the measurement) for the EUT measurement in dB. 

4.2.2.1.2 Expanded uncertainty 

Tests in a Test Fixture differ to radiated tests on all other types of site in that there is only one stage to the test. 
However, to calculate the measurement uncertainty, the Test Fixture measurement should be considered as stage two of 
a test in which stage one was on an accredited Free-Field Test Site. The combined standard uncertainty, uc, of the 
co-channel rejection measurement is therefore, simply the RSS combination of the value for 
uc contribution from the measurement derived above and the combined uncertainty of the Free-field Test Site 

uc contribution from the Free-Field Test Site. 

 u u uc c contributions from the measurement c contributions from the free field test site= + =−          dB2 2 _ _ , _ _  

Using an expansion factor (coverage factor) of k = 1,96, the expanded measurement uncertainty is 
±1,96 × uc = ±__,__ dB (see clause D.5.6.2). 

4.2.3 Adjacent channel selectivity 

4.2.3.1 Test fixture 

Tests in a test fixture differ to radiated tests on all other types of site in that there is only one stage to the test. All 
uncertainty contributions for the test can, therefore, be incorporated into one table and these are given in table 18. 

4.2.3.1.1 Uncertainty contributions 

All the uncertainty contributions for the test are listed in table 18. 

Table 18: Contributions from the measurement 

uj or i Description of uncertainty contributions dB 
uj60 Test Fixture: effect on the EUT  

uj61 Test Fixture: climatic facility effect on the EUT  

ui01 random uncertainty  

uj38 signal generator A: absolute output level   

uj38 signal generator B: absolute output level   

uj39 signal generator A: output level stability  

uj39 signal generator B: output level stability  
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The standard uncertainties from table 18 should be given values according to annex A. They should then be combined 
by RSS in accordance with TR 102 273 [2], part 1, sub-part 1, clause 5. This gives the combined standard uncertainty 
(uc contributions from the measurement) for the EUT measurement in dB. 

4.2.3.1.2 Expanded uncertainty 

Tests in a Test Fixture differ to radiated tests on all other types of site in that there is only one stage to the test. 
However, to calculate the measurement uncertainty, the Test Fixture measurement should be considered as stage two of 
a test in which stage one was on an accredited Free-Field Test Site. The combined standard uncertainty, uc, of the 
adjacent channel selectivity measurement is therefore, simply the RSS combination of the value for 
uc contributions from the measurement derived above and the combined uncertainty of the Free-field Test Site 

uc contribution from the Free-Field Test Site. 

 u u uc c contributions from the measurement c contributions from the free field test site= + =−          dB2 2 _ _ , _ _  

Using an expansion factor (coverage factor) of k = 1,96, the expanded measurement uncertainty is 
±1,96 × uc = ±__,__ dB (see clause D.5.6.2). 

4.2.4 Intermodulation immunity 

4.2.4.1 Test fixture 

Tests in a test fixture differ to radiated tests on all other types of site in that there is only one stage to the test. All 
uncertainty contributions for the test can, therefore, be incorporated into one table and these are given in table 19. 

4.2.4.1.1 Uncertainty contributions 

All the uncertainty contributions for the test are listed in table 19. 

Table 19: Contributions from the measurement 

uj or i Description of uncertainty contributions dB 
uj60 Test Fixture: effect on the EUT  

uj61 Test Fixture: climatic facility effect on the EUT  

ui01 random uncertainty  

uj38 signal generator A: absolute output level  

uj39 signal generator A: output level stability   

uj38 signal generator B: absolute output level   

uj39 signal generator B: output level stability  

uj38 signal generator C: absolute output level   

uj39 signal generator C: output level stability  

 

The standard uncertainties from table 19 should be given values according to annex A. They should then be combined 
by RSS in accordance with TR 102 273 [2], part 1, sub-part 1, clause 5. This gives the combined standard uncertainty 
(uc contributions from the measurement) for the EUT measurement in dB. 

4.2.4.1.2 Expanded uncertainty 

Tests in a Test Fixture differ to radiated tests on all other types of site in that there is only one stage to the test. 
However, to calculate the measurement uncertainty, the Test Fixture measurement should be considered as stage two of 
a test in which stage one was on an accredited Free-Field Test Site. The combined standard uncertainty, uc, of the 
intermodulation immunity measurement is therefore, simply the RSS combination of the value for 
uc contributions from the measurement derived above and the combined uncertainty of the Free-field Test Site 

uc contribution from the Free-Field Test Site. 
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 u u uc c contributions from the measurement c contributions from the free field test site= + =−          dB2 2 _ _ , _ _  

Using an expansion factor (coverage factor) of k = 1,96, the expanded measurement uncertainty is 
±1,96 × uc = ±__,__ dB (see clause D.5.6.2). 

4.2.5 Blocking immunity or degradation 

4.2.5.1 Test fixture 

Tests in a test fixture differ to radiated tests on all other types of site in that there is only one stage to the test. All 
uncertainty contributions for the test can, therefore, be incorporated into one table and these are given in table 20. 

4.2.5.1.1 Uncertainty contributions 

All the uncertainty contributions for the test are listed in table 20. 

Table 20: Contributions from the measurement 

uj or i Description of uncertainty contributions dB 
uj60 Test Fixture: climatic facility effect on the EUT  

uj61 Test Fixture: effect on the EUT  

ui01 random uncertainty  

uj38 signal generator A: absolute output level   

uj38 signal generator B: absolute output level   

uj39 signal generator A: output level stability  

uj39 signal generator B: output level stability  

 

The standard uncertainties from table 20 should be given values according to annex A. They should then be combined 
by RSS in accordance with TR 102 273 [2], part 1, sub-part 1, clause 5. This gives the combined standard uncertainty 
(uc contributions from the measurement) for the EUT measurement in dB. 

4.2.5.1.2 Expanded uncertainty 

Tests in a Test Fixture differ to radiated tests on all other types of site in that there is only one stage to the test. 
However, to calculate the measurement uncertainty, the Test Fixture measurement should be considered as stage two of 
a test in which stage one was on an accredited Free-Field Test Site. The combined standard uncertainty, uc, of the 

blocking immunity (or desensitization) measurement is therefore, simply the RSS combination of the value for 
uc contributions from the measurement derived above and the combined uncertainty of the Free-field Test Site 

uc contribution from the Free-Field Test Site. 

 u u uc c contributions from the measurement c contributions from the free field test site= + =−          dB2 2 _ _ , _ _  

Using an expansion factor (coverage factor) of k = 1,96, the expanded measurement uncertainty is 
±1,96 × uc = ±__,__ dB (see clause D.5.6.2). 

4.2.6 Spurious response immunity to radiated fields 

4.2.6.1 Anechoic chamber 

4.2.6.1.1 Uncertainty contributions: Stage 1: Transform Factor 

If the first stage involved measuring the Transform Factor (as shown in figure 29) i.e. the relationship between the 
output level of the signal generator (dBm) and the resulting field strength (dBµV/m) in the vicinity of the turntable, then 
the shaded areas in figure 29 represent components common to both stages of the test. 
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Figure 29: Stage 1: Transform Factor 

All the uncertainty components which contribute to this stage of the test are listed in table 21. Annex A should be 
consulted for the sources and/or magnitudes of the uncertainty contributions. 

Table 21: Contributions for the Transform Factor 

uj or i Description of uncertainty contributions dB 
uj36 mismatch: transmitting part  

uj37 mismatch: receiving part  

uj38 signal generator: absolute output level  

uj39 signal generator: output level stability  

uj19 cable factor: measuring antenna cable  

uj19 cable factor: test antenna cable  

uj41 insertion loss: measuring antenna cable  

uj41 insertion loss: test antenna cable 0,00 

uj40 insertion loss: measuring antenna attenuator  

uj40 insertion loss: test antenna attenuator 0,00 

uj47 receiving device: absolute level  

uj16 range length 0,00 

uj02 reflectivity of absorber material: measuring antenna to the test antenna 0,00 

uj44 antenna: antenna factor of the measuring antenna  

uj45 antenna: gain of the test antenna 0,00 

uj46 antenna: tuning of the measuring antenna  

uj46 antenna: tuning of the test antenna 0,00 

uj22 position of the phase centre: measuring antenna  

uj06 mutual coupling: measuring antenna to its images in the absorbing material  

uj06 mutual coupling: test antenna to its images in the absorbing material 0,00 

uj11 mutual coupling: measuring antenna to the test antenna 0,00 

uj12 mutual coupling: interpolation of mutual coupling and mismatch loss correction factors 0,00 

ui01 random uncertainty  

 

Alternatively, if the 3-axis probe was used, then figure 30 illustrates the test equipment set-up and table 89 lists the 
uncertainty components that contribute. 
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Figure 30: Stage 1: 3-axis probe 

Table 22: Contributions for the 3-axis probe 

uj or I Description of uncertainty contributions dB 
uj36 mismatch: transmitting part 0,00 

uj38 signal generator: absolute output level 0,00 

uj39 signal generator: output level stability  

uj19 cable factor: test antenna cable  

uj41 insertion loss: test antenna cable 0,00 

uj40 insertion loss: test antenna attenuator 0,00 

uj16 range length  

uj45 antenna: gain of the test antenna 0,00 

uj46 antenna: tuning of the test antenna 0,00 

uj06 mutual coupling: test antenna to its images in the absorbing material 0,00 

uj12 mutual coupling: interpolation of mutual coupling and mismatch loss correction factors 0,00 

uj28 field strength measurement as determined by the 3-axis probe  

ui01 random uncertainty  

 

The standard uncertainties from table 21 or table 22 should be combined by RSS in accordance with TR 102 273 [2], 
part 1, sub-part 1, clause 5. This gives the combined standard uncertainty (uc contributions from the Transform Factor) for the 
Transform Factor in dB. 

4.2.6.1.2 Uncertainty contributions: Stage 2: EUT measurement 

In this stage, the wanted signal is set to the level specified in the standard using either the Transform Factor of the 
3-axis probe. The unwanted signal is then switched on and the level adjusted until the level of the unwanted signal, as 
measured on the 3-axis probe, is at the wanted signal level plus the spurious response rejection ratio required. The 
schematic of the equipment set-up is shown in figure 31. 

All the uncertainty components that contribute to this stage of the test are listed in table 23. Annex A should be 
consulted for the sources and/or magnitudes of the uncertainty contributions. 
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Figure 31: Stage 2: EUT measurement 

Table 23: Contributions from the EUT measurement 

uj or I Description of uncertainty contributions dB 
uj20 position of the phase centre: within the EUT volume  

uj52 EUT: modulation detection  

uj28 field strength measurement as determined by the 3-axis probe (unwanted signal 
measurement) 

 

ui01 random uncertainty  

 

The standard uncertainties from table 23 should be combined by RSS in accordance with TR 102 273 [2], part 1, 
sub-part 1, clause 5. This gives the combined standard uncertainty (uc contribution from the EUT measurement) for the EUT 
measurement in dB. 

4.2.6.1.3 Expanded uncertainty 

The combined uncertainty of the spurious response immunity measurement is the combination of the components 
outlined in clauses 4.2.6.1.1 and 4.2.6.1.2. The components to be combined are uc contribution from the Transform Factor and 

uc contribution from the EUT measurement. 

 u u uc c contribution fromthe Transform Factor c contribution fromthe EUT measurement= +2 2 =  _ _ ,_ _  dB  

Using an expansion factor (coverage factor) of k = 1,96, the expanded measurement uncertainty is 
±1,96 × uc = ±__,__ dB (see clause D.5.6.2). 
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Annex A: 
Uncertainty contributions 
This annex contains a list of the uncertainties identified as being involved in radiated tests and gives details on how 
their magnitudes should be derived. Numerical and alphabetical lists of the uncertainties are given in tables A.20 and 
A.21. 

A radiated test, whether a verification procedure or the measurement of a particular parameter, consists of two stages. 
For a verification procedure the first stage is to set a reference level followed by the second stage which involves a 
measurement of the path loss between two antennas. For EUT testing, the first stage is to measure the EUT followed by 
the second stage which involves comparing the result to a known standard or reference. As a result of this methodology 
there are measurement uncertainty contributions that are common to both stages of any test, some of which cancel 
themselves out, others are included once whilst yet others have to be included twice. 

NOTE: For the measurement of some EUT receiver parameters the stages are reversed. 

Converting data: In the evaluation of any particular contribution it may be necessary to convert given data (e.g. from a 
manufacturer's information) into standard uncertainty. The following will aid any conversions that may be necessary. 

Mismatch uncertainties have 'U' shaped distributions. If the limits are ±a the standard uncertainty is: a/√2. 

Systematic uncertainties e.g. the uncertainty associated with cable loss are, unless the actual distribution is known, 
assumed to have rectangular distributions. If the limits are ±a the standard uncertainty is: a/√3. 

The rectangular distribution is a reasonable default model to choose in the absence of any other information. 

For conversion of % to dB, table A.1 should be used (for more information on the derivation of the table see 
TR 102 273 [2], part 1, sub-part 1, clause 5). 

Table A.1: Standard uncertainty conversion factors 

Converting from standard 
uncertainties in …: 

Conversion factor 
multiply by: 

To standard  
uncertainties in …: 

dB 11,5 voltage % 
dB 23,0 power % 

power % 0,0435 dB 
power % 0,5 voltage % 
voltage % 2,0 power % 
voltage % 0,0869 dB 

 

Terminology: In this annex the following phases should be interpreted as follows: 

- "Free Field Test Sites": are Anechoic Chambers, Anechoic Chambers with ground planes and Open Area Test 
Sites; 

- "Stripline": refers to the CENELEC EN 55020 [4] design of two plate open Stripline; 

- "Verification": refers to the measurement in which the test site is compared to its theoretical model; 

- "Test methods": refers to all radiated tests apart from the verification procedure; 

- "Transmitting" and "receiving" antennas: are used in the verification procedure only; all other references to 
antennas (i.e. substitution, measuring and test) are for test methods. 

REFLECTIVITY 

Background: The absorber panels in Anechoic Chambers (both with and without ground planes) reflect signal levels 
which can interfere with the required field distribution. 
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uj01 Reflectivity of absorbing material: EUT to the test antenna 

 This uncertainty only contributes to test methods on Free Field Test Sites that incorporate anechoic materials. It 
is the estimated uncertainty due to reflections from the absorbing material. 

How to evaluate for Free Field Test Sites 

•  Verification: Not applicable. 

•  Test methods: If the test is part of a substitution measurement the standard uncertainty is 0,00 dB, otherwise the 
value from table A.2 should be used. 

Table A.2: Uncertainty contribution: Reflectivity of absorbing material: 
EUT to the test antenna 

Reflectivity of the 
absorbing material 

Standard uncertainty of the 
contribution 

reflectivity <10 dB 4,76 dB 
10 dB ≤ reflectivity < 15 dB 3,92 dB 
15 dB ≤ reflectivity < 20 dB 2,56 dB 
20 dB ≤ reflectivity < 30 dB 1,24 dB 

reflectivity ≥ 30 dB 0,74 dB 
 

How to evaluate for Striplines 

• Verification: Not applicable. 

• Test methods: Not applicable. 

uj02 Reflectivity of absorbing material: substitution or measuring antenna to the test antenna 

 This uncertainty only contributes to test methods on Free Field Test Sites that incorporate anechoic materials. It 
is the estimated uncertainty due to reflections from the absorbing material. 

How to evaluate for Free Field Test Sites 

•  Verification: Not applicable. 

•  Test methods: In a substitution type measurement the reflectivity of the absorber material tends to be nullified 
by the substitution methodology. However, there will always be some differences in the radiation patterns of the 
EUT and the substitution or measuring antenna and hence the standard uncertainty to allow for this should be 
taken as 0,50 dB. 

How to evaluate for Striplines 

•  Verification: Not applicable. 

•  Test methods: Not applicable. 

uj03 Reflectivity of absorbing material: transmitting antenna to the receiving antenna 

 This uncertainty only contributes to the verification procedures on Free Field Test Sites that incorporate anechoic 
materials. It is the estimated uncertainty due to reflections from the absorbing material. 

How to evaluate for Free Field Test Sites 

•  Verification: The relevant value for this contribution should be taken from table A.3. 
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Table A.3: Uncertainty contribution: Reflectivity of absorbing material: 
transmitting antenna to the receiving antenna 

Reflectivity of the 
absorbing material 

Standard uncertainty of the 
contribution 

reflectivity <10 dB 4,76 dB 
10 dB ≤ reflectivity < 15 dB 3,92 dB 
15 dB ≤ reflectivity < 20 dB 2,56 dB 
20 dB ≤ reflectivity < 30 dB 1,24 dB 

reflectivity ≥ 30 dB 0,74 dB 
 

•  Test methods: Not applicable. 

How to evaluate for Striplines 

•  Verification: Not applicable. 

•  Test methods: Not applicable. 

MUTUAL COUPLING 

Background: Mutual coupling is the mechanism which produces changes in the electrical behaviour of an EUT or 
antenna when placed close to a conducting surface, another antenna, etc. These mechanisms are illustrated in figure 
A.1. The effects can include de-tuning, gain variations, changes to the radiation pattern and input impedance, etc. 

EUT

Images

  Images

Transmitting
dipole

 

Figure A.1: Mutual coupling (Anechoic Chamber illustrated) 

uj04 Mutual coupling: EUT to its images in the absorbing material 

 This uncertainty contributes to test methods and verification procedures on Free Field Test Sites that incorporate 
anechoic material. It is the uncertainty which results from the degree of imaging in the absorber/shield of the 
chamber and the resulting effect on the input impedance and/or gain of the integral antenna. 

How to evaluate for Free Field Test Sites 

•  Verification: Not applicable. 

•  Test methods: The standard uncertainty is 0,50 dB. 
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How to evaluate for Striplines 

•  Verification: Not applicable. 

•  Test methods: Not applicable. 

uj05 Mutual coupling: de-tuning effect of the absorbing material on the EUT 

 This uncertainty only contributes to the test methods on Free Field Test Sites that incorporate anechoic materials. 
It is the uncertainty of any de-tuning effect due to the return loss of the absorbers. 

How to evaluate for Free Field Test Sites 

•  Verification: Not applicable. 

•  Test methods: This value will be 0,00 Hz provided the absorbing panels are more than 1 metre away from the 
EUT and the return loss of the panels is above 6 dB (testing should not take place for spacings of less than 
1 metre). For return losses below 6 dB, the value should be taken as 5 Hz standard uncertainty. 

How to evaluate for Striplines 

•  Verification: Not applicable. 

•  Test methods: Not applicable. 

uj06 Mutual coupling: substitution, measuring or test antenna to its images in the absorbing material 

 This uncertainty only contributes to test methods on Free Field Test Sites that incorporate anechoic material. It is 
the uncertainty which results from the degree of imaging in the absorber/shield of the chamber and the resulting 
effect on the antenna's input impedance and/or gain. 

How to evaluate for Free Field Test Sites 

•  Verification: Not applicable. 

•  Test methods: 

- for the test antenna only, if it is at the same height for both stages one and two of the test method, then for 
any absorber depth the uncertainty is 0,00 dB, otherwise the standard uncertainty is 0,50 dB; 

- for substitution or measuring antennas the standard uncertainty is 0,50 dB. 

How to evaluate for Striplines 

•  Verification: Not applicable. 

•  Test methods: Not applicable. 

uj07 Mutual coupling: transmitting or receiving antenna to its images in the absorbing material 

 This uncertainty only contributes to verification procedures on Free Field Test Sites that incorporate anechoic 
material. It is the uncertainty which results from the degree of imaging in the absorber/shield of the chamber and 
the resulting effect on the antenna's input impedance and/or gain. 

How to evaluate for Free Field Test Sites 

•  Verification: 

- for the transmitting antenna the standard uncertainty is 0,50 dB; 

- for the receiving antenna the standard uncertainty is 0,50 dB. 

•  Test methods: Not applicable. 
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How to evaluate for Striplines 

•  Verification: Not applicable. 

•  Test methods: Not applicable. 

uj08 Mutual coupling: amplitude effect of the test antenna on the EUT 

 This uncertainty only contributes to test methods on Free Field Test Sites. It is the uncertainty which results from 
the interaction (impedance changes, etc.) between the EUT and the test antenna when placed close together. 

How to evaluate for Free Field Test Sites 

•  Verification: Not applicable. 

•  Test methods: This is the uncertainty which results from the interaction (impedance changes, etc.) between the 
EUT and the test antenna when placed close together. The standard uncertainty should be taken from table A.4. 

Table A.4: Uncertainty contribution: Mutual coupling: amplitude effect 
of the test antenna on the EUT 

Range length Standard uncertainty of the 
contribution 

0,62√((d1 + d2)
3/λ) ≤ range length < 2(d1 + d2)

2/λ 0,50 dB 
range length ≥ 2(d1 + d2)

2/λ 0,00 dB 
NOTE: d1 and d2 are the maximum dimensions of the EUT and the test antenna. 

 

How to evaluate for Striplines 

•  Verification: Not applicable. 

•  Test methods: Not applicable. 

uj09 Mutual coupling: de-tuning effect of the test antenna on the EUT 

 This uncertainty only contributes to test methods on Free Field Test Sites that incorporate anechoic materials. It 
is the uncertainty of any de-tuning effect due to mutual coupling between the EUT and the test antenna. 

How to evaluate for Free Field Test Sites 

•  Verification: Not applicable. 

•  Test methods: This value will be 0,00 Hz provided the spacing between the test antenna and EUT is greater than 
(d1 + d2)2/4λ. For lesser spacing, the value should be taken as 5 Hz standard uncertainty. 

NOTE 1: d1 and d2 are the maximum dimensions of the EUT and the test antenna. 

How to evaluate for Striplines 

•  Verification: Not applicable. 

•  Test methods: Not applicable. 

uj10 Mutual coupling: transmitting antenna to receiving antenna 

 This uncertainty only contributes to verification procedures on Free Field Test Sites. It is the uncertainty which 
results from the change in coupled signal level between the transmitting and receiving antenna when placed 
close together. 
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How to evaluate for Free Field Test Sites 

•  Verification: For ANSI dipoles the value of this uncertainty is 0,00 dB since it is included, where significant, in 
the mutual coupling and mismatch loss correction factors. For non-ANSI dipoles the standard uncertainty can be 
taken from table A.5. 

Table A.5: Uncertainty contribution: Mutual coupling: transmitting antenna 
to receiving antenna 

Frequency Standard uncertainty 
of the contribution 

(3 m range) 

Standard uncertainty 
of the contribution 

(10 m range) 
30 MHz ≤ frequency < 80 MHz 1,73 dB 0,60 dB 

80 MHz ≤ frequency < 180 MHz 0,6 dB 0,00 dB 
frequency ≥ 180 MHz 0,00 dB 0,00 dB 

 

•  Test methods: Not applicable. 

How to evaluate for Striplines 

•  Verification: Not applicable. 

•  Test methods: Not applicable. 

uj11 Mutual coupling: substitution or measuring antenna to the test antenna 

 This uncertainty only contributes to test methods on Free Field Test Sites. It is the uncertainty which results from 
the change in coupled signal level between the substitution or measuring and test antenna when placed close 
together. 

How to evaluate for Free Field Test Sites 

•  Verification: Not applicable. 

•  Test methods: For ANSI dipoles the value of this uncertainty is 0,00 dB since it is included, where significant, 
in the mutual coupling and mismatch loss correction factors. For non-ANSI dipoles the standard uncertainty can 
be taken from table A.6. 

Table A.6: Uncertainty contribution: Mutual coupling: 
substitution or measuring antenna to the test antenna 

Frequency Standard uncertainty 
of the contribution 

(3 m range) 

Standard uncertainty 
of the contribution 

(10 m range) 
30 MHz ≤ frequency < 80 MHz 1,73 dB 0,60 dB 

80 MHz ≤ frequency < 180 MHz 0,6 dB 0,00 dB 
frequency ≥ 180 MHz 0,00 dB 0,00 dB 

 

How to evaluate for Striplines 

•  Verification: Not applicable. 

•  Test methods: Not applicable. 

uj12 Mutual coupling: interpolation of mutual coupling and mismatch loss correction  factors 

 This uncertainty contributes to test methods and verification procedures on Free Field Test Sites. It is the 
uncertainty which results from the interpolation between two values in the mutual coupling and mismatch loss 
correction factor table (given in the relevant test methods and verification procedures). 
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How to evaluate for Free Field Test Sites 

•  Verification: The standard uncertainty can be obtained from table A.7. 

Table A.7: Uncertainty contribution: Mutual coupling: 
interpolation of mutual coupling and mismatch loss correction factors 

Frequency (MHz) Standard uncertainty of 
the contribution 

for a spot frequency given in the table 0,00 dB 
30 MHz ≤ frequency < 80 MHz 0,58 dB 

80 MHz ≤ frequency < 180 MHz 0,17 dB 
frequency ≥ 180 MHz 0,00 dB 

 

•  Test methods: The standard uncertainty can be obtained from table A.7. 

How to evaluate for Striplines 

•  Verification: Not applicable. 

•  Test methods: Not applicable. 

uj13 Mutual coupling: EUT to its image in the ground plane 

 This uncertainty contributes to test methods on Free Field Test Sites that incorporate a ground plane. It is the 
uncertainty which results from the change in gain and/or sensitivity of an EUT when placed close to a ground 
plane. 

How to evaluate for Free Field Test Sites 

•  Verification: Not applicable. 

•  Test methods: The standard uncertainty can be obtained from table A.8. 

Table A.8: Uncertainty contribution: Mutual coupling: 
EUT to its image in the ground plane 

Spacing between the EUT 
and the ground plane 

Standard uncertainty 
of the contribution 

For a vertically polarized EUT 
spacing ≤ 1,25 λ 0,15 dB 
spacing > 1,25 λ 0,06 dB 

For a horizontally polarized EUT 
spacing < λ/2 1,15 dB 

λ/2 ≤ spacing < 3λ/2 0,58 dB 
3λ/2 ≤ spacing < 3λ 0,29 dB 

spacing ≥ 3λ 0,15 dB 
 

How to evaluate for Striplines 

•  Verification: Not applicable. 

•  Test methods: Not applicable. 

uj14 Mutual coupling: substitution, measuring or test antenna to its image in the ground plane 

 This uncertainty only contributes to test methods on Free Field Test Sites that incorporate a ground plane. It is 
the uncertainty which results from the change in input impedance and/or gain of the substitution, measuring or 
test antenna when placed close to a ground plane. 
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How to evaluate for Free Field Test Sites 

•  Verification: Not applicable. 

•  Test methods: The standard uncertainty can be obtained from table A.9. 

Table A.9: Uncertainty contribution: Mutual coupling: substitution, 
measuring or test antenna to its image in the ground plane 

Spacing between the antenna 
and the ground plane 

Standard uncertainty 
of the contribution 

For a vertically polarized antenna 
spacing ≤ 1,25 λ 0,15 dB 
spacing > 1,25 λ 0,06 dB 

For a horizontally polarized antenna 
spacing < λ/2 1,15 dB 

λ/2 ≤ spacing < 3λ/2 0,58 dB 
3λ/2 ≤ spacing < 3λ 0,29 dB 

spacing ≥ 3λ 0,15 dB 
 

How to evaluate for Striplines 

•  Verification: Not applicable. 

•  Test methods: Not applicable. 

uj15 Mutual coupling: transmitting or receiving antenna to its image in the ground  plane 

 This uncertainty only contributes to verification procedures on Free Field Test Sites that incorporate a ground 
plane. It is the uncertainty which results from the change in gain of the transmitting or receiving antenna when 
placed close to a ground plane. 

How to evaluate for Free Field Test Sites 

•  Verification: For ANSI dipoles the value of this uncertainty is 0,00 dB as it is included, where significant, in the 
mutual coupling and mismatch loss correction factors. For other dipoles the value can be obtained from 
table A.10. 

Table A.10: Uncertainty contribution: Mutual coupling: transmitting 
or receiving antenna to its image in the ground plane 

Spacing between the antenna 
and the ground plane 

Standard uncertainty 
of the contribution 

For a vertically polarized antenna 
spacing ≤ 1,25 λ 0,15 dB 
spacing > 1,25 λ 0,06 dB 

For a horizontally polarized antenna 
spacing < λ/2 1,15 dB 

λ/2 ≤ spacing < 3λ/2 0,58 dB 
3λ/2 ≤ spacing < 3λ 0,29 dB 

spacing ≥ 3λ 0,15 dB 
 

•  Test methods: Not applicable. 

How to evaluate for Striplines 

•  Verification: Not applicable. 

•  Test methods: Not applicable. 
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RANGE LENGTH 

Background: The range length over which any radiated test is carried out should always be adequate to enable far field 
testing. It may also be specified in the relevant deliverable 

NOTE 2: Range length is defined as the horizontal distance between the phase centres of the EUT and the test 
antenna. 

Over a reflective ground plane where a height scan is involved to peak the received signal the distance over which a 
measurement is performed is not always equal to the range length. Figure A.2 illustrates the difference between range 
length and measurement distance. 

EUT

Range length

Measurement distance

 

Figure A.2: Range length and measurement distance 

It is important to distinguish clearly between these two terms. 

uj16 Range length 

 This uncertainty contributes to test methods and verification procedures on Free Field Test Sites. It is the 
uncertainty associated with the curvature of the phase front resulting from inadequate range length between an 
EUT and antenna or, alternatively, between two antennas i.e. it should always be equal to or greater than 
2(d1 + d2)2/λ. 

NOTE 3: d1 and d2 are the maximum dimensions of the antennas. 

How to evaluate for Free Field Test Sites 

•  Verification: If ANSI dipoles are used the value is 0,00 dB, since it is included in the mutual coupling and 
mismatch loss correction factors, otherwise the value should be taken from table A.11. 

Table A.11: Uncertainty contribution: Range length (verification) 

Range length (i.e. the horizontal distance 
between phase centres) 

Standard uncertainty of 
the contribution 

(d1 + d2)
2/4λ ≤ range length < (d1 + d2)

2/2λ 1,26 dB 
(d1 + d2)

2/2λ ≤ range length < (d1 + d2)
2/λ 0,30 dB 

(d1 + d2)
2/λ ≤ range length < 2(d1 + d2)

2/λ 0,10 dB 
range length ≥ 2(d1 + d2)

2/λ 0,00 dB 
NOTE: d1 and d2 are the maximum dimensions of the antennas. 

 

Test methods 

•  For the EUT to test antenna stage the value should be taken from table A.12. For the substitution or measuring 
antenna to the test antenna stage: If ANSI dipoles are used the value is 0,00 dB, since it is included in the mutual 
coupling and mismatch loss correction factors, otherwise the value should be taken from table A.12. 
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Table A.12: Uncertainty contribution: Range length (test methods) 

Range length (i.e. the horizontal distance 
between phase centres) 

Standard uncertainty of 
the contribution 

(d1 + d2)
2/4λ ≤ range length < (d1 + d2)

2/2λ 1,26 dB 
(d1 + d2)

2/2λ ≤ range length < (d1 + d2)
2/λ 0,30 dB 

(d1 + d2)
2/λ ≤ range length < 2(d1 + d2)

2/λ 0,10 dB 
range length ≥ 2(d1 + d2)

2/λ 0,00 dB 
NOTE: d1 and d2 are the maximum dimensions of the EUT and the test 

antenna used in one stage and are the maximum dimensions of the 
two antennas in the other stage. 

 

How to evaluate for Striplines 

•  Verification: Not applicable. 

•  Test methods: Not applicable. 

CORRECTIONS 

Background: In radiated tests the height of the test antenna is optimized in each stage of the test, often the heights for 
the two stages are different. This leads to different measuring distances and elevation angles and corrections should be 
applied to take account of these effects. 

uj17 Correction: off boresight angle in elevation plane 

 This uncertainty only contributes to test methods on Free Field Test Sites that incorporate a ground plane. Where 
the height of the antenna on the mast differs between the two stages of a particular measurement, two different 
elevation angles are subtended between the turntable and the test antenna. A correction factor should be applied 
to compensate. Its magnitude should be calculated using figure A.7 according to the guidance given in the test 
method. This uncertainty contribution is the estimate of the accuracy of the calculated correction factor and it 
only applies when the test antenna has a directional radiation pattern in the elevation plane see figure A.3. 

NOTE 4: Figure A.7 applies to vertically polarized dipoles and bicones and to both polarizations of LPDAs. For 
horns, or any other type of antenna, figure A.7 is inappropriate and the test engineer should provide 
specific corrections. 

Boresight

0 dB

-3 dB

Antenna
radiation
pattern

Off boresight
angle typ. 390

 

Figure A.3: Off boresight correction 
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How to evaluate for Free Field Test Sites 

•  Verification: Not applicable. 

•  Test methods: 

For any antenna: 

- where the optimized height of the antenna on the mast is the same in the two stages of the test, this value 
is 0,00 dB; 

- for vertically polarized dipoles and bicones where the optimized height of the antenna on the mast is 
different in the two stages of the test, the standard uncertainty of the value is 0,10 dB; 

- for horizontally or vertically polarized LPDAs where the optimized height of the antenna on the mast is 
different in the two stages of the test, the standard uncertainty of the value is 0,50 dB; 

- for any other antenna, after application of a correction specific to that antenna, where the optimized 
height of the antenna on the mast is different in the two stages of the test, the standard uncertainty of the 
value is 0,50 dB. 

How to evaluate for Striplines 

•  Verification: Not applicable. 

•  Test methods: Not applicable. 

uj18 Correction: measurement distance 

 This uncertainty only contributes to test methods on Free Field Test Sites that incorporate a ground plane. Where 
the height of the antenna on the mast differs between the two stages of a particular measurement, two different 
path losses result from the different measurement distances involved. A correction factor (see figure A.8) should 
be applied to compensate. Its magnitude should be calculated according to the guidance given in the test method. 
This uncertainty contribution is the estimate of the accuracy of the calculated correction factor. 

How to evaluate for Free Field Test Sites 

•  Verification: Not applicable. 

•  Test methods: 

- where the optimized height of the antenna on the mast is the same in the two stages of the test, this value is 
0,00 dB; 

- where the optimized height of the antenna on the mast is different in the two stages of the test, the standard 
uncertainty of the value is 0,10 dB. 

How to evaluate for Striplines 

•  Verification: Not applicable. 

•  Test methods: Not applicable. 

RADIO FREQUENCY CABLES 

Background: There are radiating mechanisms by which RF cables can introduce uncertainties into radiated 
measurements: 

- leakage; 

- acting as a parasitic element to an antenna; 

- introducing common mode current. 
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Leakage allows electromagnetic coupling into the cables. Because the electromagnetic wave contains both electric and 
magnetic fields, mixed coupling occurs and the voltage induced is very dependant on the orientation, with respect to the 
cable, of the electric and magnetic fields. This coupling can have different effects depending on the length of the cable 
and where it is in the system. Cables are usually the longest part of the test equipment configuration and as such, 
leakage can make them act as efficient receiving or transmitting antennas that, as a result, will contribute significantly 
to the uncertainty of the measurement. 

The parasitic effect of the cable can potentially be the most significant of the three effects and can cause major changes 
to the antenna's radiation pattern, gain and input impedance. The common mode current problem has similar effects on 
an antenna's performance. 

All three effects can be largely eliminated by routing and loading the cables with ferrite beads as detailed in the test 
methods. An RF cable for which no precautions have been taken to prevent these effects can, simply by being 
repositioned, cause different results to be obtained. 

uj19 Cable factor 

 This uncertainty contributes to test methods and verification procedures. Cable factor is defined as the total 
effect of the RF cable's influence on the measuring system. 

How to evaluate for Free Field Test Sites 

•  Verification: In the direct attenuation stage of the procedure (a conducted measurement) all fields are enclosed 
and hence the contribution is assumed to be zero. However in the radiated attenuation stage, the standard 
uncertainty for each cable is 0,5 dB provided the precautions detailed in the procedure have been observed. If the 
precautions have not been observed the contributions have a standard uncertainty of 4,0 dB (justification for 
these values is given in annex E); 

•  Test methods: The standard uncertainty for each cable is 0,5 dB provided the precautions detailed in the method 
have been observed. If the precautions have not been observed the contributions have a standard uncertainty of 
4,0 dB (justification for these values is given in annex E). 

 Exceptionally, where a cable and antenna combination has not been repositioned between the two stages (as in 
the case of the test antenna in an Anechoic Chamber) and the precautions detailed in the procedure have been 
observed, the contribution is assumed to be 0,00 dB. If the combination has not been repositioned but the 
precautions have not been observed the contribution is 0,5 dB. 

NOTE 5: Repositioning means any change in the positions of either the cable or the antenna in stage two of the 
measurement relative to stage one e.g. height optimization over a ground plane. 

How to evaluate for Striplines 

•  Verification: In the direct attenuation stage of the procedure (a conducted measurement) all fields are enclosed 
and hence the contribution is assumed to be zero. However in the radiated attenuation stage the standard 
uncertainty for each cable is 0,5 dB provided the precautions detailed in the procedure have been observed. If the 
precautions have not been observed the contributions have a standard uncertainty of 4,0 dB (justification for 
these values is given in annex E). 

•  Test methods: The standard uncertainty for each cable is 0,5 dB provided that the precautions detailed in the 
method have been observed. If the precautions have not been observed the contribution has a standard 
uncertainty of 4,0 dB (justification for these values is given in annex E). 

PHASE CENTRE POSITIONING 

Background: The phase centre of an EUT or antenna is the point from which the device is considered to radiate. If the 
device is rotated about this point the phase of the signal, as seen by a fixed antenna, does not change. It is therefore 
critical to (a) Identify the phase centre of an EUT or antenna and (b) to position it correctly on the test site. 

uj20 Position of the phase centre: within the EUT volume 

 This uncertainty only contributes to test methods. It is the accuracy with which the phase centre is identified 
within the EUT. 
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How to evaluate for Free Field Test Sites 

•  Verification: Not applicable. 

•  Test methods: Only applicable in the stage in which the EUT is measured. If the precise phase centre is 
unknown, the uncertainty contribution should be calculated from: 

 %100×±
lengthrangethetwice

devicetheofimensiondximumthe ma
 

 As the phase centre can be anywhere inside the EUT this uncertainty is assumed to be rectangularly distributed 
(see TR 102 273 [2], part 1, sub-part 1, clause 5.1.2). The standard uncertainty can therefore be calculated and 
converted to the logarithmic form (see TR 102 273 [2], part 1, sub-part 1, clause 5). 

How to evaluate for Striplines 

•  Verification: Not applicable. 

•  Test methods: Not applicable. 

uj21 Positioning of the phase centre: within the EUT over the axis of rotation of the turntable 

 This uncertainty only contributes to test methods. It is the accuracy with which the identified phase centre of the 
EUT is aligned with the axis of rotation of the turntable. 

How to evaluate for Free Field Test Sites 

•  Verification: Not applicable. 

•  Test methods: Only applicable in the stage in which the EUT is measured. The maximum value should be 
calculated from: 

 %100×±
lengthrange

tationaxis of ro from the ted offsetthe estima
 

 As this error source can be anywhere between these limits this uncertainty is assumed to be rectangularly 
distributed (see TR 102 273 [2], part 1, sub-part 1, clause 5.1.2). The standard uncertainty can therefore be 
calculated and converted to the logarithmic form (see TR 102 273 [2], part 1, sub-part 1, clause 5). 

How to evaluate for Striplines 

•  Verification: Not applicable. 

•  Test methods: Not applicable. 

uj22 Position of the phase centre: measuring, substitution, receiving, transmitting or test antenna 

 This uncertainty contributes to test methods and verification procedures on Free Field Test Sites. It is the 
uncertainty with which the phase centre can be positioned. 

How to evaluate for Free Field Test Sites 

•  Verification: 

- for the transmitting antenna the maximum value should be calculated from: 

 %100×±
lengthrange

tationaxis of ro from the ted offsetthe estima
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- for the receiving antenna in an Anechoic Chamber the maximum value should be calculated from: 

 %100×±
lengthrange

setbecanlengthrangethewhichwithtyuncertainthe
 

- for the receiving antenna over a ground plane the maximum value should be calculated from: 

 %100×±
lengthrange

astp of the m of the tom verticalection fromated deflximum estithe ma
 

 As this error source can be anywhere between these limits this uncertainty is assumed to be rectangularly 
distributed (see TR 102 273 [2], part 1, sub-part 1, clause 5.1.2). The standard uncertainty can therefore be 
calculated and converted to the logarithmic form (see TR 102 273 [2], part 1, sub-part 1, clause 5). 

•  Test methods: 

- for the measuring and substitution antennas the maximum value should be calculated from: 

 %100×±
lengthrange

tationaxis of ro from the ted offsetthe estima
 

- for the test antenna in an Anechoic Chamber the maximum value should be calculated from:  

 %100×±
lengthrange

setbecanlengthrangethewhichwithtyuncertainthe
 

- for the test antenna over a ground plane the maximum value should be calculated from: 

 %100×±
lengthrange

astp of the m of the tom verticalection fromated deflximum estithe ma
 

 As this error source can be anywhere between these limits this uncertainty is assumed to be rectangularly 
distributed (see TR 102 273 [2], part 1, sub-part 1, clause 5.1.2). The standard uncertainty can therefore be 
calculated and converted to the logarithmic form (see TR 102 273 [2], part 1, sub-part 1, clause 5). 

How to evaluate for Striplines 

•  Verification: Not applicable. 

•  Test methods: Not applicable. 

uj23 Position of the phase centre: LPDA 

 This uncertainty contributes to test methods and verification procedures on Free Field Test Sites. It is the 
uncertainty associated with the changing position of the phase centre with frequency of the LPDA. 

How to evaluate for Free Field Test Sites 

•  Verification: The maximum value should be calculated from: 

 %100×±
lengthrangethetwice

devicetheofimensiondximumthe ma
 

 As this error source can be anywhere between these limits this uncertainty is assumed to be rectangularly 
distributed (see TR 102 273 [2], part 1, sub-part 1, clause 5.1.2). The standard uncertainty can therefore be 
calculated and converted to the logarithmic form (see TR 102 273 [2], part 1, sub-part 1, clause 5). 
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•  Test methods: For the test antenna the contribution is 0,00 dB. For the substitution or measuring LPDA the 
maximum value should be calculated from: 

 %100×±
lengthrangethetwice

LPDAtheofthe length
 

 As this error source can be anywhere between these limits this uncertainty is assumed to be rectangularly 
distributed (see TR 102 273 [2], part 1, sub-part 1, clause 5.1.2). The standard uncertainty can therefore be 
calculated and converted to the logarithmic form (see TR 102 273 [2], part 1, sub-part 1, clause 5). 

How to evaluate for Striplines 

•  Verification: Not applicable. 

•  Test methods: Not applicable. 

STRIPLINE 

Background: The Stripline is an alternative test site to a Free Field Test Site. It is essentially a large open transmission 
line comprising two flat metal plates between which a TEM wave is generated. The resulting field is assumed to exhibit 
a planar distribution of amplitude and phase. 

uj24 Stripline: mutual coupling of the EUT to its images in the plates 

 This uncertainty only contributes to Stripline test methods. It is the uncertainty which results from the imaging of 
the EUT in the plates of the Stripline. 

How to evaluate for Free Field Test Sites 

•  Verification: Not applicable. 

•  Test methods: Not applicable. 

How to evaluate for Striplines 

•  Verification: Not applicable. 

•  Test methods: The magnitude is dependent on the size of the EUT (which is assumed to be placed midway 
between the plates). The value of the uncertainty contribution can be obtained from table A.13. 

Table A.13: Uncertainty contribution: Stripline: mutual coupling 
of the EUT to its images in the plates 

Size of the EUT relative to the plate 
separation 

Standard uncertainty of the 
contribution 

size/separation < 33 % 1,15 dB 
33 % ≤ size/separation < 50 % 1,73 dB 
50 % ≤ size/separation < 70 % 2,89 dB 

70 % ≤ size/separation ≤ 87,5 % (max.) 5,77 dB 
 

uj25 Stripline: mutual coupling of the 3-axis probe to its image in the plates 

 This uncertainty only contributes to Stripline test methods. It is the uncertainty which results from the imaging of 
the 3-axis probe in the plates of the Stripline. 

How to evaluate for Free Field Test Sites 

•  Verification: Not applicable. 

•  Test methods: Not applicable. 
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How to evaluate for Striplines 

•  Verification: Not applicable. 

•  Test methods: The standard uncertainty is 0,29 dB. 

uj26 Stripline: characteristic impedance 

 This uncertainty only contributes to Stripline test methods. This uncertainty contribution results from the 
difference between the free space wave impedance (377 Ω) for which the EUT has been developed and that for 
the Stripline (150 Ω). 

How to evaluate for Free Field Test Sites 

•  Verification: Not applicable. 

•  Test methods: Not applicable. 

How to evaluate for Striplines 

•  Verification: Not applicable. 

•  Test methods: The standard uncertainty is 0,58 dB. 

uj27 Stripline: non-planar nature of the field distribution 

 This uncertainty only contributes to Stripline test methods. It is the uncertainty which results from the non-planar 
nature of the field distribution within the Stripline. 

How to evaluate for Free Field Test Sites 

•  Verification: Not applicable. 

•  Test methods: Not applicable. 

How to evaluate for Striplines 

•  Verification: Not applicable. 

•  Test methods: The standard uncertainty is 0,29 dB. 

uj28 Stripline: field strength measurement as determined by the 3-axis probe 

 This uncertainty only contributes to Stripline test methods. It is the uncertainty which results from using a 3-axis 
probe to measure the electric field strength within the Stripline. 

How to evaluate for Free Field Test Sites 

•  Verification: Not applicable. 

•  Test methods: Not applicable. 

How to evaluate for Striplines 

•  Verification: Not applicable. 

•  Test methods: The measurement uncertainty of the 3-axis probe is taken from manufacturer's data sheet and 
converted to a standard uncertainty if necessary. 

uj29 Stripline: Transform Factor 

 This uncertainty only contributes to Stripline test methods. It is the uncertainty with which the Transform Factor 
(i.e. the relationship between the input voltage to the Stripline and the resulting electric field strength between 
the plates) is determined. 



 

ETSI 

ETSI TR 100 028-2 V1.4.1 (2001-12)123 

How to evaluate for Free Field Test Sites 

•  Verification: Not applicable. 

•  Test methods: Not applicable. 

How to evaluate for Striplines 

•  Verification: Not applicable. 

•  Test methods: If the verification procedure results are used, the standard uncertainty is the combined standard 
uncertainty of the verification procedure. 

uj30 Stripline: interpolation of values for the Transform Factor 

 This uncertainty only contributes to Stripline test methods. It is the uncertainty associated with interpolating 
between two adjacent Transform Factor for the Stripline. 

How to evaluate for Free Field Test Sites 

•  Verification: Not applicable. 

•  Test methods: Not applicable. 

How to evaluate for Striplines 

•  Verification: Not applicable. 

•  Test methods: Where the frequency of test corresponds to a set frequency in the verification procedure, this 
contribution to the combined uncertainty is 0,00 dB. For any other frequency, the value of the standard 
uncertainty is taken as 0,29 dB. 

uj31 Stripline: antenna factor of the monopole 

 This uncertainty only contributes to Stripline test methods and the verification procedure. It is the uncertainty 
with which the antenna factor/gain of the monopole is known. 

How to evaluate for Free Field Test Sites 

•  Verification: Not applicable. 

•  Test methods: Not applicable. 

How to evaluate for Striplines 

•  Verification: Not applicable. 

•  Test methods: The standard uncertainty is 1,15 dB. 

uj32 Stripline: correction factor for the size of the EUT 

 This uncertainty only contributes to Stripline test methods. It is the uncertainty due to the EUT being mounted in 
the Stripline where the height of the EUT is significant in the E-plane compared to the plate separation. 

How to evaluate for Free Field Test Sites 

•  Verification: Not applicable. 

•  Test methods: Not applicable. 

How to evaluate for Striplines 

•  Verification: Not applicable. 

•  Test methods: For EUT mounted centrally in the Stripline, values can be obtained from table A.14. 
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Table A.14: Uncertainty contribution: Stripline: correction factor for the size of the EUT 

Height of the EUT 
(in the E-plane) is: 

Standard uncertainty of the 
contribution 

height < 0,2 m 0,30 dB 
0,2 m ≤ height < 0,4 m 0,60 dB 
0,4 m ≤ height ≤ 0,7 m 1,20 dB 

 

uj33 Stripline: influence of site effects 

 This uncertainty only contributes to Stripline test methods. It is the uncertainty which results from the possible 
interaction between the fields of the Stripline and objects in its immediate environment. 

How to evaluate for Free Field Test Sites 

•  Verification: Not applicable. 

•  Test methods: Not applicable. 

How to evaluate for Striplines 

•  Verification: Not applicable. 

•  Test methods: For any method of field strength measurement, it is assumed that, provided none of the absorbing 
panels placed around the Stripline or the Stripline itself are moved either between the verification procedure and 
the test or between the measurement on the EUT and the field measurement parts of the test (for Monopole or 
3-axis probe). The standard uncertainty of the contribution is 0,00 dB. If, however, the arrangement has been 
changed, the standard uncertainty of the contribution is 3,00 dB. 

AMBIENT SIGNALS 

Background: Ambient signals are localized sources of radiated transmissions that can introduce uncertainty into the 
results of a test made on an Open Area Test Site and in unshielded Anechoic Chambers and Striplines. 

uj34 Ambient effect 

 This uncertainty contributes to test methods and verification procedures on Free Field Test Sites and in 
Striplines. It is the uncertainty caused by local ambient signals raising the noise floor of the receiver at the 
frequency of test. 

How to evaluate for Free Field Test Sites 

•  Verification: The values of the standard uncertainties should be taken from table A.15. 

Table A.15: Uncertainty contribution: Ambient effect 

Receiving device noise floor 
(with signal generator OFF) is within: 

Standard uncertainty of 
the contribution 

3 dB of measurement 1,57 dB 
3 dB - 6 dB of measurement 0,80 dB 
6 dB - 10 dB of measurement 0,30 dB 
10 dB - 20 dB of measurement 0,10 dB 
20 dB or more of the measurement 0,00 dB 

 

•  Test methods: The values of the standard uncertainties should be taken from table A.15. 

How to evaluate for Striplines 

•  Verification: The values of the standard uncertainties should be taken from table A.15. 

•  Test methods: The values of the standard uncertainties should be taken from table A.15. 
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MISMATCH 

Background: When two or more items of RF test equipment are connected together a degree of mismatch occurs. 
Associated with this mismatch there is an uncertainty component as the precise interactions are unknown. Mismatch 
uncertainties are calculated in the present document using S-parameters and full details of the method are given in 
annex D. For our purposes the measurement set-up consists of components connected in series, i.e. cables, attenuators, 
antennas, etc. and for each individual component in this chain, the attenuation and VSWRs must be known or assumed. 
The exact values of the VSWRs (which in RF circuits are complex values) are usually unknown at the precise frequency 
of test although worst case values over an extended frequency band will be known. It is these worst case values which 
should be used in the calculations. This approach will generally cause the calculated mismatch uncertainties to be worse 
than they actually are. 

uj35 Mismatch: direct attenuation measurement 

 This uncertainty only contributes to verification procedures. It results from the interaction of the VSWRs of the 
components in the direct attenuation measurement. The direct attenuation measurement refers to the arrangement 
in which the signal generator is directly connected to the receiving device (via cables, attenuators and an adapter) 
to obtain a reference signal level. See figure A.4. Due to load variations (antennas replacing the adapter in the 
second stage of the procedure) contributions are not identical in the two stages of the verification procedure. 

Direct attenuation measurement

"In line"
adapter

Attenuator 2
10 dB

Receiving
device

Attenuator 1
10 dB

Signal
generator

cable 1 cable 2

ferrite beads ferrite beads  

Figure A.4: Equipment set-up for the direct attenuation measurement 

How to evaluate for Free Field Test Sites 

•  Verification: The magnitude of the uncertainty contribution due to the mismatch in the direct attenuation 
measurement, is calculated from the approach described in annex D. 

•  Test methods: N/A. 

How to evaluate for Striplines 

•  Verification: The magnitude of the uncertainty contribution due to the mismatch in the direct attenuation 
measurement, is calculated from the approach described in annex D. 

•  Test methods: N/A. 

uj36 Mismatch: transmitting part 

 This uncertainty contributes to test methods and verification procedures. The transmitting part refers to the signal 
generator, cable, attenuator and antenna set-up shown in figure A.5. This equipment configuration is used for: 

- the transmitting part of a Free Field Test Site verification procedure; 

- the transmitting part of a Stripline verification procedure (where the antenna in the figure is replaced by the 
Stripline input); 

- the transmitting part of the substitution measurement in a transmitter test method; 

- the transmitting part when generating a field in a receiver test method. 
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Transmitting part

Antenna

cable

ferrite beads

Attenuator
10 dB

Signal
generator

 

Figure A.5: Equipment set-up for the transmitting part 

How to evaluate for Free Field Test Sites 

•  Verification: The uncertainty contribution due to the mismatch in the transmitting part is calculated from the 
approach described in annex D. 

•  Test methods: As for the verification. 

How to evaluate for Striplines 

•  Verification: The uncertainty contribution due to the mismatch in the transmitting part is calculated from the 
approach described in annex D. 

•  Test methods: As for the verification. 

uj37 Mismatch: receiving part 

 This uncertainty contributes to test methods and verification procedures. The receiving part refers to the antenna, 
attenuator, cable and receiving device set-up shown in figure A.6. This equipment configuration is used for: 

- the receiving part of a Free Field Test Site verification procedure; 

- the receiving part of a Stripline verification procedure (where the antenna is a Monopole); 

- the receiving part of the substitution measurement in a transmitter test method; 

- the receiving part when measuring the field in a receiver test method. 

Receiving part

Antenna

cable

ferrite beads

Receiving
device

Attenuator
10 dB

 

Figure A.6: Equipment set-up for the receiving part 

How to evaluate for Free Field Test Sites 

•  Verification: The uncertainty contribution due to the mismatch in the receiving part is calculated from the 
approach described in annex D. 

•  Test methods: As for the verification. 
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How to evaluate for Striplines 

•  Verification: The uncertainty contribution due to the mismatch in the receiving part is calculated from the 
approach described in annex D. 

•  Test methods: As for the verification. 

SIGNAL GENERATOR 

Background: The signal generator is used as the transmitting source. There are two signal generator characteristics that 
contribute to the expanded uncertainty of a measurement: absolute level and level stability. 

uj38 Signal generator: absolute output level 

 This uncertainty only contributes to test methods. It concerns the accuracy with which an absolute signal 
generator level can be set. 

How to evaluate for Free Field Test Sites 

•  Verification: The standard uncertainty is 0,00 dB. 

•  Test methods: The uncertainty contribution should be taken from the manufacturer's data sheet and converted 
into standard uncertainty if necessary. 

How to evaluate for Striplines 

•  Verification: The standard uncertainty is 0,00 dB. 

•  Test methods: 

- for cases where the field strength in a Stripline is determined from the results of the verification procedure, 
the uncertainty is taken from the manufacturer's data sheet and converted into standard uncertainty if 
necessary; 

- where an electric field strength measurement is made in the Stripline this contribution is assumed to be zero. 

uj39 Signal generator: output level stability 

 This uncertainty contributes to test methods and verification procedures. It concerns the stability of the output 
level. In any test in which the contribution of the absolute level uncertainty of the signal generator contributes to 
the combined standard uncertainty of the test i.e. it does not cancel due to the methodology, the contribution 
from the output level stability is considered to have been included in the signal generator absolute output level, 
uj38. Conversely, for any level in which the absolute level uncertainty of the signal generator does not contribute 
to the combined standard uncertainty, the output level stability of the signal generator should be included. The 
standard uncertainty of the contribution due to the signal generator output level stability is designated throughout 
all parts of TR 102 273 [2] as uj39. Its value can be derived from manufacturers' data sheet. 

How to evaluate for Free Field Test Sites 

• Verification: The uncertainty contribution should be taken from the manufacturer's data sheet and converted 
into standard uncertainty if necessary. 

• Test methods: The standard uncertainty of the contribution due to the signal generator output level stability is 
taken as 0,00 dB as it is covered by the absolute level uncertainty. 

How to evaluate for Striplines 

•  Verification: The uncertainty contribution should be taken from the manufacturer's data sheet and converted 
into standard uncertainty if necessary. 

•  Test methods: The standard uncertainty of the contribution due to the signal generator output level stability is 
taken as 0,00 dB as it is covered by the absolute level uncertainty. 



 

ETSI 

ETSI TR 100 028-2 V1.4.1 (2001-12)128 

INSERTION LOSSES 

Test equipment components such as attenuators, cables, adapters, etc. have insertion losses at a given frequency which 
act as systematic offsets. Knowing the value of the insertion losses allows the results to be corrected by the offsets. 
However, there are uncertainties associated with these insertion losses which are equivalent to the uncertainty of the 
loss measurements. 

uj40 insertion loss: attenuator 

 This uncertainty only contributes to test methods. 

How to evaluate for Free Field Test Sites 

•  Verification: This value is 0,00 dB. 

•  Test methods:  

- for the attenuator associated with the test antenna this uncertainty contribution is common to both stage one 
and stage two of the measurement. Consequently, this uncertainty contribution is assumed to be 0,00 dB due 
to the methodology. 

- for the attenuator associated with the substitution or measuring antenna this uncertainty contribution is taken 
either from the manufacturer's data sheet or from the combined standard uncertainty figure of its 
measurement. 

How to evaluate for Striplines 

•  Verification: The value is 0,00 dB. 

•  Test methods: 

- where the field strength in a Stripline is determined from the results of the verification procedure, for the 
attenuator associated with the Stripline input this uncertainty contribution is taken either from the 
manufacturer's data sheet or from the combined standard uncertainty figure of its measurement; 

- where a monopole or 3-axis probe is used to determine the field strength, for the attenuator associated with 
the Stripline input this uncertainty contribution is assumed to be 0,00 dB due to the methodology; 

- where a monopole is used to determine the field strength, for the attenuator associated with the Monopole 
antenna this uncertainty contribution is taken either from the manufacturer's data sheet or from the combined 
standard uncertainty figure of its measurement. 

uj41 Insertion loss: cable 

 This uncertainty only contributes to the test methods. 

How to evaluate for Free Field Test Sites 

•  Verification: This value is 0,00 dB. 

•  Test methods: 

- for the cable associated with the test antenna, this uncertainty contribution is common to both stage one and 
stage two of the measurement. Consequently, it is assumed to be 0,00 dB due to the methodology; 

- for the cable associated with the substitution or measuring antenna, this uncertainty contribution is taken 
either from the manufacturer's data sheet or from the combined standard uncertainty figure of its 
measurement. 
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How to evaluate for Striplines 

•  Verification: This value is 0,00 dB. 

•  Test methods: 

- where the field strength in a Stripline is determined from the results of the verification procedure, for the 
cable associated with the signal generator this uncertainty contribution is taken either from the manufacturer's 
data sheet or from the combined standard uncertainty figure of its measurement; 

- where a monopole or 3-axis probe is used to determine the field strength, for the cable associated with the 
signal generator this uncertainty contribution is assumed to be 0,00 dB due to the methodology; 

- where a monopole is used to determine the field strength, for the cable associated with the monopole antenna 
this uncertainty contribution is taken either from the manufacturer's data sheet or from the combined standard 
uncertainty figure of its measurement. 

uj42 Insertion loss: adapter 

 This uncertainty only contributes to the verification procedures. 

How to evaluate for Free Field Test Sites 

•  Verification: This uncertainty contribution is taken either from the manufacturer's data sheet or from the 
combined standard uncertainty figure of the loss measurement. 

•  Test methods: Not applicable. 

How to evaluate for Striplines 

•  Verification: This uncertainty contribution is taken either from the manufacturer's data sheet or from the 
combined standard uncertainty figure of the loss measurement. 

•  Test methods: Not applicable. 

uj43 Insertion loss: antenna balun 

 This uncertainty contributes to test methods and verification procedures on Free Field Test Sites. 

How to evaluate for Free Field Test Sites 

•  Verification: The standard uncertainty of the contribution is 0,17 dB. 

•  Test methods: The standard uncertainty of the contribution is 0,17 dB. 

How to evaluate for Striplines 

•  Verification: Not applicable. 

•  Test methods: Not applicable. 

ANTENNAS 

Background: Antennas are used to launch or receive radiated fields on Free Field Test Sites. They can contribute to 
measurement uncertainty in several ways. For example, the uncertainty of the gain and/or antenna factor, the tuning, 
etc. 

uj44 Antenna: antenna factor of the transmitting, receiving or measuring antenna 

 This uncertainty contributes to test methods and verification procedures on Free Field Test Sites. It is the 
uncertainty with which the antenna factor is known at the frequency of test. 
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How to evaluate for Free Field Test Sites 

•  Verification: The antenna factor contributes only to the radiated part of this procedure. For ANSI dipoles the 
value should be obtained from table A.16. For other antenna types the figures should be taken from 
manufacturers data sheets. If a figure is not given the standard uncertainty is 1,0 dB. 

Table A.16: Uncertainty contribution: Antenna: antenna factor 
of the transmitting, receiving or measuring antenna 

Frequency Standard uncertainty of the 
contribution 

30 MHz ≤ frequency < 80 MHz 1,73 dB 
80 MHz ≤ frequency < 180 MHz 0,60 dB 

frequency ≥ 180 MHz 0,30 dB 
 

•  Test methods: The uncertainty contribution should be taken from the manufacturer's data sheet and converted 
into standard uncertainty if necessary. If no value is given the standard uncertainty is assumed to be 1,0 dB. 

How to evaluate for Striplines 

•  Verification: Not applicable. 

•  Test methods: Not applicable. 

uj45 Antenna: gain of the test or substitution antenna 

 This uncertainty only contributes to test methods on Free Field Test Sites. It is the uncertainty with which the 
gain of the antenna is known at the frequency of test. 

How to evaluate for Free Field Test Sites 

•  Verification: Not applicable. 

•  Test methods: For ANSI dipoles the value should be obtained from table A.17. For other antenna types the 
figures should be taken from manufacturers data sheets. If a figure is not given the standard uncertainty is 
1,0 dB. 

Table A.17: Uncertainty contribution: Antenna: gain of the test or substitution antenna 

Frequency Standard uncertainty of the 
contribution 

30 MHz ≤ frequency < 80 MHz 1,73 dB 
80 MHz ≤ frequency < 180 MHz 0,60 dB 

frequency ≥ 180 MHz 0,30 dB 
 

How to evaluate for Striplines 

•  Verification: Not applicable. 

•  Test methods: Not applicable. 
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uj46 Antenna: tuning 

 This uncertainty contributes to test methods and verification procedures on Free Field Test Sites. It is the 
uncertainty with which the lengths of the dipoles arms can be set for any test frequency. 

How to evaluate for Free Field Test Sites 

•  Verification: The standard uncertainty is 0,06 dB. 

•  Test methods: 

- in the test antenna case the uncertainty is equal in both stages of the test method so its contribution to the 
uncertainty is assumed to be 0,00 dB; 

- in the substitution/measuring antenna case, the standard uncertainty is 0,06 dB. 

How to evaluate for Striplines 

•  Verification: Not applicable. 

•  Test methods: Not applicable. 

RECEIVING DEVICE 

Background: The receiving device (a measuring receiver or spectrum analyser) is used to measure the received signal 
level either as an absolute level or as a reference level. It can contribute uncertainty components in two ways: absolute 
level accuracy and non-linearity. An alternative receiving device (a power measuring receiver) is used for the adjacent 
channel power test method. 

uj47 Receiving device: absolute level 

 This uncertainty contributes to test methods where the measurement of field strength is involved and the 
verification procedures where a range change to the receiving device's input attenuator occurs between the two 
stages of the procedure. 

How to evaluate for Free Field Test Sites 

•  Verification: The absolute level uncertainty is not applicable in stage one but should be included in stage two if 
the receiving device's input attenuator has been changed. This uncertainty contribution should be taken from the 
manufacturer's data sheet and converted if necessary. 

•  Test methods: Only applicable in the electric field strength measurement stage for a receiving equipment. This 
uncertainty contribution should be taken from the manufacturer's data sheet and converted if necessary. 

How to evaluate for Striplines 

•  Verification: The absolute level uncertainty is not applicable in stage one but may be included in stage two if 
the receiving device's input attenuator has been changed. This uncertainty contribution should be taken from the 
manufacturer's data sheet and converted if necessary. 

•  Test methods: Only applicable in the electric field strength measurement stage for a receiving equipment. This 
uncertainty contribution should be taken from the manufacturer's data sheet and converted if necessary. 

uj48 Receiving device: linearity 

 This uncertainty only contributes to the verification procedures. 

How to evaluate for Free Field Test Sites 

•  Verification: If the receiving devices input attenuator has been changed the value is 0,00 dB. If not, the value 
should be calculated from the manufacturer's data sheet e.g. a level variation of 62 dB gives an uncertainty of 
0,62 dB at a linearity of 0,1 dB/10 dB. The uncertainty should be converted into standard uncertainty, assuming 
a rectangular distribution in logs. 

•  Test methods: Not applicable. 
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How to evaluate for Striplines 

•  Verification: If the receiving devices input attenuator has been changed the value is 0,00 dB. If not, the value 
should be calculated from the manufacturer's data sheet e.g. a level variation of 62 dB gives an uncertainty of 
0,62 dB at a linearity of 0,1 dB/10 dB. The uncertainty should be converted into standard uncertainty, assuming 
a rectangular distribution in logs. 

•  Test methods: Not applicable. 

uj49 Receiving device: power measuring receiver 

 This uncertainty only contributes to the transmitter adjacent channel power test method. There are three types of 
power measuring receiver, they are: 

- an adjacent channel power meter; 

- a spectrum analyser; 

- a measuring receiver with digital filters. 

How to evaluate for Free Field Test Sites 

•  Verification: Not applicable. 

•  Test methods: Contributions are the same as for the conducted case, see ETR 028 [5]. 

How to evaluate for Striplines 

•  Verification: Not applicable. 

•  Test methods: Not applicable. 

EQUIPMENT UNDER TEST 

Background: There are uncertainties associated with the EUT due to the following reasons: 

- temperature effects: this is the uncertainty caused by the uncertainty in the ambient temperature; 

- degradation measurement: this contribution is a RF level uncertainty associated with the uncertainty of 
measuring, 20 dB SINAD, 10-2 bit stream or 80 % message acceptance ratio; 

- power supply effects. Tis is the uncertainty caused by the uncertainty in the power supply voltage; 

- mutual coupling to its power leads. 

uj50 EUT: influence of the ambient temperature on the ERP of the carrier 

 This uncertainty only contributes to the ERP test method. It is the uncertainty in the ERP of the carrier caused by 
the uncertainty in knowing the ambient temperature. 

How to evaluate for Free Field Test Sites 

•  Verification: Not applicable. 

•  Test methods: Only applicable in stage one where the measurement is made on the EUT. The uncertainty 
caused is calculated using the dependency function (ETR 028 [5], part 2, table C.1: "EUT dependency functions 
and uncertainties") whose mean value is 4 %/°C and whose standard deviation is 1,2 %/°C. The standard 
uncertainty of the ERP of the carrier caused by this ambient temperature uncertainty should be calculated using 
formula (5.3) of ETR 028 [5] and then converted to dB. 

 For example, an ambient temperature uncertainty of ±1°C, results in the standard uncertainty of the ERP of the 
carrier of: 

 =))C(1,2%/+)C((4,0%/ x )
3

C)(1
( 22

2

°°° 2,41 %, transformed to dB: 2,41/23,0 = 0,1 dB 
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How to evaluate for Striplines 

•  Verification: Not applicable. 

•  Test methods: Not applicable 

uj51 EUT: influence of the ambient temperature on the spurious emission level 

 This uncertainty contribution only applies to the test methods on Free Field Test Sites. It is the uncertainty in the 
power level of the spurious emission caused by the uncertainty in knowing the ambient temperature. 

How to evaluate for Free Field Test Sites 

•  Verification: Not applicable. 

•  Test methods: Only applicable in stage one where the measurement is made on the EUT. The uncertainty 
caused is calculated using the dependency function (ETR 028 [5], part 2, table C.1: "EUT dependency functions 
and uncertainties") whose mean value is 4 %/°C and whose standard deviation is 1,2 %/°C. The standard 
uncertainty of the spurious emission level caused by this ambient temperature uncertainty should be calculated 
using formula (5.3) of ETR 028 [5] and then converted to dB. 

•  For example, an ambient temperature uncertainty of ±1°C, results in the standard uncertainty of the spurious 
emission level of: 

 =))C(1,2%/+)C((4,0%/ x )
3

C)(1
( 22

2

°°° 2,41 %, transformed to dB: 2,41/23,0 = 0,1 dB 

How to evaluate for Striplines 

•  Verification: Not applicable. 

•  Test methods: Not applicable. 

uj52 EUT: degradation measurement 

 This uncertainty only contributes to receiver test methods and is the resulting RF level uncertainty associated 
with the uncertainty of measuring 20 dB SINAD, 10-2 bit stream or 80 % message acceptance ratio. 

How to evaluate for Free Field Test Sites 

•  Verification: Not applicable. 

•  Test methods: The magnitude can be obtained from ETR 028 [5]. 

How to evaluate for Striplines 

•  Verification: Not applicable. 

•  Test methods: The magnitude can be obtained from ETR 028 [5].  

uj53 EUT: influence of setting the power supply on the ERP of the carrier 

 This uncertainty only applies to the effective radiated power test method and is caused by the uncertainty in 
setting the power supply level. 

How to evaluate for Free Field Test Sites 

•  Verification: Not applicable. 

•  Test methods: Only applicable in stage one where the measurement is made on the EUT. The uncertainty 
caused is calculated using the dependency function (ETR 028 [5], part 2, table C.1: "EUT dependency functions 
and uncertainties") whose mean value is 10 %/V and whose standard deviation is 3 %/V. The standard 
uncertainty of the ERP of the carrier caused by power supply voltage uncertainty should be calculated using 
formula (5.3) of ETR 028 [5] and then converted to dB. 
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•  For example, a supply voltage uncertainty of ±100 mV results in the standard uncertainty of the ERP of the 
carrier of: 

 % 0,60 = ))(3%/V+)((10%/V x 
3

)(0,1V 22
2

, transformed to dB: 0,60/23,0 = 0,03 dB 

How to evaluate for Striplines 

•  Verification: Not applicable. 

•  Test methods: Not applicable. 

uj54 EUT: influence of setting the power supply on the spurious emission level 

 This uncertainty only applies to the spurious emissions test method and is caused by the uncertainty in setting the 
power supply level. 

How to evaluate for Free Field Test Sites 

•  Verification: Not applicable. 

•  Test methods: Only applicable in stage one where the measurement is made on the EUT. The uncertainty 
caused is calculated using the dependency function (ETR 028 [5], part 2, table C.1: "EUT dependency functions 
and uncertainties") whose mean value is 10 %/V and whose standard deviation is 3 %/V. The standard 
uncertainty of the spurious emission level caused by power supply voltage uncertainty should be calculated using 
formula (2) of ETR 028 [5] and then converted to dB. 

•  For example, a supply voltage uncertainty of ±100 mV results in the standard uncertainty of the spurious 
emission level of: 

  ))(3%/V+)((10%/V x 
3

)(0,1V 22
2

= 0,06 %, transformed to dB: 0,60/23,0 = 0,03 dB 

How to evaluate for Striplines 

•  Verification: Not applicable. 

•  Test methods: Not applicable. 

uj55 EUT: mutual coupling to the power leads 

 This uncertainty only contributes to test methods. It is the uncertainty which results from interaction (reflections, 
parasitic effects, etc.) between the EUT and the power leads. 

How to evaluate for Free Field Test Sites 

•  Verification: Not applicable. 

•  Test methods: The standard uncertainty is 0,5 dB provided that the precautions detailed in the methods have 
been observed. i.e. routing and dressing of cables with ferrites. If the precautions have not been observed the 
standard uncertainty is 2,0 dB. 

How to evaluate for Striplines 

•  Verification: Not applicable. 

•  Test methods: The standard uncertainty is 0,5 dB provided that the precautions detailed in the methods have 
been observed. i.e. routing and dressing of cables with ferrites. If the precautions have not been observed the 
standard uncertainty is 2,0 dB. 
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FREQUENCY COUNTER 

uj56 Frequency counter: absolute reading 

 This uncertainty only contributes to frequency error test methods performed using a frequency counter. It is the 
uncertainty of frequency measurement. 

How to evaluate for Free Field Test Sites 

•  Verification: Not applicable. 

•  Test methods: The uncertainty of frequency measurement is taken from the manufacturer's data sheet. 

How to evaluate for Striplines 

•  Verification: Not applicable. 

•  Test methods: Not applicable. 

uj57 Frequency counter: estimating the average reading 

 This uncertainty only contributes to frequency error test methods performed using a frequency counter. It is the 
uncertainty with which the average frequency can be estimated. 

How to evaluate for Free Field Test Sites 

•  Verification: Not applicable. 

•  Test methods: The standard uncertainty should be taken as 0,33 × (highest frequency - lowest frequency)/2. 

How to evaluate for Striplines 

•  Verification: Not applicable. 

•  Test methods: The standard uncertainty should be taken as 0,33 × (highest frequency - lowest frequency)/2. 

SALTY MAN AND SALTY-LITE 

Background: The human body has a significant effect on the electrical performance of a body worn EUT. For test 
purposes the artificial human body should simulate the average human body. Two main types of artificial human bodies 
are used in testing: Salty man and Salty-lite. 

uj58 Salty man/Salty-lite: human simulation 

 This uncertainty only contributes to test methods on Free Field Test Sites. It is the uncertainty which results from 
the differences between the average human being and the artificial one used.  

How to evaluate for Free Field Test Sites 

•  Verification: Not applicable. 

•  Test methods: The standard uncertainty should be taken from table A.18. 

Table A.18: Uncertainty contribution: Salty man/Salty-lite: human simulation 

In an Anechoic Chamber the standard uncertainties are: 
Salty man: 30 MHz to 150 MHz is 0,58 dB Salty man: 150 MHz to 1 000 MHz is 1,73 dB 
Salty lite: 100 MHz to 150 MHz is 1,73 dB Salty lite: 150 MHz to 1 000 MHz is 0,58 dB 

On an Open Area Test Site or in an Anechoic Chamber with a ground plane: 
Salty man: 30 MHz to 150 MHz is 0,58 dB Salty man: 150 MHz to 1 000 MHz is 1,73 dB 
Salty lite: 70 MHz to 150 MHz is 1,73 dB Salty lite: 150 MHz to 1 000 MHz is 0,58 dB 
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How to evaluate for Striplines 

•  Verification: Not applicable. 

•  Test methods: Not applicable. 

uj59 Salty man/Salty-lite: field enhancement and de-tuning of the EUT 

 This uncertainty only contributes to test methods on Free Field Test Sites. It is the uncertainty associated with 
the variation of the enhanced magnetic field effect produced by the body and the de-tuning of the circuitry of the 
EUT with spacing away from the outer surface of the salty body. 

How to evaluate for Free Field Test Sites 

•  Verification: Not applicable. 

•  Test methods: The standard uncertainty of this effect is estimated as 1,00 dB. 

How to evaluate for Striplines 

•  Verification: Not applicable. 

•  Test methods: Not applicable. 

TEST FIXTURE 

Background: A test fixture is a type of test site which enables the performance of an integral antenna EUT to be 
measured at extreme conditions. 

uj60 Test Fixture: effect on the EUT 

 Since it is proven on the accredited test site that the test fixture does not have an adverse effect on the EUT 
(e.g. more than a 0,5 dB change in the received level), it is assumed that the maximum uncertainty introduced by 
the presence of the test fixture is ±0,5 dB. The corresponding standard uncertainty is 0,29 dB. 

uj61 Test Fixture: climatic facility effect on the EUT 

 Since it is proven that the climatic facility does not have an adverse effect on the EUT (e.g. more than a 0,5 dB 
change in the received level), it is assumed that the maximum uncertainty introduced by the presence of the test 
fixture is ±0,5 dB. The corresponding standard uncertainty is 0,29 dB. 

RANDOM UNCERTAINTY 

ui01 Random uncertainty 

 This uncertainty contributes to all radiated tests. It is the estimated effect that randomness has on the final result 
of a measurement. 

How to evaluate for Free Field Test Sites 

•  Verification: Random uncertainty should be assessed by multiple measurements of the same measurand and 
treating the results statistically to derive the standard uncertainty of its contribution.  

•  Test methods: Random uncertainty should be assessed by multiple measurements of the same measurand and 
treating the results statistically to derive the standard uncertainty of its contribution.  

How to evaluate for Striplines 

•  Verification: Random uncertainty should be assessed by multiple measurements of the same measurand and 
treating the results statistically to derive the standard uncertainty of its contribution.  

•  Test methods: Random uncertainty should be assessed by multiple measurements of the same measurand and 
treating the results statistically to derive the standard uncertainty of its contribution.  
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Table A.19: Mutual coupling and mismatch loss correction factors (Anechoic Chamber) 

Frequency 
(MHz) 

Range length 
3 m 

 Frequency 
(MHz) 

Range length 
10 m 

30 27,1  30 25,8 
35 24,3  35 23,3 
40 21,7  40 20,8 
45 19,0  45 18,2 
50 16,1  50 15,4 
60 9,7  60  9,1 
70 2,2  70 1,7 
80 0,7  80 0,2 
90 0,6  90 0,1 

100 0,6  100 0,1 
120 0,3  120 0,1 
140 0,4  140 0,1 
160 0,3  160 0,2 
180 0,2  180 0,1 

 

Table A.20: Mutual coupling and mismatch loss correction factors (over a ground plane) 

 Horizontal 
polarization 

  Vertical polarization 

Freq. 
(MHz) 

 
3 m 

 
10 m 

 Freq. 
(MHz) 

 
3 m 

 
10 m 

30 27,6 26,0  30 25,2 25,4 
35 24,6 23,3  35 22,4 22,9 
40 21,8 20,7  40 19,8 20, 4 
45 19,0 18,1  45 17,2 17,9 
50 16,0 15,1  50 14,4 15,1 
60 9,5 8,9  60 8,5 9,2 
70 2,4 2,8  70 1,6 2,5 
80 0,6 0,8  80 0,0 0,4 
90 0,2 0,4  90 -0,2 0,1 

100 -0,3 0,0  100 -0,6 0,0 
120 -2,3 -1,2  120 -0,6 0,0 
140 -1,0 -0,7  140 1,1 -0,1 
160 -0,3 0,3  160 0,7 0,0 
180 -0,3 0,3  180 0,3 0,0 

 

Table A.21: Summary table of all contributions (numerical sort) 

 Description 
uj01 reflectivity of absorbing material: EUT to the test antenna 

uj02 reflectivity of absorbing material: substitution or measuring antenna to the test antenna 

uj03 reflectivity of absorbing material: transmitting antenna to the receiving antenna 

uj04 Mutual coupling: EUT to its images in the absorbing material 

uj05 mutual coupling: de-tuning effect of the absorbing material on the EUT 

uj06 mutual coupling: substitution, measuring or test antenna to its image in the absorbing material 

uj07 mutual coupling: transmitting or receiving antenna to its image in the absorbing material 

uj08 mutual coupling: amplitude effect of the test antenna on the EUT 

uj09 mutual coupling: de-tuning effect of the test antenna on the EUT 

uj10 mutual coupling: transmitting antenna to the receiving antenna 

uj11 mutual coupling: substitution or measuring antenna to the test antenna 

uj12 mutual coupling: interpolation of mutual coupling and mismatch loss correction factors 

uj13 mutual coupling: EUT to its image in the ground plane 

uj14 mutual coupling: substitution, measuring or test antenna to its image in the ground plane 

uj15 mutual coupling: transmitting or receiving antenna to its image in the ground plane 

uj16 range length 
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 Description 
uj17 correction: off boresight angle in the elevation plane 

uj18 correction: measurement distance 

uj19 cable factor 

uj20 position of the phase centre: within the EUT volume 

uj21 positioning of the phase centre: within the EUT over the axis of rotation of the turntable 

uj22 position of the phase centre: measuring, substitution, receiving, transmitting or test antenna 

uj23 position of the phase centre: LPDA 

uj24 Stripline: mutual coupling of the EUT to its images in the plates 

uj25 Stripline: mutual coupling of the 3-axis probe to its image in the plates 

uj26 Stripline: characteristic impedance 

uj27 Stripline: non-planar nature of the field distribution 

uj28 Stripline: field strength measurement as determined by the 3-axis probe 

uj29 Stripline: transfer factor 

uj30 Stripline: interpolation of values for the transfer factor 

uj31 Stripline: antenna factor of the monopole 

uj32 Stripline: correction factor for the size of the EUT 

uj33 Stripline: influence of site effects 

uj34 ambient effect 

uj35 mismatch: direct attenuation measurement 

uj36 mismatch: transmitting part 

uj37 mismatch: receiving part 

uj38 signal generator: absolute output level 

uj39 signal generator: output level stability 

uj40 insertion loss: attenuator 

uj41 insertion loss: cable 

uj42 insertion loss: adapter 

uj43 insertion loss: antenna balun 

uj44 antenna: antenna factor of the transmitting, receiving or measuring antenna 

uj45 antenna: gain of the test or substitution antenna 

uj46 antenna: tuning 

uj47 receiving device: absolute level 

uj48 receiving device: linearity 

uj49 receiving device: power measuring receiver 

uj50 EUT: influence of the ambient temperature on the ERP of the carrier 

uj51 EUT: influence of the ambient temperature on the spurious emission level 

uj52 EUT: degradation measurement 

uj53 EUT: influence of setting the power supply on the ERP of the carrier 

uj54 EUT: influence of setting the power supply on the spurious emission level 

uj55 EUT: mutual coupling to the power leads 

uj56 frequency counter: absolute reading 

uj57 frequency counter: estimating the average reading 

uj58 Salty man/Salty-lite: human simulation 

uj59 Salty man/Salty-lite: field enhancement and de-tuning of the EUT 

uj60 Test Fixture: effect on the EUT 

uj61 Test Fixture: climatic facility effect on the EUT 

ui01 random 
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Table A.22: Summary table of all contributions (alphabetical sort) 

 Description 
uj34 ambient effect 

uj44 antenna: antenna factor of the transmitting, receiving or measuring antenna 

uj45 antenna: gain of the test or substitution antenna 

uj46 antenna: tuning 

uj19 cable factor 

uj18 correction: measurement distance 

uj17 correction: off boresight angle in the elevation plane 

uj53 EUT: influence of setting the power supply on the ERP of the carrier 

uj54 EUT: influence of setting the power supply on the spurious emission level 

uj50 EUT: influence of the ambient temperature on the ERP of the carrier 

uj51 EUT: influence of the ambient temperature on the spurious emission level 

uj52 EUT: degradation measurement 

uj55 EUT: mutual coupling to the power leads 

uj56 frequency counter: absolute reading 

uj57 frequency counter: estimating the average reading 

uj42 insertion loss: adapter 

uj43 insertion loss: antenna balun 

uj40 insertion loss: attenuator 

uj41 insertion loss: cable 

uj35 mismatch: direct attenuation measurement 

uj37 mismatch: receiving part 

uj36 mismatch: transmitting part 

uj04 Mutual coupling: EUT to its images in the absorbing material 

uj08 mutual coupling: amplitude effect of the test antenna on the EUT 

uj05 mutual coupling: de-tuning effect of the absorbing material on the EUT 

uj09 mutual coupling: de-tuning effect of the test antenna on the EUT 

uj13 mutual coupling: EUT to its image in the ground plane 

uj12 mutual coupling: interpolation of mutual coupling and mismatch loss correction factors 

uj11 mutual coupling: substitution or measuring antenna to the test antenna 

uj06 mutual coupling: substitution, measuring or test antenna to its image in the absorbing material 

uj14 mutual coupling: substitution, measuring or test antenna to its image in the ground plane 

uj10 mutual coupling: transmitting antenna to the receiving antenna 

uj07 mutual coupling: transmitting or receiving antenna to its image in the absorbing material 

uj15 mutual coupling: transmitting or receiving antenna to its image in the ground plane 

uj23 position of the phase centre: LPDA 

uj22 position of the phase centre: measuring, substitution, receiving, transmitting or test antenna 

uj20 position of the phase centre: within the EUT volume 

uj21 positioning of the phase centre: within the EUT over the axis of rotation of the turntable 

ui01 random 

uj16 range length 

uj47 receiving device: absolute level 

uj48 receiving device: linearity 

uj49 receiving device: power measuring receiver 

uj01 reflectivity of absorbing material: EUT to the test antenna 

uj02 reflectivity of absorbing material: substitution or measuring antenna to the test antenna 

uj03 reflectivity of absorbing material: transmitting antenna to the receiving antenna 

uj59 Salty man/Salty-lite: field enhancement and de-tuning of the EUT 

uj58 Salty man/Salty-lite: human simulation 

uj38 signal generator: absolute output level 
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 Description 
uj39 signal generator: output level stability 

uj31 Stripline: antenna factor of the monopole 

uj26 Stripline: characteristic impedance 

uj32 Stripline: correction factor for the size of the EUT 

uj28 Stripline: field strength measurement as determined by the 3-axis probe 

uj33 Stripline: influence of site effects 

uj30 Stripline: interpolation of values for the transfer factor 

uj25 Stripline: mutual coupling of the 3-axis probe to its image in the plates 

uj24 Stripline: mutual coupling of the EUT to its images in the plates 

uj27 Stripline: non-planar nature of the field distribution 

uj29 Stripline: transfer factor 

uj61 Test Fixture: climatic facility effect on the EUT 

uj60 Test Fixture: effect on the EUT 
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Figure A.7: Signal attenuation with increasing elevation offset angle 



 

ETSI 

ETSI TR 100 028-2 V1.4.1 (2001-12)142 

Height of test antenna on mast

0

0,5

1

1,5

2

2,5

3

3,5

1 1,2 1,4 1,6 1,8 2 2,2 2,4 2,6 2,8 3 3,2 3,4 3,6 3,8 4

S
ig

n a
l l

os
s 

(d
B

)

3 metre range

10 metre range

Measurement distance correction

 

Figure A.8: Signal attenuation for antenna height on mast 
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Annex B: 
Maximum accumulated measurement uncertainty 
The accumulated measurement uncertainties of the test system in use for the parameters to be measured should not 
exceed those given in table B.1. This is in order to ensure that the measurements remain within an acceptable quality. 

Table B.1: Recommended maximum acceptable uncertainties 

RF frequency (see note 1) ±1 x 10-7 (see note 2) 
RF power (valid to 100 W) (see note 1) ±0,75 dB (see note 2) 
Maximum frequency deviation 
 - within 300 Hz and 6 kHz of audio frequency (see note 1) 
 - within 6 kHz and 25 kHz of audio frequency (see note 1) 

 
±5 % (see note 2) 
±3 dB (see note 2) 

Deviation limitation (see note 1) ±5 % (see note 2) 
Audio frequency response of transmitters (see note 1) ±0,5 dB (see note 2) 
Adjacent channel power (see note 1) ±3 dB (see note 2) 
Conducted emissions of transmitters (see note 1) ±4 dB (see note 2) 
Transmitter distortion (see note 1) ±2 % (see note 2) 
Transmitter residual modulation (see note 1) ±2 dB (see note 2) 
Audio output power (see note 1) ±0,5 dB (see note 2) 
Audio frequency response of receivers (see note 1) ±1 dB (see note 2) 
Amplitude characteristics of receiver limiter (see note 1) ±1,5 dB (see note 2) 
Hum and noise (see note 1) ±2 dB (see note 2) 
Receiver distortion (see note 1) ±2 % (see note 2) 
Sensitivity (see note 1) ±3 dB (see note 2) 
Conducted emissions of receivers (see note 1) ±4 dB (see note 2) 
Two-signal measurements (stop band) (see note 1) ±4 dB (see note 2) 
Three-signal measurements (see note 1) ±3 dB (see note 2) 
Radiated emissions of transmitters (see note 1) ±6 dB (see note 2) 
Radiated emissions of receivers (see note 1) ±6 dB (see note 2) 
Transmitter attack and release time (see note 1) ±4 ms (see note 2) 
Transmitter transient frequency (see note 1) ±250 Hz (see note 2) 
Transmitter intermodulation (see note 1) ±5 dB (see note 2) 
Receiver desensitization (duplex operation) (see note 1) ±0,5 dB (see note 2) 
NOTE 1: Test methods according to relevant deliverables. 
NOTE 2: The uncertainty figures are valid for a confidence level of 95 %. 
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Annex C: 
Interpretation of the measurement results 
The interpretation of the results recorded in a test report for the measurements described in the standard should be as 
follows: 

1) the measurement value related to the corresponding limit should be used to decide whether an equipment meets 
the requirements of the relevant standards; 

2) the measurement uncertainty value for the measurement of each parameter should be included in the test reports; 

3) the recorded value for the measurement uncertainty should be, for each measurement, equal to or lower than the 
figures in the appropriate table of "maximum acceptable measurement uncertainties" of the appropriate standard. 

NOTE: This procedure is usually referred to as "the shared risk approach" and is recommended unless superseded 
by an appropriate publication of ETSI. 

Clause D.5.6.2.7.3 shows the way in which double sided limits (e.g. limits stated as "2 W + 1,5 dB") have been handled 
in ETSI standards, when the tolerance (e.g. +1,5 dB) is smaller than the maximum acceptable measurement uncertainty 
for that measurement (e.g. +6 dB). 
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Annex D: 
Theoretical support for the evaluation of measurement 
uncertainties, including mathematical tools and properties of 
distributions 
This annex of the present document provides theoretical support for the handling of measurement uncertainties; more 
precisely, the methods proposed here are based on the usage of random variables (and combinations thereof). 

The aim of annex D is, therefore, in particular: 

- to provide guidance on how to use random variables in support of the evaluation of measurement uncertainties 
(and a theoretical justification for expressions found e.g. in TR 100 028-1 [6], clauses 4 and 5); 

- to provide methods to handle and to combine random variables. 

Annex D offers a theoretical background, as complete (self-contained) as practical, in the line of clauses 4 and 5 of 
TR 100 028-1 [6] of the present document. However, it is expected that the reader is familiar with the definitions and 
concepts dealt with in clause 4 of TR 100 028-1 [6], and therefore such concepts are not defined again in the present 
annex. 

In the following clauses, the reader will also have a chance to get more familiar with: 

- a number of definitions and with the properties of some usual distributions; 

- the result of the combination of random variables and how to use all these tools in order to better evaluate the 
uncertainties relating to a particular test set up. 

The present annex has evolved in time, and includes contributions from various authors. This may have led to the use of 
symbols slightly different, according with the targets sought. These specificities have been kept, in order to allow for 
the internal consistency between certain pieces of text. 

Different methods may also have been used (some being more general or theoretical than others); they allow the reader 
to get familiar with different approaches and techniques. Sometimes similar results may have been obtained by different 
methods … which also helps cross-checking the expressions given. 

D.1 Probability densities and some of their properties 

D.1.1 Introduction 
A random variable X is defined as a variable which takes any value x of a continuum of values at a particular instant in 
time. It is usual to characterize a random variable X by its probability density function p(x):  

0≥∀ p(x)x  

(where, x∀  … means for any x ). 

D.1.2 Definitions 
The probability  P of the value  x  of the random variable  X  lying between  x1  and  x2  is provided by the probability 
density function,  p ( x ) , as follows: 

∫=
2

1

x

x

p(x)dxP  
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Since  x  must have its value in the range -∞ to +∞ , and   p ( x )  is the corresponding distribution 

∫
+∞

∞−

=1dxp(x)  . 

Conversely,  P = 0  can be understood as the probability of an event that would not occur, 

and  P = 1  can be understood as the probability of an event that should certainly occur. 

 

Small contributions 

In many clauses of this annex, for example in clause D.3 ,  p ( x )  (also noted as  f ( x ) ) is used in relation to small 
contributions. 

In this case, the probability Pf  of the random variable  F  having a value  x  such that 

   x1 < x < x2     is    ∫=
2

1

x

x

f f(x)dxP   . 

Similarly, we can consider ∫
∞−

=
x

f dtf(t)xP )(  , 

and therefore (by differentiation)    dPf = f ( x ) dx  . 

 

Note concerning signs: 

It is also to be noted that, according to the usual conventions (see above),  p ( x ) and  P  are always positive, while, 
according to the conventions used with integrals: 

∫∫ −==
1

2

2

1

x

x

x

x

p(x)dxp(x)dxP .  

As a result, when writing ∫=
2

1

x

x

f f(x)dxP  , one has to make sure that    x1  <  x2  .  

Should we have x1  >  x2  then the integration limits have to be inverted … or absolute values have to be used. 

This has a direct effect on calculations such as those found in clauses D.3, for example in clause D.3.2 (i.e. discussions 
concerning the signs). 

 

Mean value (or 1st moment) 

The mean of a random variable X defined by its probability density function  p  is given by: 

∫
+∞

∞−

= dxp(x)xxm  

the term  xm   has been used, in particular, in annex E. However, at a later stage, in the present annex, the mean value of 
random variable X has also been called  mx   or   mX . 

The mean is also called 1st moment. 

For further proposals concerning notation, please see also clause D.10.6. 
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Second moment 

The second moment of a probability density function  p(x)  about the origin is: 

dxp(x)xxm ∫
+∞

∞−

= 22  

and xm
2  is called sometimes the mean square value.  

The expression  " xm² "  has been used, in particular, in annex E. 

However, at a later stage, in the present annex, the second moment corresponding to random variable X has often been 
referred to as   sx² or  sX ². 

 

Variance 

It is usual to take the 2nd moment about the mean as a measure of dispersion. This is often termed the variance (σ2) of 
the probability density function, hence: 

∫
+∞

∞−

−= dxp(x))x(x m
22σ  

Standard deviation 

In the present document, σσσσ is often called "standard deviation" , and to show it relates to X , it has been written as σσσσx   or  
σσσσX . 

 

Relations between some of these properties 

Using mx  ,   sx   and    σσσσx …. the previous expression can be written as: 

dxxpmx xx )()( 22

∫
+∞

∞−

−=σ dxxpx )(2
∫

+∞

∞−

=  - dxxpmx x )(2∫
+∞

∞−

 + dxxpmx )(2

∫
+∞

∞−

 

dxxpmdxxpxmdxxpx xxx )()(2)( 222

∫∫∫
+∞

∞−

+∞

∞−

+∞

∞−

++=σ  

and therefore:  σσσσx ² = sx² -  2     mx     mx  +     mx². 

Finally we get:  

   σσσσx²  =  sx²  -  mx² 

an expression which will be used quite often in the present annex. 

 

Notations 

In documentation relating to the theory of probabilities, where only one probability density is addressed at the time, it 
can be handy to use notations such as  p ( x ) … However, when discussing uncertainties, where a significant number of 
physical parameters are handled simultaneously, it can be practical to use notations linking in an obvious manner, these 
physical parameters with corresponding  random variables (i.e. mapping), in which case notations such as those 
proposed in clause D.3.10.6 may seem more convenient. 
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D.1.3 Means and standard deviations of usual distributions 
The term distributions has been used in this clause instead of probability density. 

In many of the following drawings the mean value of the distributions shown is 0. However, this has no effect on the 
value of the standard deviations. 

D.1.3.1 Rectangular distributions 

 

 

In the example above, the mean value is  0 (but a rectangular distribution could, as well, be centred around some other 
value C: in which case, the mean value would have been C ); 

The standard deviation is 
3

A
 (independent of the mean value …): 
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In the case where the mean is  C  and not  0 , in the interval   (C - A ) to  (C + A ) ,  x occurs with equal probability, 
i.e. p(x)=1/(2A). In this annex, this interval has some times been called "spread" or "foot print". 

Example of usage of rectangular distributions: unknown systematic error distributions are assumed, in the present 
document, to be rectangularly distributed. 

Power ranges (e.g. expressed in dBs) provide good examples of rectangular distributions centred around non-zero 
values ( C non zero). 

D.1.3.2 Triangular distributions 

Triangular distributions can be found as the result of additive combinations of identical triangular distributions. 

The additive combination of two random variables generates, as shown in clause D.3.3, a random variable having a 
probability density equal to: 

∫
+∞

∞−

−= dxxfxzgzh )()()(  , where   g ( y )  and   f ( x )  are the original probability densities. 

x

p x( )

A A

A A

∈ − + →

∉ − + → =

[ , ]

[ , ] 0

x

x p x( )

p x( ) =

A+A_

1

A2

1
A2
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D.1.3.2.1 Additive combination of two rectangular distributions having the same spread 

In the special case, where the distributions  f  and  g  are rectangular distributions, corresponding to the same parameter 
A  (see the definition in clause D.1.3.1 above), it can be interesting to track the values of   x   and   y = z – x  ,  
corresponding to where there are discontinuities in the definition of the probability densities … as a result,  h ( z )  can 
be split as follows: 

- when  z  < – A – A  =  –  2 A  then  both  g  and   f  =  0  for all values of  x  and, therefore,   h ( z ) = 0 

- when  z  >   A + A  =    2 A  then  both  g  and   f  =  0  for all values of  x  and, therefore,   h ( z ) = 0 

- when  z  is negative and greater than  – 2A , the zone to be integrated is shopped between the intervals 

where either f  or  g  are equal to zero: 

∫
+

−

=
Az
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dx
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2
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1
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4
1

4
1

222
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A
x

A
Az

A +=++== +
−  ; 

 

- when   z  is positive and smaller than   2A , the zone to be integrated is also shopped between the intervals 

where either f  or  g  are equal to zero: 

∫
+

−

=
A

Az

dx
AA

zh
2
1

2
1

)(  [ ] )2(
4

1
)(

4
1

4
1

222
Az

A
AAz

A
x

A
A

Az +−=++−== +
−  ; 

 

- when   z  is zero, the zone to be integrated is common to f  and  g  : 

∫
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=
A

A

dx
AA

h
2
1

2
1

)0(  [ ]
A

A
A

AA
A

x
A

A
A 2

1
)2(

4
1

)(
4

1
4

1
222
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 this value is, in fact common to both expressions found above when   z   �  0. 

The final result is, therefore, a triangular distribution spreading between -2A and +2A, with a maximum value of 1/2A 
(the same as the value corresponding to the original rectangular distributions). 

The result of the combination is, therefore, a distribution "smoothed". Should the original distributions be different, the 
same "smoothing" mechanism would be observed (see also the clause on trapezoidal distributions, D.1.3.3.1). 

In the above example, centred distributions have been used. Should there have been an offset, the triangular distribution 
would have had an offset equal to the sum of both offsets (as shown in clause D.3.3). 

Examples of additive combination of rectangular distributions are also provided in clause D.3.3.5.2. 

D.1.3.2.2 Properties of triangular distributions  

Assume a triangular distribution spreading from  –A  to  +A  with a maximum of  1/A  (note a change in the definition 
of  A  in relation to that found in clause D.1.3.2.1, above): 

The mean value is  0  (for distribution symmetrical around the y'y axis); a triangular distribution could, as well, be 
centred around some other value C: in which case, the mean value would have been C. 

The calculation of the variance shows a method which can be used extensively: 

1/A 

  0 -A 
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Finally, noting that the distribution is symmetrical: 

reapplying this method for the other part, gives the same result. Hence, for both parts, 

6

A

12

A2 2
2

=

=

σ

σ

 

D.1.3.3 Trapezoidal distributions 

D.1.3.3.1 Symmetrical trapezoidal distributions 

Triangular distributions may be found as the result of the additive combination of two identical rectangular 
distributions. 

The additive combination of two distributions with a different spread (different parameters "A" with "B" < "A" ), under 
similar assumptions would result in a trapezoidal distribution:  

 

 

 

 

 

 

 

 

The discontinuities in the slope correspond to: 

4 points  (- A - B)  (- A + B) (+ A - B) (+ A + B) 

and the corresponding spread ("foot print") is:  

from  (- A - B)   to   (+ A + B). 

 

In the above drawing, the rectangle in yellow colour corresponds to the original distribution of parameter  A  . 

 

As a result, it is clear that rectangular distributions ARE NOT STABLE in relation to additive combinations (it is shown 
in clause D.3.3.5.1.1 that normal distributions (Gaussian) are). 

  

 

 

 

Combining rectangular distributions  

(spreads A and B symmetrical around zero) 



 

ETSI 

ETSI TR 100 028-2 V1.4.1 (2001-12)151 

The properties of trapezoidal distributions corresponding to an additive combination can be easily found using the 
general properties given in clause D.3.3.3 of this annex: 

- the mean value is the sum of the means of the original distributions (zero in the drawing above); 

- the square of the standard deviation is the sum of the squares of the original standard deviations (RSSing). 

These two properties are valid as well when the original distributions are not centred, as it could have been shown also 
by direct calculations… 

D.1.3.3.2 Non symmetrical trapezoidal distributions 

Such distributions may be found as the result of very simple operations on distributions (e.g. results corresponding to 
inverse functions (see clause D.3.7), results of the linearization of the result of transforms operated on distributions such 
as the conversion into dBs and vice-versa).  

See clause D.3.8.4.2.4. 

Many other distributions presented in this clause are symmetrical around some axis … This is not the case here! 

As shown on the drawing, p(x) = 0 outside [A, B]. 

 

 

 

 

 

 

 

 

See also other clauses in D.3.8 and annex E. 

When such distributions are obtained as the result of some operation, the properties of the mean and standard deviation 
can be found using the general properties found in the various clauses of clause D.3 (e.g. D.3.3 in the case of additive 
combinations). 

The values of the first moments can also be evaluated directly, using the definitions found in clause D.1.2 (similar 
calculations have been performed a number of times in clause D.3). 

D.1.3.4 Gaussian distributions 

−∞ +∞

p x( )

p x
x

( ) exp= −1

2

2

2
2

σ ππππ σ( )
 

Mean value = 0 (in the case of the figure above);  Standard deviation = σ 

  

 

 

                                                    A 
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A more general expression is: 

2

2

2

)(

2

1 σ

πσ

cx

ey
−−

=  , for Gaussian Curves symmetrical around C, in which case the Mean value is C. 

 

The normal (or Gaussian) distribution is stable in respect to additive combinations (see clause D.3.3.5.1.1)… and the 
additive combination of an infinity of identical rectangular distributions converges into the normal distribution … 

This property is used extensively in clause D.5.6.2. 

 

In order to identify the correct coefficients for the equation corresponding to this distribution, let us start from a general 
form: 

2BxAey −=  

and then write two basic properties: 

dxAe Bx 2

1 −
+∞

∞−
∫=     (property of any probability density) 

dxAex Bx 222 −
+∞

∞−
∫=σ    (by definition, in the case when the curve is centred and the mean is  0). 

 

The first integral can be calculated as follows: 
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As a result: 

1
1

2
1

22 2222 ====
B
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B

AIAS πππ  

and: BA =2π  , while noting that  
BA

dxe Bx π==−
+∞

∞−
∫

12

   . 

The expression: 

BA
dxe Bx π==−

+∞

∞−
∫

12

  is used again later (in clause D.3.3.5.1.1). 

 

The second integral can then be used to provide the relation between A, B and  σ : 
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∫=σ  

Integrating by parts: 
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The expression of the normal distribution is, therefore: 

2

2

2

2

1 σ

πσ

x

ey
−

=  . 

It is interesting to perform this calculation in detail here, since in one way or another, similar types of calculation will be 
found over and over as soon as normal probability densities are handled. 

 

The drawing and the subsequent calculations addressed the case where the distribution is centred. 

Like rectangular distributions, normal distributions may have some offset, in which case the mean is not zero (i.e. equal 
to the offset value). 

D.1.3.5 Oblique pseudo-Gaussian distributions 

Such non-symmetric distributions can be obtained as the result of transformations on Gaussian distributions…e.g. in 
(approximations of) transformations from dBs to linear (or vice versa): see clause D.3.8. 

As shown in clause D.5.6.2 , the shape of a distribution has a direct effect on the relation between "expansion factors" 
and "confidence levels". 

D.1.3.6 'U' shaped distributions 
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Mean value = 0;  Standard deviation 
2

A=  . 

EXAMPLE: the "U" shaped distribution is used when sine functions are involved. This occurs with mismatch 
errors, temperature regulators and other sinusoidal cyclic variations. 

The equation of such distributions is: 

22

1

xA
y

−
=

π
 , with  -A < x < +A. 

Its basic properties are discussed in the following clauses. 

D.1.3.6.1 Can this be the expression of a probability density? 

First, it is clear that y ( x ) is positive. 

 

Second, let us evaluate: ∫
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Integrating by substitution, 
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So the two basic requirements are met. 

The expression given can, therefore, be a valid expression for a density of probability function. 

D.1.3.6.2 Variance 
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Integrating by parts, 
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Integrating i by parts, 
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Integrating the last term, 
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… the standard deviation quoted above … 
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D.1.3.7 Maximum value of the standard deviation for bound distributions 

In order to validate long calculations (e.g. approximations of Logs) it cal be useful to have, a priori, an idea of 
maximum values to be found. 

In the case of bound distributions, the maximum values are easy to find. 

Let  ( )p x  be a distribution where  ( ) 0p x =  outside [ , ]A A− +   

(it has been taken centred for the simplification of the presentation). 

As stated a number of times, already: 

( ) 1p x dx
+∞

−∞

=∫     (property of any probability density), and 

2 2 ( )xs x p x dx
+∞

−∞

= ∫    (by definition of    sx  ,  m   and  σσσσ ), and finally 

2 2 2
xs mσ= +   where  ( )m x p x dx

+∞

−∞

= ∫  . 

The second moment  can also be written as: 

0
2 2 2 2

0

( ) ( ) ( )xs x p x dx x p x dx x p x dx
+∞ +∞

−∞ −∞

= = +∫ ∫ ∫  . 

Noting that  ( ) 0p x =  outside [ , ]A A− +  , we get: 

0
2 2 2

0

( ) ( )
A

x

A

s x p x dx x p x dx
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−

= +∫ ∫ . 

 

The expression 2

0

( )
A

x p x dx
+

∫  is maximum for all covered contributions from  p ( x )  as far away as possible from  

0  and therefore close to  A …resulting in:  2 2

0 0

( ) ( )
A A

A p x dx A p x dx
+ +

=∫ ∫  . 

Likewise, the maximum for the negative contribution is: 

0 0
2 2( ) ( )

A A

A p x dx A p x dx
− −

=∫ ∫  . 

Combining the two parts we get, at the maximum: 
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And noting that   ( ) 1p x dx
+∞

−∞

=∫   we have finally: 

0
2 2 2 2 2

0

( ) ( ) ( )
A A

x

A A

s A p x dx A p x dx A p x dx A
+ +

− −

= + = =∫ ∫ ∫  . 

Noting that  
2 2 2

xs mσ= +  ,  
22 2

xs mσ = −   and in order to have a maximum standard deviation,  m  should 

be minimal (a centred symmetrical distribution would have had a mean equal to  0 ). 

 

So, finally, at the maximum: 
2 2 2

xs Aσ= = . 

D.1.3.8 Standard deviation for bound distributions (summary table) 

The values of the standard deviations of usual distributions having a "footprint" from  –A  to  + A can be summarized as 
follows: 

Distribution Maximum value at Maximum value reached Standard deviation 
Triangular Centre 1

A
 

6

A
 

Rectangular Centre 1

2A
 

3

A
 

U-Shaped Maximum at the edges 
Minimum in Centre 

Maximum unlimited 

Minimum     
1

Aπ
 2

A
 

Maximum value for bound 
Distributions 
(see clause D.1.3.7) 

Edges Unlimited 

1

A
 

 

A Gaussian has an unlimited "footprint" and cannot therefore be compared directly … 

For completeness, however, its characteristics have been recalled below, with the same format:  

Distribution Maximum value at Maximum value reached Standard deviation 
Gaussian Centre 1

2A π
 

1

A
 

Or: 
(another Gaussian) 

Centre 1

2A
 

same as rectangular above 
1,57

2

A A

π
≈  

 

D.2 Uncertainties and probability densities 
This clause of the present document is intended to show basic methodologies and the relations between measurement 
uncertainties and random variables. It uses definitions and intuitive approaches corresponding to both the definitions 
and clauses 4 and 5 of TR 100 028-1 [6]. 
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D.2.1 Examples of very simple systems and corresponding naïve 
(direct) analysis 

These examples are intended to establish a link between the various concepts (random variables, probability densities, 
uncertainties, etc.). 

In order to keep the text of these examples as simple as possible, simplifying assumptions have been made. It is 
understood that all effects other than those to be highlighted are considered negligible. Methods to cover complete 
system analysis are given in clause D.5 of this annex. 

D.2.1.1 Ohm's law 

D.2.1.1.1 Relations between Random Variables under Ohm's law 

D.2.1.1.1.1 Establishing the Relations between Random Variables 

For the purpose of this example, a current generator  G  is connected (in series) with a resistor having a resistance  R. 

V  is the voltage across the resistor. 

Generator  G  is providing current  i.  

I  is considered as a random variable characterized by  

its value  i  at a certain time and by its probability density  i (x): 

by definition, the probability  P of having  the random variable  I  having a value  i  such that 

   i1 < i < i2     is    ∫=
2

1

i

i

i(x)dxP   , and  dP = i(x) dx. 

For each value of  I, Ohm's law provides the value  v  of the random variable  V :   

for any value  i  ,   v = R i. 

Under these circumstances,  V  can be considered as a random variable for which the probability density,  v ( y ) ,  is 
also known. 

The way to evaluate  v ( y )  is quite simple: 

when the value of  I  is  i = i1  or   i2 ,  the value of  V  is  v = v1  or  v2  where   vk  =  R  ik   (  for  k = 1 or  2 ). 

The probability P of having    i1 <  i  < i2    is also that of having  v1 <  v  < v2   , 

which is also, by definition  of  v(y):  

   ∫=
2

1

v

v

v(y)dyP    , which can also be written   dP = v(y) dy . 

Therefore, the two values of dP can be related and :   dP = v(y) dy = i(x) dx. 

When the voltage across the resistor is y , the intensity is  x = y / R. 

In the same way, the effect corresponding to  dx  is  dy = R dx … and  dx = ( 1 / R ) dy. 
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Replacing, we get: 

dP = v(y) dy =  i(x) dx   =   i ( y / R ) (1 / R ) dy , which, in turn, gives: 

v ( y )  =  (1 / R )  i ( y / R) , 

the relation between the probability densities corresponding to the random variables I and V. 

In this example, great care has been taken to clearly designate the random variables and the values they can take… 

Obviously, some more synthetic presentation could have been used … as long as it is always clear for the reader what 
the various symbols do represent! 

Other types of presentations may be found later in this annex. 

The multiplication of a random variable by a constant has been presented in a more systematic manner in clause D.3.2. 

D.2.1.1.1.2 Verifications concerning Ohm's law 

When providing the definitions and "basic" characteristics of probability densities characterizing random variables, 2 
criteria had been expressed. A probability density,  p ( x )  ,in general, and in this case, the probability density 
associated with V ,   v ( y )  shall be such that: 

- 0≥v(y)  

- ∫
+∞

∞−

=1dyv(y)  

It is therefore wise to verify the 2 properties, which, in practise, could help detecting problems occurred during the 
calculations. 

Obviously, if    0≥∀ i(x)x ,  then  0≥v(y) . 

Concerning the second relation, verifications can be done on specific situations (for a probability density i(x) ) or in a 
more generic manner: 

∫
+∞

∞−

=dyv(y)   ∫
+∞

∞−

dyR)i(yR /)/1(  

By introducing  t = y / R ( which gives  dt = dy / R , and  dy =  R dt ) ,  this equation may be transformed into: 

 ∫
+∞

∞−

=dti(t)RR)/1(  ∫
+∞

∞−

=i(t)dtRR )/(  1∫
+∞

∞−

=i(t)dt . 

Which ensures that  v ( y )  can be a proper probability density function characterizing some random variable (hopefully 
V, should the above calculations be correct!). 

D.2.1.1.2 Uncertainties and the usage of Ohm's law 

The set up discussed in clause D.2.1.1.1 could have been used in order to measure the value of the resistor, having in 
hand a current generator (G) and a voltmeter. 

For this purpose, G would have been expected to deliver a known current  i0  and the voltage  v0  found, would have 
been supposed to provide the value of the resistor,  R0 : 

R0 = v0 / i0. 

Unfortunately, G does not provide exactly i0 , but it provides  i  , related to a random variable, I , of which only the 
probability density,  i ( x )  is known. 
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In order to simplify the discussion, the voltmeter is supposed to provide the true value of  v , the voltage across the 
resistor. 

In order to simplify also the discussion, the value of the resistor is also expected not to change during the measurement 
(it had been called  R0  to reflect this characteristic). 

The uncertainty of the measurement of the resistor is, in this case, the result of the uncertainties relating to i. 

In fact, in a practical case, the value measured by the voltmeter would have been mapped to a value in Ohms, using the 
sought relation between  R0 and i0 :   R0 = v / i0  =  v ( 1 / i0 ). Therefore the statistical properties of the voltage 
measured across the resistor  v ( y ) would have been mapped (multiplication by a constant factor ,  k = ( 1 / i0 )  )  to the 
results of the reading of the value of the resistance.   

Finally, the measured value of the resistance can be considered as a random variable, R , linked to the voltage 
measured, the random variable V ,  by  R = k V. 

The properties of  V  have been calculated above;  

its probability density is  v ( y ) , and: 

v ( y ) = (1 / R0 )  i ( y / R0). 

Similarly, noting that  R = k V  (in the same way as  V = R I  , see also clause D.3.1 ), the probability density  r ( z ) of 
R  can be expressed using function of  v ( y ) : 

r ( z ) = ( 1 / k )  v ( z / k) 

and finally    

r ( z ) = ( 1 / k )  v ( z / k ) = ( 1 / k ) ( 1 / R0 )  i ( z / k R0 ) = ( 1 / k R0 )  i ( z / k R0 )  

The statistical properties of  R  (probability density  r ( z ) ) are known as soon as the statistical properties of   I  , 
depending on the generator, are known … 

In short, the measurement uncertainty of the measurement is directly depending  upon   I  (and  i ( x )): 

by definition, the error made in the measurement of the value of the resistance is  ε , with  ε  =  z – R0. 

Therefore, the probability of the error having a particular value  ε  relates directly to  r ( z )  and, in turn, to  i ( x ) … 

ε ε ε ε  =  z – R0   with   r( z ) =  [ ( 1 / k R0 )  i ( z / k R0 ) ]    . 

The error , ε , can, beyond its probability density  ε (t)  be characterized by other statistical properties such as its mean 
value or its standard deviation. 

The value of such parameters can be calculated from the expression given above, using the general relations given in 
clause D.3, but it can be also calculated directly, as shown below (see clause D.2.1.1.3). 

The expression of the error, above, also shows that there may be some influence of the value of the measurand on the 
estimation of the uncertainty. This is further developed in clause D.4 where influence quantities are addressed. 

D.2.1.1.3 Examples concerning Ohm's law using particular distributions 

D.2.1.1.3.1 Rectangular distributions and the corresponding interpretation of uncertainties 

The properties of a rectangular distribution defined by a parameter  A  have been given in clause D.1.3. 

As a follow on from the example of the measurement of the resistor where:  

     r ( z ) =  r ( R0 + ε)ε)ε)ε)  =   ( 1 / k R0 )  i ( z / k R0 )  

special cases can be further discussed. 
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Let us assume that the probability density  i ( x )  is rectangular, centred around  i0  and having a value  1/2a  between 

  i0 – a  and  i0 + a  ( a  is given, for instance, in mA): 

r ( z ) , the probability density of having a particular value as "the measured value" will also be given by a rectangular 
distribution  

centred around     ( z / kR0 ) =  i0   �   z = i0  ( kR0 ) = R0; 

with boundaries for   z / kR0 = +  a    �    z  =  +  a R0 / i0    ; 

and having a density    ( 1 / 2a )( 1 / k R0 ) = i0  / ( 2a R0 )  . 

As a result, the "measurement error" can also be considered as a random variable, of which the probability of having 

a value, ε , ε , ε , ε ,   corresponds to a probability density function: 

- centred around            0 

- having a rectangular shape with boundaries at         +  a R0 / i0 

- and a density           i0  / (2a R0). 

The interpretation of these results could be two fold: 

- worst case approach    R0 = (v / i0 )  +  a R0 / i0     

- statistical approach    the value of the resistor is  R0  

and the probability of error has a standard deviation of   a R0 / i0   

divided by square root of  3   (providing the "measurement uncertainty" 

for some particular confidence level … See also clause D.5.6)   

(see also D.1.3.1 concerning the standard deviation of a rectangular distribution). 

The confidence level can be subsequently improved, by multiplying the value of the measurement uncertainty indicated 
above (multiplication by 1,96  in the case of normal distributions … as indicated in TR 100 028-1 [6], clause 4.1, in 
order to change the confidence level from 68,3 % to 95 %) …(see also clause D.5.6). 

It is clear from the above that the multiplication of the above value by square root of  3  would return  back the full span 
of the distribution (100 % confidence).  

In this case the span of the worst case approach and that of the statistical approach can both be easily calculated. 

D.2.1.1.3.2 Gaussian distributions and the corresponding interpretation of uncertainties 

Calculations similar to the above could be performed directly. 

However, it looks more practical to use the results obtained in D.3, in order to find the parameters of the uncertainty. 

In fact, it is possible to cut it short to: 

- random variable I   "standard deviation" ( the input given … )  : σσσσI 

- random variable V = RI    �          σσσσV  =   R0 σσσσI     

- random variable R = k V    �          σσσσR  =    k  σσσσV 

- random variable "measurement uncertainty"            σσσσ  =   σσσσR  =  ( R0 / i0 ) σσσσI  

The above presentation is, in fact independent of the distribution addressed … 



 

ETSI 

ETSI TR 100 028-2 V1.4.1 (2001-12)163 

One difference with clause D.2.1.1.3.1 is that in the case of Gaussian distributions, the "standard deviation",  σσσσ  , 
appears explicitly in the equation of the probability density function,  

2

2

2

2

1 σ

πσ

x

ey
−

=  

while it has to be calculated from parameter "A", in the case of rectangular distributions … 

Another difference is that, if random variable  I  has a Gaussian distribution, there is not, per say, a genuine "worst 
case" situation, since there is a non-zero probability of  i  taking any value, which would result in the measured value of 
the resistor … having also any value! (the value of the random variable in the case of rectangular distributions has lower 
and upper bounds, but not in the case of normal distributions). 

D.2.1.2 A basic voltmeter 

In order to penetrate further in the area of measurement uncertainties, let us consider how one could build a voltmeter. 

For the sake of the discussion, in order to build a single-scale voltmeter, two basic components could be assembled: 

- a resistor of value  R1 

- a micro-Amperemeter. 

In order to simplify the discussion: 

- the resistor could have been taken from a set of resistors given with a certain uncertainty (e.g. 2 % resistors) 

- the micro-Amperemeter can be considered not to introduce any further uncertainty. 

As an example, the micro-Amperemeter could have a full scale deflexion for 50 µA and an internal resistance of  
2 kilo Ohms (electro-mechanical) or infinite internal resistance (electronic device). 

The usage of a resistor  R1  of  200 kilo Ohms would cater for a full scale of 10 V. 

V = R I  and therefore  dV = I dR  + R dI  (i.e. "differentiation"). 

Or, noting that  V = R I  and dividing by  V  both sides: 

I

dI

R

dR

V

dV +=   (i.e. "logarithmic differentiation"). 

The micro-Amperemeter was not supposed to contribute for the uncertainty, therefore  dI = 0 , and: 

dV = I dR or  
R

dR

V

dV = . 

Should  dR  be the random variable  characterizing the resistor (i.e. by its probability density), it could be considered as 
having a rectangular distribution  (plus or minus 2 % of 200 000, which is plus or minus 4 kilo Ohms). 

Conversely, the random variable to be considered could have been  
R

dR
 and as a result, the distribution would also 

have been rectangular, expressed in percentage: plus or minus 2 %. 

Obviously, both expressions are equivalent. 

For the voltmeter, the performance could have been expressed in percent ("relative uncertainty"): 

- plus or minus 2 %. 

This would have corresponded to an "absolute uncertainty" of   200mV on a full scale deflexion. 

This presentation shows that a meter can be considered as a perfect device (providing some reading) coupled to some 
other set of components "responsible" for the uncertainty. 
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When using this voltmeter to evaluate some voltage, resistor  R1  could as well be incorporated in the rest of the test set 
up … This presentation has been further suggested in clause D.5. 

D.2.1.2.1 Building a multi-range voltmeter 

In the same way as resistor  R1  could have been used for a single-scale voltmeter, a set of resistors having different 
values could have been used in support of several ranges, e.g.: 

- resistor  R2  2 MegaOhms could be used for a 100 Volt range; and 

- resistor  R3  20 MegaOhms could be used for a 1000 Volt range. 

Should all the resistors be 2 %, then the performance of the Voltmeter would have been 2 % in all ranges. 

However, it is clear that the real value of each resistor  Rn  is not known, nor any of the actual ratios such as  

(resistor  Rn ) / (resistor  Rp ) .     

As a result, readings in the different scales of this voltmeter can be considered to have measurement uncertainties 
statistically independent. 

D.2.1.2.2 Correlations between measurements with different voltmeters 

Having in hand sets of resistors with the various values  Rn … Rp  allows for the building of several voltmeters with the 
same design, (i.e. as described above). 

Assuming that in each set of resistors, the actual resistance values are different, while respecting the 2 % uncertainty 
(rectangular distribution) clause (for a resistor the usual term would be 2 % tolerance), all the voltmeters would provide 
statistically independent readings in each of the scales, but always within the 2 % uncertainty (rectangular distribution). 

It can be interesting, however, to go a little further. 

Some measurements use substitution methods (see clause D.5). In this case, it can be important to know the statistical 
independence of the uncertainties relating to the various evaluations. 

When using the same voltmeter and the same range  :  uncertainty values are not statistically independent. 

When using the same voltmeter and different ranges :  uncertainty values are statistically independent. 

When using another voltmeter       :  uncertainty values are statistically independent. 

As a result, great care has to be taken when translating the test set up into the calculation of the uncertainty as two test 
set up and procedures almost identical can result in different calculations (see also clause D.3.4). 

Another situation can be found in the "Example clauses" of the present document: 

two attenuators are used in a test set up and are to be measured. The uncertainties corresponding to these two devices 
are to be treated in a different manner if the evaluation of their characteristics is statistically independent (i.e. measured 
with different instruments) or not (i.e. measured with the same instrument, same range, etc …). 

In the case of the Voltmeters "built" above, it is quite clear when uncertainties are independent or not (there is only one 
source of uncertainty) … in real life, the situation may be less clear … but, in any case, care should be taken in order to 
avoid clear mistakes … which may be a real problem, since such mistakes are almost impossible to be detect afterwards 
(it really depends on how the individual measurements were performed and several different results may be equally 
likely).  

As it is indicated in clause D.3.4, in general, the contribution of independent contributions are more favourable in terms 
of uncertainties: in case of doubt, it is therefore better to make the measurements which could have introduced some 
correlation with different instruments, in order to make it crystal clear that no correlations were introduced. 

Extreme care has therefore to be exercised in the case of substitution measurements where the effect may be totally 
opposite (the "aim of the game", in the case of substitution measurements, is to have two measurements correlated, as 
much as possible, in order to discard the majority of the contributions … by making "a difference" between two 
"consecutive" measurements); see also clause D.5. 
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D.2.1.3 Adding voltages 

This clause was intended to: 

- provide an example of addition of random variables (see D.3.3 for the corresponding theoretical approach) 

- give some practical support in order to continue the discussion started on D.2.1.2.2. 

Two resistors in series can be used as a voltage splitter. When the two resistors are supposed to be identical, the voltage 
across them is supposed to be identical. Such a set up could be used to increase the range of the home built voltmeter 
discussed above. 

However, in order to measure the voltage across one of these two identical resistors, Voltmeter(s) can be used in 
different ways. More precisely, the measurement can be made using one or two ("identical") voltmeters. 

As a result, in order to have an idea whether the uncertainties are correlated or not, several questions may be asked, e.g.: 

"Was the voltmeter used for both resistors the same, and what are the possible correlations between uncertainties ?". 

Clause D.2.4 addresses the question "independent or not" , which is fundamental, but is often forgotten. 

D.2.1.4 The Wheatstone Bridge 

This clause is intended to show ways of handling more complex systems … 

It also shows that the statement that "all measurements are based on linear operations" is not correct at all times. As a 
result, there are days when other operations than RSSing may have to be performed. 

Such bridges are often used to measure the value of an unknown  resistor  X  using a set of calibrated resistors. 

Assume the bridge is built using 3 calibrated resistors  P , Q , R  (used as a reference) and a meter  g  , powered by  e  . 

 

 

 

 

 

 

 

 

 

 

 

 

Appropriate bridges can also be used for the evaluation of capacitors and other impedances. 
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D.2.1.4.1 Fully balanced Bridge 

When the bridge is balanced, the current crossing  g  is zero. Under these circumstances: 

Q

RP
X = . 

By logarithmic differentiation we get: 

dX dP dR dQ

X P R Q
= + −  . 

This expression can interpreted as follows: 

small variations of  P , Q and R , dP ,  dQ ,  and  dR  will result in small variations  dX  of  X  . 

These small variations can be due differences between the value noted on the resistor and the actual value of the 
component. Such errors will, in turn, generate and error in the measurement: | dX |  will be the difference between the 
calculated value and the true value. 

Hard luck, the difference between the value noted on the resistor and the actual value of the component is generally not 
known (should it be known, then the true value should have been used!), and some idea of it is covered by the term 
uncertainty … 

In the worst case approach, the more unfavourable values of each contribution are to be used. 

As a result, the uncertainty on  X  ,  dX  is given by: 

dX dP dR dQ

X P R Q
= + +  . 

Should the uncertainty on all resistors be the same, then : 

3
dX dP

X P
=  . 

However, the probability that all components of the uncertainty are "pushing" the result in the same direction is small, if 
the various components do not have correlated properties. It can therefore be assumed that the "worst case" approach is, 
indeed, providing very conservative results. 

As done in other clauses before, it can be interesting, here also, to introduce the concept of random variables. 

A very simplistic approach would have been to say that  3
dX dP

X P
=  is relating two random variables: 

- one related  to the characteristic of the source of uncertainty  
dP

P
 , 

- one related  to the uncertainty of the measurement  
dX

X
 ; 

these two random variables being related by the relation 3
dX dP

X P
=  . 

The knowledge of the properties of the distribution of the source uncertainty would then immediately provide the 
sought results. Clause D.3.2 provides the relations between distributions obtained by multiplication by a constant, and 
associated properties. 
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Using such results would have provided expressions such as: 

2 29X Pσ σ=  , which relate the standard deviations of the 2 distributions involved. 

However, this approach would provide, still, a conservative view of the situation. 

In order to take full advantage of the usage of the concept of random variables, then the previous expression should 
have been used.: 

dX dP dR dQ

X P R Q
= + −  . 

A direct mapping with random variables: 

- 3 related  with the characteristic of the sources of uncertainty , e.g. 
dP

P
 , and 

- one related  with the uncertainty of the measurement  
dX

X
 , 

would have provided a linear relationship between these random variables. 

The knowledge of the properties of the distribution of the source uncertainties would then immediately provide the 
sought results. Clauses D.3.3 , D.3.4 and D.3.5 provide the relations between distributions, when obtained by linear 
operations and associated properties. 

Using such results would have provided expressions such as: 

2 2 2 2
X P Q Rσ σ σ σ= + +  , which relate the standard deviations of the 4 distributions involved. 

Should the uncertainty on all resistors be the same, then  this expression would become: 

2 23X Pσ σ=  . 

This expression recalls the expression found above, except that a factor of 3 has been introduced  

(or a factor of  3 between the standard deviations). 

Clause D.5 offers global approaches based on the principles indicated here. 

The calculations above were based on differentiation. However, the calculations could have been performed directly on  
P ,  Q  and  R , instead, using: 

Q

RP
X =  .  

In such case, instead of using the relations supporting linear expressions, clauses such as D.3.6 and D.3.7 should have 
been used… and, heroically, right results should have been obtained, at least once the particulars of each distribution 
would have been given. 

D.2.1.4.2 Bridge not fully balanced 

When the bridge is not fully balanced, the current across g is not zero any more and its value can be found as follows. 

Using Thévenin's theorem, solve for i, 
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Remove g and find VTh, 
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Remove e, replace with a short-circuit and find RTh looking back, 
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This expression is clearly more complex; however, by differentiation, it is easy to get some linear expression out of it... 
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This expression is very interesting due to the fact that, this time, the current  i  can be mapped into a random variable 
corresponding to the uncertainty of the test equipment. 

However, the approach used above (see clause D.2.1.4.1) can still be used: 

- identifications of the appropriate variables (including those referring to test equipment) 

- differentiation (makes it more easy, but is not really necessary) 

- mapping from electrical parameters to random variables 

- combination of the various random variables (corresponding to the various contributions to the uncertainty) 

- calculation of the sought results using the properties of these combinations, i.e. calculation of the combined 
uncertainty of the measurement considered. 

This is the basis of clause D.5 … 

D.2.1.5 Influence of temperature 

This clause is intended to discuss the effect of "influence quantities", and in this case, temperatures. 

It is also intended to highlight how the effects of these influence quantities can affect the uncertainties in different 
manners du to the possible correlation between the various effects. 

The equations above relate to 3 "known" (reference) resistors; each one may have its own reaction to temperature, but 
they may be "identical", as well.. 

In the case of a Wheatstone bridge, one can think of a rather small test set up. In this case, it can be assumed that the 
temperature is the same for all three resistors: so possibly similar equations (the reference resistors may be "identical") 
and correlated effects. 

However, bridges could also be used to measure high currents and clumsy EUTs. Dissipation of heat is not necessarily 
to be excluded, and is not necessarily the same in all 3 reference resistors. In some situations, it can also happen that 
each "reference" resistor is in a different environment. As a result temperatures may have to be taken as different or 
"independent" (and the effect of temperature on each resistor may also be different). 

The theoretical material needed to solve these situations can be found in clauses D.3.6 and D.4. 

It is however clear in this example that the experimental conditions may have a direct influence on the equations to be 
used. In this case, like in many others, the operator performing the experiments has to have an understanding of the 
work to be done and select the right equations, since he is the only one able to determine which variables are 
independent and which are not. It implies that the usage or predetermined calculations, examples or spread sheets has 
always to be handled with care. 

D.2.2 Modelling instruments 
In a measurement set up, in particular for the evaluation of radio equipment, can usually be found: 

- power supplies, signal generators, etc … (see discussion in D.1.1.1.1) 

- instruments allowing to evaluate some electrical signal (e.g. powermeters, voltmeters, etc…). 

It was already suggested in D.2.1.2 that a Voltmeter could be artificially split in two parts. More generally, most usual 
instruments (e.g. meters) can be considered as being composed of: 

- a perfect device (providing some reading)  

- coupled to some other set of components "responsible" for the uncertainty.  

These components could as well be incorporated in the rest of the test set up … and be analysed together with the 
"original test set up". 

This is one of the basis for the presentation which has been proposed in clause D.5. 
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D.2.3 Comparison with worst case methods 
Among all the types of distributions referred to in the present document, only the "Normal distributions" provide a non-
zero probability  p ( x )  for all the values of  x. All the others are "bound" (for values below a lower value of   x  and for 
values above some other value of  x ,  p ( x ) = 0  ). 

It is clear that a probability density corresponding to a random variable obtained by a linear combination of random 
variables (see clause D.3.4) which have a bound probability density, is also bound. 

In such case, it is possible to consider either a probabilistic/statistical approach or a worst case approach for the 
evaluation of the measurement uncertainties. 

In the case of non bound distributions, obviously, no worst case approach is possible! 

This is further discussed in clause D.5.6. 

D.2.4 Independent or not …that is the question! 

D.2.4.1 Different effects 

All through out this annex, the fact that "events and random variables are independent or not", has been addressed.  

This is due to the fact that the probability of having simultaneously two events is the product of the probabilities of 
having each event, if and only if these events are independent: 

Prob (A and B) = Prob (A)  x  Prob (B)  , when  A  and  B  are independent events. 

In the following clauses, this property is often written for small contributions, where the probability of events is given 
using probability densities:  

f ( x ) dx   x    g ( y ) dy   (corresponding to having both     f ( x ) dx   AND    g ( y ) dy   ). 

Should  C  and  D  correspond to a single event (referred to under two different names), it is obvious that: 

Prob (C and D) = Prob (C) = Prob (D)  which is fundamentally different from the above. 

D.2.4.2 Making the right choices 

It is therefore extremely important to identify among all the sources of uncertainty which are independent and which are 
not. For example, has some particular source of uncertainty (e.g. a cable or an attenuator) been used more than only 
once in the measurement ? 

If some component has been used twice, and if it can be considered that the resulting contribution to the uncertainty has 

not changed, then the corresponding contribution, in the calculation of the combined uncertainty is  2 σσσσ  as opposed to 

σσσσ  multiplied by square root of 2 …a value to be used when two "independent" sources of uncertainty are considered 
(e.g. when 2 different cables having the same characteristics have been used, instead of just only one). 

Through out the present document, random variables associated to parameters such as temperature or supply voltage 
have been addressed (relating for instance to "influence quantities"). 

It can be accepted, for example, that the same voltage being delivered by two independent power supplies correspond to 
two independent random variables … 

… while the room temperature of a small room could be considered as a unique random variable … unless there were 
good reasons to believe that the temperature in the room was not homogeneous, in which case, the effect of the 
temperature on various pieces of equipment of a particular test set up could be handled as relating to different and 
independent random variables. In many situations, only the person making the measurement is in a position to know 
which of the random variables concerned were independent and not. 
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As a result, it is important to identify such situations and to handle the calculations accordingly. The effects resulting 
from such mis-evaluation are further addressed in clause D.3.4.6: 

as shown in clause D.3.4.6.2  taking for independent uncertainty sources which are not, results in an under-estimation of 
the combined uncertainty. 

D.3 Combination of distributions 
Clause D.2 has highlighted a number of situations where operations on random variables had to be performed, and, in 
particular operations on 2 random variables ("combinations" of random variables). In the present clause, a systematic 
approach has been used, in order to provide the equations (and formulas) and the properties of a number of usual (and 
simple) operations on random variables, including combinations thereof. 

If for some particular problem the usage of other combinations is needed, an attempt could be made to use the tools 
developed below or methods based on the approaches shown below, in order to complete the corresponding calculations 
(see, in particular, clauses D.3.9, D.3.10, D.3.11 and the table in D.3.12). 

In this clause, results corresponding to some usual combinations have been presented in a systematic manner. However, 
the end of the clause provides more general results. As a consequence, the calculations corresponding to usual 
combinations have either been obtained directly, or as an application of more general methods, in order to show 
examples of how to use them … the results being independent of the method used, it was not felt necessary to show (all 
the time) how to use more than one method for each calculation! 

For information, typing and searching was done at the same time … however, using the text editor is much more time 
consuming than writing the equations by hand. After some time, the typing was therefore lagging substantially behind 
the searching, with implies that new thoughts may have been imported in clauses left behind. It is expected that the 
reader will not suffer from this effect. It is also expected that both forward and backward cross-references will help the 
reader. 

There may also be differences in the notations (symbols) used, compared with those of annex D.2: it was felt that, in 
order to make the text easier to read, in clause D.2, notations should be closer to their usage from the physicist point of 
view, while, for D.3, priority should be given to notations making the mathematical expressions easier to read and to 
handle … it is expected, anyhow, that when reaching D.4 , the reader is expected to be familiar enough with all the 
concepts, so that the notations (symbols) chosen will have little importance!  

As a result a further proposal is made in clause D.3.10.6. In order to implement this proposal, 2 different character sets 
have to be used. After discussions within ETSI, the set "Monotype Corsiva" has been chosen. It has been used to 
designate the name of random variables. It has to be noted, however, that the tools used to draft the present document 
do not seem to allow the use of this character set in "equation boxes". 

Finally, it has to be noted that this clause was written in a way to be as simple and clear as practical. It has not the 
mathematical accuracy that could be expected in a mathematical book, in particular functions are expected to be "good" 
functions…so it may be easy to find special cases and functions for which the general findings do not exactly apply. To 
avoid such risks, it would have been necessary, in particular, to define probabilistic spaces and functions in a more 
formal way, which could have been considered out of the scope of the present document. 

D.3.1 Addition of a constant to a random variable  
This clause deals with: 

 α+=FH , 

where  F  is a random variable and  H  the result of the addition to  F  of a constant αααα. 

Results in this clause could have been established directly; but it was felt as interesting to use this clause as an example 
of application of general expressions found in clause D.3.9. 
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D.3.1.1 Evaluation of the corresponding distribution 

Clause  D.3.9 provides the general expression of  h ( z ) , the probability density of  H , when some operation ( g ) has 
been performed on a random variable,  F  . The resulting probability density  is given as: 

))(('

))((
1

1

zgg

zgf
h(z)

−

−

=    , 

where   z = g ( x )   and (z)gx 1−= (the reciprocal of  g … has sometimes been expressed using the notation " °" ,  

giving  x = g° ( z )  as a result of keyboard limitations …but it is more usually expressed as  (z)gx 1−=  ). 

In this particular case: 

g | x  �  z =  x + αααα    

| F  �  H = F  + αααα    

 

g' | x  �  1     (the derivative function of  g) 

 

g-1 | z   �  x  =   z  -  αααα        (the reciprocal function of  g ).... 

 

As a result: 

))(('

))((
1

1

zgg

zgf
h(z) −

−

=
1

)( α−= zf
  , or  )( α−= zfh(z)  . 

 

In the expression above  g' > 0 …  so there is no special care to be taken in relation to the absolute values found with 
the expressions discussed in this clause. 

The relation between the probability densities corresponding to the random variables  F  and  H , 

is therefore:   )()( α−= zfzh  . 

D.3.1.2 Verification 

It is obvious that: 

- ∫
+∞

∞−

=1dzh(z)  since the transformation is a simple translation; 

- and the sign of  h  is that of  f  (positive). 

The two criteria are, therefore, met. 
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D.3.1.3 Means and standard deviations 

As a result of the general expression found in clause D.3.9,  

dxxfxgmh )()(∫
+∞

∞−

= dxxfx )()(∫
+∞

∞−

+= α dxxfx )()(∫
+∞

∞−

= dxxf )()( ∫
+∞

∞−

+ α dxxfx )(∫
+∞

∞−

= +  α α α α 1 

and the mean value, mh, is therefore: 

mh = mf + αααα        .... 

In the same way, 

dxxfxgsh )()(22

∫
+∞

∞−

= dxxfx )()( 2
∫

+∞

∞−

+= α dxxfx )(2
∫

+∞

∞−

=  + dxxfx )(2∫
+∞

∞−

α  + dxxf )(2
∫

+∞

∞−

α  

and therefore: 

sh² = sf² + 2 α α α α mf  + αααα² . 

As indicated in clause D.1.2 (definitions)  

σσσσh² = sh² - mh²  

and, similarly,  σσσσf² = sf² - mf²  ;  therefore , 

σσσσh² = sh² - mh²  =  sf² + 2 α α α α mf  + αααα²  -  mh²…= sf² + 2 α α α α mf  + αααα²  -  ( mf + αααα )²  =   sf² - mf² = σσσσf² 

and  the "standard deviation" σσσσh  is, finally: 

σσσσh =  σσσσf   (the standard deviation is unchanged). 

D.3.1.4 Examples of usage  

The conclusion of the paragraph above is that "the standard deviation is unchanged". As a result, in the examples found 
in the present document, practical situations where this clause would have been used, may have been overlooked!  

D.3.1.5 Examples of conversion 

An area where "radio" people often make conversions is the level in dBs. Some prefer dBm other dBµV, etc … and the 
conversion between such values is by the addition of a constant (a topic covered by the present clause). 

D 3.2  Multiplication of a random variable by a constant factor 

This clause deals with      FH λ=  , 

where F  is a random variable and  H  the result of the multiplication of  F  by a constant factor  λλλλ . 

It is supposed that   λλλλ  is not equal to  0 (zero). 

This clause is, in fact, very important: it shows how to handle multiplications by positive or negative expressions, a 
topic which will be discuss a number of times, later, in this annex. 
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D.3.2.1 Evaluation of the corresponding distribution 

When  F  is a random variable characterized by the fact that the probability of  F  having a particular value  x  is given 
by the probability density  f ( x ) , then, by definition: 

the probability Pf of having  the random variable  F  having a value  x  such that: 

   x1 < x < x2     is    ∫=
2

1

x

x

f f(x)dxP   . 

Similarly, we can consider ∫
∞−

=
x

f dtf(t)xP )(  , 

and therefore (by differentiation)    dPf = f ( x ) dx  . 

Should  H  be the random variable resulting from the multiplication  of   F  by  λλλλ  ,    

then, with the current notations, its probability density is    h ( z ) ,    to be evaluated. 

For each value  x  of  F , the value  z  of the random variable  H  is  : z = λλλλ x . 

D.3.2.1.1 Case λλλλ  positive 

In the following, λλλλ is supposed to be a positive constant. 

The way to evaluate   h ( z )  is very simple: 

when  the value of  F  is  x = x1  or   x2 ,  the value of  H  is  z = z1  or  z2  where   zk  =  λλλλ  xk   (  for  k = 1 or  2 ). 

The probability  P  of having    x1 <  x  < x2    is therefore also that of having   z1 <  z  < z2 , 

which is also, by definition  of  h ( z ):  

   ∫=
2

1

z

z

h(z)dzP    . 

This property can also be written as   dP  =  h ( z ) dz  (by differentiation, as it was done for  Pf  , above). 

Therefore, the two values of  dP can be related and :   dP = h ( z ) dz  =  f ( x ) dx . 

When the value of  H  is  z , the value  of   x  is  x = z /  λλλλ  . 

In the same way, when λλλλ is positive , dx  is corresponding to  dz =  λλλλ  dx … and  dx = ( 1 /  λλλλ  ) dz . 

Replacing, we get: 

 dP = h ( z ) dz =  f ( x ) dx   =   f ( z / λλλλ ) (1 / λλλλ ) dz , which, in turn, gives: 

h ( z ) = ( 1 / λλλλ )  f ( z / λλλλ ) , 

the relation between the probability densities corresponding to the random variables  F  and  H. 



 

ETSI 

ETSI TR 100 028-2 V1.4.1 (2001-12)176 

D.3.2.1.2 Case λλλλ negative 

Doing the same calculation as above, while noting that:  

- multiplying inequalities by negative numbers swaps the inequality signs,  

- and that, in the case of intervals, the leftmost value is expected to be smaller than the rightmost value, 

- and that, finally, in this particular case (λλλλ is now supposed to be negative) the correspondence between k = 1  
and  2 have to be swapped for  x  and  z , we get: 

h ( z ) = - ( 1 / λλλλ )  f ( z / λλλλ ) 

D.3.2.1.3 Conclusion 

Combining the two results found above we get the final result: 

)(
1

)(
λλ
z

fzh = . 

D.3.2.2 Verifications 

It is clear, noting: 

- the case where λλλλ is positive,  

- and also that  
1

λ
  is positive when  λλλλ  is negative,  

that in all cases: 

 0≥h(z) . 

What then for the other requirement ? 

 ∫
+∞

∞−

=1dzh(z)  ? 

When  λλλλ is positive , replacing  h  by its expression using  f  and then by substitution 

writing that  x = z / λλλλ (and therefore  dx = dz / λλλλ  ) 

we get: 

1
1

)(
1

∫∫∫∫
+∞

∞−

+∞

∞−

+∞

∞−

+∞

∞−

==== dxf(x)dxf(x)dz
z

fdzh(z) λ
λλλ

. 

When  λλλλ  is negative  then the use of  ε can be useful.  

As indicated in clause D.3.10.3, for  λλλλ  negative the value of  εεεε  is  -1 

(by definition  | ε | = 1  and ε has the sign of  λλλλ ). 

The change of variable indicated above inverts upper and lower bounds in the integration. As a result we get: 

( ) 11 ∫∫∫∫∫
+∞

∞−

−∞

∞+

−∞

∞+

−∞

∞+

+∞

∞−

==−=== dxf(x)dxf(x)dxf(x)dxf(x)dzh(z) ε
λε
λ

. 
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This type of calculation will be found a number of times in this annex (e.g. in clause D.10). 

D.3.2.3 Means and standard deviations 

Once the definition has been written and simple calculations completed (exactly as above), 

it can be found that the mean value, mh , is: 

mh = λλλλ mf    (whether λλλλ is positive or negative). 

As an example, let's make the calculation for  λλλλ <  0  (and calling  y  the variable): 

dy)
y

f(ydyh(y)ymh λλ
1−== ∫∫

+∞

∞−

+∞

∞−

 

Should   x   be defined as  x  =  y / λλλλ , we get  dx  = dy / λλλλ , and 

fh mdxf(x)xdxf(x)xdy)
y

f(ym λλλ
λλ

+=+=−=−= ∫∫∫
+∞

∞−

−∞

∞+

+∞

∞−

1
 

Similarly,  it can be easily shown that "standard deviation" σσσσh  is such that: 

σσσσh² = λλλλ² σσσσf²  . 

For positive values of  λλλλ , without risk, it can be written that  σσσσh = λλλλ σσσσf   . However, in order to avoid problems with 
negative values, when  λλλλ  is negative, it can be as easy to use the expression above (σσσσh² = λλλλ² σσσσf² ); after all, for the 
purpose of RSSing, which is what has been done all over the present document, the expression needed is  σσσσh². 

D.3.2.4 Examples of usage 

Properties related to multiplications by constants have already been used in clause D.2.1.4 (relating to the Wheatstone 
bridge)… 

D.3.2.5 Examples of conversions 

In the radio world, a wide range of units is often used: e.g. µV, mV, V … A multiplicative factor of 1000 is therefore 
often found.  

This factor may also be found when handling the corresponding standard deviations. (It is not surprising, but cannot be 
taken for granted before any evidence is given! The usage of units in a probabilistic environment is also discussed in 
clause D.3.10.7). 

D.3.3 Sums (additions) of random variables 
This clause deals with 

 GFH += , 

where  F  and  G  are independent random variables and  H  is a combination (additive) thereof. 
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D.3.3.1 Evaluation of the corresponding distribution 

When  F  is a random variable characterized by the fact that the probability of  F  having a particular value  x  is given 
by the probability density  f ( x ) , then, by definition: 

the probability  Pf  of the random variable  F  having a value  x  such that: 

   x1 < x < x2     is    ∫=
2

1

x

x

f f(x)dxP   . 

Similarly, we can consider ∫
∞−

=
x

f dtf(t)xP )(  , 

and therefore (by differentiation)    dPf = f ( x ) dx  . 

When  G  is also a random variable, characterized by the fact that the probability of  G  having a particular value  y  is 
given by the probability density  g ( y ) , then, by definition: 

the probability  Pg of  the random variable G  having a value  y  such that 

   y1 < y < y2     is    ∫=
2

1

y

y

g g(y)dyP   . 

Similarly, we can consider ∫
∞−

=
y

g dtg(t)yP )(  , 

and therefore (by differentiation)    dPg = g( y ) dy  . 

Should  H  be the random variable resulting from the addition  of   F  and  G ,    

then its probability density   h ( z ) ,    is to be evaluated. 

 

For each value  x  of  F  and   y  of  G , the value  z  of the random variable  H  is  : z =  x  +  y . 

 

The way to evaluate   h ( z )  is simple: 

the probability of having the value of  F  within a very small interval [x , x + dx]  is  f ( x ) dx   ; 

similarly, the probability of having the value of  G  within a small interval   [y1 ,  y2]   

is  g( y ) ( y2 - y1 ) = g ( y ) Dy  where   Dy = y2 - y1 ,  

and where it is assumed that    g( y1 ) = g ( y2 ) = g ( y ) ( is a small interval); 

under both circumstances, we get  the value of   H  within     [z1  , z2]   where  zi  = x + yi 

 (neglecting  dx ,  very small compared with  Dy ) 

 and the probability of such an event (the contribution of  dx  in  h ( z ) )  is     g ( y ) Dy  f ( x ) dx 

(the probability of having both events is the product of the probability of having each event, when the events are 
independent). 
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When  Dz = z2 - z1 , by definition,  h ( z ) Dz  is the probability of having the value of  H within  [ z1, z2 ]  , and is 
therefore, the sum of the probabilities of all the individual contributions, corresponding to all values of  x : 

∫
+∞

∞−

= dxxfDyygDzzh )()()(  . 

Since   Dz = z2 - z1 = x + y2 – ( x + y1) = y2 – y1 = Dy  , 

we have   Dz = Dy   and noting that     y = z – x   , the integral above becomes 

∫
+∞

∞−

−= dxxfDzxzgDzzh )()()(  

which can be simplified into     

∫
+∞

∞−

−= dxxfxzgzh )()()(  . 

This expression provides the value of  h ( z )  as a function of  f ( x )  and g ( y ) … which is the relation between the 
probability densities corresponding to the random variables F ,  G  and  H. 

NOTE: The result given above, could also have been found using the concept of substitutions discussed in clause 
D.3.10.3 …  

In this case, the probability of having simultaneously two independent events is the product of the two corresponding 
probabilities; therefore, it could have been written that: 

∫
+∞

∞−

= dxxfygzh )()()( , while yxz += . 

Using the properties of substitutions given in clause D.3.10.3,  y  could have been replaced as follows: 

xzyyxz −=⇒+=  , and noting that the corresponding derivative function is  1  (see D.3.10.3), 

as a result we find: 

∫
+∞

∞−

−= dxxfxzgzh )()()(  . 

D.3.3.2 Verifications 

When providing the definitions and characteristics of probability densities characterizing random variables, 2 criteria 
had been expressed. The probability density associated with H , h ( z ) shall be such that: 

- 0≥h(z)  

- ∫
+∞

∞−

=1dzh(z)  

It is therefore wise to verify the 2 properties, which, in practise, could help detecting problems occurred during the 
calculations. 

Obviously, when   0≥∀ f(x)x   and  0≥∀ g(y)y    

then  0( ≥z)h . 
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Concerning the second relation, verifications can be done as follows: 

∫
+∞

∞−

=dzh(z)   =−∫∫
+∞

∞−

+∞

∞−

dzdxf(x)xzg )( dxdzxzgxf ∫∫
+∞

∞−

+∞

∞−

− ])([)(   

By introducing  t = z – x  ( � dt = dz  , where  x  is considered as a constant) ,  this equation may be transformed into: 

 ∫
+∞

∞−

=dzh(z)  ∫ ∫
+∞

∞−

+∞

∞−

=dxdttgxf ])([)(  ∫
+∞

∞−

=dxxf ]1[)(  1∫
+∞

∞−

=f(x)dx . 

Which ensures that  h ( z )  can be a proper probability density function characterizing some random variable (hopefully 
H, should the calculations in D.3.3.1 be correct!). 

D.3.3.3 Means and standard deviations 

The method used in the calculations of clause D.3.5.3 (which were fully expanded) can also be used in this case … 

with the change of variable   :  t  = z – x  ; 

and the results are two fold: 

- the mean value, mh , is: 

mh = mf + mg 

- and "standard deviation"σσσσh  is: 

σσσσh
2 = σσσσf

2 + σσσσg
2 

(Similar calculations have been fully expanded in cases where great care was needed. See other usual operations 
(e.g. multiplications) in clause D.3.) 

D.3.3.4 Examples 

This last expression is certainly the expression which has been more often used in the present document:  

it is the basis for "RSSing" … 

D.3.3.5 Adding several distributions 

The corresponding effects are very different from case to case …as shown in clauses D.1.3.2 and D.1.3.3, the addition 
of two rectangular distributions can generate either trapezoidal or triangular distributions. The addition of several 
rectangular distributions is further addressed in clause D.3.3.5.2. 

Clause D.3.3.5.2.2  provides an interesting result relating to the addition of an infinite number of rectangular 
distributions. 

D.3.3.5.1 Adding Normal distributions 

D.3.3.5.1.1 Using the expressions giving the probability density 

D.3.3.5.1.1.1 Case where two identical Normal distributions are added 

Let us consider two Normal (Gaussian) distributions having the same standard deviation and no offset: 

2

22
1

1

2

x

y e σ

σ π
−

=  ; and 
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2

22
2

1

2

x

y e σ

σ π
−

=  ; corresponding to two independent random variables. 

Clause D.3.3.1 provides: 

∫
+∞

∞−

−= dxxfxzgzh )()()( . 

as the distribution corresponding to the sum of the two independent random variables. 

With appropriate notations, we get: 

2 2

2 2

( )

2 21 1
( )

2 2

z x x

h z e e dxσ σ

σ π σ π

−+∞ − −

−∞

= ∫  ; 

Simplifying  : 

2 2

2 2

( )

2 2
2

1
( )

2

z x x

h z e e dxσ σ

π σ

−+∞ − −

−∞

= ∫  ; and 

2 2

2 2

( )

2 2

2

1
( )

2

z x x

h z e dxσ σ

π σ

 −+∞ − + 
  

−∞

= ∫  ; or  

2 2
2

1
( )

2
2

1
( )

2

z x x

h z e dxσ

π σ

+∞  − − + 

−∞

= ∫ .  

The calculation of the squares provides: 

2 2
2

1
2 2

2
2

1
( )

2

z zx x

h z e dxσ

π σ

+∞  − − + 

−∞

= ∫ . 

Reorganizing, and noting the beginning of a square starting with  x2  - z x : 

2 2
2 2

2

1
2( ) 2

4 42

2

1
( )

2

z z
x z x z

h z e dxσ

π σ

 +∞ − − + + − 
  

−∞

= ∫  or 

 

2
2

2

1
2( )

2 22

2

1
( )

2

z z
x

h z e dxσ

π σ

 +∞ − − + 
  

−∞

= ∫  . Reassembling differently we get 

2
2

2 2

2( ) 12
22 2

2

1
( )

2

z
x z

h z e e dxσ σ

π σ

−+∞ − −

−∞

= ∫         and, separating what is "constant" (in relation to the integral) 

2
2

2 2

2( )1 2
22 2

2

1
( )

2

z
xz

h z e e dxσ σ

π σ

−+∞− −

−∞

= ∫  . 
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This expression is composed clearly of a first part, which looks like the expression of some Gaussian, multiplied by 

some coefficient  K  where 

2

2

2( )
2

2

z
x

K e dxσ

−+∞ −

−∞

= ∫  . 

Noting that  
2Bxe dx

B

π+∞
−

−∞

=∫   (as shown in clause D.1.3.4) 

and that a simple variable change ( X = x – z / 2)  in the integral providing  K  can give:  

2

2

2

2

X

K e dXσ
+∞ −

−∞

= ∫  , it comes that 
2

1
B

σ
=  and 

K
B

π σ π= =  . Replacing in the expression of  h (z )  we get: 

2
2

2 2

2( )1 2
22 2

2

1
( )

2

z
xz

h z e e dxσ σ

π σ

−+∞− −

−∞

= ∫ =

2

2

1

22
2

1

2

z

e Kσ

π σ
−

 

22

22

1
2( 2 )22

2

1 1

2 2 2

zz

e e σσ σ π
π σ σ π

−−
= =  . 

So we finally have: 

2

22( 2 )1
( )

( 2) 2

z

h z e σ

σ π

−

=  which is the expression of a Normal distribution having  

2σ  as its standard deviation. 

 

This calculation shows that, under these specific conditions (i.e. the two distributions are identical and have no offset), 

the distribution corresponding to the addition of two Normal distributions is another Normal distribution having  2σ   
as its standard deviation. 

It can be noted that the value found for the standard deviation ( 2σ  ) is consistent with the general expression given 
in D.3.3.3 … 

D.3.3.5.1.1.2 Case where two identical Normal distributions with different offsets are added 

Let us consider two Normal (Gaussian) distributions having the same standard deviation and different offsets: 

( )
2

2
1

2
1

2

1 σ

πσ

xx

ey
−

−
=  and 

( )
2

2
2

2
2

2

1 σ

πσ

xx

ey
−−

=  , corresponding to two independent random variables. 
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As above, clause D.3.3.1 provides: 

∫
+∞

∞−

−= dxxfxzgzh )()()(  

as the distribution corresponding to the sum of the two independent random variables. 

With corresponding notations, we get, calculating as above: 

( ) ( )2 2
1 2

2 2

( )

2 21 1
( )

2 2

z x x x x

h z e e dxσ σ

σ π σ π

− − −+∞ − −

−∞

= ∫  .  Simplifying: 

( ) ( )2 2
1 2

2 2

( )

2 2
2

1
( )

2

z x x x x

h z e e dxσ σ

π σ

− − −+∞ − −

−∞

= ∫  and 

( ) ( )2 2
1 2

2 2

( )

2 2

2

1
( )

2

z x x x x

h z e dx
σ σ

π σ

 − − −
 +∞ − +
  

−∞

= ∫  or  

( ) ( )2 2
1 22

1

2
2

1
( )

2

z x x x x

h z e dxσ

π σ

+∞  − − − + −  

−∞

= ∫ .  

The calculation of the squares provides: 

2 22 2 2
1 1 1 2 22

1
2 2 2

2
2

1
( )

2

z x x zx xx zx x xx x

h z e dxσ

π σ

+∞  − + + − + − + − +
 

−∞

= ∫ . 

Reorganizing: 

2 22 2
1 2 1 1 212

1
2 2 2 2 2

2
2

1
( )

2

x zx xx xx zx z x x

h z e dxσ

π σ

+∞  − − + − − + + +
 

−∞

= ∫ . 

And calculating, as above: 

2 22 2
1 2 1 1 22

1
2( ) 2

2
2

1
( )

2

x zx xx xx zx z x x

h z e dxσ

π σ

+∞  − − + − − + + +
 

−∞

= ∫   , and 

2 22 2
1 2 1 1 22

1
2( ) 2

2
2

1
( )

2

x zx xx xx zx z x x

h z e dxσ

π σ

+∞  − − + − − + + +
 

−∞

= ∫   , or reorganizing 

2 22 2 21 2
1 2 1 2 1 1 22

( )1 2
2( ( ) ) ( ) 2

4 42
2

1
( )

2

x x z
x x x x z x x z zx z x x

h z e dxσ

π σ

− − +∞ − + − − + − − − − + + + 
 

−∞

= ∫  

2
2 2 2 22 21 2

1 2 1 1 2 2 1 1 22

( )1 1
2 ( 2 2 2 ) 2

2 22

2

1
( )

2

x x z
x x x z zx x x zx zx z x x

h z e dx
σ

π σ

 − − +∞ − + − + + − − + − + + +  
   

−∞

= ∫  

2
2 2 2 22 21 2

1 2 1 1 2 2 1 1 22

( )1 1 1 1
2 ( ) 2

2 2 2 22

2

1
( )

2

x x z
x x x z zx x x zx zx z x x

h z e dx
σ

π σ

 − − +∞ − + − + + − − + − + + +  
   

−∞

= ∫  
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2
2 2 2 22 21 2

1 2 1 1 2 2 1 1 22

( )1 1 1 1
2 2

2 2 2 22

2

1
( )

2

x x z
x x x z zx x x zx zx z x x

h z e dx
σ

π σ

 − − +∞ − + − − − + + − − + + +  
   

−∞

= ∫  

2
2 2 21 2

1 2 1 2 2 12

( )1 1 1 1
2

2 2 2 22

2

1
( )

2

x x z
x x x z x x zx zx

h z e dx
σ

π σ

 − − +∞ − + + + + + − −  
   

−∞

= ∫  

2
2 2 21 2

1 2 1 2 2 12

( )1 1
2 2 2 2

2 22

2

1
( )

2

x x z
x x x z x x zx zx

h z e dx
σ

π σ

 − −   +∞ − + + + + + − −       

−∞

= ∫  

[ ]
2

21 2
1 22

( )1 1
2 ( )

2 22

2

1
( )

2

x x z
x z x x

h z e dx
σ

π σ

 − − +∞ − + + − +  
   

−∞

= ∫  . 

As in the calculation above, it is easy to split this integral in several parts; and using the above methods and results we 
get: 

[ ]

2
1 2

2
1 22 2

( )
2

1 1 2( )
22 2

2

1
( )

2

x x z
x

z x x

h z e e dxσ σ

π σ

− − +   +∞  − − + −  

−∞

= ∫  … 

and finally : 

( )2
1 2

2

( )

2( 2 )1
( )

( 2) 2

z x x

h z e σ

σ π

− +
−

=  which is the expression of a Normal distribution having  

2σ  as its standard deviation and an offset equal to  1 2x x+ . 

This calculation shows that, under these specific conditions (i.e. same standard deviation and different offsets), the 

distribution corresponding to the addition of two Normal distributions is another Normal distribution having  2σ   as 
its standard deviation and an offset equal to the sum of the offsets. 

The values of the resulting standard deviation and offset are consistent with the general expression given in D.3.3.3 … 

D.3.3.5.1.1.3 Case of two Normal distributions having different standard deviations  

Let us consider two Normal (Gaussian) distributions having different standard deviations and no offset: 

2

2
12

1

1

1

2

x

y e σ

σ π

−

=  and 

2

2
22

2

2

1

2

x

y e σ

σ π

−

=  , corresponding to two independent random variables. 

Clause D.3.3.1 provides  ∫
+∞

∞−

−= dxxfxzgzh )()()(   

as the distribution corresponding to the sum of the two independent random variables. 
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With corresponding notations, we get: 

2 2

2 2
1 2

( )

2 2

1 2

1 1
( )

2 2

z x x

h z e e dxσ σ

σ π σ π

−+∞ − −

−∞

= ∫  . 

Simplifying  :  

2 2

2 2
1 2

( )

2 2

1 2

1
( )

2

z x x

h z e e dxσ σ

π σ σ

−+∞ − −

−∞

= ∫   and 

2 2

2 2
1 2

( )

2 2

1 2

1
( )

2

z x x

h z e dxσ σ

π σ σ

 −+∞ − + 
  

−∞

= ∫   or  

2 22 2
2 12 2

1 2

1
( )

2

1 2

1
( )

2

z x x

h z e dx
σ σ

σ σ

π σ σ

+∞  − − +
 

−∞

= ∫ .  

The calculation of the squares provides: 

2 2 2 22 2
2 2 1 22 2

1 2

1
2 ( )

2

1 2

1
( )

2

z zx x

h z e dx
σ σ σ σ

σ σ

π σ σ

+∞  − − + +
 

−∞

= ∫ . 

Reorganizing, and noting again the beginning of a square starting with  x2 : 

2 4 42 2
2 2 22 22 2 2

1 2 22 2 2 2 2 2 2 22
1 2 1 2 1 2 1 2

21
( )

2 ( ) ( ) ( )

1 2

1
( )

2

z x z z
x z

h z e dx

σ σ σσ σ σ
σ σ σ σ σ σ σ σ

π σ σ

  
+∞ − + − + − +  

+ + +    

−∞

= ∫  or 

 

22 4 2
2 2 2 22 2

1 2 22 2 2 2 2 2
1 2 1 2 1 2

1
( )

2 ( ) ( )

1 2

1
( )

2

z z
x z

h z e dx

σ σσ σ σ
σ σ σ σ σ σ

π σ σ

  
 − + − − + +∞  + +   

−∞

= ∫  

 

22 2 2 2 42 2
2 2 2 2 1 2 2

1 22 2 2 2 2 2
1 2 1 2 1 2

( )1
( )

2 ( ) ( )

1 2

1
( )

2

z z z
x

h z e dx

σ σ σ σ σσ σ
σ σ σ σ σ σ

π σ σ

   + − − + − + +∞  + +   

−∞

= ∫  

Reassembling differently, simplifying and separating what is constant, we get: 

22 2 2 2 22
2 1 1 2 2

2 2 2 2 2 2 2 2
1 2 1 2 1 2 1 2

( )1

2 ( ) 2 ( )

1 2

1
( )

2

z z
x

h z e e dx

σ σ σ σ σ
σ σ σ σ σ σ σ σ

π σ σ

   ++∞− − −   
+ +      

−∞

= ∫  or 

22 2 22
1 2 2

2 2 2 2 2 2
1 2 1 2 1 2

( )1

2 ( ) 2 ( )

1 2

1
( )

2

zz
x

h z e e dx

σ σ σ
σ σ σ σ σ σ

π σ σ

   ++∞− − −   
+ +      

−∞

= ∫  . 
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This expression is composed clearly of a first part, which looks like the expression of some Gaussian, multiplied by 

some coefficient  K  where 

22 2 2
1 2 2

2 2 2 2
1 2 1 2

( )

2 ( )

z
x

K e dx

σ σ σ
σ σ σ σ

 ++∞ − − 
+  

−∞

= ∫  . 

Noting that  
2Bxe dx

B

π+∞
−

−∞

=∫   (as shown in D.1.3.4) 

and that a simple variable change ( X = x – z / 2)  in the integral providing  K  can give:  

2 2
21 2

2 2
1 2

( )

2
X

K e dx
σ σ

σ σ
++∞ −

−∞

= ∫ , it comes that  

2 2
1 2

2 2
1 2

( )

2
B

σ σ
σ σ

+=  and 

2 2
1 2

2 2 2 2
1 2 1 2

2 2
1 2

2

( ) ( )

2

K
B

π π πσ σ
σ σ σ σ

σ σ

= = =
+ +

 .  

Replacing in the expression of  h (z )  we get: 

2

2 2
1 2

1 2 2
2 ( ) 1 2

2 2
1 2 1 2

1 2
( )

2 ( )

z

h z e σ σ πσ σ
π σ σ σ σ

 
−  

+  =
+

  which (hopefully!) can be simplified as: 

2

2 2
1 2

1

2 ( )

2 2
1 2

1
( )

(2 )( )

z

h z e σ σ

π σ σ

 
−  

+  =
+

 . 

 

So we finally get   

2

2 2
1 2

1

2 ( )

2 2
1 2

1
( )

(2 )( )

z

h z e σ σ

π σ σ

 
−  

+  =
+

 which is the expression of a good Gaussian 

(Normal) distribution having  
2 2

1 2( )σ σ+  as its standard deviation. 

 

This calculation shows that, under these specific conditions (i.e. no offset and different standard deviations), the 
distribution corresponding to the addition of two Normal distributions is another Normal distribution having  

2 2
1 2( )σ σ+   as its standard deviation. 

The value of   
2 2

1 2( )σ σ+   for the standard deviation is consistent with  the more general expression given in 

D.3.3.3 … 

D.3.3.5.1.1.4 Case of two different Normal distributions  

Anyone willing to calculate the general case (and willing also to possibly crash his word processor a number of times 
(which has occurred while typing clause D.3.3.5.1.1 , a clause with less than 300 k bytes, with Microsoft ™ Word 97 
(on Windows 95), with or without Math Type version 4 installed, with a diagnostic like "unable to save file: not enough 
space on disk" while there were more than one hundred Mbytes on the hard disk)…) could try and write the 
corresponding equations … and would probably find (one day) the correct result. 

However, it could be quite useless …and painful. 



 

ETSI 

ETSI TR 100 028-2 V1.4.1 (2001-12)187 

In fact, the calculations above show the structure of the complete calculation: 

- playing simultaneously with different standard deviations and offsets can only (as already seen above)  

 generate terms in  x2  ,  xz  and  z2  ; 

- as above, the expression could have been split into two parts, etc … 

- so at the end, the result would have been some Gaussian like shape with complicated coefficients. 

So, finally, we could only get an expression which could have been written as: 

( )
2

2

2

2

1
s

sx

s

s ey σ

πσ

−−

=  . 

Similarly to what has been indicated previously, clause D.3.3 provides the general expressions of both the standard 
deviation and the offset of the distribution ( ys  ) corresponding to the sum of the independent random variables. 

Therefore the values of  s  and  sσ  can be calculated directly from the offsets and standard deviations corresponding to 

the random variables being added as follows: 

with the notations used in this clause 1 2s x x= +  and  
2 2

1 2sσ σ σ= +  . 

The corresponding distribution would therefore be 

( )2
1 2
2 2

1 2

( )

2( )

2 2
1 2

1

2

x x x

sy e σ σ

σ σ π

− +
−

+=
+

 . 

D.3.3.5.1.1.5 Conclusion 

The conclusion is that, as already announced in clause D.1.3.3.1, Normal distributions are "stable" when additions are 
performed on independent random variables having both Normal distributions. 

It is obvious that Normal distributions are also stable when the associated random variable is multiplied by a constant. 

Multiplying one random variable by  -1  and then adding another would correspond to a subtraction. 

Since Normal distributions are stable when these two operations are performed, it becomes obvious that Normal 
distributions are also stable when random variables are subtracted. 

It can, therefore, be stated that Normal distributions are stable in relation to multiplication by a constant, addition or 
subtraction of the corresponding independent random variables. 

Obviously, the addition of any number of Normal distributions would also correspond to a Normal distribution … 

The actual shape of the distribution resulting from the combinations of independent random variables corresponding to 
different distributions, one Normal and the other rectangular, is not provided in the present version of the document, and 
could be a topic for further work. 

D.3.3.5.1.2 Example of application 

It takes me an average of  : 

21 minutes to go to my office;  the distribution is Gaussian and the standard deviation is  10  minutes; 

it takes me an average of  : 

25 minutes to go from my office to the airport;  and the standard deviation is  10  minutes.  

(the distribution is also Gaussian). 

I need to go to my office, pick up the last version of TR 100 028 (all parts), go to the airport and jump into a plane. 
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The departure time slot is in exactly in one hour. What is the probability of missing my time slot ? 

Using the above, the reply is fully strait forward: 

- the time needed to go to the airport is the sum of the time to go to the office plus the time to go to the airport; 

- the corresponding random variables are, therefore to be added; 

- there is no indication that these variables are inter-related, so it will be assumed that they are independent; 

- the distribution corresponding to the addition of two Gaussian distributions is, as shown above, also a Gaussian; 

- and the average (mean value of the resulting Gaussian) is the sum of the averages, i.e. 21 + 25 = 46 minutes; 

- while the resulting standard deviation is equal to the original deviation (both deviations were equal to 
10 minutes) multiplied by the square root of two, i.e. 14 minutes;  

- the security margin is 1 hour – the average duration (46 minutes) i.e. 14 minutes (therefore equal to 1 standard 
deviation in our case); 

-  as seen in TR 100 028-1 [6] and fully developed in clause D.5 , the probability of being within plus or minus 
one standard deviation is 68,3 %; but if I arrive earlier, there is no problem … so the probability of being in time 
is 50 % plus one half of 68,3 % i.e. 50 % + 34 % = 84 %; 

- …and 16 % is the probability of missing the departure time slot! 

Obviously, bringing the original of TR 100 028 (all parts) in time is extremely important… so a good security margin 
should have been included. 

Clause D.5.6.2 shows that in the case of Gaussians (Normal distributions) the usage of an expansion factor of 1,96 
provides a probability of 95 % of being within the new limits. 

In our case, once again, being earlier is not a problem … so the multiplication by this "expansion" factor would have 
provided a probability of 50 % + 47,5 % = 97,5 % of being in time, which, in turn would correspond to a probability of 
2,5 % of missing the departure time slot. 

In this case, the security margin should have been  14 * 1,96 = 28 minutes , and I should have left 14 minutes before, in 
order to reduce to 2,5 % the probability of missing the departure time slot. 

In this particular case, increasing the security margin by 14 minutes would have reduced the probability of missing the 
slot from 16 % to 2,5 % (… general considerations on single sided limits can be found in clause D.5.6.2.8). 

Further reductions of the risk can be envisaged, but no one is sure of not having an engine problem or a tire puncture… 

In the case where Normal distributions are considered, it is impossible to reduce that probability to zero … that is why 
regular Airlines always count on their passengers' understanding …when they are late (passengers may understand, but 
not necessarily the rest of the World … that is why some ETSI Chairman, trusting regular Airlines may have found 
someone else sitting in the Chair when reaching the meeting room! (and possibly, someone not intending to give up the 
Chair for the remainder of the meeting!)). 

Such problems would not occur with finite distributions: if both distributions would have been rectangular (and would 
have had the same parameter), then their combination would have been a triangular distribution (see D.1.3.2 ). Under 
such circumstances, the problem above would also have been easy to solve, and the resulting values would, obviously, 
have been different… providing, this time, a chance for a worst case analysis and 100 % certainty: 

with finite distributions, it is also possible to implement a worst case approach, and be sure not to arrive late. 

As shown above, Gaussians are stable in relation to the addition; should there have been another action to complete 
before reaching the airport, it would have been possible to add its contribution in the same way. 

As shown in the following clauses, in the case of rectangular distributions, the shape of the resulting distribution 
depends on the number of contributions added. The increase of the security margin being specific of the shape of the 
distribution … in the case of addition of rectangular distributions, there would have been a need to evaluate the 
expansion factor for each particular number of contributions added. This could, obviously have been done, and 
implemented using a table. 
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However, the fact that Gaussians are stable in relation to additions avoids the need to have a table of that nature when 
handling Normal distributions; but, on the other hand, many calculations on rectangular distributions are much more 
simple. 

D.3.3.5.2 Adding several rectangular distributions 

The case where two rectangularly distributed distributions are combined has already been addressed in clause D.1 
(e.g. in clauses D.1.3.2 and D.1.3.3 ): the result obtained was respectively a triangular and a trapezoidal distribution 
(respectively in the case of identical parameters and of different parameters). 

In order to simplify the presentation, only distributions with a mean value of zero will be considered here below, in the 
remainder of clause D.3.3.5.2. However, noting that   mh  =  mf  + mg   (see clause D.3.3.3), it would be very easy to 
generalize. 

D.3.3.5.2.1 Adding several rectangular distributions having the same parameter 

An examples using dice can be found in clause 4.1.3, in TR 100 028-1 [6]. This example, shows the result obtained 
when successively throwing up to 6 dice. Even though, this case addresses discrete probabilities, the results are 
comparable to those found with the combination of up to 6 rectangular distributions having the same parameter. 

As seen on the corresponding figures, the shapes tend to the shape of a Gaussian when the number of combinations 
increase. 

It has, however, to be noted that even if a sum having an infinite number of terms would tend towards the Normal 
distribution, in practical cases, there is only a finite number of contributions and: 

- there is still an upper and a lower bound (having the values  + n A ) 

- so there is still the possibility of working on the basis of worst case methods. 

It is quite easy to see (although somewhat lengthy) that the resulting distributions have the following properties: 

- 1 single variable  �  rectangular shape  �  1 horizontal line     �  degree 0 

- 2 random variables �  triangular shape  �  2 oblique lines     �  degree 1 

- 3 random variables �  parabolic segments �  smoothed curves (no angles) �  degree 2 

- 4 random variables �  … pieces of curves of degree 3 … 

- N  random variables �  … pieces of curves of degree  N - 1 … 

NOTE: Clause D.3.3 provides the expression of the resulting distributions as integrals and not necessarily as 
explicit functions. However, some of the properties indicated above can be found using such type of 
expressions. 

Likewise, it is easy to see that: 

- 1 single variable  � rectangular shape  � p ( x )  has discontinuities 

- 2 random variables � triangular shape  � p ( x )  has no discontinuities , p' ( x ) has discontinuities 

- 3 random variables � parabolic segments � p ( x )  has no discontinuities ,  

p' ( x ) has no discontinuities 

p'' ( x ) has discontinuities 

- N  random variables � etc … 

Adding another distributions to the Nth combination is like smoothing the Nth combination, while expanding its spread 
by  A  (at each end of the "foot print" of the distribution). 

This process obviously generates a distribution slowly reaching infinity. A slow convergence into a normal distribution 
appears as a possibility: not many functions offer, as the exponentials do, an infinity of "good" derivative functions … 
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D.3.3.5.2.2 Adding several rectangular distributions having different parameters 

In practical situations, it is often found that there is a major contributor for the uncertainties, and then a number of 
smaller … 

So it can be interesting to understand what may happen when a family of rectangularly distributed distributions (having 
a different parameter) are added together; let us take an example: 

- distribution 1 defined by  A1 = A 

- distribution 2 defined by  A2 = q A1  

- …/… 

- distribution  n defined by  An = q An -1  

Like in the previous example, the result of the  N  first distributions (starting by the wider ones) is then smoothed by the 
N+1 th … and so on. 

For q << 1, the result is quite simple to be presented: 

- Sum of the first 1 distribution  �  rectangle with spread       A1 = A 

- Sum of the first 2 distributions  �  trapezoidal shape with spread    A1 + A2 

- Sum of the first 3 distributions  �  smoothed trapezoidal shape with spread A1 + A2  + A3 

- Sum of the first n distributions  �  smoothed trapezoidal shape with spread  Sn = A1 + A2 +…+ An 

The spread corresponding to n distributions can be easily calculated: 

Sn = A1 + A2 +…+ An 

Sn = A + A q + A q
2

 +…+ A q
n-1 

( )
q

q
AqqAS

n
n

n −
−=++= −

1
1

.... 10  

For  q = (1/10), and a few distributions, this expression can be simplified: 

( ) AqA
q

ASn 1,11
1

1 ≈+≈
−

=  

More exactly, Sn = 1,11111 A … 

A similar calculation can also be made in respect to the standard deviations … 

3
p

p

A
=σ  and 

( )
33

2122
2

−

==
p

p
p

qAAσ  . 
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−
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∑σ  

As above, and for  q = (1/10), and a few distributions, this expression can be simplified: 

( ) 01,1
3

1
31

1

3

2
2

2

2

2
2 A

q
A

q

A
n ≈+≈

−
=∑σ  . 

In a word, the standard deviation of the sum is almost equal to the standard deviation of the biggest contribution … 

Interesting also to note that the standard deviation of the sum, multiplied by square root of 3 is almost equal to the total 
span of the sum of the distributions … 
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Should this situation be found, by multiplying the RSS of all the contributions by square root of 3 ( = 1,732 …), the new 
value  would provide a worst case approach for the measurement uncertainty (or a measurement uncertainty with a 
100 % confidence)… 

The usual factor of 1,96 (providing a confidence level of 95 % in the case of a Normal distribution) would therefore be 
much larger than the factor needed in this particular case to provide a confidence level 100 % …the worst case. 

D.3.4 Linear combinations of random variables 
This clause deals with 

 GFH µλ +=  

Where F and G are independent random variables and H a combination thereof,  

and λ, µ are (positive) constants. 

D.3.4.1 Evaluation of the corresponding distribution 

D.3.4.1.1 Using a direct method 

Holding the breath for a while, and using the step by step approach used in clause D.3.3.1 , it would be possible to reach 
the result. However, the discussion relating to the effect of the various signs would split the work in a number of 
cases … making it even longer. Therefore, the following clause provides a way much more elegant to reach the results. 

D.3.4.1.2 Using the "Building blocs" method 

As opposed to the "direct method", with the method using "building blocs", several of the above properties are applied 
successively in order to reach the sought result. 

[ F � f(x) ]  �  [ λF �( |1/λ | ) f ( x/λ ) ] 

[ G � g(y) ]  �  [µG �( |1/µ| ) g ( y/µ ) ] 

By a double direct substitution (using D.3.3.1 above) we get: 

GFH µλ +=   �  h(z) =  ∫
+∞

∞−

−
dx

xz
g)

x
f( )

)(
()

1
(

µλλµ
 . 

D.3.4.2 Verification 

Should  h ( z )  be a distribution,  

∫
+∞

∞−

=1dzh(z)  

applies … 

The other property (h ( z ) > 0 )  is obviously met. 
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D.3.4.3 Means and standard deviations 

The method used in clause D.3.6.3 can also be used in this case … 

As a result the mean value, mh , is: 

mh = λλλλ mf + µµµµ mg 

and "standard deviation"σσσσh  is then: 

σσσσh
2 = λλλλ2 σσσσf

2 + µµµµ2σσσσg
2 

D.3.4.4 Examples 

In clause 6.5.5 of TR 100 028-1 [6], a theoretical analysis of 3rd order intermodulation is given. It provides a linear 
combination of terms. 

The calculations provided in clause D.3.4 allows for the explanation of the usage of coefficients 1 , 2 and  1 / 3 found in 
the components corresponding to the intermodulation, in relation with the RSS evaluation. 

D.3.4.5 Extrapolation 

This clause covers the case of: 

 nnFFFH λλλ +++= ....2211  

where F1, F2, … Fn  are independent random variables and H the combination thereof,  

and where λ1, λ2, … λn are constants. 

D.3.4.5.1 Extrapolation in the general case 

The expression of the distribution may be somewhat awkward. 

However, it is quite easy to group step by step the various random variables and to establish, as a result that: 

the mean value, mh , is: 

mh = λλλλ1 mf1 + λλλλ2 mf2+  …  + λλλλn mfn 

and "standard deviation"σσσσh  is then given by: 

σσσσh
2 = λλλλ1

2 σσσσf1
2 + λλλλ2

2 σσσσf2
2 + …  +λλλλn

2 σσσσfn
2  

D.3.4.5.2 Extrapolation in a particular case (RSSing) 

When all   λλλλk  are equal to 1 … this relation does simplify into the RSS … (the core of the "BIPM method"!). 

Therefore, RSSing is valid for the additive combination of independent random variables, where all coefficients   λλλλk  
are equal to 1. 

D.3.4.5.3 Using differentiation 

When the equations of a system can be expressed as  V = V ( x1 , … , xn   )  , 

and it is possible to evaluate  dV  as  dV = λλλλ1 dx1 + … +  λλλλn dxn  

 or   (dV / V) = λλλλ1 dx1 + … +  λλλλn dxn 
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then the above expression: 

σσσσh
2 = λλλλ1

2 σσσσf1
2 + λλλλ2

2 σσσσf2
2 + …  +λλλλn

2 σσσσfn
2  

provides the statistical properties of  dV  or   dV / V   as soon as the statistical properties of    

dx1  …   dxn   are know   (e.g. the  n   σσσσdxn.  ): 

σσσσdV
2 = λλλλ1

2 σσσσdx1
2 + λλλλ2

2 σσσσdx2
2 + …  +λλλλn

2 σσσσdxn
2  

or    σσσσdV/V
2 = λλλλ1

2 σσσσdx1
2 + λλλλ2

2 σσσσdx2
2 + …  +λλλλn

2 σσσσdxn
2  

as appropriate. 

This relates immediately the uncertainties corresponding to the various elements of a measurement (i.e. the various 
contributions to the uncertainty),  xi  to the uncertainty of the result (i.e. the combined uncertainty). 

Further proposals concerning methodologies to relate systems (e.g. a measurement set up), random variables and 
uncertainties can be found in clause D.5. 

D.3.4.6 Case of non independent random variables 

This clause covers the case where: 

 GFH µλ +=  

F and G are non-independent random variables and  H  is a combination thereof,  

while  λ and µ  are constants. 

Under such circumstances,  F  can be written as  k G . 

Therefore, H = (λλλλ k + µµµµ) G     and: 

 h ( z ) = ( 1/(λλλλ k + µµµµ ) ) g ( z / (λλλλ k + µµµµ) ) . 

As a result the mean value, mh , is (using D.3.2): 

mh = (λλλλ k + µµµµ) mg 

and "standard deviation"σσσσh  is then: 

σσσσh = ( λλλλ k + µµµµ ) σσσσg 

or  σσσσh
2 = ( λλλλ k + µµµµ ) 2 σσσσg

2 . 

These results are very different from those found above, when the random variables were independent. 

D.3.4.6.1 Comparison between results 

If F and G had been wrongly handled as independent random variables, 

σσσσh
2 = λλλλ2 σσσσf

2 + µµµµ2σσσσg
2 

which, having, in reality   σσσσf = k σσσσg 

would have given     σσσσh
2 = λλλλ2 k2 σσσσg

2 + µµµµ2σσσσg
2     =  (λλλλ2 k2 + µµµµ2 ) σσσσg

2   instead! 

This shows how important it is to assess, before any attempt to use "the RSS" method to identify which are the 
independent random variables…which may be quite difficult, if the system has not been analysed globally. 
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Great care has therefore to be exercised while using the complete developed examples of calculation found in the main 
body of the present document, in order to identify, for a particular test set up, which are the independent random 
variables, and which are those which, for one or another reason, are in fact linked together (e.g. is the room temperature 
the same for all components, or not; has one particular instrument been used twice in the same configuration, or was it 
another instrument of the same type…or another configuration). 

Therefore, the calculations may differ from one test set up to another test set up even if they look almost identical…(see 
also clause D.2.4). 

D.3.4.6.2 Conclusions 

As   ( a + b ) 2   =  a2 + b2 + 2 a b ,            when  a  and  b  are positive,   ( a + b ) 2  > a2 + b2   .    

This implies that taking random variables for independent when they are not, may lead to uncertainty values 
smaller than they are in reality (under estimation of the uncertainties). 

D.3.5 Subtraction of random variables 
This clause deals with: 

 GFH −= , 

where  F  and  G  are independent random variables and  H  a combination (subtraction) thereof. 

D.3.5.1 Evaluation of the corresponding distribution 

When  F  is a random variable characterized by the fact that the probability of  F  having a particular value  x  is given 
by the probability density  f ( x ) , then, by definition: 

the probability Pf of having  the random variable  F  having a value  x  such that 

   x1 < x < x2     is    ∫=
2

1

x

x

f f(x)dxP   . 

Similarly, we can consider ∫
∞−

=
x

f dtf(t)xP )(  , 

and therefore (by differentiation)    dPf = f ( x ) dx. 

When  G  is also a random variable, characterized by the fact that the probability of  G  having a particular value  y  is 
given by the probability density  g ( y ) , then, by definition: 

the probability Pg of having  the random variable G  having a value  y  such that 

   y1 < y < y2     is    ∫=
2

1

y

y

g g(y)dyP . 

Similarly, we can consider ∫
∞−

=
y

g dtg(t)yP )(  , 

and therefore (by differentiation)    dPg = g( y ) dy. 

Should  H  be the random variable resulting from the subtraction of   F  and  G ,    

then its probability density   h ( z ) ,    is to be evaluated. 

For each value   x  of  F  and  y  of  G , the value  z  of the random variable  H  is  : z =  x  -  y . 
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A way to evaluate  h ( z )  is as follows: 

the probability of having the value of  F  within a very small interval [x , x + dx]  is  f ( x ) dx  ; 

the probability of having the value of  G  within a small interval   [y1 ,  y2]  is  

g( y ) ( y2 - y1 ) = g ( y ) Dy  where   Dy = y2 - y1 ,  

and where it is assumed that    g( y1 ) = g ( y2 ) = g ( y ) (the interval is small). 

The interval within which  z remains has to be looked at with attention … 

y1  < y2     , therefore   - y1   >  -  y2       and   x - y1   >  x  -  y2       implying that   z1   >  z2      . 

Under both of the above circumstances, we get the value of   H  within   [z2  , z1]  where  zi  = x - yi 

(neglecting  dx ,  very small compared with  Dy ) 

and the probability of such an event (the contribution of  dx  in  h(z) )  is     f(x) dx  g(y) Dy  

(the probability of having both events is the product of the probability of having each event, when the events are 
independent). 

When  Dz = z1 – z2 , by definition,  h ( z ) Dz  is the probability of having the value of  H within  [z2,  z1]   and 
is, therefore, the sum of the probabilities of all the individual contributions, corresponding to all values of  x : 

∫
+∞

∞−

= dxxfDyygDzzh )()()(  . 

Since   Dz = z1 – z2  =  x – y1 – ( x – y2) =   y2  -  y1 =  Dy  , 

we have   Dz =  Dy   and noting that     y = x –z   , the integral above becomes 

∫
+∞

∞−

−= dxxfDzzxgDzzh )()()(  

which can be simplified into    ∫
+∞

∞−

−= dxxfzxgzh )()()(  

This equation provides the value of  h ( z )  as a function of  f ( x )  and g ( y ) … which is the relation between the 
probability densities corresponding to the random variables F ,  G  and  H. 

D.3.5.2 Verifications 

When providing the definitions and characteristics of probability densities characterizing random variables, 2 criteria 
had been expressed. The probability density associated with H , h ( z ) shall be such that: 

- 0≥h(z)  

- ∫
+∞

∞−

=1dzh(z)  

It is therefore wise to verify the 2 properties, which, in practise, could help detecting problems occurred during the 
calculations. 

Obviously, when   0≥∀ f(x)x   and  0≥∀ g(y)y    

then  0( ≥z)h . 
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Concerning the second relation, verifications can be done in a generic manner (i.e. not depending on specific 
distributions): 

∫
+∞

∞−

=dzh(z)  =−∫∫
+∞

∞−

+∞

∞−

dzdxf(x)zxg )( dxdzzxgxf ∫∫
+∞

∞−

+∞

∞−

− ])([)(   

By introducing  t = x- z  ( � dt =  -  dz  , where  x  is considered as a constant) ,  this equation may be transformed into: 

  =    ∫ ∫
+∞

∞−

−∞

∞+

=− dxdttgxf ])1()([)( ∫ ∫
+∞

∞−

+∞

∞−

=dxdttgxf ])([)(  ∫
+∞

∞−

=dxxf ]1[)(  1∫
+∞

∞−

=f(x)dx . 

Which ensures that  h ( z )  can be a proper probability density function characterizing some random variable (hopefully 
H, should the above calculations be correct!). 

D.3.5.3 Means and standard deviations 

The method for evaluating the mean and the standard deviation for a number of operations discussed in clause D.3 is 
very similar. 

D.3.5.3.1 Mean value 

In the case of a subtraction of random variables, it has been shown that the resulting density of probability is: 

∫
+∞

∞−

−= dxxfzxgzh )()()( . 

The general expression of  mh  being: 

∫
+∞

∞−

= dzzhzmh )(  , 

it comes that  

dzdxxfzxgzmh ∫∫
+∞

∞−

+∞

∞−

−= )()(  

∫∫
+∞

∞−

+∞

∞−

−= dxxfdzzxgzmh )(])([ . 

For each particular value of  x , the internal integral can be easily calculated by a simple change in variable:  t =  x -  z . 

Under these circumstances,  dz = -   dt  and: 

dxxfmxdxxfdttgtxdxxfdzzxgzm gh )()()(])()([)(])([ −=−=−= ∫∫∫∫∫
+∞

∞−

+∞

∞−

+∞

∞−

+∞

∞−

+∞

∞−

 

and  gfh mmm −= . 

As a result the mean value, mh , is: 

mh = mf  -  mg 

which is valid independently of the distributions addressed (i.e. should they be normal or not). 
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D.3.5.3.2 Standard deviation 

In the present case, we have: 

∫
+∞

∞−

−= dxxfzxgzh )()()( . 

The general expression of  sh
2  being: 

∫
+∞

∞−

= dzzhzsh )(22
 , 

it comes that: 

dzdxxfzxgzsh ∫∫
+∞

∞−

+∞

∞−

−= )()(22
 

∫∫
+∞

∞−

+∞

∞−

−= dxxfdzzxgzsh )(])([ 22
. 

For each particular value of  x , the internal integral can be easily calculated by a simple change in variable:  t =  x -  z . 

Under these circumstances,  dz = -   dt  and: 

∫∫∫∫
+∞

∞−

+∞

∞−

+∞

∞−

+∞

∞−

−=−= dxxfdttgtxdxxfdzzxgzsh )(])()([)(])([ 222
 

∫∫∫∫
+∞

∞−

+∞

∞−

+∞

∞−

+∞

∞−

+−=−= dxxfdttgtxtxdxxfdttgtxsh )(])()2([)(])()([ 2222
 

∫∫∫∫
+∞

∞−

+∞

∞−

+∞

∞−

+∞

∞−

+−=+−= dxxfdttgttgxttgxdxxfdttgtxtxsh )(]))()(2)(([)(])()2([ 22222
 

22222 2)(])2)1(([ ggffggh smmsdxxfsmxxs +−=+−= ∫
+∞

∞−

 . 

Noting the relation 222 ms −=σ  (or  2 2 2s mσ= +   ), 

we then get: 

2 2 2 2 2 2( ) 2 ( )h h f f f g g gm m m m mσ σ σ+ = + − + +  

222222 2 gggfffhh mmmmm ++−+=+ σσσ   and replacing   mh  by its value 

( ) 222222 2 gggfffgfh mmmmmm ++−+=−+ σσσ  

and, after lots of sweat and tears ….   and noting that  ( ) 2 22 2f g f f g gm m m m m m− = − +  

we get (simplifying): 

222
gfh σσσ +=  , 
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which is valid independently of the distributions addressed (i.e. should they be normal or not). 

(alternatively, it could have been written: 

2
h

2
h

2
h

2
h

2
h

2
h

ms

ms

+=∴

−=

σ

σ
 

Hence, 

( )

2
g

2
f

2
g

2
g

2
f

2
f

2
h

2
g

2
f

2
g

2
f

2
h

2
ggf

2
f

2
ggf

2
f

2
h

2
ggf

2
f

2
gf

2
h

msms

ssmm

smm2smmm2m

smm2smm

σσσ

σ

σ

σ

+=−+−=

+=++

+−=+−+

+−=−+

 

which provides the same result …) 

D.3.5.4 Examples 

The fact that RSSing is used for both additions and subtractions of random variables may have hidden the use of 
subtractions in the numerous examples found in the present document. 

Substitution measurements are favoured for radio equipment. This is certainly an area where subtractions may have to 
be performed. 

D.3.5.5 Subtracting several distributions 

In order to avoid problems with the signs, operations involving  several distributions have to be done more carefully 
than in the case of additions, e.g. handling one operation at the time (step by step approach). 

D.3.6 Multiplication of random variables 
This clause deals with: 

 GFH = . 

where F and G are independent random variables and  H  is a combination (multiplication) thereof. 

Problems may be found, when  the value of  F or G  is zero … (or too often  equal to zero, creating possible 
convergence problems). Should this occur, then in that particular case, careful attention should be devoted to the 
situation. 

As written above, the operation is symmetrical in relation to  F  and  G. However, the expression found below is not. 

By exchanging the role of  F  and  G  (or the role of  x  and  y ) another expression may be found, which, in some cases 
could be more friendly for a particular usage. 
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D.3.6.1 Evaluation of the corresponding distribution 

When  F  is a random variable characterized by the fact that the probability of  F  having a particular value  x  is given 
by the probability density  f ( x ) , then, by definition: 

the probability  Pf  of the random variable  F  having a value  x  such that: 

   x1 < x < x2     is    ∫=
2

1

x

x

f f(x)dxP   . 

Similarly, we can consider ∫
∞−

=
x

f dtf(t)xP )(  , 

and therefore (by differentiation)    dPf = f ( x ) dx. 

When  G  is also a random variable, characterized by the fact that the probability of  G  having a particular value  y  is 
given by the probability density  g ( y ) , then, by definition: 

the probability  Pg  of the random variable  G  having a value  y  such that: 

   y1 < y < y2     is    ∫=
2

1

y

y

g g(y)dyP . 

Similarly, we can consider ∫
∞−

=
y

g dtg(t)yP )(  , 

and therefore (by differentiation)    dPg = g( y ) dy. 

Should  H  be the random variable resulting from the multiplication  of   F  and  G ,    

then its probability density   h ( z ) ,    is to be evaluated. 

 

For each value  x  of  F  and  y  of  G , the value  z  of the random variable  H  is  : z =  x  y . 

In fact, in the following, the situation is slightly different when  x <  0  (the situation is comparable with that discussed 

in the case where  λ  was negative, in clause D.3.2). 

 

The way to evaluate   h ( z )  is quite simple, and is given in the following. 

The probability of having the value of  F  within a very small interval [x , x + dx]  is  f ( x ) dx   ; 

the probability of having the value of  G  within a small interval   [y1 ,  y2]   

is  g( y ) ( y2 - y1 ) = g ( y ) Dy  (where   Dy = y2 - y1 ,  

and where it is assumed that    g( y1 ) = g ( y2 ) = g ( y )  ,  Dy   being considered as small ); 

when both events occur,  

then, the value of   H  is within   [z1  , z2]   where  zi  = x  yi 

(neglecting  dx ,  considered to be very small compared with  Dy ) 

and the probability of such an event (which provides the contribution of  dx  in  h( z ) )  is     

f( x ) dx  g( y ) Dy . 
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Case where  x  >  0. 

When  Dz = z2 - z1 , by definition,  h ( z )Dz  is the probability of having the value of  H within  [z1,  z2]   and 
is, therefore, the sum of the probabilities of all the individual contributions, corresponding to all positive values of  x : 

∫
+∞

=
0

)()()( dxxfDyygDzzh  . 

Since   Dz = z2 - z1 = x  y2 –  x  y1  =  x  ( y2 – y1  ) =  x Dy  , 

we have   Dz = x  Dy   and noting that     y = z / x  ( x  non zero!) , the integral above becomes 

∫
+∞

=
0

)()/)(/()( dxxfxDzxzgDzzh   . 

 

Case where  x  <  0. 

When  Dz = z2 - z1 , by definition,  h ( z )Dz  is the probability of having the value of  H within  [z1,  z2]  
 (where   [z1,  z2]  is an interval and therefore   z1  <  z2  ) and is, therefore, the sum of the probabilities of all the 
individual contributions, corresponding to all  negative values of  x : 

∫
∞−

=
0

)()()( dxxfDyygDzzh  . 

Since  Dz and Dy are intervals,  Dz = z2 - z1 = | x |  y2 –  | x | y1  =  | x |  ( y2 – y1  ) =  - x Dy  , 

we have   Dz =  - x  Dy   and noting that     y = z / x  ( x  non zero!) , the integral above becomes 

∫
∞−

−=
0

)()/)(/()( dxxfxDzxzgDzzh . 

 

Taking into account both positive and negative contributions of  x  , and simplifying by  Dz , 

the two expressions above can be combined into    ∫
+∞

∞−

= dxxf
x

z
g

x
zh )()()

1
()(  

This relation provides the value of  h ( z )  as a function of  f ( x )  and g ( y ) … which is the sought relation between 
the probability densities corresponding to the random variables F ,  G  and  H. 

NOTE 1: When  F  or  G   take zero as a value, then  the value  of  H  is also zero, independently of the other 
random variable … 

NOTE 2: In the expression above,   f  and  g  have roles slightly different, which is not the case  with  H = F G. 

 As a result, the expression (obtained by permutation): 

 ∫
+∞

∞−

= dy
y

z
fyg

y
zh )()()

1
()(  should be as much appropriate as the expression given above, but 

could be more convenient in some cases i.e. when the variable  y  can be mapped to a physical variable 
which never reaches zero. 
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D.3.6.2 Verifications 

When providing the definitions and characteristics of probability densities characterizing random variables, 2 criteria 
had been expressed. The probability density associated with H , h ( z ) shall be such that: 

- 0≥h(z)  

- ∫
+∞

∞−

=1dzh(z)  

It is therefore wise to verify the 2 properties, which, in practise, could help detecting problems occurred during the 
calculations. 

Obviously, when   0≥∀ f(x)x   and  0≥∀ g(y)y    

then:  0( ≥z)h . 

This situation is close to that when lambda was negative …in clause D.3.2. 

The verifications can be done in a generic manner, but with the help of the function   ε  (see clause D.3.10.3): 

∫
+∞

∞−

=dzh(z)   =∫∫
+∞

∞−

+∞

∞−

dzdxf(x)xxzg )/)(/( ε dxdzxzgxfx ])/([)()/( ∫∫
+∞

∞−

+∞

∞−

ε   

By introducing  t = z /  x  ( � dt = dz / x  ,  x  being considered as a constant, within the inside integral ) ,   

this expression may be split into 2 parts and then transformed into: 

  �    ∫ ∫
+∞ +∞

∞−

=
0

])([)()()/1( dxdttgxxfx  ∫
+∞

=
0

]1[)( dxxf  I , 

when  x >  0  and  ε = 1. 

And �    ∫ ∫
∞−

−∞

∞+

=−
0

])([)()()/1( dxdttgxxfx  ∫
∞−

=
0

]1[)( dxxf  J  

when  x <  0  and  ε = - 1. 

Finally, it can be noted that  I + J = 1 , 

which ensures that  h ( z )  can be a proper probability density function characterizing some random variable (hopefully 
H, should the above calculations be correct!). 

D.3.6.3 Means and standard deviations 

It has been indicated above that, using the function  ε: 

∫
+∞

∞−

= dxxf
x

z
g

x
zh )()()

1
()(
ε

. 

The general expression of  mh  being: 

∫
+∞

∞−

= dzzhzmh )(  , 
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it comes that:  

dzdxxf
x

z
g

x
zmh ∫∫

+∞

∞−

+∞

∞−

= )()()(
ε

 

∫∫
+∞

∞−

+∞

∞−

= dxxfdz
x

z
gz

x
mh )(])()[(

ε
. 

For each particular value of x, the internal integral can be easily calculated by a simple change in variable:  y = ( z / x ). 

Under these circumstances,  dz = x dy  and , splitting again into 2 parts: 

dxxfxxm
x

dxxfxdyygxy
x

dxxfdz
x

z
gz

x
m gh )(])[

1
()(])()[

1
()(])()[

1
(

000
∫∫∫∫∫
+∞+∞

∞−

+∞+∞

∞−

+∞

===+  

dxxfxxm
x

dxxfxdyygxy
x

dxxfdz
x

z
gz

x
m gh )(])[

1
()(])()[

1
()(])()[

1
(

000

∫∫∫∫∫
∞−

−∞

∞+∞−

+∞

∞−∞−

=−=−=−  

and  reassembling the 2 parts it comes that  : fggh mmdxxfxmm ∫
+∞

∞−

== )( . 

As a result the mean value, mh , is: 

mh = mf  mg 

which is valid independently of the distributions addressed (i.e. should they be Normal or not). 

 

A similar method can be used for the standard variation: 

∫
+∞

∞−

= dzzhzsh )(22
 

Therefore, 

 

dxdz
x

z
gzxf

x
dxdzxf

x

z
g

x
zsh ∫ ∫∫∫

∞

∞−

∞

∞−

∞

∞−

∞

∞−

















=






= 222 )()(
εε

 

 Integrating by substitution, disassembling on  ε  and reassembling (as above): 

( ) ( ) 22222
3

22 )()()()()( gfgh ssdxxfxsdxdyygyxf
x

x
dxxdyygxyxf

x
s ==










=














= ∫∫ ∫∫ ∫

∞

∞−

∞

∞−

∞

∞−

∞

∞−

∞

∞−

ε

ε

ε
 

 

 Noting, 

222 ms −=σ  
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 Then, 

 

)m)(m(m

ssms

2
g

2
g

2
f

2
f

2
h

2
h

2
g

2
f

2
h

2
h

2
h

++=+∴

=+=

σσσ

σ
 

The expression above, 

σσσσh
2 + mh

2= (σσσσf
2 + mf

2 )( σσσσg
2 + mg

2 )   

recalls to a certain extent that found for the addition of random variables … 

D.3.6.4 Examples 

The results found above are the basis for the handling of influence quantities, in clause D.4.1. 

D.3.6.5 Extrapolations 

Independently of the distributions handled, a step by step method based on the properties shown above would provide, 

for       KGFH = : 

mh =  mf  mg  mk  ... 

and  σσσσh
2 + mh

2= (σσσσf
2 + mf

2 )( σσσσg
2 + mg

2 )( σσσσk
2 + mk

2 ) … 

A similar expression will be found in clause D.4.2.2. 

D.3.7 Inversions and divisions  
Again, it would be possible to find the sought results either by direct methods or by application of clauses D.3.9 and 
D.3.11 … or with D.3.10 … 

The latter approach has been preferred: rather than starting from scratch (as done for the multiplication in clause D.3.6), 
a step by step approach using results already established ("the building bloc approach") was used to establish the 
properties relating to: 

 Y  =  1 / XY  =  1 / XY  =  1 / XY  =  1 / X and  H = F / GH = F / GH = F / GH = F / G    .... 

D.3.7.1 Evaluation of distributions corresponding to inversions 

(The notations proposed in clause D.3.10.6 have been used). 

This clause deals with  Y  =  1 / XY  =  1 / XY  =  1 / XY  =  1 / X (using the character set Monotype Corsiva) , 

where  X   is a random variable and  Y   is its transformed by the inversion  g , where  g  is obviously a function of one 
variable which is monotonous (therefore clauses D.3.9 and possibly D.3.10.3 apply).  

 

X  is a random variable characterized by the fact that the probability of  X  having a particular value  x  is given by the 
probability density  X ( x ). 

By definition, the probability P of having  the values  x  taken by the random variable  X   such that 

  x1 < x < x2     is ∫=
2

1

x

x

dxX(x)P . 
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Similarly, we can consider ∫
∞−

=
x

X dtX(t)xP )(  , 

and, by differentiation :  dPX = X ( x ) dx  . 

 

Y is the random variable which probability density is  Y ( y )  (to be evaluated). 

 

g | x � y = g (x) = 1 / x 

g' | x � y' = g' (x) = - 1 / x2 

As a result from clause D.9.1: 

))(('

))((
1

1

zgg

zgf
h(z)

−

−

=  or,  with the notations used here: 

))(('

))((
1

1

ygg

ygX
Y(y)

−

−

=  where  

g-1 | y � x =  1 / y . 

Therefore we have: 

y
y

X

y
g

y
X

Y(y)
2

)
1

(

)
1

('

)
1

(

−
==  . 

Finally,  the sought probability density is :  )
1

(
1

2 y
XY(y)

y
=  

D.3.7.2 Verification in the case of the inversion 

Obviously  Y  is positive. 

Should  Y  be a distribution then 

1
)

1
(

)(
2

== ∫∫
∞+

∞−

∞+

∞−

dy
y

y
X

dyyY  would be true. 

This integral can be easily calculated using the variable  x  such that: 

x  =  1  /  y � dx = - (  dy ) / y2   

and, as a result, 

∫∫∫
+∞

∞−

+∞

∞−

+=
0

0

)()()( dyyYdyyYdyyY  replacing  Y ( )  by its expression  



 

ETSI 

ETSI TR 100 028-2 V1.4.1 (2001-12)205 

dy
y

y
X

dy
y

y
X

dyyY ∫∫∫
∞+

∞−

∞+

∞−

+=
0

2

0

2

)
1

()
1

(
)(  or after the substitution 

dxy
y

xX
dxy

y

xX
dyyY )(

)(
)(

)(
)( 2

0

2
0

2
2 −+−= ∫∫∫

∞+

−∞+∞

∞−

 . 

dxxXdxxXdyyY )()()(
0

0
∫∫∫
∞+

−∞+∞

∞−

−−=  (by simplification) 

1)()()( ==−= ∫∫∫
+∞

∞−

−∞

∞+

+∞

∞−

dxxXdxxXdyyY  

and  Y  fulfils the 2 requirements indicated; so it can be a valid expression for a probability density. 

The method used for the verification can be extended to support also the calculation of the mean, below. 

D.3.7.3 Means and standard deviations in the case of the inversion 

D.3.7.3.1 Mean value 

By definition, the mean is: 

dyyyYmy )(∫
+∞

∞−

=  . 

Replacing  Y  by its value provides: 

1
)

1
(

)( 2 == ∫∫
∞+

∞−

∞+

∞−

dyy
y

y
X

dyyyY  . 

This integral can be easily calculated using the variable  x  such that: 

x  =  1  /  y � dx = - (  dy ) / y2   

and, as a result, 

∫∫∫
+∞

∞−

+∞

∞−

+=
0

0

)()()( ydyyYydyyYydyyY  and replacing  Y ( )  by its expression gives 

ydy
y

y
X

ydy
y

y
X

ydyyY ∫∫∫
∞+

∞−

∞+

∞−

+=
0

2

0

2

)
1

()
1

(
)(  

dx
x

y
y

xX
dx

x
y

y

xX
ydyyY )

1
)((

)(
)

1
)((

)(
)( 2

0

2
0

2
2 −+−= ∫∫∫

∞+

−∞+∞

∞−
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dx
x

xXdx
x

xXdyyyY )
1

)(()
1

()()(
0

0
∫∫∫
∞+

−∞+∞

∞−

−−=  

dx
x

xX
dx

x
xXdyyyYmy

)(
)

1
()()( ∫∫∫

+∞

∞−

−∞

∞+

+∞

∞−

=−==  . 

This expression looks like moment  ( - 1) of the probability density  X  … not that much friendly! 

NOTE: this expression could have been obtained directly using the results of clause D.9.3. 
However, since this expression is somewhat different from expressions found in other clauses of the 
present annex, it was felt wise to obtain it also directly. 

D.3.7.3.2 Comment concerning the mean value 

As indicated above, 

dx
x

xX
my

)(
∫

+∞

∞−

= . 

Should  the distribution  X  correspond to a constant  x0 , then, the above expression could be simplified: 

000

1
)1(

1
)(

1)(
xx

dxxX
x

dx
x

xX
my ==== ∫∫

+∞

∞−

+∞

∞−

  

and we would also have 0xmx = . 

In this case (only) we would get: 
x

y mx
m

11

0

==  …. An expression that we could have expected. 

D.3.7.3.3 Standard deviation 

The results found in clause D.3.7.3.1  support a calculation of the standard variation using the results of clause D.3.9.3 
which provides directly (by substituting the names of the variables): 

dx
x

xX
dxxXxgmyy 2

222 )(
)()( ∫∫

+∞

∞−

+∞

∞−

==+σ  . 

As in the case of the mean, should  the distribution  X  correspond to a constant  x0 , then,  

the above expression could also have been simplified: 

2

0

2

0
2

0

22 )
1

()()
1

(
)(

x
dxxX

x
dx

x

xX
myy ===+ ∫∫

+∞

∞−

+∞

∞−

σ  

and we would also have 0xmx =  and 
0

1
x

my = . 

In this case (only) we would get: 2

0

2

0

222 )
1

()
1

(
xx

m yyy =+=+ σσ  ….  

And 02 =yσ  which is fair for a constant! 
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D.3.7.4 Examples of inversions 

Ohm's law can be expressed as  v = r i  , as well as   i = v / r . 

D.3.7.4.1 Evaluation of the distribution 

To simplify the calculations, in the following,  v = 1 (clause D.3.2 indicates how to handle a multiplication by a 
constant, so it is very simple to introduce another value and to derive the corresponding result when necessary). 

Using the notations of clause D.10.6 , we can therefore consider the case where  R  is a rectangular distribution. 

In this case, the probability density  I  is given by clause D.3.7.1  i.e.: 

)
1

(
1

2 y
XY(y)

y
=  where y = 1 / x . 

The relation between the relevant variables is as follows: 

y � i 

x � r . 

And with the appropriate names of variables and notations, we get: 

)
1

(
1
2 i

R
i

I(i) =  , where  R  is a rectangular distribution with a spread from  r1  to  r2  or  2 A (as 

defined in clause D.1.3.1). 

When  r1  < ( 1 / i ) <  r2  then   
Ai

I(i)
2
11

2=  ; otherwise  I ( i )  =  0. 

The corresponding distribution is therefore represented by a chunk of  curve between two vertical lines (corresponding 
to  1 / r1   and  1 / r2 ), looking like a somewhat trapezoidal distribution. 

D.3.7.4.2 Evaluation of the mean value 

The general expression for the mean value is provided in clause D.3.7.3.1 , and as a result, in the case of a rectangular 
distribution: 

)]([ 2

1

2

1

2

1
2
1

2
1)()( rLog

r

r

r

r

r

r

i A
dr

Ar
dr

r

rR
dr

r

rR
m ==== ∫∫∫

+∞

∞−

 

and )]([
1

2
2
1

r
r

Log
A

mi =  . 

Noting that if  r0  is the middle of   [r1  ,  r2 ] , we have r2 = r0 + A  and  r1 = r0 – A  ,  

  mi  can be expressed as: ]
/1
/1

[)]([
0

0
2
1

0

0
2
1

rA
rA

Log
Ar
Ar

Log
AA

mi −
+

−
+

== . 
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When   A  is small compared to r0 … we can use  Log ( 1 + x )  equivalent to  x  and, therefore: 

00

1
2
2

002
1 )]/()/[(

rrA

A

A
m rArAi ==≈ −−+   …  

not very surprising (but gives confidence!) :  when  v = 1  and  r = r0 …  i = ( v / r ) = 1 / r0 ! 

The approximation used for the expression of  mi  although precise enough for the purpose of this clause, has to be 
enhanced for the needs of clause D.3.7.4.3. As a result, a better approximation of  Log ( 1 + x )  has to be used: 

)(
32

)1( 3
32

x
xx

xxLog ε++−=+  . 

And, therefore, ))/1()/1((
2
1

0

0
2
1

00]
/1
/1

[ rALogrALog
AA

m
rA
rA

Logi −−+==
−
+

 

))])(()(
3
1

)(
2
1

)(()))(()(
3
1

)(
2
1

)[((
2
1 3

0

3

0

2

00

3

0

3

0

2

00 r

A

r

A

r

A

r

A

r

A

r

A

r

A

r

A

A
mi εε +−+−−−−++−=  

and, after another crash of Word 97 ™ with loss of information … another attempt to type in the text provides: 

)])((
23

1
1[

1
))])(()(

3
2

)(2[(
2
1 3

0

0
2

0

2

0

3

0

3

00 r

A

A

r

r

A

rr

A

r

A

r

A

A
mi εε ++=++= , 

another expression of the mean, which will be used in the next clause. 

It can be noted, that the offset relating to the mid-point is equal to:  2
0

2

0 3

11

r

A

r
 . 

The value of this offset was not visible with a first order approximation. 

D.3.7.4.3 Evaluation of the standard deviation 

What would then be the standard deviation ? Its value, in the general case is provided by: 

dx
x

xX
myy 2

22 )(
∫
+∞

∞−

=+σ  . 

When  R  is rectangularly distributed, we get: 

)
11

(
2
1

2
1

2
1)()(

21
222

22 ]
1

[
2

1

2

1

2

1
rrAA

dr
rA

dr
r

rR
dr

r

rR
m

r

r

r

r

r

r

r

ii −=====+
−

∫∫∫
∞+

∞−

σ  

)
1

()(
2
1

)
11

(
2
1

2121

12

21

22

rrrr

rr

ArrA
mii =−=−=+σ  . 

When writing  r2 = r0 + A  and  r1 = r0 – A  , as above, and using approximations, 

we get: 

( )
( )

2
0

2
0

2
0

2
000

2
021

22 /1

)/1(

1

)/1()/1(

11

r

rA

rArrArArrr
mii

+≈
−

=
−+

==+σ  , 
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and replacing the mean by its approximate value: 

)])((
3
1

1[
1 3

0

0
2

0

2

0 r

A

A

r

r

A

r
mi ε++=  

)])((
3
2

1[
1

)])((
3
1

1[
1 3

0

0
2

0

22

0
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0

0
2

0

22

0

2

r

A

A

r

r

A

rr

A

A

r

r

A

r
mi εε ++








=++








=  

and: 

( )
]1[

1/1
)])((

3
2

1[
1

2
0

2

2
0

2
0

2
03

0

0
2

0

22

0

2

r

A

rr

rA

r

A

A

r

r

A

ri +=+≈++







+ εσ  

or, finally: 

3
11

)
3
2

1(
1

2
0

2

2
0

2
0

2

2
0

2

r

A

rr

A

r
i =−≈σ  . 

NOTE: It can be noted, that the use of a first order approximation for the mean would provide a wrong result: 

( )
2

0

2
0

2
0

2 /11

r

rA

r
i

+≈+σ  or 2
0

2
0

2
2 1

rr

A
i ≈σ  .  

This value would have been in excess of the correct value found above. 

D.3.7.4.4 Comments concerning the standard deviation 

The result found above (in clause D.3.7.4.3) is not surprising:  

it recalls the expression of the standard deviation of a rectangular distribution having, as a footprint, the extremes values 
of the intensity corresponding to the extreme values of the footprint of  R  . 

It can also be noted that the "simplification"  v = 1 , results in the loss of the term expressed in Volts, and, therefore, a 
checked based in units (see clause D.3.10.7) becomes difficult. 

As a result, it can be wise to reintroduce this constant  v . Using the results of clause  D.3.2 , we get: 

0r

v
mi ≈  and 2

0

2

2
0

2
2

3
1

r

v

r

A
i ≈σ  . 

 

With these values, should a footprint of  i  have been defined by  its spread of  + B , then, we would have had: 

00 r

A

i

B = , when requiring corresponding extreme values. 

For a rectangular distribution  i  of spread of  + B , then we would have had (see clause  D.1.3.1): 

2
02

0

2

2
0

2
0

22
2

3
1

33
i

r

A

r

iAB
iB ===σ  where 2

0

2
2

0
r

v
i =  , and therefore, 

2
0

2

2
0

2
2

3
1

r

v

r

A
iB =σ  . 
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The two expressions   
2

iBσ  and  
2

iσ  :  

- resulting respectively from a rectangular distribution  (i � + B) 

- and from the inverse of a rectangular distribution  (r � + R) 

have obviously the same structure and, with the approximations made, the same coefficient.  

Therefore, in order to find differences due to the differences in the shapes of the corresponding distributions it would 
have been necessary to use approximations at an higher order, so that the influence of the approximations made in the 
calculations of the standard deviation … would not have hidden the effects!  

However, this example shows the method to handle this type of problems and type of results which can be expected 
when using the methodology developed in this clause.  

D.3.7.5 Evaluation of the distribution corresponding to divisions 

(The notations proposed in clause D.3.10.6 have, once again, been used). 

This clause deals with  H = F / G (using the character set Monotype Corsiva)   

Where F  and  G  are independent random variables and  H    is the result of the division of  F  by  G  .  

Let  Y  be the inverse of   G  … H  can therefore be considered as the product of  F  by  Y   

and clauses D.3.6  and D.3.7.1 apply...  

Y = 1 / G � H = F  * Y 

When  F  is a random variable characterized by the fact that the probability of  F  having a particular value  f  is given 
by the probability density  F ( f ) , 

by definition, the probability P of having  the values  f  taken by the random variable  F   such that 

  f1 < f < f2     is ∫=
2

1

f

f

dfF(f)P    . 

Similarly, we can consider ∫
∞−

=
f

F dtF(t)fP )(  , 

and therefore (by differentiation)   dPF = F ( f ) df  . 

When  G  is a random variable characterized by the fact that the probability of  G  having a particular value  g  is given 
by the probability density  G ( g ) , 

by definition, the probability P of having  the values  g  taken by the random variable  G   such that 

  g1 < g < g2     is ∫=
2

1

g

g

dgG(g)P   . 

Similarly, we can consider ∫
∞−

=
g

G dtG(t)gP )(  , 

and therefore (by differentiation)   dPG = G ( g ) dg  . 

 

H  is the random variable which probability density is  H ( h )  (to be evaluated). 
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By definition,  Y  is the inverse of   G  and, therefore, its probability density is (see clause D.7.1): )
1

(
1

2 y
GY(y)

y
= . 

The probability density of the product of random variables is, according to D.3.6.1: 

∫
+∞

∞−

= dxxf
x

z
g

x
zh )()()

1
()(  . 

With the variables and notations used in this clause, 

| h z � H h 

| f x � F f 

| g y � Y y 

and we get: 

∫
+∞

∞−

= dffF
f

h
Y

f
hH )()()

1
()(  or, substituting  Y ( )  by its value: 

∫
+∞

∞−








= dffF

h

f
G

f

hf
hH )()(

1
)

1
()( 2  . 

After simplification we get: 

( )
( ) ( )∫∫

+∞

∞−

+∞

∞−

== dffF
h

f
G

h

f
dffF

h

f
G

h

f

f
hH )()()()()

1
()( 22

2

     ,  

or using  ε  as proposed in D.10.3 

( )∫
+∞

∞−

= dffF
h

f
G

h

f
hH )()()( 2

ε
 

D.3.7.6 Verification in the case of divisions 

Obviously  H  is positive. 

Should  H  be a distribution then 

( ) 1)()()( 2 == ∫∫∫
+∞

∞−

+∞

∞−

+∞

∞−

dhdffF
h

f
G

h

f
dhhH

ε
 would be true. 

Reordering the terms we get: 

( ) dffFfdh
h

f
G

h
dhhH )(])([)( 2∫∫∫

+∞

∞−

+∞

∞−

+∞

∞−

= ε
 . 
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The internal integral is now easy to calculate using a new variable  z  and considering  f  as a constant: 

z  =  f  /  h � dz = - ( f dh ) / h2  and, as a result, 

- when  f  (and  ε ) is positive 

( ) ( ) ( )∫∫∫
+∞

∞−

+∞

∞−

+=
0

2

0

22 )(
1

)(
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0 2
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2
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∞+
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ε
 

- when  f  (and  ε ) is negative 

( ) ( ) ( )∫∫∫
+∞

∞−
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 . 

In both cases the result is expressed in the same way, so finally we have: 

( ) 1)()(
1

)(])([)( 2 ==== ∫∫∫∫∫
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and  H  fulfils the 2 requirements indicated; so it can be a valid expression for a probability density. 

D.3.7.7 Means and standard deviations in the case of divisions 

D.3.7.7.1 Corresponding evaluation 

The mean and the standard deviation are provided, in the case of a multiplication, in clause D.3.6.3: 

with the notations of that clause: 

gfh mmm =   and ))(( 222222
ggffhh mmm ++=+ σσσ  . 

With the present notations, we get for the mean: 

yfh mmm =  and substituting  m y  by its value, as given in clause D.3.7.3 

dx
x

xX
my

)(
∫

+∞

∞−

=  ,  
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the expression of the mean becomes, with the appropriate variables 

dg
g

gG
mm fh

)(
∫

+∞

∞−

=  . 

With the present notations, we get for the standard deviation: 

))(( 222222
yyffhh mmm ++=+ σσσ   

and substituting  )( 22
yy m+σ   by its value, as given in clause D.3.7.3 

dx
x

xX
myy 2

22 )(
∫

+∞

∞−

=+σ  ,  

the expression providing the standard deviation becomes, with the appropriate variables  

dg
g

gG
mm ffhh 2

2222 )(
)( ∫

+∞

∞−

+=+ σσ  . 

D.3.7.7.2 Comments 

Clause D.3.6.3 provides: 

fgh mmm =  . 

Using once again Ohm's law, we have  v = r i  , and  irv mmm =  

As a result, of a quick calculation, it could have been tempting to write: 

r

v
i m

m
m = . 

However, the result provided above, in clause D.3.7.7.1 is: 

dg
g

gG
mm fh

)(
∫

+∞

∞−

=  , which, with the notations corresponding to Ohm's law,  i = v / r 

become 

dr
r

rR
mm vi

)(
∫

+∞

∞−

=   … so what ?  Would normally,  dr
r

rR

mr

)(1
∫

+∞

∞−

=  ? 

The example provided in clause D.3.7.4 does not suggest it. So ? 

A key can be found in the definitions. 

In clause D.3.7.5, it is indicated:  

" F  and  G  are independent random variables and  H    is the result of the division of  F  by  G  ". 

So, in this case, the independent random variables are  VVVV  and  RRRR  … while in the other case, the independent random 
variables were RRRR  and  I I I I  . 

The importance of clearly identifying which random variables are independent and which are not, had already been 
stressed in clauses such as  D.2.4 or D.3.4.6. When this is not done carefully, there is a clear risk of getting wrong 
results. 
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D.3.7.8 Examples in the case of divisions 

In clause D.3.7.7.2 above, an example with Ohm's law was already discussed. 

D.3.8 Using Logs and dBs 

This clause deals with      )(FLogH =   and dBs 

Where F is a random variable and H  its Logarithm. 

It is supposed that   F  has only positive values. 

In clause D.3.8.1 a direct method has been used. In clause D.3.8.4 the method used is based on the results of clause 
D.3.9 (using functions). Substitutions (see clause D.10.3) could also have been used. 

D.3.8.1 Evaluation of the corresponding distribution 

When  F  is a random variable characterized by the fact that the probability of  F  having a particular value  x  is given 
by the probability density  f ( x ) , then, by definition: 

the probability Pf of having  the random variable  F  having a value  x  such that 

   x1 < x < x2     is    ∫=
2

1

x

x

f f(x)dxP   . 

Similarly, we can consider ∫
∞−

=
x

f dtf(t)xP )(  , 

and therefore (by differentiation)    dPf = f ( x ) dx  . 

 

In the following,  x   is supposed within the definition range of the function  Log  i.e.  x   is supposed positive. 

 

Should  H  be the random variable corresponding to H = Log ( F )    (using  log e )  , 

then, with the current notations, its probability density  h ( z ) ,  is to be evaluated. 

 

For each value of  F , the value z of the random variable  H  is  : z = Log ( x ) . 

The way to evaluate   h ( z )  is very simple: 

when  the value of  F  is   within   [ x  , x + dx ]  , event having a probability f ( x ) dx   

the value of  H  is within     [ Log ( x )  , Log ( x + dx ) ] , 

event having a probability h ( z ) dz  . 

This means that these two events have the same probability, and, therefore: 

f ( x ) dx = h ( z ) dz . 

When the value of  F  is  x  , the value  of   z  is  z = Log ( x )  . 

We will also have,  dz = ( 1 / x ) dx  , and zex = . 
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Replacing, we get: 

 dP = h ( z ) dz =  f ( x ) dx    �     h ( z ) (1 / x ) dx = f ( x ) dx , which, in turn, gives: 

h ( z ) = x  f ( x )   , or   )( zz efeh(z) =  

the relation between the probability densities corresponding to the random variables  F  and  H 

(when using log e (caution: dB calculations utilize log 10 )). 

D.3.8.2 Verifications 

When providing the definitions and characteristics of probability densities characterizing random variables, 2 criteria 
had been expressed. The probability density associated with  H ,  h ( z )   shall be such that: 

- 0≥h(z)  

- ∫
+∞

∞−

=1dzh(z)  

It is therefore wise to verify the 2 properties, which, in practise, could help detecting problems occurred during the 
calculations. 

Obviously,  ze  is positive  and  f  is such that     0≥∀ f(x)x ,  therefore  0( ≥z)h . 

 

Concerning the second relation, verifications can be done in a generic manner: ∫
+∞

∞−

=dzh(z)  

 ∫
+∞

∞−

dz)zf(z )exp())(exp(  

By introducing  t = exp (z )    �  dt = t dz  ,  this equation may be transformed into: 

  �    ∫
+∞

∞−

=dttf(tt )/1()   1∫
+∞

∞−

=f(t)dt  . 

Which ensures that  h ( z )  can be a proper probability density function characterizing some random variable (hopefully 
H , should the above calculations be correct!). 

D.3.8.3 Mathematical support for calculations with Logs and dBs 

)a(log

)N(log
)N(log

)Nln()N(logxeN

)Nlog()N(logx10N

b

b
a

e
x

10
x

=

==⇒=

==⇒=

   

 

1mlogm =   
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x

)e(log
))'x((log a

a ⇒    

 

xe

)xln())e((log)x(log

)xln(

1010

=

=
   

 

)aln(ea zz =    

…and … 

Log ( 1 + x ) = x  –  ( x 2 / 2 ) + ( x 3 / 3 ) … 

log10   = (Log x)  / (Log 10)    

(Log x )' = 1 / x 

D.3.8.4 Using dBs 

In order to write this clause, a direct calculation could have been performed … 

Using the various elementary operations described in the clauses above, it would also have been possible to chain a 
number of those elementary operations (the method using "building blocks) … and reach the sought result! 

However, the more elegant way is probably to combine all operations in one single transformation, using the results 
found in clause D.3.9 (below). 

As it has already been noted, annex E also refers to conversions … and the results are consistent! 

When thinking in dBs and linear terms, before any further action, the first thing to do is to try and understand the 
situation, and to settle on the best strategy. 

Are the uncertainties (probability densities) relating to the various elements of the test set up expressed in dB or in 
linear terms? 

If the uncertainties are given in dBs (e.g. the attenuation of a 10 dB attenuator given as +0,1 dB …) then dBs have to be 
used, at least for a while … as shown in clauses D.3.8 (below) and also annex E, a rectangularly shaped distribution 
based on an uncertainty of +0,1 dB flat in dBs, will convert into some part of a curve if transformed into linear terms 
(and vice-versa). 

Even if the edges of the rectangular distribution are converted correctly (in order to save time, approximations may be 
used, but they may introduce errors of significance (see the note at the end of clause D.3.7.4.3 ) the fact that the 
transformed curves are not flat any more, means that values such as an average and a standard deviation do not 
correspond easily … which can be noticed looking at the equations! 

In such cases, it could be wise to think also in terms of medians … 

So, the real question is to find if the shape of the distribution corresponding to the uncertainties being addressed is more 
easily described in linear terms or in dBs. When this decision is made, then the expressions in the present clause allow 
for conversions to be performed. 

RSSing standard deviations is correct when random variables are added (as shown in clause D.3.4) … but when mixing 
random variables otherwise, the complete and correct calculations may have to be completed. When values of  x  are 
small,  
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Log (1 + x ) can be taken as  x  (property used to establish the conversion tables (see table 1 in TR 100 028-1 [6])). 
When  x  becomes greater, then the approximation becomes less and less acceptable and it is to the person carrying the 
tests to choose the best route. In clause D.3.7.4.3 an expression at a higher order: 

)(
32

)1( 3
32

x
xx

xxLog ε++−=+  was successfully used. 

The general expression is, in fact: )()1(...
32

)1( 1
32

n
n

n x
n

xxx
xxLog ε+−+++−=+ +  

The following graph illustrates the approximation Log (1 + x )  =  x …and… the clauses below provide all the 
information required to perform complete conversions when this approximation is no longer acceptable … 

D.3.8.4.1 Transformation of linear terms into dBs 

First of all, it has to be noted that dBs are defined in two different manners which have to be listed here: 

- as relative values (e.g. in the case of attenuators) 

- as values relative to some reference (e.g. dBm, dB µV , etc.); both references to power and voltages are used, 
providing therefore two sets of coefficients ( 10  and  20 ), which have to be handled separately (see, for instance, 
table 1 in TR 100 028-1 [6]). 

This may have an influence in the way to write and to handle the conversions with dBs, and the approximations 
thereof …  

D.3.8.4.1.1 Converting powers into dBs 

The method provided in clause D.3.9 has been used in order to perform a conversion into dB W. 

Noting:  

the power in linear terms as  x  (i.e. in Watts)  … so  x  is a positive value! 

and the corresponding value in dB (i.e. dB relative to 1 Watt) as   z  , we have  z = 10 log ( x ) . 

as indicated in clause D.3.9, we have  
))(('

))((
1

1

zgg

zgf
h(z) −

−

=   , where: 

g | x  � 
)10(

)(
10)log(10

Log

xLog
xz ==  

g' | x  � 
)10(

10
Logx

 

g -1 | z  �  1010

10

10
zLogz

ex ==  

As a result,  
))(('

))((
1

1

zgg

zgf
h(z) −

−

=
)10('

)10(

10

10

z

z

g

f=  

or 
10

)10()10(
)10()(

10
10

z
z fLog

zh =   . 

 



 

ETSI 

ETSI TR 100 028-2 V1.4.1 (2001-12)218 

The moments can now easily be calculated with the expressions also given in D.3.9 , as soon as  f  is also given: 

dxxfxgm )()(∫
+∞

∞−

= dxxfx )()log(10∫
+∞

∞−

=    . (noting that log is "base" 10) 

Similarly, dxxfxgs )()(22
∫
+∞

∞−

= dxxfx )())log(10( 2
∫

+∞

∞−

=  … (noting that log is "base" 10). 

In many clauses of this annex e.g. in clauses D.3.1 and D.3.2, it had been possible to express the mean value after the 
specific operation as an explicit function of the original mean. The same in respect to the standard deviation. 

Clearly, in this case, as already found in clause D.3.7 (inversions and divisions), there appears not to be a simple 
relation, independent of the actual distribution, between these parameters. 

D.3.8.4.1.2 Converting a rectangular distribution into dBs 

As a example, should it be intended to convert a rectangular distribution (foot-print defined by parameters A and B … 
with a definition of A and B different from that used in clause D.1.3 ), then we would have: 

)(10
)10(

)10(
10

))/(1)(10(
)10()( 1010

AB

LogABLog
zh

zz

−
=−=   within the corresponding interval 

and zero outside … (noting that Log is "base" e). 

See also annex E. 

D.3.8.4.1.3 Converting voltages in dBs 

In this case, we have  z = 20 log ( x ) . 

as indicated in clause D.3.9, we have  
))(('

))((
1

1

zgg

zgf
h(z) −

−

=   , where: 

g | x  � 
)10(

)(
20)log(20

Log

xLog
xz ==  

g' | x  � 
)10(

20
Logx

 

g -1 | z  �  2020

10

10
zLogz

ex ==  

As a result,  
))(('

))((
1

1

zgg

zgf
h(z) −

−

=
)10('

)10(

20

20

z

z

g

f=  

or 
20

)10()10(
)10()(

20
20

z
z fLog

zh =   . 
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The moments can be, once again, calculated with the expressions given in D.3.9, as soon as  f  is also known: 

dxxfxgm )()(∫
+∞

∞−

= dxxfx )()log(20∫
+∞

∞−

=        (noting that log is "base" 10). 

Similarly, dxxfxgs )()(22
∫
+∞

∞−

= dxxfx )())log(20( 2
∫

+∞

∞−

=  … (noting that log is "base" 10). 

D.3.8.4.2 Transformation of dBs into linear terms 

The reverse operation can also be made … 

D.3.8.4.2.1 Converting powers 

As noted in clause D.3.8.4.1 , dBs can be expressed in relation to some reference. This is where the term  x0  is coming 
from. 

g | x  � 
10))log(

10
()log(

10 00

10
Logx

x
x

x

ez
++

==  

g' | x  � 
10))log(

10
( 0

)
10

10
(

Logx
x

e
Log +

 

g-1 | z  �  x = 10 (log ( z / xo ) = 10 ( log ( z ) – log ( xo ) )  

))log()(log(10 0xzx −=  

As a result, we get  
))(('

))((
1

1

zgg

zgf
h(z) −

−

=
10))log(

10

)))log()(log(10(
(

0

0
0

)
10

10
(

)))log()(log(10(
Logx

xz

e
Log

xzf
+−

−=  . 

When  the value is expressed in dB in the appropriate reference, xo = 1 and log (xo )  is 0; the above expression 
simplifies in: 

10)
10

))(log(10
(

)
10

10
(

)))(log(10(
)(

Log
z

e
Log

zf
zh =

10)log(10
)))(log(10(

10
LogzeLog

zf=
)(10

))log(10(
10

zLogeLog

zf=
10

))log(10(
10

Logz

zf=  

 

and finally, we have: 

10
))log(10(

10)(
Logz

zf
zh =   . 

 

The moments can now easily be calculated with the expressions also given in D.3.9 , as soon as  f  is also given: 

dxxfxgm )()(∫
+∞

∞−

= dxxfe
Log

x

)(
10)

10
(

∫
+∞

∞−

=    . 

Similarly, dxxfxgs )()(22
∫
+∞

∞−

= dxxfe
Log

x

)()( 2
10)

10
(

∫
+∞

∞−

=  … 
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D.3.8.4.2.2 Converting Voltages 

Should dB Volts (or dBµV) have been used, the corresponding conversion relations would have been: 

10))log(
20

()log(
20 00

10
Logx

x
x

x

ez
++

==  , as the general expression 

or, when the value of  x0  is  1  :  
10)

20
(

2010
Log

xx

ez ==   , in which case: 

 

10
))log(20(

20)(
Logz

zf
zh =  

dxxfem
Log

x

)(
10)

20
(

∫
+∞

∞−

=  

dxxfes
Log

x

)()( 2
10)

20
(

2
∫

+∞

∞−

= . 

D.3.8.4.2.3 Converting rectangular distributions 

In annex E, conversions of rectangular distributions have been also studied. 

In such a case, the above relation becomes: 

10
))log(20(

20)(
Logz

zf
zh =

10
)2/1(

20
Logz

A=  in the converted interval, zero, outside …After further simplification: 

zLogA
zh

1
10

10
)( =     or zero, outside the appropriate interval.  

(The corresponding probability density had been called p2 (x) in clause E.1.1.) 

 

An approach using spread sheets has also been proposed. Further details concerning this approach can be found in … 

D.3.8.4.3 Examples 

It was stressed earlier that the term dB may, in fact, cover different situations from the mathematical point of view.  

It has also been emphasized in particular in clause D.2 (and will be covered again in clause D.5) that in the mapping of 
physical parameters, random variables may be associated either with the variable itself or with small variations of it.  

The following clauses address these two different cases. 

D.3.8.4.3.1 Evaluation of uncertainties 

In this case, it can be expected that only small variations are considered. Therefore, multiplicative constants such as  x0  
appearing in the relations are equal to one (  Log ( x0 ) = 0 ). 
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D.3.8.4.3.2 Evaluation of link budgets 

In this case, it can be expected that the statistics of the various components are interesting per se, and not only its small 
variations. 

Among the parameters to be considered (and to be mapped to random variables), can be quoted: 

- transmitter power (e.g. a mobile Base Station) 

- cable attenuation (plus attenuation of couplers, if any) 

- transmitter antenna characteristics 

- attenuation due to the propagation 

- receiver antenna characteristics 

- cable attenuation (if any … the situation can be different in the case of mobile communications or fixed links) 

- receiver sensitivity. 

 

In this situation, it is likely that a great variety of types of dBs have to be used together (dB m, dB µV…). 

Therefore, constant such as  x0  appearing in the relations may have to be considered carefully. 

 

Beyond these "radio" characteristics, can also be quoted: 

- effect of temperature 

- effect of power supply voltages. 

The corresponding effects on the link budget can be handled thanks to the methods provided in clause D.4. 

 

D.3.8.4.3.3 Usage in the case of evaluation of link budgets and interference 

In this case, it can be necessary to handle simultaneously two links: 

- the link being considered 

- the interfering signal. 

Under such circumstances, it may happen that the corresponding standards use different expressions (e.g. dB W in one 
standard and dB m in the other) and therefore, constant such as  x0  appearing in the relations may have to be considered 
with extreme care.  

Using different references for the expressions in dB, can be considered, in fact,  as having additive offsets (which could 
be handled in accordance with clause D.1) or as having to multiply by some constant (which could be handled in 
accordance with clause D.2). 

D.3.9 Combination using deterministic functions of one variable 

This clause deals with      )(FgH =    

Where F is a random variable and H  its transformed by  g , where  g  is a deterministic function of one variable. 

Only the case where g is monotonous is addressed here, and it is supposed that   F  takes values within the definition 
of g (which can be expected, noting that  g  is monotonous …). 
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D.3.9.1 Evaluation of the corresponding distribution 

When  F  is a random variable characterized by the fact that the probability of  F  having a particular value  x  is given 
by the probability density  f ( x ) , then, by definition: 

the probability Pf of having  the random variable  F  having a value  x  such that 

   x1 < x < x2     is    ∫=
2

1

x

x

f f(x)dxP   . 

Similarly, we can consider ∫
∞−

=
x

f dtf(t)xP )(  , 

and therefore (by differentiation)    dPf = f ( x ) dx  . 

In the following,   x   is supposed within the definition range of g . 

 

Should  H  be the random variable corresponding to  g ( F )  (  H =  g ( F )  ),    

then, with the current notations, its probability density is    h ( z ) ,    to be evaluated. 

 

For each value of  F , the value z of the random variable  H  is  : z = g ( x ) . 

The way to evaluate   h ( z )  is, again, quite simple: 

when  the value of  F  is   within   [ x  , x + dx ]  , event having a probability f ( x ) dx   

the value of  H  is within     [ g ( x )  , g ( x + dx ) ] , 

event having a probability h ( z ) dz  . 

This means that these two events have the same probability, and, therefore: 

f ( x ) dx = h ( z ) dz . 

When the value of  F  is  x  , the value  of   z  is  z = g ( x )  . 

We will also have,  dz = g' ( x ) dx  , where,  for the moment, g' ( x ) is supposed to be  > 0 

and (z)gx 1−= . In order to have a reciprocal function,  g'  has to be monotonous (no changes of the sign). 

Replacing, we get: 

 dP = h ( z ) dz =  f ( x ) dx    �     h ( z )  g'( x ) dx =  f ( x ) dx , which, in turn, gives: 

h ( z ) g' ( x ) =   f ( x )   , or   
))(('

))((
1

1

zgg

zgf
h(z)

−

−

=  

the relation between the probability densities corresponding to the random variables  F  and  H , 

valid when  g' > 0 … (see D.3.9.2). 

 

Should g' ( x ) be < 0 , then as in the case of a multiplication by a negative constant (see clause D.3.2.1), the effects on 
inequalities and intervals have to be taken into account. 
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The final result is, therefore, 

))(('

))((
1

1

zgg

zgf
h(z)

−

−

=  . 

NOTE: an equivalent result has been found in clause D.3.10.3 relating to "substitutions"; the method used to 
derive the corresponding relation was different. 

D.3.9.2 Verifications 

When providing the definitions and characteristics of probability densities characterizing random variables, 2 criteria 
had been expressed. The probability density associated with  H ,  h ( z )   shall be such that: 

- 0≥h(z)  

- ∫
+∞

∞−

=1dzh(z)  

It is therefore wise to verify the 2 properties, which, in practise, could help detecting problems occurred during the 
calculations. 

It is obvious that the fact that   f  is such that     0≥∀ f(x)x ,   

makes it always true that  0( ≥z)h …  

The second property is less obvious. 

So,  g will be considered to be so that  g' > 0  . 

The verification can be done in a generic manner: ∫
+∞

∞−

=dzh(z)  dz
zgg

zgf

))(('

))((
1

1

−

−+∞

∞−
∫  

By introducing  t = g-1 (z )    �  z = g ( t )  and  dz = g' ( t) dt  ,  this equation may be transformed into: 

  �    ∫
+∞

∞−

=dttg
tg

tf
)('

)('
)(

  1∫
+∞

∞−

=f(t)dt . 

Which ensures that  h ( z )  can be a proper probability density function characterizing some random variable. 

 

When  g' < 0 , then, when replacing  z  by  t  , the limits of integration are inverted, which compensates for the negative 
sign introduced. 

This phenomenon is similar to that found in the case of the multiplication by a negative constant and has also been 
presented in detail in the case of multiplications (see clause D.3.6.2 ). 

D.3.9.3 Means and standard deviations 

The mean value of  F  has been defined as: 

∫
+∞

∞−

= f(x)dxxmf . 

What will then be the first two moments of h ( z )  ?  Can they be simply expressed as a function of the two first 
moments of  f   ,  mf  and   sf   ???     
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The calculations below apply to the case when  g' < 0; 

when  g' < 0 , then, when replacing  z  by  x  , the limits of integration are inverted, which compensates for the negative 
sign introduced. 

This phenomenon is similar to that found in the case of the multiplication by a negative constant and has also been 
presented in detail in the case of multiplications (see clause D.3.6.2 ). 

 

∫
+∞

∞−

== h(z)dzzmh dz
zgg

zgf
z

))(('

))((
1

1

−

−+∞

∞−
∫  

noting that  z = g( x )   and   dz = g'( x ) dx           

== ∫
+∞

∞−

dxxg
xg

xf
xgmh )('

)('
)(

)( dxxfxg )()(∫
+∞

∞−

    . 

 

What then concerning the second moment    ??? 

 

∫
+∞

∞−

== h(z)dzzsh
22 =

−

−+∞

∞−
∫ dz

zgg

zgf
z

))(('

))((
1

1
2 =∫

+∞

∞−

dxxg
xg

xf
xg )('

)('
)(

)(2 dxxfxg )()(2
∫

+∞

∞−

 

 

Should  g  be a rather simple expression, it is clear that the corresponding expressions of  m ,  s  and    σ   should be 
very simple  also … 

Example,  g  | x    �   λλλλ    x       (i.e.  z = g( x )  = λλλλ x) 

then,  mh  = λ λ λ λ mf  ,  sh  =  λλλλ  sf    and   σh²  = sh²  -  mh²   =  (λλλλ  sf )²  -  (λ λ λ λ mf )²  =   λλλλ²  σσσσf²   

which had been found directly in clause D.3.2 

However, it is clear that outside simple cases such as the linear case handled above, it is not often the case that resulting 
mean and standard deviation can be expressed explicitly using the mean and the standard deviation of the original 
distribution… see, in particular, clause D.3.8, where Logs and dBs are handled. 

D.3.9.4 Examples 

Conversions of linear terms to dBs and vice-versa have been performed in this annex using this method… see 
clause D.3.8.4 

In annex E a direct method had been used. The comparison is interesting. 

D.3.10 Further theoretical material and reciprocals 
A systematic review of the effect of mathematical operations on probability densities has been provided in the previous 
clauses. The corresponding properties have often been given based on calculations "as simple (and basic) as practical". 
The purpose of the present clause is to provide also some material more theoretical … which could have been used, as 
well, to establish some of the results provided in this annex. 
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D.3.10.1 Integrals and derivatives 

In the present annex, a number of calculations have been performed using the probability density. 

Similar results might also have been obtained starting from expressions such as: 

∫==<<
2

1

)( 21

x

x

p(x)dxPxxxyprobabilit   

(where  P  is the probability of the value  x  of the random variable  XXXX    

(X X X X  using the character set "Monotype Corsiva") 

lying between  x1  and  x2  , expressed using the probability density function  p ( x )  )  (see clause D.1.2). 

It has to be stressed that , with these conventions, 21 xx < . This fact has been used extensively in clause D.3, in 

particular when multiplying the extremities of intervals by negative numbers (see, in particular, clauses D.3.2 and 
D.3.6). 

 

Should integrals be used, it is important to recall that  

if  ∫
∞−

=
X

p(x)dxXP )(  then the derivative function  P'  is such that: 

p(X)XP =)('  . 

This may have to be kept in mind, when thinking in terms of cumulative probabilities rather than probability densities. 

D.3.10.2 Substitutions and integrals 

Calculations based on changes of variables ("substitutions") have been used a significant number of times in the annex. 
However, for the sake of completeness, it can be useful to express it in a more formal way: 

Take, for example,  ∫
=

=

=
2

1

xx

xx

p(x)dxP   ;  

let see the effect of a substitution with: 

x = k ( t )  ; 
dt

dk
tk

dt

dx == )('  

∫
=

=

=
)2(

)( 1

)(')(
xgt

xgt

dttk)tp(kP  , where  g  is the reciprocal of  k  . 

It is interesting to compare this expression with that obtained in clause D.3.10.3 below. 

It can also be interesting to consider  P  as a function of  T  in the same way as it was considered in clause D.3.10.1: 

∫
==

=

=
TXgt

gt

dttk)tp(kTP
)(

)0(

)(')()(   and note that now 

)(')()(' Tk)Tp(kTP = , which shows the effect of the substitution. 
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D.3.10.3 Substitutions and distributions 

The expression: ∫
+∞

∞−

=1dxf(x)  has already been used a number of times as a requirement for   f   to be a valid  

probability density (distribution). 

What happens when a variable change is performed ? 

Let's consider )(tkx =  where  k  is monotonous ,  and   where k' exists and k' > 0. 

dt

dk
tk

dt

dx == )('  and (by "substitution") the integral above becomes: 

∫
+∞

∞−

=1)('))(( dttktkf  . 

Should   )tf(k )(  be considered as a function  e  of  t  , then we have: 

∫
+∞

∞−

=1)(')( dttkte  and )(')( tkte  is therefore a valid candidate for a probability density … 

Since  f  is a "good" probability density (and, therefore, has only positive values), and since  k'  was supposed to be 
positive,  

then )(')( tkte  is also positive … and a second necessary criterion is met. 

Noting that when 2 functions (  f  and  g ) are reciprocal the corresponding derivative functions have inverse 
expressions: 

(
'

1
)('

g
tk =  ) 

it is clear that the expression above is similar to that already found in clause D.3.9.1 …  

where z  had been used  instead of  t  … 

 

The fact that  k  is supposed to be monotonous (and that therefore there are no changes of sign of  k'  ) is required so 
that there is an inverse (reciprocal) function  ( g ) … 

 

What happens then if   k' < 0  ? 

When making the substitution on the integral, the upper bound and lower bounds get inverted, due to the fact that  
−∞→⇒+∞→< txtk ,0)(' . 

As a result ∫
−∞

∞+

=1)(')( dttkte  

and  ∫
+∞

∞−

=− 1)(')()1( dttkte   or ,  noting that  k' < 0 
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∫
+∞

∞−

=1)(')( dttkth  . 

Therefore, in both cases ( k'  positive or negative): 

∫
+∞

∞−

=1)(')( dttkth  is the result of the substitution of  x  by  t = k ( t )  in the probability density (distribution). 

This rule, concerning the change of variables, is different from that to be used for functions … so extreme care has to be 
developed when performing substitutions with these mathematical objects … however, the rule is quite simple: 

When )(tkx ⇒  then  )(')()('))(()( tktetktkfxf =⇒  , 

where   f  is  the probability density  of  the random variable  X   (of which  x  is a possible value) 

and  h  is the probability density of the random variable T  (of which  t  is a possible value). 

 

With the notations proposed in clause D.10.6 , the above expression would become: 

)(tkx ⇒   then  )(')()('))(()()( tktetktkXtTxX ==⇒  , 

where  X  and  T  are probability densities characterizing respectively the probability of occurrence of the values  x  and  
t . 

NOTE 1: The expressions above are quite similar to those found in clause D.3.10.2, with the difference that the 

absolute value of  k'  is used instead of simply  k' .This is the result of the constraint 21 xx < found in 

the definition of  P. 

NOTE 2: It is essential for  k  to be monotonous (no changes of sign for  k' ).If not, there is no inverse function. A 
way to overcome (by hand …) this limitation is shown in clause D.3.10.8. 

NOTE 3: Rather than handling absolute values, it is often easier to multiply the relevant expression: 

- by the value  ε;  
− the value of   ε   would be  +1  for a positive  k'  and  -1  for a negative  k'  . 
This convention has been extensively used in clauses D.6 and D.7. 

D.3.10.4 Example of application: the inverse  

See clause D.3.7.1. 

D.3.10.5 Reciprocals 

Besides the interest in terms of completeness, reciprocal operations are often performed in calculations relating to radio 
equipment, for example, conversions into dBs and vice-versa. 

It can, therefore, be useful to keep in mind the corresponding relations. 

Using the notions proposed below in clause D.10.6 … 

Assume: 

- 2 random variables  X and  Y 

- taking values such as  x and y 

- with density probabilities  X and Y or  X ( x ) and  Y ( y ) 
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where: 

y = g ( x ) or x = k ( y ) ( k  being the inverse of  g )  

where  g  is supposed to be strictly monotonous (and so will be  k , its inverse …). 

Then 
)('

1
)('

xg
yk =  ( g  being strictly monotonous, then  g'  cannot be 0…). 

From clause D.3.9.1 or D.3.10.3 above we get (changing the names appropriately): 

))(('

))((

))(('

)(
)(')()('))(()(

ykg

ykX

ykg

ye
ykyeykykXyY ====  and 

))(('

))((

))(('

)(
)(')()('))(()(

xgk

xgY

xgk

xd
xgxdxgxgYxX ====  , 

where  d ( x ) = Y ( g ( x ) )  and   e ( x ) = X ( k ( y ) ) . 

As a final note, it is clear that the knowledge of the probability density of one of the random variables gives "directly" 
the density probability of the other. 

D.3.10.6 Notations 

Beyond the fact that different clauses in the present annex have been written by different authors, a reader may have 
also noted different notations due to the intention of the clause: some clauses are more related to physics, in which case 
the variables used tend to look like the usual expressions used for physical values (i, r, v), while others are more related 
to mathematical calculations … 

At this point in the annex, considering that the reader is familiar with the concepts, and that only very seldom the name 
of the random variable concerned is quoted … the following notations could be suggested: 

- name of the random variable    : V (character  set Monotype Corsiva) 

- values taken by the random variable : v 

- density probability       : V or V ( v ) 

             (rather than  p ( v )  or  pV (v) as could have been expected, 

 in view of D.1 , where  "p"  recalls the word probability). 

Resulting therefore in expressions like: 

∫
+∞

∞−

=1)( dvvV  … where there are certainly too many  "v" , but can be more clear when a considerable number of 

random variables are concerned. 

 

The difficulty with the notations is that there are, in fact 3 items interrelated, and 2 practical ways to type (lower case 
and upper case). So it is either necessary: 

- to use more than 1 character set (which the equation box mechanism does not seem to handle), or 

- to use conventions such as those of  C++  where  f ( )  may be a function and at the same time   f  may be a 
variable; 

- or to use different letters for items related, which can be confusing when a significant number of items are used. 
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In the present annex, standard deviations have often been called   σr  , where  r  indicates the random variable being 
considered. For practical reasons, in other clauses of the present document,  u  has been used instead. 

However,  u  can recall "uncertainty" … but, in many cases,  u  is in fact the standard deviation   σ  of the contribution 
being considered. 

D.3.10.7 Units 

D.3.10.7.1 Some properties 

In the present annex, units have been dropped in a number of situations. 

Therefore, it can be useful to recall that: 

- probabilities are numbers without unit …  0 ≤ P ≤ 1 

- values such as  A  in the definition of rectangular distributions have the unit of the item concerned; 

 for example, when referring to Volts,  A  would be expressed in Volts (e.g.  +2 V) 

- as a result, density probabilities are expressed in the inverse of the corresponding physical unit 

 for example,  V(v)  would be expressed in (Volts)-1 , (e.g. V(v) = (1 / (2 A)) (V)-1) 

- an integration (e.g. using  dx  where  x  is a length) adds one dimension 

- a differentiation reduces dimensions by 1. 

A careful handling is therefore required when, for instance, handling mA instead of  A , in practical examples. 

D.3.10.7.2 Example 

Take a resistor … V = R I . 

Clause D.3.6 provides the probability density corresponding to the product of probability densities: 

∫
+∞

∞−

= dxxf
x

z
g

x
zh )()()

1
()( , or with the units corresponding to this example, and the notations of D.3.10.6: 

R � F , x 

I � G , y 

V � H , z 

∫
+∞

∞−

= drrR
r

v
I

r
vV )()()

1
()(  . 

With: 

- dr  expressed in  ( A V )  or    ( Ω ) 

- )(rR  expressed in  ( A V ) –1  or    ( Ω ) –1 

- )(I  expressed in A-1 

- )
1

(
r

 expressed in  ( A V ) –1  or    ( Ω ) –1 



 

ETSI 

ETSI TR 100 028-2 V1.4.1 (2001-12)230 

finally, it becomes clear that  V ( v )  is expressed in  ( V ) –1 , which would have been expected for a density probability 
relating to Volts. 

 

It was also noted in clause D.3.6 that an equivalent expression would have been: 

∫
+∞

∞−

= diiI
i

v
R

i
vV )()()

1
()(  

which would also have provided a result expressed in  ( A V ) –1  or    ( Ω ) –1. 

 

It is worth looking at both expressions. The former evaluation of  V ( v )  is most probably more friendly than the latter:  
r  can be expected to be always > 0 … while  i  can often be positive or negative or null. 

D.3.10.8 Application of the substitution method in difficult situations 

One operation could have been also found in clause D.3: raising to the square. 

It could have been useful for finding powers out of voltages or currents. 

At first sight,  one could have said that there was no need: the multiplication is already dealt with in clause D.3.6. But in 
that clause the two input random variables are supposed to be independent … which is certainly not the case for the 
square! 

Next idea could have been to use clause D.3.9 (functions of one variable). But it is not possible to use it because, in that 
clause,  g  is supposed to be monotonous! 

One way out could be to use the principles of the substitution (as set in clause D.3.7. 3 ), analysing the implications 
carefully at each step … 

D.3.10.9 From the time domain to density probabilities 

This is an area were further work could be useful … to be incorporated in a future edition of the present document. 

D.3.11 Combinations using deterministic functions of two variables 

This clause deals with      ),( KFgH =    

Where  F  and  K  are independent random variables and  H  the result of  g , where  g  is a deterministic function of 
two variables. 

It is supposed that  F and K  take values within the definition of   g . 

Problems could be expected, should  F  or  K   take  (too often) particular values (such as zero …). 

Should this occur, then in that particular case, careful attention should be devoted to the situation. 

A careful discussion shows similar situations as for clause D.3.9 in relation to the signs. In order to avoid to have too 
much text, the discussion has been simplified. 

D.3.11.1 Evaluation of the corresponding distribution 

When  F  is a random variable characterized by the fact that the probability of  F  having a particular value  x  is given 
by the probability density  f ( x ) , then, by definition: 

the probability Pf of having  the random variable  F  having a value  x  such that 
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   x1 < x < x2     is    ∫=
2

1

x

x

f f(x)dxP   . 

Similarly, we can consider ∫
∞−

=
x

f dtf(t)xP )(  , 

and therefore (by differentiation)    dPf = f ( x ) dx  . 

When  K  is also a random variable, characterized by the fact that the probability of  K  having a particular value  y  is 
given by the probability density  k ( y ) , then, by definition: 

the probability Pk  of having  the random variable  K  having a value  y  such that 

   y1 < y < y2     is    ∫=
2

1

y

y

k k(y)dyP   . 

Similarly,  dPk = k( y ) dy  . 

H is the random variable resulting from the effect of   g   on   F  and  K ,   and its probability density  h ( z ) , 

is to be evaluated. 

For each value  x  of  F  and   y  of   K  , the value  z  of the random variable  H  is  : z =  g( x ,  y)  . 

 

The way to evaluate   h ( z )  is relatively simple (very similar to a number of calculations completed above) , and is 
given in the following. 

The probability of having the value of  F  within a very small interval [x , x + dx]  is  f ( x ) dx   ; 

the probability of having the value of  K  within a small interval   [y1 ,  y2]   

is  k( y ) ( y2 - y1 ) = k ( y ) Dy  (where   Dy = y2 - y1 ,  

and where it is assumed that    k ( y1 ) = k ( y2 ) = k ( y )  ,  Dy   being considered as small ); 

when both events occur,  

then, the value of   H  within     [z1  , z2]   where  zi  = g ( x ,  yi ) 

  (neglecting  dx ,  considered to be very small compared with  Dy ) 

 and the probability of such an event (which provides the contribution of  dx  in  h( z ) )  is     

f( x ) dx  k(  y ) Dy . 

When  Dz = z2 - z1 , by definition,  h ( z )Dz  is the probability of having the value of  H within  [z1,  z2]   and 
is, therefore, the sum of the probabilities of all the individual contributions, corresponding to all values of  x : 

∫
+∞

∞−

= dxxfDyykDzzh )()()(  . 

Having   dy
y

g
dx

x

g
dz

∂
∂+

∂
∂=    , 

we can write    Dy
y

g

∂
∂=== )  y  ,  x ( g - ) y  , x ( g  z - z  Dz 1212    , 
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and we get  Dy
y

g
Dz

∂
∂=   which makes   dxxf

y

g
Dzyk

Dzzh )(
)(

)( ∫
+∞

∞−

∂
∂

=  . 

As already noted in clause D.3.9 , expressions such as the one above are valid when  0>
∂
∂

y

g
. 

Otherwise, the intervals have to be inverted and to cover all cases it is necessary to write: 

dxxf

y

g

Dzyk
Dzzh )(

)(
)( ∫

+∞

∞−

∂
∂

= . 

y

g

∂
∂

 is, in all cases, expected to be monotonous (no changes of the sign allowed). 

Noting that, solving  g   we can write    ),( xzy γ=   ( with, may be some restrictions), the integral above 

becomes 

dxxf

y

g

Dzxzk
Dzzh )(

)),((
)( ∫

+∞

∞−

∂
∂

= γ
  , 

which can, in turn, be simplified into    dxxf

y

g

xzk
zh )(

)),((
)( ∫

+∞

∞−

∂
∂

= γ
 

This integral provides the value of  h ( z )  as a function of  f ( x )  ,   k ( y )   … which gives a relation between the 
probability densities corresponding to the random variables F ,  K  and  H   . 

D.3.11.2 Verifications 

When providing the definitions and characteristics of probability densities characterizing random variables, 2 criteria 
had been expressed. The probability density associated with H , h ( z ) shall be such that: 

- 0≥h(z)  

- ∫
+∞

∞−

=1dzh(z)  

It is usually wise to verify the 2 properties, which, in practise, could help detecting problems occurred during the 
calculations. 

The fact that   0≥∀ f(x)x   and  0≥∀ k(y)y    

makes it clear that  0( ≥z)h    … 

Concerning the second item, the situation is close to that found when lambda was negative in clause D.3.2 … and in the 
clauses above …  



 

ETSI 

ETSI TR 100 028-2 V1.4.1 (2001-12)233 

The verification can be done in a generic manner: 

∫
+∞

∞−

=dzh(z)   dzdxxf

y

g

xzk
)(

)),((
∫∫

+∞

∞−

+∞

∞−

∂
∂

γ
 

and in the positive case, 

dxdz

y

g
xzk

xf ]
)),((

[)( ∫∫
+∞

∞−

+∞

∞−
∂
∂= γ

 . 

As done previously, the integral inside is handled considering  x  as a constant, and by introducing 

a change in the variable: ),( xzy γ= . 

We have  dx
x

dz
z

dy
∂
∂+

∂
∂= γγ

  

 so   dz
z

dy
∂
∂= γ

   

and this expression may be transformed into: 

dxdy

zy

g
yk

xf ]
)(

[)( ∫∫
+∞

∞−

+∞

∞−
∂
∂

∂
∂= γ   . 

To simplify this relation (which we always succeeded in the practical cases above), let us see the relations between both 
partial derivations (is this English ? ) … 

We have both    dx
x

dz
z

dy
∂
∂+

∂
∂= γγ

 

and      dy
y

g
dx

x

g
dz

∂
∂+

∂
∂=    . 

Therefore: 

dy
y

g
dx

x

g
dz

∂
∂+

∂
∂= 






∂
∂+

∂
∂

∂
∂+

∂
∂= dx

x
dz

zy

g
dx

x

g γγ
 

which is true for any value of   dz  and any value of  dx   … which, in turn, implies that 






∂
∂

∂
∂=

zy

g γ
1   . 

As a result  : ∫
+∞

∞−

dzh(z) dxdy

zy

g
yk

xf ]
)(

[)( ∫∫
+∞

∞−

+∞

∞−
∂
∂

∂
∂= γ dxdy

yk
xf ]

1
)(

[)( ∫∫
+∞

∞−

+∞

∞−

=  

  = ∫
+∞

∞−

=dxxf ]1[)(  1∫
+∞

∞−

=f(x)dx . 

Which ensures that  h ( z )  (under the conditions stated above) could be a proper probability density function. 
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D.3.11.3 Means and standard deviations 

As found in clause D.3.9.3 , even though the expression of   h ( z )  is rather complicated, the first two moments have a 
quite friendly expression: will there be a similar situation here ? 

∫
+∞

∞−

== dzh(z)zmh dzdxxf

y

g

xzk
z )(

)),((
∫∫

+∞

∞−

+∞

∞−

∂
∂

γ
dxdz

y

g

xzk
zxf ]

)),((
[)( ∫∫

+∞

∞−

+∞

∞−

∂
∂

= γ
 

Let us try and make the same change of variable as in the case of the verification above (see clause D.3.11.2)  

),( xzy γ=  … we then get, in line with the expressions found above:     

dxxfdy
yk

yxgmh )(
1

)(
),(∫∫

+∞

∞−

+∞

∞−

=     . 

This can be written as: 

dyykdxxfyxgmh )()(),(∫∫
+∞

∞−

+∞

∞−

=  , 

which means, that, in other words, the mean value obtained corresponds to the 2D average of the points obtained 
weighted by the original probabilities of occurrence. 

In fact   f ( x ) dx  is a probability of occurrence in a one-D space, 

k (y ) dy  is a probability of occurrence in another one-D space, 

and f ( x ) dx  k ( y ) dy  is the probability of occurrence of the couple  ( x , y )  in the two-D space, product of the two 
original spaces. 

 

What then concerning the second moment    ??? 

In the same way, 

∫
+∞

∞−

== dzh(z)zsh
22 dzdxxf

y

g

xzk
z )(

)),((2
∫∫

+∞

∞−

+∞

∞−

∂
∂

γ
 

the same change of variable as above gives: 

dyykdxxfyxgsh )()(),(22
∫∫
+∞

∞−

+∞

∞−

=  , 

which is an expression extremely similar to those found above, e.g. in the case of the effect of a function having only 
one variable (see clause D.3.9). 

It is nice to find such a simple expression, when the expression of   h ( z )  has lead us through rather delicate 
calculations … 
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D.3.11.4 Examples 

Should  g ( x , y )  be a rather simple expression, it is clear that the corresponding expressions of   m ,  s  and  σσσσ   should 
be very simple  also … 

Examples can be found in the clause dealing with subtractions and divisions of distributions, in clauses D.3.5 and D.3.7 
of annex D. 

D.3.11.5 Generalization to spaces of dimension N 

The results found above in relation to the mean and to the variance could be extended to spaces of dimension N, the 
expression of the distribution looking somewhat more complex. However, for the purpose of the evaluation of 
measurement uncertainties according to the present document, the more important relation is that leading to the standard 
deviations…which looks very friendly. 
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D.3.12 Combination of distributions – Summary table 
Operations relating to random variables Equations (1) Resulting distribution Mean value Standard deviation Clause 

Addition of a constant value H=F+α h(z)=f(z-α) mh=mf+α σh=σf D.3.1 

Multiplication by pos. const. H=(λ)F h(z)=(1/λ)f(z/λ) mh=λmf σh=λσf D.3.2  

Multiplication by neg. const. H=(-λ)F h(z)=-(1/λ)f(z/λ) mh=λmf σh
2=λ2σf

2 D.3.2 

     

One 

random variable 

Inverse function H= 1 / F h(z)= f(1/z) / z2 mh=∫ (f(z) / z) dz σh
2+mh

2=∫ (f(z) / z2) dz D.3.7 

Sum H=F+G h(z)=∫g(z-x)f(x)dx mh=mf+mg σh
2=σf

2+σg
2                      (2) D.3.3 

independent variables H=λF+µG h(z)=∫(1/λµ)f(x/λ)g((z-x)/µ)dx mh=λmf+µmg σh
2=λ2σ f 

2 + µ2σ g 
2 D.3.4 

non independent variables H=λF+µG 

where F=kG 

h(z)=(1/(λk+µ))g(z/(λk+µ))  mh=(λk+µ)mg σh
2=(λk+µ)2σg

2 D.3.4.6 

Subtraction H=F-G h(z)=∫g(x-z)f(x)dx mh=mf-mg σh
2=σf

2+σg
2 D.3.5 

Multiplication H=FG h(z)=∫(1/ | x | )g(z/x)f(x)dx mh=mf mg σh
2+mh

2=(σf
2+mf

2)(σg
2+mg

2) D.3.6 

 

 

Two 

random variables 

Division H=F/G h(z)=∫ g(x/z) ( | x | / z2 ) f(x)dx mh= mf  (∫ (g(z) / z) dz) σh
2+mh

2=(σf
2+mf

2)(∫(g(z)/z2)dz) D.3.7 
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Using Logs H=Log(F) h(z)=ez f ( ez ) mh= ∫ Log(x) f(x) dx σh
2= ( ∫ Log2(x) f(x) dx ) - mh

2 D.3.8 

Linear terms  �dB H=10 log(F) h(z)=10z/10(Log(10)f(10z/10)/10) mh=∫ 10 log(x)f(x)dx σh
2=( ∫ (10log(x))2f(x) dx) - mh

2 D.3.8.4.1  

Powers dB � linear terms H= 10 (F/10) h(z)=10(f(10log(z)))/(zLog10) mh=∫ e(x/10) Log10 f(x)dx σh
2=(∫(e(x/10)Log10)2f(x)dx)-mh

2 D.3.8.4.2 

Linear terms  �dB H=20 log(F) h(z)=10z/20(Log(10)f(10z/20)/20) mh=∫ 20 log(x)f(x)dx σh
2=( ∫ (20log(x))2f(x) dx) - mh

2 D.3.8.4.1 

 

Using Logs 

 

Volts dB � linear terms H= 10 (F/20) h(z)=20(f(20log(z)))/(zLog10) mh=∫ e(x/20) Log10 f(x)dx σh
2=(∫(e(x/20)Log10)2f(x)dx)-mh

2 D.3.8.4.2 

One variable H=g(F) h(z)=(f(g-1(z)))/ | g'(g-1(z) | ) mh= ∫ g(x) f(x) dx  σh
2= ( ∫ g2(x) f(x) dx ) - mh

2 D.3.9 Using a function 

Two variables H=g(F, K) h(z)=∫((k(ϒ(z,x))/ | δg/δy |)f(x)dx mh=∫∫g(x,y)f(x)dx k(y)dy σh
2=(∫∫g2(x,y)f(x)dx k(y)dy)-mh

2 D.3.11 

Substitutions t replaces x  in a distribution x  � k(t) X(x)  �  T(t) = X(k(t)) |k'(t)| See D.9.3 See D.9.3 D.3.10.3 

Reciprocals y  = g ( x )  � x = k ( y ) See D.3.10.5 See D.3.10.5   D.3.10.5 

 

NOTE: In the above table, the symbol ∫  stands for:    

 In the table above, the effect of the sign of a multiplicative constant has been highlighted. Great care is recommended with regard to possible effects on the validity 
of these expressions due to signs and possible zeros of expressions used above. Functions like  g  are supposed to be monotonous; for more details, please refer to 
the appropriate clause of the annex. 

 (1) The equations are related to independent variables, unless otherwise stated. 

 (2) TR 100 028 uses extensively this formula. 

∫
+∞

∞−
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D.4 Influence quantities 

D.4.1 Theoretical approach 
The basic concept addressed in this clause is the introduction of a factor  K  relating parameters ("quantities") not very 
well controlled … such as temperature or voltage, which may have some influence on the measurement considered to 
their effect. 

This factor is to be multiplied by the parameter whose influence is being considered. 

The situation can therefore be interpreted using the product of two random variables, and the properties found in clause 
D.3.6  can therefore be used. 

This will introduce expressions such as those found in clause D.3.6.3: 

therefore the mean value in terms of effect, mh , is: 

mh = mf  mk 

and "standard deviation"σσσσh  is such that: 

σσσσh
2 + mh

2= (σσσσf
2 + mf

2 )( σσσσk
2 + mk

2 )  , 

where  f  relate  to the random variable (parameter) being addressed (e.g. temperature) and  k  to random variable 
corresponding to the multiplicative factor  K. 

D.4.2 Examples 

D.4.2.1 Effect of the temperature  

Suppose the temperature can have an effect modelled as  K dT , 

where  dT  is supposed to be a random variable, with a rectangular distribution, 

and  K  is known by its average value  mk  and its standard deviation   σσσσk  . 

As indicated above, we have then: 

σσσσh
2 + mh

2= (σσσσdt
2 + mdt

2 )( σσσσk
2 + mk

2 )  . 

However,  dT  can be defined such that its average value, mdt , be  0. 

Noting that we also have:    mh = mdt  mk 

when    mdt =  0 , we also have     mh =  0 . 

In this case, the expression of   σσσσh   can be simplified: 

σσσσh
2   =  (σσσσdt

2  ) ( σσσσk
2 + mk

2 )  . 

This expression recalls equation 5.2 (when m dt = 0) found in clause 5.4 of TR 100 028-1 [6] of the present document: 

" 

The standard uncertainty to be converted is uj 1. The mean value of the influence quantity is A and its standard 

uncertainty is uj a. The resulting standard uncertainty uj converted of the conversion is: 

)+uA(u = u ajjconvertedj
222

1  (5.2) 

". 
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Further information concerning the values of influence quantities may be found in table C.1. 

When building similar tables it is of primary importance to address how terms such as the term  K dT  are to be 
incorporated in the general set of equations describing the measurement (see clause D.5). 

 

D.4.2.2 Effect of the temperature on a resistor 

As in the clause above, suppose the temperature can have an effect modelled as  K dT , 

where  dT  is supposed to be a random variable, with a rectangular distribution, 

and  K  is known by its average value  mk  and its standard deviation   σσσσk  . 

A general expression of the value of a resistor could be: 

R = R0 ( 1 + K dT )  ,  where  R0  and  R  are respectively the resistance  for temperatures defined by   

dT = 0  and for any other value of  dT . 

The above expression can also be written as: 

R = R0  +  R0 K dT   and be interpreted as an operation involving  4  random variables  R0  ,  R  , K  and  dT . 

In this case, R0  can be considered as the result of an appropriate combination of distributions, providing the 
measurement uncertainty for the measurement of the resistor (see clause D.5). 

From the properties found in clause D.3 , it comes that: 

σσσσR
2  = σσσσR0

2 + σσσσR0KdT
2   and   

σσσσR0KdT
2 + mR0KdT

2= (σσσσR0
2 + mR0

2 ) (σσσσdt
2 + mdt

2 )( σσσσk
2 + mk

2 ) . 

As indicated in the previous clause, it is possible to choose values so that some of the average values are 0 , and to 
simplify the expressions accordingly; furthermore, when  R0  is considered as providing the probability density for the 
resistor (together with the measurement uncertainty) we get: 

σσσσR0KdT
2 = (σσσσR0

2 + mR0
2 ) (σσσσdt

2 )( σσσσk
2 + mk

2 ) . 

Therefore, σσσσR
2  = σσσσR0

2 + (σσσσR0
2 + mR0

2 ) (σσσσdt
2 )( σσσσk

2 + mk
2 ) . 

Hopefully   σσσσR0
2 <<  mR0

2 

so  finally  we get an approximation: σσσσR
2  =  σσσσR0

2 +  mR0
2  σσσσdt

2 ( σσσσk
2 + mk

2 )    

or   σσσσR
2  =  σσσσR0

2 +  R0m
2  σσσσdt

2 ( σσσσk
2 + mk

2 )  where R0m  represents the measured value of the resistor. 

 

Should  R0m   be equal to  1  then   σσσσR
2  =  σσσσR0

2 +   σσσσdt
2 ( σσσσk

2 + mk
2 )   an expression which is, similar to those implicitly 

found in the main body of the present document. 
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D.5 Global approaches 

D.5.1 Using directly the random variables in a measurement 

D.5.1.1 Introduction 

The method to calculate the density probability of any (well behaved) combination of two random variables has been 
given in clause D.3.11  and the expression of the first moments of the probability density of any (also supposed well 
behaved) function (deterministic) of N variables has been given in clause D.3.11.5. 

Clause D.3 provides similar results for usual operations and combinations of random variables. Therefore, it should be 
possible to calculate step by step any (well behaved) combination of random variables. 

As a result, as soon as a system (e.g. a measurement set up) can be mapped to such a mathematical model, it is possible 
to evaluate its outputs as a function of its inputs (e.g. in terms of results of measurements and of uncertainties). 

D.5.1.2 Writing the equations 

Let us therefore consider a system with: 

- a set of inputs   I1 …  Ij … In 

- a set of outputs   R1 … Rk … Rp 

where the outputs Rk have been expressed as functions of the various inputs  Ij  using a set of  

p  functions of  n  variables     

g1 ( I1 , …  Ij , … In  )     

…   

gk  

 …    

gp ( I1 ,   …  Ij , … In  )  .   

 

When each input  Ij  is considered as a random variable,  

and all inputs are considered as a set of  n   independent random variables   I1 …  Ij … In      ,  

then, the set of   p  outputs, R1 … Rk … Rp  , can be considered as a set of random variables of which the 
statistical/probabilistic properties are known and determined by the equation found in clauses D.11 and D.11.5, as soon 
as  

g1 ( I1 , …  Ij , … In  )    

 …    

gk  

 …    

gp ( I1 ,   …  Ij , … In  )    

and  the statistical/probabilistic properties of the inputs (i.e. I1 …  Ij … In) are given. 
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D.5.1.3 Number of equations 

Some rather simple measurements (e.g. "conducted power") can be modelled using only one equation. 

To model a substitution measurement (see clause D.5.3) it can be user friendly to use a set of two of such equations. 

D.5.1.4 Mapping variables 

As already proposed in clause D.2.1 , the characteristics of the output signal of a generator can be represented by a 
random variable,  G , where the uncertainties relating to the generator's output signal characterize  G . For example, the 
probability density of  G  could be a rectangular distribution centred around 10 mV , having a zero value outside   
[9 , 11]  ( values given in mV). 

As also addressed in clause D.2.1.2 and D.2.1.4  , a model for measuring instruments can be constructed as follows: 

- a meter providing the corresponding reading, considered perfect (fully deterministic) 

- and a random variable associated with it , for example  V  , covering the uncertainties relating to the actual 
reading of the meter which characterize  V  ( V  could be thought of as corresponding to the internal noise of the 
instrument). 

As a result, the "inputs" of the system can be classified in several groups containing, in particular: 

- actual physical inputs to the system (e.g. signals from generators) 

- random variables associated with measuring equipment (e.g. voltmeters and other instruments) 

- random variables relating to the environment (e.g. temperatures, supply voltages) which may affect the results 
via the influence quantities (see clause D.4). 

D.5.1.5 Conclusions 

Based on such a model, the outputs such as Rk can be interpreted as random variables characterizing the sought 
output(s) of the measurement (e.g. an output power), where the statistical/probabilistic properties of  Rk   provide the 
corresponding measurement uncertainty (probability of finding a specific value as the result of the measurement). 

Clause D.5.6  also addresses the interpretation of the results obtained (outputs Rk of the system). 

Examples where this approach was used, can be found in clauses D.2. 

D.5.2 Using random variables together with differentiation in a 
measurement 

The methodology presented in clause D.5.1 is based on the handling of a set of  p  functions of n variables. 

In the case of  radio systems, these equations may be somewhat bulky. 

In the case of the evaluation of measurement uncertainties of a particular measurement, the input variables 
(corresponding to random variables in the methodology addressed in clause D.5.1) can be understood as having a very 
small probability of being far away for the setting sought for that measurement. 

Should  Ij be such setting, then it could equally be interesting to consider small variations around Ij , dIj. 

In this case, it can be more convenient to consider Ij as a constant and  dIj as the random variable to be further handled 
in the statistical/probabilistic analysis. 
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In order to continue the evaluation of the measurement uncertainties, with this approach, the set of functions which had 
been used in clause D.5.1, 

- g1 ( I1 , …  Ij , … In  ) 

- gk ( I1 ,   …  Ij , … In ) 

- gp ( I1 ,   …  Ij , … In  ) 

has to be differentiated which  provides a set of  p  relations: 

n
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j

dI
I

g
dI

I

g
dI

I

g
dg

∂
∂++

∂
∂++

∂
∂= 11

1
1

1
1 ........  

n
n

k
j

j

kk
k dI

I

g
dI

I

g
dI

I

g
dg

∂
∂++

∂
∂++

∂
∂= ........1

1

 

n
n

p
j

j

pp
p dI

I

g
dI

I

g
dI

I

g
dg

∂
∂

++
∂
∂

++
∂
∂

= ........1
1

   . 

In fact, for a particular measuring point, this is a set of  p  linear equations  (of n variables ) which can be mapped in a 
quite friendly manner to the expressions found in clause D.3.4.5 , as already suggested in clause  D.3.4.5.3. 

The expression of   σσσσ   as given in clause D.3.4.5.3  was: 

σσσσdV
2  =  λλλλ1

2 σσσσdx1
2 + λλλλ2

2 σσσσdx2
2 + …  + λλλλn

2 σσσσdxn
2  

and translates with the present set of equations into: 

2
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Another advantage of this approach is that for the determination of the set of p linear equations of n variables, there is 
no real need to have an explicit expression of the outputs as: 

- g1 ( I1 , …  Ij , … In  ) 

- gk ( I1 ,   …  Ij , … In ) 

- gp ( I1 ,   …  Ij , … In  ) 

which is required for the approach proposed in D.5.1. 
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It is, in the present approach (D.5.2 ), sufficient to find the expressions relating inputs and outputs, differentiate, and 
then resolve the linear equations in order to obtain: 

- dg1 

- dgk 

- dgp  . 

It has finally to be noted that, in this approach, the output random variables can be matched directly to the estimation of 
the errors corresponding to measured values (probability of having the error within a certain interval), as opposed to 
clause D.5.1 where the output random variables would correspond to the probabilities of having a value of the 
measurement itself within a particular interval. 

More precisely, the difference in interpretation (between D.5.1 and D.5.2) differs by a constant, which is the measured 
value. Therefore, calculations on sigmas ( σσσσ  ) are the same when using either the approach given in D.5.1 or that given 
in D.5.2  … 

D.5.3 Examples of application to particular cases 

D.5.3.1 Using random variables together with differentiation in a 
measurement, case of multiplicative functions 

In the case where the equations are multiplicative, the set of functions can be written as: 

- g1 ( I1 , …  Ij , … In  )  =  A1 ( I1 )
b1 … ( Ij )

 bj … ( In )
 bn 

- gk ( I1 ,  …  Ij , … In )  =  A2  (  ) ….   

- gp ( I1 ,  …  Ij , … In  ) =  … . 

Then it becomes more convenient to use other type of expressions: 

- either  
n

n
n

j

j
j I

dI
b

I

dI
b

I

dI
b

g

dg ++++= ........
1

1
1 (logarithmic differentiation) 

- or … to transform the expressions into dBs. 

The handling and understanding of these situations is similar to that of  D.5.2 … with the exception that the random 
variables (and corresponding sigmas) can be mapped now to relative values, as opposed to absolute values in the 
approach given in D.5.2. 

It has to be noted, however, that in approaches D.5.1 and D.5.2 random variables (and sigmas) have a unit (mA, Volts, 
etc) while in D.5.3 random variables (and sigmas) are relative, and have no real units (noting that values expressed in 
dBs are some kind of relative values). 

D.5.3.2 Substitution measurements 

Substitution measurements are often used in radio. It is expected by doing so, to reduce the influence of some parts of 
the set up, and their contribution in the uncertainty. 

The methodology presented in clause D.5.1 is based on the handling of a set of  p  functions of n variables. 

In the case of  substitution measurements, the test set up for the measurement of radio systems can be modelled using 
two of these equations: 

- one equation corresponding to the test set up "before" the substitution, 

-  one equation corresponding to the test set up "after" the substitution. 
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The set of equations can therefore look like: 

- g1 ( I1 , …  Ij , … In  ) 

- g2 ( I1 , …  Ij , … In ) 

The practical handling and understanding of this set of two equations is similar to that corresponding to D.5.1 or D.5.2 
(using differentiation) … with the exception that the random variables involved in the two equations are not necessarily 
independent …and that the aim of this method is to reduce the number of terms to be taken into account. This is usually 
done by calculating the equation corresponding to the difference (subtraction) of the two equations of the set. 

It is therefore basic to identify: 

- which inputs are in reality  identical and appear in a way that they can be discarded (no contribution for the 
uncertainty, e.g. a cable which is used twice in the same conditions) 

- which inputs (mapped to contributions of the uncertainty) are independent 

- which inputs (mapped to contributions of the uncertainty) are not independent. 

As a result of this analysis, some of the contributions are to be combined by RSSing, others disappear, others have to be 
combined in other ways (e.g. by linear combination as indicated in clause D.3.4.6) …  

Substitution methods are often used for radio measurements because they are expected to provide better results. 
However, the analysis required for the evaluation of the corresponding uncertainties requires certainly more care than 
the analysis required in the case of direct measurements. 

NOTE: This analysis has not necessarily been completed in all examples included in the present edition of the 
present document. 

D.5.4 Empirical approach to find a model of the system 
When the equations are difficult to reach or to handle, it is possible for a complete system or for a part thereof (see 
clause D.5.5 , below) to try and find the equivalent of the partial derivatives (the coefficients needed in the linear 
equations addressed in clauses D.5.2 and possibly in D.5.3) by practical means. 

Having the measurement set up operational for the measurement being considered, and having performed that 
measurement once, it is then possible to make "small" variations of the settings of the various instruments, in particular 
concerning the generators. 

Such small differences (matching mathematically the dIj ) shall be: 

- small enough so that the system being analysed can be considered as linear within that range ( + dIj ) 

- big enough to be large compared with the uncertainties of the measurement ("measurement noise") 

- small enough so that equipment remains within the same operating range (e.g. the same scale for a voltmeter) 

- made preferably both sides of the original setting ( Ij ) , in order to obtain directly  + dIj  . 

The direct observation of the outputs of the system, would allow for a model to be established, providing the effect of 
the corresponding inputs (i.e. providing the values of the various coefficients corresponding to the  

k

j

g

I

∂
∂

  of clause D.5.2). 

In order to evaluate the random uncertainties in the set up, each time an input value is changed, it should be, for a while 
brought back to its initial value  ( Ij ) , and the measurement performed again. In this way, there is a great number of 
evaluations of the measurand under nominal conditions, which gives a good visibility of the randomness associated with 
the set up. The knowledge of the dispersion of the results can be very helpful in order to choose how small should be 
the variations ("step sizes") in the settings of the various instruments (it is important to avoid taking noise for the effect 
of variations of the inputs!). 
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Example of sequence of such steps: 

- ( I1   , …  Ij , … In  ) 

- ( I1 + δδδδ   , …  Ij , … In  ) 

- ( I1   , …  Ij , … In  ) 

- ( I1 - δδδδ        , …  Ij , … In  ) 

- ( I1   , …  Ij , … In  ) 

- similar sequence for  I2  

- etc …until … In . 

With 4 points per input variable … there are  4 n  points to be measured. More points may be necessary if the effects are 
not linear. 

Obviously, this procedure is supposed to cover only those parameters for which small variations are possible. This 
procedure can be very useful when the mathematical expression providing the effect of such inputs is difficult to obtain. 

The evaluation of the effect of small variations of one variable (input) could be completed with the evaluation of the 
effects of changing simultaneously two or more inputs (e.g. for verification purposes, in particular for identification of 
variables which may interact) … as long as the interpretation of the corresponding results is fruitful. 

Methods given in D.5.2 and D.5.3 could then be used, based on these empirical values found, or on an appropriate mix 
of values empirical and/or theoretical. 

D.5.5 Splitting into sub-systems 
The aim of defining sub-systems is 3 fold: 

- to keep equations within manageable sizes, 

- to provide "building blocs" which could be used several times, without further mathematical work  

(i.e. subsets common to different measurements), 

- to support and simplify methods such as substitution methods, where parts of the set up are expected to be used 
twice. 

When looking at the present document and its previous versions, it becomes clear that one of the major problems the 
present document had to cope with is the need, in radio measurements, to handle simultaneously electrical signals 
whose levels cover several orders of magnitude. Therefore, in some cases it is more practical to handle dBs, in others to 
handle linear terms. Clauses of annex D.3.8 and annex E show that besides very simple approximations (based on Log 
(1+x) = x) conversions in either directions are somewhat awkward and subject to discussion (e.g. to start with, questions 
such as "what are the basic shapes of the uncertainties, and in which domain" have to be answered). 

The usage of sub-systems could, in some cases help this problem: an attempt could be made to isolate, in some sub-
systems, parts to be handled in dBs, and, in other sub-systems, parts to be handled in linear terms, in an attempt to 
reduce the number of conversions (in particular conversions of uncertainties having values too large for simple 
approximations to be acceptable). 

However, it has to be stated once again that all the analysis performed in clause D.3 (combination of random variables) 
were based on calculations on independent random variables. Therefore, to be in a position to use the tools developed so 
far, great care has to be taken so that there are not two variables inter-related in two different subsystems. 

It can also be noted that empirical methods were proposed in clause D.5.4, in order to establish a model for a complete 
systems or parts thereof. Such possibilities may have also to be taken into account when tying to split systems into 
subsystems. 

In the case of automated uncertainty evaluation systems, splitting in sub-systems could lead to concepts having a 
flavour of subroutines or even a flavour of object oriented systems. 
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D.5.6 Presentation and interpretation of results obtained (outputs) 
The last paragraph(s) of clauses D.5.1 and D.5.2 have provided for an interpretation of the results obtained when 
combining in an appropriate manner the statistical/probabilistic properties of the "inputs" to the system being 
considered. 

The purpose of clause D.5.6 is to provide a more general view on the topic and to go one step further, into the area of 
confidence levels. 

Therefore, this clause starts with a classical approach, the "worst case" approach, and continues with the "probabilistic 
approach", which corresponds, in fact, to the "main stream" of the present document. 

D.5.6.1 Worst case approach 

This clause can be understood as part of an introductory clause to clause D.5.6. 

In the "worst case approach", each contribution to the uncertainty is expected to be bound (which would not be the case 
for a probability density having a normal distribution). 

In this approach, the evaluation of the uncertainty is based on the analysis of the situation where each variable would 
have had a value contributing to the "worst case" scenario. 

In the case where all contributions correspond to rectangular distributions and are to be combined using an addition, 
then the "worst case approach"  would provide the extreme points of the "foot-print" of the combined uncertainty (found 
in accordance with clauses D.3 and D.5), i.e. the interclause of the curve representing the distribution of combined 
uncertainty with the xx' axis (the horizontal axis). 

D.5.6.2 Probabilistic approach 

The " probabilistic approach" would rather focus on other properties of the combined uncertainty (e.g. its standard 
deviation or the shape of the corresponding distribution) than on "foot-prints", which is the focus of the "worst case 
approach". 

D.5.6.2.1 Preliminary comments (and choice of scenario) 

Clause D.5.6  and more particularly clause D.5.6.2 are intended to establish the relation between the results found when 
combining the various contributions to the uncertainty ("combined uncertainty") and the value to be provided as the 
result of the evaluation of the corresponding uncertainty.  

As shown in clause D.5.6.1, in the case of the approach called "worst case approach", this is quite straight forward. It 
can be a little more complex in the case of the " probabilistic approach":  

the "worst case approach" leads to the calculation of the value of a set of extreme points, while the "probabilistic 
approach" requires the understanding of the under-laying phenomena (and not only the RSSing of all the contributions). 

The "probabilistic approach"  triggers also new problems such as those related to the co-existence of expressions in 
linear terms and in dBs (in the case of the "worst case", should this happen, it is only necessary to calculate the two 
extreme points, so mixing dBs and linear terms is not a real problem, it only means that there are a few conversions to 
be performed). 

Looking more in depth, it could be expected that the individual contributions to the measurement uncertainty are 
relatively small so that their conversions (dB into linear terms and vice-versa) are not a real problem (they can be 
performed using linear approximations). It is nevertheless important to make sure that the shape of the corresponding 
distribution has been correctly chosen (should the corresponding distribution have a rectangular shape, should it be 
rectangular in terms of dBs or in linear terms ?). 

In the case of results of complete measurements, however, the combined uncertainty value may be quite large (see the 
table in annex B providing "the maximum uncertainty" values). For such high values (up to several dBs) significant 
differences may result from the way in which the conversions are handled (see, for example, 
clause D.3.8.4 and annex E). The example provided in clause D.3.7.4 shows clearly how much care is to be devoted to 
approximations… 
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As a result, the following strategy can be proposed: 

- to use rather simple conversion methods in order to perform the conversions relating to the various 
contributions (small values) 

- to use more accurate methods when the values become higher (in particular final results of a measurement or 
final result of some "sub-system" (see the presentation of the sub-system concept in clause D.5.5)). 

Among possible methods to make the conversions, can be quoted those presented in this annex (see D.3.8.4), those in 
annex E (presented differently, but equivalent (as indicated in clause D.3.8.4)); spread sheets can also be used, etc. 

Attention has also to be drawn, again, to the fact that, during such conversions, familiar distributions, simple to describe 
in mathematical terms, are transformed in less familiar distributions (often having asymmetrical shapes and more 
complex to describe in mathematical terms) where the first moments (mean value, standard deviation) do not 
necessarily convey the expected information in a handy way ...and are not necessarily the images of the corresponding 
points (moments) before the conversion… 

D.5.6.2.2 Summary of the methodology 

The approach proposed in a number of detailed examples (given in annex D and in the main body of the present 
document as well) can be summarized as follows. 

1) All the contributions for the uncertainty have to be identified (and the relations between the various parameters 
established).  

2) The statistical/probabilistic properties (e.g. the standard deviations of the various contributions) have to be identified 
and appropriately combined together (see clauses D.5.1 and D.5.2 ).  

 If the combination corresponds to mere additions, then the situation is covered by the "BIPM method" and an 
RSSing of the various components can be performed. 

3) Assuming that the appropriate combination of all contributions would result in a Gaussian shaped distribution, then 
the "combined uncertainty", characterized by its standard deviation, would be equal to the standard deviation of that 
Gaussian distribution.  

This Gaussian would then represent, in fact (more precisely, in the case of the method given in clause D.5.2) the 
probability of error of the measurement (i.e. the uncertainty). 

NOTE 1: In the case where the method provided in clause D.5.1 is used, the interpretation is similar, except that the 
resulting Gaussian would then correspond to measured values. Its mean value would then correspond to 
the result of the measurement (it could provide the "measured value").  

4) A random variable  E  , the error of the measurement, corresponding to the above Gaussian distribution can be 
considered.  

It is characterized (similarly to what has been written a number of times in the present annex) by the fact that its value  
x   has a probability of occurrence given by the corresponding probability density   e ( x ): 

by definition, the probability Pe of  the random variable E  (the "error") having a value  x  such that 

   x1 < x < x2     is   ∫=
2

1

x

x

e e(x)dxP   .  

Similarly, we can consider  ∫
∞−

=
x

e dte(t)xP )(  , 

and therefore (by differentiation)   dPe = e ( x )  dx  . 

5) When a certain set   x1 ,  x2   is given, these bounds together with the shape of the Gaussian provide the probability 
of the error of the measurement being within those bounds. 
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The equation of such a Gaussian is 
2

2

2

2

1 σ

πσ

x

ey
−

=   , where σσσσ  (sigma) is the standard deviation of the Gaussian 

(and is equal to the combined uncertainty of the measurement), as shown in clause D.1. 

When  x = + σσσσ  (sigma, the standard deviation), the corresponding values  y1  and  y2  are known, and the surface 
between the curve and the axis xx' (between  + σσσσ (sigma)) can be found: 

this surface provides the probability of the error being between  + σσσσ (sigma), which is   

∫
+

−

=
σ

σ

e(x)dxPe    or  

∫
+

−

−
=

σ

σ

σ

πσ
dxeP

x

e

2

2

2

2

1
 . 

This probability is equal to  68,3 %  and provides the linkage to the confidence level. 

6) As defined in TR 100 028-1 [6], clause 4.1.1: 

absolute error = measured value  -  true value . 

Therefore, when the probability of the absolute error being within  + σσσσ   is 68,3 % , then, the probability of the result of 
the measurement being within  + σσσσ   of the true value is also 68,3 % . 

7) In order to have another (usually greater) confidence level,  Pe'  another set (therefore with wider values)  x1' ,  x2'  
has to be found …  

so that 
2

1

'

'

'

x

e

x

P e(x)dx= ∫ . 

The value of 1,96 has been given in the main body of the present document, as the multiplicative factor ("expansion 
factor") to be used in order to reach a confidence level of 95 %: 

- when    x1  = -1,96 x σσσσ  

- and    x2 = +1,96 x σσσσ  , 

 

95,0
2

196,1

96,1

2 2

2

=∫
+

−

−σ

σ

σ

πσ
dxe

x

 ,  which is the sought confidence level. 

 

This is true for any normal distribution (it is true for any Gaussian, independently of the value of  σσσσ ), but true for 
normal distributions only.  

An expansion factor of 2 can also be used: 

2

2
2

2

2

1
0,9545

2

x

e dx
σ

σ

σ σ π

+ −

−

=∫ .

 

An expansion factor of 2 provides therefore a confidence level of 95,45 %. 
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NOTE 2: The values of  

2

221

2

xk

k

e dx
σ

σ

σ σ π

+ −

−
∫   i.e. the values of the confidence levels corresponding to 

an expansion factor  k  can be found easily in tables (such tables are often appended to books relating to 
probabilities (and providing properties of the Gaussians)). 

D.5.6.2.3 Normal and non-Normal distributions 

The principles given above are valid in all cases.  

However, it is obvious that all numerical values, and in particular the actual values corresponding to "expansion factors 
" (i.e. 1,96 or 2 in the case of Gaussian distributions), are depending on the shape of the probability density resulting of 
the combination (i.e. the density probability of the error in case D.5.2) for a particular measurement. 

An interesting example can be found in clause D.3.3.5.2.2. 

Should the final probability density curve have a shape significantly different from a Gaussian, then the multiplicative 
factor (the "expansion factor") to get the 95 % confidence level would have to be re-evaluated, taking into account the 
actual probability density …(this kind of difficulty had already been identified in TR 100 028-1 [6], clause 6.6.5.1, 
where the direct usage of the expansion factor would have led to  negative  bit error ratios! ) 

That is why in clause D.3, not only the two first moments of the various combinations were evaluated, but were also 
provided the equations corresponding to the resulting probability densities themselves. 

D.5.6.2.4 Confidence levels for non-Normal distributions 

When having the expression of the resulting distribution  e ( x ) , then the confidence level is given by the same 
expression as for normal distributions: 

( )
k

k

e x dx
σ

σ

+

−
∫  =  confidence level corresponding to the expansion factor  k . 

However, for unusual expressions of   e ( x )  , it is unlikely to find the corresponding values in tables … the 
corresponding calculations will therefore have to be made on a case by case basis. 

Further comments 

1) In one of the examples given in annex D (in clause D.3.3.5.1), it is shown that the result of the additive combination 
of two Gaussian shaped uncertainties (i.e. random variables) is also a Gaussian shaped uncertainty (i.e. random 
variable).  

In this respect Gaussians are stable (rectangular distributions are not: the combination of two identical rectangular 
distributions is a triangular distribution, as shown in clause D.1.3.2). 

2) Converting dBs into linear and vice-versa, tends to generate asymmetric distributions … and this may have to be 
duly taken into account. An attempt to give some properties of asymmetrical distributions has been made in clause 
D.1.3.3 (trapezoidal) and D.1.3.5 , but calculations with such expressions are not always that easy. Handling such 
expressions is an area where approximations can be used extensively. 

Symmetrical expansion factors can be used in all cases, but when distributions are asymmetric, it can also be thought of 
using asymmetric expansion factors (one for expanding the lower bound and another for expanding the upper bound)…  

Another proposal had been made in the first days of ETR 028 [5]:  

to calculate both a "sigma plus" and a "sigma minus" … as if the final error distribution was composed of 2 half 
Gaussian distributions: 

2

2

2

2

1 σ

πσ

x

ey
−

=  with two values for sigma, one when  x  is positive and  another when x  is negative. 
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… one trouble with such a representation is that the 2 distributions do not necessarily fit together in 0: 

πσ 2

1
)0( =y   , which shows that  y ( 0 )  depends on  σσσσ (sigma). 

Therefore  e ( 0 + )  ≠≠≠≠ e (0 -)  

and  e ( 0 + ) dx  ≠≠≠≠ e (0 -) dx 

finally ∫
+

+ =
ε

ε
0

)( e(x)dxP  ≠≠≠≠ ∫
−

− =
0

)(
ε

ε e(x)dxP  

which does mean that the probability of having a range of very small positive errors is significantly different from that 
of having a very small range of negative errors … not very satisfactory! 

The way to handle the uncertainties in the present version of the present document seems more satisfactory. 

3) It can also be noted that a finite sum of distributions having a finite footprint has also a finite footprint. 

As a result, in such a situation, there should be an expansion factor providing a 100 % confidence. 

4) clause D.3.3.5.2 has  highlighted a case where a non finite sum of rectangular shaped distributions has provided a 
finite footprint. In such case, there should also be an expansion factor providing for a 100 % confidence level. 

5) In the case where a "worst case" (see clause D.5.6.1) value exists …then there should also be an expansion factor 
providing a 100 % confidence level. 

D.5.6.2.5 Practical conclusions 

As a result, and in order to avoid extensive discussion, results could be presented: 

- as  a   "1.96  x  σσσσ (sigma)"  value   

- or as  a  "95 % confidence level"  value, 

with a note stating that the two values are equivalent in the case of normal distributions. 

This should replace text such as: 

"The expanded uncertainty is ± 1,96 × 1,06 dB = 2,07 dB at a 95 % confidence level", 

which has also been used for cases where there is no evidence that the distribution concerned is normal (the number 
(and relative weight) of contributions combined in many evaluations of the measurement uncertainty may not be 
sufficient for the central limit theorem to be valid). 

NOTE: As shown above, the method to be used when changing the confidence level can be justified by the 
properties of the distribution obtained when combining the various contributions in order to obtain the 
combined uncertainty, in particular, when a Gaussian distribution is obtained.  

 There is no need to use the t-Student theory (which is valid only when normal distributions are 
handled)…and which relates to statistics (e.g. series of measurements). 

D.5.6.2.6 Implications 

Corresponding changes in text should therefore be introduced in a numbers of places (including in a number of clauses 
of the present document). 

In a report relating to measurements, should be found: 

- the measured value; 

- the uncertainty value found;  
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- a statement indicating that: 

- this uncertainty value corresponds to "a confidence level  of  95 %" or  

- this uncertainty value corresponds to  "1.96  x σσσσ (sigma)" 

(where 95 % and 1,96 are the values used in the main body of the present document)  

- and a note indicating that "1.96  x σσσσ (sigma) is equivalent to a confidence level  of  95 % in the case where 
distributions are normal". 

NOTE: An expansion factor of 2 is also acceptable. It corresponds to a confidence level of 95,45 %. In this case, 
the statements above should be amended accordingly. 

D.5.6.2.7 Examples (excerpts from available standards) 

ETSI has been drafting technical standards in support of a variety of radio equipment, and also a number of standards to 
be harmonized under Directives, such as the R&TTE Directive. 

The  following excerpts were taken from: 

- Part 1 (corresponding to "the radio product standard"); and 

- Part 2 (corresponding to "the candidate harmonized standard") of the standard corresponding to one particular 
product. 

This material, provided as an example, shows how the words proposed above (in clause D.5.6.2.6) have been used in 
recent standards prepared by ETSI. 

A third example shows how double sided limits have been handled in TR 100 028-1 [6] of a standard relating to integral 
antenna equipment (in the clause relating to limits). 

D.5.6.2.7.1 Excerpts from a "Part 1" 

" 

11 Measurement uncertainty 

Table D.1: Absolute measurement uncertainties: maximum Values  

Parameter Uncertainty 
Radio Frequency ±1 x 10-7  
RF Power (up to 160 W) ±0,75 dB 
Radiated RF power ±6 dB 
Adjacent channel power ±5 dB 
Conducted spurious emission of transmitter Valid 
up to 12,75 GHz 

±4 dB 

Conducted spurious emission of receiver, Valid 
up to 12,75 GHz 

±7 dB 

Two-signal measurement, Valid up to 4 GHz ±4 dB 
Three-signal measurement ±3 dB 
Radiated emission of the transmitter,  
valid up to 4 GHz 

±6 dB 

Radiated emission of receiver,  
valid up to 4 GHz 

±6 dB  

Transmitter attack time ±20 %  
Transmitter release time ±20 % 
Transmitter transient frequency (frequency 
difference) 

±250 Hz  

Transmitter intermodulation ±3 dB 
Receiver desensitization (duplex operation) ±0,5 dB  
Valid up to 1 GHz for the RF parameters unless otherwise stated. 
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For the test methods, according to the present document, the measurement uncertainty figures shall be calculated in 
accordance with TR 100 028 and shall correspond to an expansion factor (coverage factor) k = 1,96 or k = 2 (which 
provide confidence levels of respectively 95 % and 95,45 % in the case where the distributions characterizing the actual 
measurement uncertainties are normal (Gaussian)). 

Table D.1 is based on such expansion factors. 

The particular expansion factor used for the evaluation of the measurement uncertainty shall be stated. 

" 

NOTE: the table of  "Absolute measurement uncertainties" is included here just for completeness. 
The "standard table" can be found in annex B of the present document. 

D.5.6.2.7.2 Excerpts from a "Part 2" 

" 

5.2 Interpretation of the measurement results 

The interpretation of the results recorded in a test report for the measurements described in the present document shall 
be as follows: 

- the measured value related to the corresponding limit will be used to decide whether an equipment meets the 
requirements of the present document; 

- the value of the measurement uncertainty for the measurement of each parameter shall be included in the test 
report; 

- the value of the measurement uncertainty shall be, for each measurement, equal to or lower than the figures in 
table D.2. 

For the test methods, according to the present document, the measurement uncertainty figures shall be calculated in 
accordance with TR 100 028 and shall correspond to an expansion factor (coverage factor) k = 1,96 or k = 2 (which 
provide confidence levels of respectively 95 % and 95,45 % in the case where the distributions characterizing the actual 
measurement uncertainties are normal (Gaussian)). 

Table D.2 is based on such expansion factors. 

The particular expansion factor used for the evaluation of the measurement uncertainty shall be stated. 

Table D.2: Absolute measurement uncertainties: maximum values  

Parameter Uncertainty 
Radio Frequency ±1 X 10-7  
RF Power conducted (up to 160 W) ±0,75 dB 
Conducted RF Power variations using a test fixture ±0,75 dB 
Radiated RF power ±6 dB 
Adjacent channel power ±5 dB 
Average sensitivity (radiated) ±3 dB 
Two-signal measurement, valid up to 4 GHz (using a test fixture) ±4 dB 
Two-signal measurement using radiated fields (see note) ±6 dB 
Three-signal measurement (using a test fixture) ±3 dB 
Radiated emission of the transmitter,  
valid up to 4 GHz 

±6 dB 

Radiated emission of receiver,  
valid up to 4 GHz 

±6 dB  

Transmitter transient frequency (frequency difference) 
Transmitter transient time 

±250 Hz 
±20 % 

Values valid up to 1 GHz for the RF parameters unless otherwise stated. 
NOTE: For blocking and spurious response rejection measurements. 

 

" 
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NOTE: the table of  "Absolute measurement uncertainties" is included here just for completeness. 
The "standard table" can be found in annex B of the present document. 

D.5.6.2.7.3 Excerpts from a "Part 1" showing words used for double sided limits 

The following piece of text shows one way to adapt the "shared risk approach" to the case where the measurement 
uncertainties are larger than the allowed tolerances. Should such a case happen, the direct implementation of the "shared 
risk approach" could have resulted in a situation where good equipment might have failed the test. 

" 

5.1.2.1 Effective radiated power under normal test conditions 

The maximum effective radiated power under normal test conditions shall be within df of the rated maximum effective 
radiated power. 

…/… 

The allowance for the characteristics of the equipment (±1,5 dB) shall be combined with the actual measurement 
uncertainty in order to provide df, as follows: 

 df
2
 = dm

2 + de
2; 

where: 

- dm is the actual measurement uncertainty; 

- de is the allowance for the equipment (±1,5 dB); 

- df is the final difference. 

All values shall be expressed in linear terms. 

In all cases the actual measurement uncertainty shall comply with clause 10. 

Furthermore, the maximum effective radiated power shall not exceed the maximum value allowed by the 
administrations. 

Example of the calculation of df: 

- dm  = 6 dB (value acceptable, as indicated in the table of maximum uncertainties, table 8); 

  = 3,98 in linear terms; 

- de  = 1,5 dB (fixed value for all equipment fulfilling the requirements of the present document); 

  = 1,41 in linear terms; 

- df
2  = [3,98]2 + [1,41]2; 

therefore df = 4,22 in linear terms, or 6,25 dB. 

This calculation shows that in this case df is in excess of 0,25 dB compared to dm, the actual measurement uncertainty 
(6 dB). 

" 

Comment: In the present document, it was chosen to combine the two components in linear terms. It could 
have been decided, as well, to do the operation in dBs. See the corresponding discussion in clause 
D.5.6.2.1. 
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D.5.6.2.8 Confidence levels and single sided limits 

The confidence level has been related to  

∫=
2

1

x

x

e e(x)dxP  , the probability of the value x  of the random variable  E  being so that    x1 < x < x2   . 

In the case where  L   is a limit value (single sided), and  V  the true value of the measurand, then the probability of 
having good equipment failing the test is such as: 

fail

L V

P e(x)dx
∞

+
−

= ∫  or 
V L

failP e(x)dx
−

−
∞

= ∫  as appropriate (depending on the relative position of the sought 

value,  V , in relation to  L  ). 

 

In the particular case when the distribution is, in fact, a normal distribution, and when the true value of the measurand 
is at  1.96  x σσσσ (sigma) from the limit  L , then the expression of the probability of having good equipment failing the 
test is such as: 

2

22

1,96

1

2

x

failP e dxσ

σ σ π

+∞ −
= ∫  =  0,5 ( 1 – 0, 95) =  0,025. 

It can be noted, however, that, as already suggested, in the case of radio measurements, finite sums of finite 
distributions are often found. Therefore, it is far from being sure that the Gaussian model is suitable for the 
discussion of effects far away from the area  -σ  σ  σ  σ  to  +σ   σ   σ   σ   , such as the probability of failing good equipment …  

It is quite likely that, in many cases, by increasing the expansion factor, the "worst case" value is reached, while, with 
the Gaussian model, there is always a (remote) probability to fail a good unit. 

The safe approach to calculate the probability of failing good equipment is certainly to calculate the actual distribution 
first, and then to use expressions such as those given in the beginning of the present clause, in order to calculate the 
appropriate probabilities. 

D.5.6.3 Conclusions 

Clause D.5.6  has provided an overview of the usual ways of addressing uncertainties: 

- the "worst case" approach and  

- the "probabilistic" approach. 

It has also covered the relations between these approaches as well as methods and caveats relating to the evaluation of 
the corresponding "confidence levels". 

Finally, it has also proposed methods to calculate correctly the probability of failing good equipment. 

D.5.7 Summary 
Clause D.5 has provided a set of approaches and methods that should cover the evaluation of measurement uncertainties 
and their confidence levels in a most situations (and can also cover applications far beyond the scope of the present 
document). 

The majority of the clause in D.5 address however, implicitly, the case where differentiation is used (clause D.5.2). But 
most concepts are usable also without differentiation (clause D.5.1); in some cases a slight transposition may have to be 
performed by the reader (trying to cover fully and individually, in this clause all possible combinations of methods and 
approaches could have resulted in an unnecessarily bulky clause…). 
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Clause D.5 provide, in fact, the basis for the various clauses of the present document (i.e. the "examples"), even though, 
in the majority of cases only the handling of the "sigmas" (standard deviations) has been described (while forgetting 
quite often to provide the underlying physical equations and to discuss which variables are independent and which are 
not)… an area which could be enhanced in future editions.  

D.6 Conclusions 
Annex D has provided general methods based upon the analysis of complex systems and a number of tools (e.g. in 
clause D.3) allowing to evaluate the measurement uncertainties related to the various measurement set up. It has in 
particular provided support for a number of clauses of both Part 1 and 2 of the present document, as well as highlighted 
precautions in order to avoid fundamental errors while using the examples developed over the various clauses 
(e.g. special attention to the independence (or possible inter-dependence) of the various associated random variables).  

When drafting this annex, the new situation in Europe, originated by the implementation of the R&TTE was also in 
mind: it is likely that in the future, with concepts such as self-declaration or self-certification, many more partners will 
have to make and understand radio measurements … and to handle the corresponding measurements uncertainties 
(hopefully in the same way). Therefore, new text was written in an attempt to make the present document as much self 
contained as practical, including all the theoretical elements allowing for any laboratory to understand what is to be 
done and obtain correct values, while giving any one a chance to try and find solutions well adapted to his own 
measurement set up …  

It is also expected that many other types of systems might be analysed using the methods developed in this annex. 

It can be noted, for example, that a number of mobile systems use adaptive techniques, such as power control. Such 
techniques are usually, in one way or another, based upon measurements (made by the mobiles and/or by base or 
monitoring stations).  

The methods presented in this annex could certainly be helpful also when evaluating the influence of the measurement 
uncertainties relating to such (simple) measurements, on the performance of the modern mobile systems where such 
features are implemented. Among possible effects of such uncertainties can be quoted loss of system capacity, 
signalling overhead … or even system oscillations …  

Measurement uncertainties (as well as dispersion of equipment characteristics) may also have to be taken into account 
in studies relating to the compatibility between systems, systems lay out, etc … 
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Annex E: 
Mathematical transforms 
This annex shows how direct methods can be used to transform distributions. Other methods (more general methods) 
for transforming (or converting) distributions are presented in clause D.3.9. 

E.1 Principles of derivation of formulas when 
transforming from log to linear 

When transforming from one co-ordinate system to another the following apply: 

1) The probability of an event being within an interval is the same no matter which scale on the co-ordinate system 
you look at: 

A B

dB %

A / B /

A /% dBA B /% dBB

p x1 ( ) p x2 ( )

 

∫∫ =
/

/

B

A

B

A

)dx(xp(x)dxp 1121  

2) this also means that: 

 11121 == ∫∫
+∞

∞−

+∞

∞−
)dx(xp(x)dxp  

3) based on this, the converted distribution can now be derived. 

E.1.1 A rectangular distribution in logarithmic terms converted to 
linear terms 

In this example a rectangular distribution in logarithmic terms is converted to linear terms: 
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The probability of x being in the interval between x1 and x2 is: 
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In log terms. Therefore in linear terms this becomes: 
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where ( ) ( )∫= xpxP 22  or in other words 
A
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. 

Substituting 102 LogKP /=  gives: 
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A

K / 10= ; 

 ( ) ( ) ( )xLn
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xLog
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x
=
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xdLn
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1
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 ( ) ( ) x
 

A Ln
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1
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1 A
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A
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−

P2 (x)

 

From p2(x) the mean value xm and the standard deviation can be found. 
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General formula: 

 dxxxpxm )(2∫= ; 

 ∫∫ ==
C

B

C

B
m K dxx dx

x
Kx

1 ; 

 [ ] ( )C-B=KKxx C
Bm = . 

where ( )
2020 1010

10

10
AA

 ;     C ;     B
A Ln

K ===
−

. 

Then the standard deviation σ can be found. The general formula is: 
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1 222 ; 

 ( ) ( )( ) 1=− BLnCLnAs   K . 

Therefore: 

 ( ) ( )2222

2

1
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and ( )BCKxm −=  hence: 

 ( ) ( ) ( )2222222

2

1
2 BCKBCKBCKs −+−−−= ; 

 ( ) ( )2222

2

1
BCKBCK −−−= ; 

therefore: 

 ( ) ( )222250 BCKBCK,s −−−= . 

This procedure can (in principle) be applied to any conversion of any distribution. See also clause D.3.9 where a general 
approach is provided. 
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E.1.2 A triangular distribution in logarithmic terms converted to 
linear terms 

In the same way as with the rectangular distribution the conversion from logs to linear terms are made: 
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In the negative interval: 

 ( )
2

1

2

1

2

1

2

2

21
2

1
x

x

x

x

x

x
A

x

A

x
     dx

A

x

A
     dxxp












+=








+= ∫∫ ; 

 















−
















=














+−+ 20

2
20

22

2
11

2

2
22

12

1010
22

xx

PP     
A

x

A

x

A

x

A

x
; 

 
2

2
20

2
2

10
A

x

A

x
     P

x

+=















. 

Solution: 
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Logs converted to Ln: 
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E.1.3 A rectangular distribution in linear terms converted to 
logarithmic terms: 

In this example a rectangular distribution in linear terms is converted in to logarithmic terms: 
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Then 
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Standard deviation 
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E.2 Conversion factors 
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Figure E.1: Standard deviations 
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Figure E.1 shows that if the standard deviation of a distribution in logarithms is smaller than 2,5 dB to 3,0 dB 
(resembling errors in the region of 5 dB to 6 dB), the following formula is a good approximation: ujlin = 11,5 × ujlog.
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Annex F: 
Influence quantity dependency functions 
Table F.1 is a list of influence quantity dependency functions and uncertainties that are dependant on the equipment 
under test only. They are nevertheless necessary for the calculation of the absolute measurement uncertainty. 

The table contains three types of parameters: 

- reflection coefficients for the calculation of mismatch uncertainty; 

- dependency factors for the conversion from influence quantity uncertainty to uncertainty related to the 
measurand; 

- additional uncertainty caused by influence quantities. 

The test laboratory making the measurements may, by means of additional measurements, estimate its own influence 
quantity dependencies, but if this is not carried out the values stated in table F.1 should be used. 

Table F.1 is based on measurements on a variety of equipment types. Each dependency is expressed as a mean value 
with a standard deviation reflecting the variation from one EUT to another. Some dependencies related to the general 
test conditions (supply voltage, ambient temperature, etc.) theoretically influence the results of all the measurements, 
but in some of the measurements they are so small that they are considered to be negligible. 

The table is divided into sub tables relating to the measurement examples described in clause 7 of TR 100 028-1 [6] 
(transmitter examples) and clause 4 of the present document (receiver examples). The corresponding clause numbers 
are shown in brackets. 

Table F.1: EUT-dependency functions and uncertainties 

 Mean Standard deviation 
Frequency error (see clause 7.1.1 of TR 100 028-1 [6]) 
Temperature dependency 

 
 0,02  

 
0,01 ppm/°C  

Carrier power (see clause 7.1.2 of TR 100 028-1 [6]) 
Reflection coefficient  
Temperature dependency  
Time-duty cycle error 
Supply voltage dependency 

 
0,5 
4,0 % 
0 
10 

 
0,2 
1,2 %/°C 
2 % (p) 
3 % (p)/V  

Frequency deviation (see clause 7.1.9 of TR 100 028-1 [6]) 
Temperature dependency 

 
0,02 

 
0,01 ppm/°C 

Adjacent channel power (see clause 7.1.3 of TR 100 028-1 [6]) 
Deviation dependency  
Filter position dependency 
Time-duty cycle error 

 
0,05 
15 
0 

 
0,02 % (p)/Hz 
4 dB/kHz 
2 % (p) 

Conducted spurious emissions (see clause 7.1.4 of TR 100 028-1 [6]) 
Reflection coefficient 
Time-duty cycle error  
Supply voltage dependency 

 
0,7 
0 
10 

 
0,1 
2 % (p) 
3 % (p)/V 

Intermodulation attenuation (see clause 7.1.5 of TR 100 028-1 [6]) 
Reflection coefficient 
Time-duty cycle error 
Supply voltage dependency 

 
0,5 
0 
10 

 
0,2  
2 % (p) 
3 % (p)/V 

Transmitter attack/release time (see clauses 7.1.6 and 7.1.7 of 
TR 100 028-1 [6]) 
Time/frequency error gradient 
Time/power level gradient 

 
1,0  
0,3 

 
0,3 ms/kHz 
0,1 ms/% 

Measured usable sensitivity (see clause 4.1.1 of the present document) 
Reflection coefficient 
Temperature dependency 
Noise gradient (below the knee point) 
Noise gradient (above the knee point) 
Noise gradient (direct carrier modulation) 

 
0,2 
2,5 
0,375 
1,0 
1,0 

 
0,05 
1,2 %/°C 
0,075 % level/% SINAD 
0,2 % level/% SINAD 
0,2 % level/% SINAD 



 

ETSI 

ETSI TR 100 028-2 V1.4.1 (2001-12)267 

 Mean Standard deviation 
Amplitude characteristic (see clause 4.1.8 of the present document) 
Reflection coefficient 
RF level dependency 

 
0,2 
0,05 

 
0,05 
0,02 %/% level 

Two signal measurements (see clauses 4.1.2, 4.1.3, 4.1.4 and 4.1.6 of the 
present document) 
Reflection coefficient (in band) 
Reflection coefficient (out of band) 
Noise gradient 
Deviation dependency 
Absolute RF level dependency 

 
0,2 
0,8 
0,7 
0,05 
0,5 

 
0,05 
0,1 
0,2 % level/% SINAD 
0,02 %/Hz 
0,2 %/% level 

Intermodulation response (see clause 4.1.5 of the present document) 
Reflection coefficient 
Noise gradient (unwanted signal) 
Deviation dependency 
Capture ratio dependency 

 
0,2 
0,5 
0,05 
0,1 

 
0,05 
0,1 % level/% SINAD 
0,02 %/Hz 
0,03 %/% level 

Conducted spurious emission (see clause 4.1.7 of the present 
document) 
Reflection coefficient 
Supply voltage dependency 

 
0,7 
10 

 
0,1 
3 %/V 

Desensitization (Duplex) (see clause 5.2 of the present document) 
Reflection coefficient 
Temperature dependency 
Noise gradient (below the knee point) 
Noise gradient (above the knee point) 
Noise gradient (direct carrier modulation) 

 
0,2 
2,5 
0,375 
1,0 
1,0 

 
0,05 
1,2 %/°C 
0,075 % level/% SINAD 
0,2 % level/% SINAD 
0,2 % level/% SINAD 

Spurious response rejection (Duplex) (see clause 5.1 of the present 
document) 
Reflection coefficient (pass band) 
Reflection coefficient (stop band) 
Noise gradient 
Deviation dependency 
Absolute RF level dependency 

 
0,2 
0,8 
0,7 
0,05 
0,5 

 
0,05 
0,1 
0,2 % level/% SINAD 
0,02 %/Hz 
0,2 %/% level 
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Annex G: 
Mismatch uncertainties 

G.1 Introduction 
Mismatch uncertainties are calculated in the present document using S-parameters. 

A two-port network connects a generator and a load with reflection coefficients ρG and ρL respectively. Input and 

output wave amplitudes a1 and a2, b1 and b2 exist at the planes shown in figure G.1. The performance of this two-port 

network can be specified in terms of four complex quantities known as S-parameters where: 

 b1 = S11a1 + S12a2 

 b2 = S21a1 + S22a2 

Lo
adTwo-portρ

G
ρ

L

1a a2

b21b
 

Figure G.1: Two-port network 

The corresponding matrix of the network can be described by an S-parameter (S for scattering) matrix: 

 







=

2221

1211

SS

SS
S  

Where S11 is the complex reflection coefficient at port 1 when port 2 is perfectly terminated (and vice versa). S21 is the 
complex transmission coefficient (or gain) from port 1 to port 2 when both ports are perfectly terminated (and vice 
versa). For passive, linear networks S21 = S12. 

From the definition of S parameters it is easy to see that mismatch loss is covered by the transmission coefficients. In 
other words it is of no importance whether the attenuation of a network is caused by power dissipation in the network or 
by reflection at the input. 

To illustrate this consider an ideal filter (ideal means it is lossless). All of the filtering is due to reflections at the input, 
as in an ideal filter, no power can be dissipated inside itself. Therefore if a loss (or gain) has been measured, the 
mismatch loss has already been taken into account and only the mismatch uncertainty remains. Therefore no correction 
due to mismatch loss is required. 

G.1.1 Cascading networks 
If two networks are cascaded (see figure G.2) the resulting network S-parameter matrix is a combination of the two 
original S-parameters. First each individual S-parameter matrix must be transformed to a T-matrix (T for 
transformation) 

 







=

Stde- S

-S

S
T

11

22

21

11  

Where det S is the determinant of S. 

Then the resulting T matrix is calculated. 
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For example: 

Network C

Network
A

Network
B

 

Figure G.2: Cascading networks 

S-parameters: 

 







=

2221

1211

AA

AA
A SS

SS
S  








=

2221

1211

BB

BB
B SS

SS
S  

Which gives: 

 







=

2221

1211

AA

AA
A TT

TT
T  








=

2221

1211

BB

BB
B TT

T�T
T  

The T-matrix for the resulting (combined) network (c) is then: 

 TC = TATB 

 















=

2221

1211

2221

1211

BB

BB

AA

AA
BA T�T

TT

TT

TT
TT  

 







=

2222122121221121

2212121121121111
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BABABABA

T + TTTT + TTT

T + TTTT + TTT
 

From the resulting TC back to S parameters: 

 







=

12

21

11 1

1

- T

t T-deT

T
S . 

From these general methods some useful formulas can be derived: 

Applying the methods on the two A and B, TA is found: 

 







=

AA

A

A
A Stde- S

- S

S
T

11

22

21

11 ; 

 








+
=

2112221111
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11
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- S
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In the same way TB is found: 

 








+
=
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The combination therefore is: 
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SSSSSSS
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−
−+

=  

 
( )

1122

122111112211
11 1

1

BA
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SS

SSSSSS
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−
+−

=  

 
1122

122111
1111 1 BA

AAB
A SS

SSS
SSc

−
+=  (1) 

 
1122

2121

11
21 1

1

BA

BA

SS

SS

tc
Sc

−
==  (2) 

Sc11 is the input reflection coefficient of the combined network and Sc21 is the forward transmission coefficient. For 

symmetry reasons Sc22 and Sc12 can be derived directly from Sc11 and Sc21: 

 
1122

211222
2222 1 BA

BBA
B SS

SSS
SSc

−
+=  (3) 

 
1122

1212
12 1 BA

BA

SS

SS
Sc

−
=  (4) 

From formula it can be seen that now the reflection coefficient in the connection between the two networks becomes 
part of the total transfer function: the denominator 1 - SA22 SB11. 

This causes the mismatch uncertainty as only the magnitudes of SA22 and SB11 are known, the phase of the product is 
unknown. 
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The two worst case values of the term 1 - SA22 SB11 are: 1 + |SA22|×|SB11| and 1 - |SA22|×|SB11|. The magnitude of the 

denominator is the magnitude of the sum of two vectors as shown in figure G.3 (where the circle of radius SA22SB11 is 
normally much smaller than 1). 

1

Imaginary

Real

1 + S      SA22 B11

S    
 S

A22
B11

 

Figure G.3: Vector summation 

As can be seen from figure G.3 the denominator can be anywhere in the circle with the radius |SA22|×|SB11|. It can also 
be seen that there are angles for which the argument of the denominator is 1. The magnitude of the denominator is: 

 ( ) ( )22 sincos1 φφ aa ++ = φφφ 2222 sincos2cos1 aaa +++  

where: 

 a = |SA22|×|SB11| 

 ( ) φφφ cos2cossin1 222 aa +++  (as sin2φ + cos2φ = 1) 

 φcos21 2 aa ++ (since a<< 1: a2 ≈ 0 and 1+ 2a cosφ ≈ (1+ a cosφ)2: 

 ( )2cos1 φa+ = 1+ a cosφ 

The mismatch error magnitude is a cosφ where φ is unknown (random). This function has the U distribution described 
in clause B.2.3. 

From the formula for Sc11 and Sc22 it can also be seen that the resulting input (or output) reflection coefficient is a 
combination of the reflection coefficient of network A and a contribution from the reflection coefficient of network B 
connected at the far end of the network. 

For a passive linear network (like attenuators, cables and passive filters) S12 = S21. In other words the transmission 
coefficient and therefore the attenuation is the same in both directions. 

In this case the resulting input reflection coefficient is S11 (which is the input reflection coefficient when the output is 
perfectly terminated) plus the reflection coefficient of the network connected to the output times the transmission 
coefficient squared (and with the mismatch in the connector at the far end expressed by the denominator of the second 
term of the formula). 

This also shows that if two components with poor VSWRs are connected together, it does not minimize the mismatch 
uncertainty to use a perfect cable between the two components. The resulting input reflection coefficient of the cable 
and the component is merely the reflection coefficient of the component phase shifted by the length of the cable. 
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From the formulas for Sc21 and Sc12 it can be seen that the resulting transmission coefficient (S21/S12) of the combined 

network is the individual transmission coefficients multiplied and combined with the mismatch in the connection 
between the two networks (as expressed by the denominator). 

G.1.2 Mismatch uncertainty calculations 
Having discussed the individual uncertainty components of the test equipment an analysis is required, when they are 
connected together, to determine the combined standard uncertainty contribution. From the formulas derived in this 
annex the uncertainties due to mismatch can be assessed. 

A measurement set-up where absolute RF levels are important parts of the measurement often consist of some RF 
modules connected in series, see figure G.4 (Cables, attenuators, filters, combiners, amplifiers, etc.). 

A B C D
RF

source

SB21

SB22

SB12SA12
SA11

ρ
G

RF
load

ρ
L

SA22

SB11

SA21  

Figure G.4: Typical network 

For each individual component in this chain, transmission coefficients and reflection coefficients (or VSWRs) must be 
known or assumed. Often the transmission coefficients are well known from data or measurements. 

The exact values of the reflection coefficients VSWRs (which in RF circuits are complex values) are normally not 
known as they do not have direct influence on the measured results. Even if the magnitude is known, generally, the 
phase is unknown. 

More often worst case values are known. This will generally cause the calculated mismatch uncertainties to be more 
conservative (or worse) than they actually are. 

The uncertainty due to mismatches of the RF level at the RF load (which can be an antenna, a detector, an EUT) in a 
network like the one shown in figure G.5 can be calculated in the following ways: 

The simplest case for assessing the uncertainty due to mismatch is a generator connected to a load through a coupling 
network. 

Generator
Coupling
network

Load
 

Figure G.5: Generator to load through a coupling network 

For the purpose of the calculations the generator is modelled as a perfect generator (output reflection coefficient = 0) 
connected to a network with an output reflection coefficient equal to the actual generator output reflection coefficient. 
(Also the network only has a forward transmission of 1,0 and a backwards coefficient of 0,0). 

In the same way the load is modelled as a network connected to a perfect matched load. Also with a forward 
transmission coefficient of 1,0 and a backwards coefficient of 0,0. The set-up of figure G5 now appears as shown in 
figure G.6. 

1,0 1,0

0,0 0,0

0 0 0 0Generator
network

Perfect
generator

Coupling
network network

Load Perfect
load

S11
ρG

S12

S21 ρ
LS22

 

Figure G.6: Perfect generator to perfect load through a coupling network 
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The S matrices for each component in figure G.6 is: 

Generator network: 








Gρ0,1

0,00,0
 (SG) 

Coupling network: 








2221

1211

SS

SS
 (S) 

Load network: 








0,00,1

0,0Lρ
 (SL) 

The total transmission from the generator to the load can then be characterized by the combined network of the 
3 components. 

As the input and output reflection coefficients of the combined network is zero, the forward and reverse transmission 
coefficients of the network fully describes the RF signal flow between the generator and the load, including all 
mismatch uncertainties. 

The forward transmission coefficient is calculated as follows: 

The S-parameter matrix for the combined network is: 

 SG S SL: 

S/ = SG S: Using formulas (1), (2), (3) and (4) the resulting matrix is: 

 
1122

122111
1111 1 SS

SSS
SS

G

GG
G

/

−
+=  

 0
1

01
0

11

11 =
×+
××

+=
S

S

Gρ
 (formula 1) 
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2121
21 1
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1 S
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G/

ρ−
×

=
−

=  

 
11

21

1 S

S

Gρ−
=  (formula 2) 
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122122
2222 1 SS

SSS
SS

G

G/

−
+=  

 
11

1221
22 1 S

SSG
S

G

G

ρ−
+=  (formula 3) 

 0
1

0

1 11
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1212
12 =

−
×

=
−

=
S

S

S

SS
S

GG
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ρρ
 (formula 4) 
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Now only S21
// needs to be calculated: 

 
1122

2121
21

1 L
/

L
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−
=  
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+−
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−
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11

2112
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1
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SS
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−
+−
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=  

 ( )( ) 21122211

21

11 SSSS

S

LGLG ρρρρ +−−
=  (5) 

From the formula it can be seen that there are three mismatch contributions: One at each end of the coupling network 
(characterized by the brackets in the denominator of (5)) and one caused by direct interaction between the generator and 
the load. It is also seen that this direct interaction is depending on the transmission coefficients of the network. The 
greater the attenuation the less the interaction. 

If the coupling network between the source and the load consists of more than one component there will be more 
contributions to the mismatch uncertainty, unless the coupling network has been measured as one component. Mismatch 
uncertainty at the connections between the individual components in the network. 

For all network consisting of two components A and B, figure G.7. 

Generator
Coupling

network A
Coupling

network B
Load

 

Figure G.7: Generator to load through two coupling networks 

The input and output reflection coefficients are calculated using formulas (1) and (3): 

 
1122

211211
1111 1 ba

aab
aS

−
+=  (6) 

 
1122

211222
2222 1 ba

bba
bS

−
+=  (7) 

and the transmission coefficients are calculated using Formulas (2) and (4): 

 
1122
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S

−
=  (8) 
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12 1 ba
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−
=  (9) 
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For the purpose of calculating mismatch uncertainties the derived S-parameters are put into formula (5): 
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21121221
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−
−−−

=
ρρρρ

 (10) 

From formula (10) it can be seen that there are 4 mismatch uncertainty contributions: 

Mismatch uncertainty between A and B: ±a22b11 
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Mismatch uncertainty at the generator: ± 








−
+

1122

211211
11 1 ba

aab
aGρ  

Mismatch uncertainty at the load:  ± 








−
+

1122

211222
22 1 ba

bba
bLρ  

Mismatch uncertainty due to direct interaction between the generator and the load: ±
1122

21121221

1 ba

bbaaLG

−
ρρ

. 

In the 3 later cases the denominator form of 1- a22b11 can be ignored as the average is 1. Therefore it does not 

contribute to the mismatch uncertainty. Furthermore the two formulas with brackets consist of components which are 
not correlated. These components must be treated individually. This gives the following contributions: 

Mismatch uncertainty between A and B: ± a22 × b11 

Mismatch uncertainty at the generator:  ± ρG × a11  and  ± ρG × b11 × a12 × a21 

Mismatch uncertainty at the load:  ± ρL × b22  and  ± ρL × a22 × b12 × b21 

Mismatch uncertainty due to the direct interaction between the generator and the load: 

 ± ρG × ρL × a12 × a21 × b12 × b21 

G.2 General approach 
A general method for the calculation of the total mismatch uncertainty of a network consisting of any number N of 
components between the generator and the load is as follows: 

Each individual component is characterized by its S-parameter matrix: 

 







=

2221

1211

SiSi

SiSi
Si  ρi ρ1, i(n) 

The generator reflection coefficient is S (0)22 and the load reflection coefficient is S (n + 1)11; the mismatch uncertainty is 

the combination of all possible products of the form: 

 Si22 × Sj11 × S (i + 1)12 × S (i + 1)21 × S (i + 2)12 × ....... × S (j-2)12 × S (j-2)21 × S (j-1)12 × S (j-1)21 

 (0 (i (n) and (1 (j (n + 1) and i (j-2) 

G.3 Networks comprising power combiners/splitters 
In some tests power combiners/splitters are involved either to combine the signals from several signal sources or to split 
the signals to several detectors or measuring instruments. Under these circumstances there may be mismatch uncertainty 
contributions from the other branches of the splitters/divider as well as those from the branch of interest. If there is a 
high isolation between some of the ports, this can normally be ignored. It plays, however, a vital part where isolation 
between input ports is needed. (i.e. between generators to avoid third order intermodulation). Consider the network 
shown in figure G.8. 
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Port 1

Port 2

Port 3

Load

Generator Load3 port
combiner

 

Figure G.8: Three port combiner 

The 3 port combiner is characterized by the S-matrix 

















=

333231

232221

131211

SSS

SSS

SSS

S  

Based on the general formula B = S × A, where: 

















=

3

2

1

b

b

b

B  where bn is the output signal from port n,  

















=

3

2

1

a

a

a

A  where an is the input signal to port n, and 

each port n is connected to a reflection coefficient ρn, the transfer function from the generator connected to port 1 to the 
load connected to port 3 can be derived. 

For a linear and symmetrical network (where Sin = Sni for all S) the transfer function (formula 5) is: 

2
11132112133221

2
1222211131

2
13333111

21
2
12222111311113211231122

))1(())1)(1)(()1)(1((

))1)(1(())1((

ρρρρρρρρρρρρ
ρρρρρρρ

×−+×××−××−×−×−××−×−×−

××−×−×−+×−+×××

SSSSSSSSSS

SSSSSSSSS
 

As can be seen in the following the 3. port (in this case port 2) adds to the mismatch uncertainty between the generator 
and the load connected to port 3. 

If all reflection coefficients except S22 and ρ2 are 0,0 formula 5 is reduced to the following: (formula 6) 

 
)S(

)S(SSS

222

2223132122

1

1

ρ
ρρ

×−
×−+××  = )

)1(
1(

22231

32122
31 ρ

ρ
×−

××
+

SS

SS
S  (6) 

If the denominator second order uncertainty is disregarded in formula 6 an additional mismatch uncertainty contribution 

appears: 
31

3212
2 S

SS ×
×ρ . As can be seen S22 does not directly contribute. 

This mismatch component has a u-shaped distribution like the conventional mismatch uncertainty contributions. If all 
reflection coefficients except ρ1 and ρ2 are 0,0 formula 5 is reduced to the following: (formula 7) 

 
)1(

)1()(

21
2
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21
2
12313211231122
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ρρρρ

××−
××−++×××

S

SSSSSS  = 
)1( 21

2
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3132122

ρρ
ρ

××−

+××

S

SSS
 = 

)1(

)1(

21
2
12

31

32122
31

ρρ

ρ

××−

××
+

S

S

SS
S

 (7) 

In the nominator we see the term already found in formula 6. In addition to this there is a contribution from the 

denominator: 21
2
12 ρρ ××S . 
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In the same way if only ρ2 and ρ3 are different from 0,0: 

 
)1( 32

2
32

3132122

ρρ
ρ

××−
+××

S

SSS  = 
)1(

)1(

32
2
32

31

32122
31

ρρ

ρ

××−

××
+

S

S

SS
S

 (8) 

giving the mismatch uncertainty contribution: 32
2
32 ρρ ××S . 

From these 3 additional mismatch contributions it can be concluded that in networks comprising combiners or splitters, 
all other ports than the ports in the main path can contribute to the mismatch uncertainty in the main path. 

If all other ports are connected to perfect terminations, they do not contribute, and the network can be regarded as one 
path. 

If, however, the other ports (n) are connected to reflection coefficients ρn different from 0,0, these reflection 
coefficients contributes to the total reflection coefficient at both the input and the output of the combiner, thereby 
combining to the total mismatch uncertainty in the main path. 

But in addition there is a contribution which is not the usual combination of two reflection coefficients: 

io

noin
n S

SS ×
×ρ , where port i is the input port, port o is the output port, and port n is any of the other ports. 

It contains only one reflection coefficient and some transmission coefficients. As the transmission coefficients can be 
very high (close to 1 or even higher if amplifiers are involved) this contribution can be dominating. It can cause much 
bigger mismatch uncertainty than the sum of the rest of the components, and it can cause lack of isolation between 
ports, where isolation is needed. 

It should be noted that there are such mismatch uncertainty contributions from all ports except the two ports in the main 
path. 

Imagine an ideal 3 port hybrid combiner with a transfer function of ∞ dB between the two input ports and 3 dB from 
each port to the output. If the output of the hybrid combiner is connected to a load with reflection coefficient 0,1 the 
effective isolation between the two input ports is: 

 0dB171414,0
2

221,0 ≈=××
. 

Therefore the matching of the unused ports is very important. In these cases the mismatch uncertainty between the input 
port and the output port (e.g. port 1 to port 3 of a combiner) must then be calculated as follows: 

1) all the "normal" mismatch uncertainty contributions must be found; 

2) the reflection coefficients connected to port 2 must be taken into account; 

3) in addition to this there is an extra uncertainty component. 

NOTE 1: This uncertainty component is not a normal mismatch component, it is calculated from: ρ2×S21×S32/S31. 

Where ρ2 is the reflection coefficient of the network connected to port 2 of the combiner. If a resistive 

combiner - for instance with an attenuation of 6 dB between the ports - is involved, this last contribution 
can be a dominant one if ρ2 is big. 

NOTE 2: This contribution is in the numerator of the transfer function, whereas the "normal" uncertainty 
contributions come from the denominator. The formula shown is consistent with the fact that if S31 

approaches zero this uncertainty will grow to be greater than one, and the combiner will act as a reflection 
measuring bridge. 
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EXAMPLE: A 6 dB resistive combiner has a signal generator (1) connected to port 1 and a second signal 
generator (2) connected to port 2 (both input ports). The combiner port 3 (the output port) is 
connected to an EUT. The signal generator and combiner reflection coefficients are 0,2 and the 
EUT has a reflection coefficient of 0,8. The mismatch uncertainty is calculated as follows: 

The standard uncertainty of the mismatch between the signal generator 1 and combiner input: 

 uj generator 1 and combiner = %828,2%
2

1002,02,0 =××  

The standard uncertainty of the mismatch between the combiner output and the EUT: 

 uj combiner and EUT = %31,11%
2

1008,02,0
=

××  

The standard uncertainty of the mismatch between the signal generator 1 and the EUT: 

 uj generator 1 and EUT = %828,2%
2

1005,08,02,0 2
=×××

 

The standard uncertainty of the mismatch between the signal generator 1 and signal generator 2:  

 uj generator 1 and generator 2 = %707,0%
2

1005,02,02,0 2
=×××  

The standard uncertainty of the mismatch between the signal generator 2 and the combiner: 

 uj generator 2 and combiner = %828,2%
2

1002,02,0 =××
 

The additional component is calculated as: 

 %071,7%
25,0

1005,05,02,0 =
×

×××
 

The combined standard uncertainty of the mismatch is: 

 %50,14%071,7828,2828,2707,0828,231,11828,2 2222222 =++++++  

An extreme situation would be if all the components - except the load on port 2 - were exactly 50 Ω; in this case the 
only mismatch component would be the additional component (7 %). 

Figure G.9 shows the distribution where all reflection coefficients are 0,1 and all transfer functions are 0,5 (simulated 
200 000 000 times). The standard deviation based on the simulation is found to be 3,6871 %. The calculated standard 
deviation is 3,7541 %. (The difference is due to that some second order components are disregarded in the calculation.). 
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0 2 4 6 8 10-2-4-6-8-10

p(x)
3,6871
U95: min = -5,9600 and max = 6,0800

%

 

Figure G.9: Distribution from the simulation 

The formulae shown are also applicable to non symmetrical networks. Instead of the squared terms the products of the 
transfer coefficients in both directions must be used. 

EXAMPLE: 

S4 S5 Load 1S1Generator S2
S3

S6

Load 2
 

Figure G.10: Example path between the generator and load 
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=
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 ρG = 0,2 = S (0)22; ρL1 = 0,333; ρL2 = 0,2 

All possible contributions are: 

Contributions in the main path between 

 %707,0%
2

10005,020,0
1

=××=Sofinputandgeneratorju  

 %212,0%
2

10006,005,0
21

=××=SofinputandSofoutputju  

 %297,0%
2

10007,006,0
32

=××=SofinputandSofoutputju  

 %396,0%
2

10008,007,0
43

=××=SofinputandSofoutputju  

 %566,0%
2

10010,008,0
54

=××=SofinputandSofoutputju  

 %35,2%
2

100333,010,0
15

=××=loadandSofoutputju  

 %535,0%
2

100794,006,020,0 2

2
=×××=Sofinputandgeneratorju  

 %157,0%
2

100891,007,005,0 2

31
=×××=SofinputandSofoutputju  

 %170,0%
2

100708,008,006,0 2

42
=×××=SofinputandSofoutputju  

 %495,0%
2

1000,110,007,0 2

53
=×××=SofinputandSofoutputju  

 %68,1%
2

100944,0333,008,0 2

14
=×××=loadandSofoutputju  

 %495,0%
2

100891,0794,007,020,0 22

3
=××××=Sofinputandgeneratorju  

 %113,0%
2

100708,0891,008,005,0 22

41
=××××=SofinputandSofoutputju  

 %284,0%
2

1000,1708,010,008,0 22

52
=××××=SofinputandSofoutputju  

 %47,1%
2

100944,00,1333,007,0 22

13
=××××=loadandSofoutputju  

 %284,0%
2

100708,0891,0794,008,020,0 222

4
=×××××=Sofinputandgeneratorju  
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 %141,0%
2

1000,1708,0891,010,005,0 222

51
=×××××=SofinputandSofoutputju  

 %631,0%
2

100944,00,1708,0333,006,0 222

12
=×××××=loadandSofoutputju  

 %355,0%
2

1000,1708,0891,0794,010,020,0 2222

5
=××××××=Sofinputandgeneratorju  

 %418,0%
2

100944,00,1708,0891,0333,005,0 2222

11
=××××××=loadandSofoutputju  

 %053,1%
2

100944,00,1708,0891,0794,0333,020,0 22222

1 =×××××××=loadandgeneratorju  

Contributions from the network connected to the 3rd port of S3: 

Contributions: 

 %212,0%
2

100708,010,006,0 2

62
=×××=SofinputandSofoutputju  

 %284,0%
2

100708,008,010,0 2

46
=×××=SofinputandSofinputju  

 %141,0%
2

100708,0891,01,005,0 22

61
=××××=SofinputandSofoutputju  

 %106,0%
2

10050,0708,020,006,0 22

22
=××××=loadandSofoutputju  

 %354,0%
2

1000,1708,010,010,0 22

56
=××××=SofinputandSofinputju  

 %142,0%
2

100708,050,008,020,0 22

2 4
=××××=Sofinputandloadju  

 %354,0%
2

100708,0891,0794,010,020,0 222

6
=×××××=Sofinputandgeneratorju  

 %070,0%
2

10050,0708,0891,020,005,0 222

21
=×××××=loadandSofoutputju  

 %052,1%
2

100944,00,1708,0333,010,0 222

16
=×××××=loadandSofinputju  

 %177,0%
2

1000,1708,050,010,020,0 222

2 5
=×××××=Sinputandloadju  

 %177,0%
2

10050,0708,0891,0794,020,020,0 2222

2 =××××××=loadandgeneratorju  



 

ETSI 

ETSI TR 100 028-2 V1.4.1 (2001-12)282 

 %526,0%
2

100944,00,1708,050,0333,020,0 2222

12 =××××××=loadandloadju  

Contributions from the 3rd port: 

 %01,5%
2708,0

100708,010,0 2

6
=

×
××=Sfromoncontributiju  

 %50,2%
2708,0

100708,050,020,0 22

2 =
×

×××=loadfromoncontributiju  

The root sum of the squares of all these components is 6,90 %. 

As can be seen from the calculations the major contributions to the mismatch uncertainty is from the reflection 
coefficients connected to the 3 rd port of the network. 

This means that the matching of that port is of great importance to keep the uncertainty low. 

Alternatively the total insertion loss and the reflection coefficients at the generator and at load 1 should be measured 
with S6 and load 2 connected. This would minimize the mismatch uncertainty. 

These formulations can now be applied to the actual circuits encountered during testing. 
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