

ETSI GS NFV-SEC 002 V1.1.1 (2015-08)

Network Functions Virtualisation (NFV);
NFV Security;

Cataloguing security features in management software

GROUP SPECIFICATION

ETSI

ETSI GS NFV-SEC 002 V1.1.1 (2015-08)2

Reference
DGS/NFV-SEC002

Keywords
NFV, open source, security

ETSI

650 Route des Lucioles
F-06921 Sophia Antipolis Cedex - FRANCE

Tel.: +33 4 92 94 42 00 Fax: +33 4 93 65 47 16

Siret N° 348 623 562 00017 - NAF 742 C

Association à but non lucratif enregistrée à la
Sous-Préfecture de Grasse (06) N° 7803/88

Important notice

The present document can be downloaded from:
http://www.etsi.org/standards-search

The present document may be made available in electronic versions and/or in print. The content of any electronic and/or
print versions of the present document shall not be modified without the prior written authorization of ETSI. In case of any

existing or perceived difference in contents between such versions and/or in print, the only prevailing document is the
print of the Portable Document Format (PDF) version kept on a specific network drive within ETSI Secretariat.

Users of the present document should be aware that the document may be subject to revision or change of status.
Information on the current status of this and other ETSI documents is available at

http://portal.etsi.org/tb/status/status.asp

If you find errors in the present document, please send your comment to one of the following services:
https://portal.etsi.org/People/CommiteeSupportStaff.aspx

Copyright Notification

No part may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying
and microfilm except as authorized by written permission of ETSI.

The content of the PDF version shall not be modified without the written authorization of ETSI.
The copyright and the foregoing restriction extend to reproduction in all media.

© European Telecommunications Standards Institute 2015.

All rights reserved.

DECTTM, PLUGTESTSTM, UMTSTM and the ETSI logo are Trade Marks of ETSI registered for the benefit of its Members.
3GPPTM and LTE™ are Trade Marks of ETSI registered for the benefit of its Members and

of the 3GPP Organizational Partners.
GSM® and the GSM logo are Trade Marks registered and owned by the GSM Association.

http://www.etsi.org/standards-search
http://portal.etsi.org/tb/status/status.asp
https://portal.etsi.org/People/CommiteeSupportStaff.aspx

ETSI

ETSI GS NFV-SEC 002 V1.1.1 (2015-08)3

Contents
Intellectual Property Rights .. 5

Foreword ... 5

Modal verbs terminology .. 5

1 Scope .. 6

2 References .. 6

2.1 Normative references ... 6

2.2 Informative references .. 6

3 Definitions and abbreviations ... 7

3.1 Definitions .. 7

3.2 Abbreviations ... 7

4 Introduction .. 8

5 Identity and access management .. 9

5.1 General ... 9

5.2 PKI tokens .. 10

5.2.0 General .. 10

5.2.1 PKI set-up ... 10

5.2.2 Token generation .. 10

5.2.3 Token verification ... 11

5.2.4 Token indexing ... 11

5.3 UUID tokens .. 12

5.4 Trusts .. 12

5.5 Token storage ... 13

5.6 Token Transport ... 14

5.7 Identity federation .. 14

5.8 Identity API Access Control ... 15

5.9 Password Hashing .. 15

5.10 Time Synchronization .. 15

6 Communication Security .. 15

7 Stored data security .. 16

7.1 Block Storage Encryption .. 16

7.2 Logical Volume Sanitization .. 17

8 Firewalling, zoning, and topology hiding... 17

8.1 Security group .. 17

8.2 Anti-spoofing ... 18

8.3 Network Address Translation ... 18

8.4 Network isolation ... 19

8.5 Firewall-as-a-service .. 19

9 Availability ... 19

10 Logging and monitoring ... 20

10.1 Logging .. 20

10.2 Event notification ... 21

11 Compute isolation .. 22

12 Guidance on the use of OpenStack in NFV.. 23

13 Recommended OpenStack enhancements in support of NFV.. 24

ETSI

ETSI GS NFV-SEC 002 V1.1.1 (2015-08)4

Annex A (informative): Authors & contributors ... 25

Annex B (informative): Bibliography ... 26

History .. 27

ETSI

ETSI GS NFV-SEC 002 V1.1.1 (2015-08)5

Intellectual Property Rights
IPRs essential or potentially essential to the present document may have been declared to ETSI. The information
pertaining to these essential IPRs, if any, is publicly available for ETSI members and non-members, and can be found
in ETSI SR 000 314: "Intellectual Property Rights (IPRs); Essential, or potentially Essential, IPRs notified to ETSI in
respect of ETSI standards", which is available from the ETSI Secretariat. Latest updates are available on the ETSI Web
server (http://ipr.etsi.org).

Pursuant to the ETSI IPR Policy, no investigation, including IPR searches, has been carried out by ETSI. No guarantee
can be given as to the existence of other IPRs not referenced in ETSI SR 000 314 (or the updates on the ETSI Web
server) which are, or may be, or may become, essential to the present document.

Foreword
This Group Specification (GS) has been produced by ETSI Industry Specification Group (ISG) Network Functions
Virtualisation (NFV).

Modal verbs terminology
In the present document "shall", "shall not", "should", "should not", "may", "need not", "will", "will not", "can" and
"cannot" are to be interpreted as described in clause 3.2 of the ETSI Drafting Rules (Verbal forms for the expression of
provisions).

"must" and "must not" are NOT allowed in ETSI deliverables except when used in direct citation.

http://webapp.etsi.org/IPR/home.asp
http://portal.etsi.org/Help/editHelp!/Howtostart/ETSIDraftingRules.aspx

ETSI

ETSI GS NFV-SEC 002 V1.1.1 (2015-08)6

1 Scope
The present document gives a survey of the security features in the open source management software relevant to NFV,
in particular OpenStack™ [i.1] as the first case study. It addresses the OpenStack modules that provide security services
(such as authentication, authorization, confidentiality protection, integrity protection, and logging) together with the full
graphs of their respective dependencies down to the ones that implement cryptographic protocols and algorithms. It also
identifies a set of recommendations on the use of and enhancements to OpenStack as pertinent to NFV.

2 References
2.1 Normative references
References are either specific (identified by date of publication and/or edition number or version number) or
non-specific. For specific references, only the cited version applies. For non-specific references, the latest version of the
reference document (including any amendments) applies.

Referenced documents which are not found to be publicly available in the expected location might be found at
http://docbox.etsi.org/Reference.

NOTE: While any hyperlinks included in this clause were valid at the time of publication, ETSI cannot guarantee
their long term validity.

The following referenced documents are necessary for the application of the present document.

Not applicable.

2.2 Informative references
References are either specific (identified by date of publication and/or edition number or version number) or
non-specific. For specific references, only the cited version applies. For non-specific references, the latest version of the
reference document (including any amendments) applies.

NOTE: While any hyperlinks included in this clause were valid at the time of publication, ETSI cannot guarantee
their long term validity.

The following referenced documents are not necessary for the application of the present document but they assist the
user with regard to a particular subject area.

[i.1] OpenStack.

NOTE: http://www.openstack.org/.

[i.2] United States Computer Emergency Readiness Team.

NOTE: http://www.us-cert.gov/.

[i.3] ETSI GS NFV 003: "Network Functions Virtualisation (NFV); Terminology for Main Concepts in
NFV".

[i.4] ETSI GS NFV-SEC 001: "Network Functions Virtualisation (NFV); NFV Security; Problem
Statement".

[i.5] ETSI GS NFV 004: "Network Functions Virtualisation (NFV); Virtualisation Requirements".

[i.6] ETSI GS NFV-MAN 001: "Network Functions Virtualisation (NFV); Management and
Orchestration", (work in progress).

[i.7] Memcached.

NOTE: http://memcached.org/.

http://docbox.etsi.org/Reference
http://www.openstack.org/
http://www.us-cert.gov/
http://memcached.org/

ETSI

ETSI GS NFV-SEC 002 V1.1.1 (2015-08)7

[i.8] OpenID Connect.

NOTE: http://openid.net/connect/.

[i.9] IETF Application Bridging for Federated Access Beyond web (ABFAB) Working Group.

NOTE: http://tools.ietf.org/wg/abfab/charters.

[i.10] IETF RFC 5905 (June 2010): "Network Time Protocol Version 4: Protocol and Algorithms
Specification".

NOTE: https://tools.ietf.org/html/rfc5905.

[i.11] IEEE 1588-2008 (July 2008): "IEEE Standard for a Precision Clock Synchronization for
Networked Measurement and Control Systems".

[i.12] The OpenStack Security Guide.

NOTE: http://docs.openstack.org/sec/.

[i.13] Trusted Computing Group: Storage Work Group Storage Security Subsystem Class: Opal.

NOTE: http://www.trustedcomputinggroup.org/resources/storage_work_group_storage_security_subsystem_class
_opal.

[i.14] IETF RFC 3164: "The BSD syslog Protocol".

[i.15] IETF RFC 5424: "The Syslog Protocol".

[i.16] IETF RFC 5280: "Internet X.509 Public Key Infrastructure Certificate and Certificate Revocation
List (CRL) Profile".

[i.17] FIPS PUB 186-4: "Digital signature Standard".

[i.18] DMTF: "Cloud Auditing Data Federation (CADF)".

NOTE: Available at: http://www.dmtf.org/standards/cadf.

3 Definitions and abbreviations
3.1 Definitions
For the purposes of the present document, the terms and definitions given in ETSI GS NFV 003 [i.3] apply.

3.2 Abbreviations
For the purposes of the present document, the abbreviations given in [i.3] and the following apply:

AMQP Advanced Message Queuing Protocol
AH Authentication Header
API Application Program Interface
ARP Address Resolution Protocol
CADF Cloud Auditing Data Federation
CMS Cryptographic Message Syntax
DHCP Dynamic Host Configuration Protocol
DMTF Distributed Management Task Force
ESP Encapsulating Security Payload
GRE Generic Route Encapsulation
HMAC Hashed Message Authentication Code
HTTP HyperText Transfer Protocol
IKE Internet Key Exchange
IP Internet Protocol
JSON JavaScript Object Notation
KVS Key Value Stores

http://openid.net/connect/
http://tools.ietf.org/wg/abfab/charters
https://tools.ietf.org/html/rfc5905
http://docs.openstack.org/sec/
http://www.trustedcomputinggroup.org/resources/storage_work_group_storage_security_subsystem_class_opal
http://www.trustedcomputinggroup.org/resources/storage_work_group_storage_security_subsystem_class_opal
http://www.dmtf.org/standards/cadf

ETSI

ETSI GS NFV-SEC 002 V1.1.1 (2015-08)8

LDAP Lightweight Directory Access Protocol
LUKS Linux Unified Key Setup
MAC Media Access Control
MAC/IP Media Access Control / Internet Protocol
NSS Network Security Services
NTP Network Time Protocol
PEM Privacy Enhanced Mail
PKI Public Key Infrastructure
PTP Precision Time Protocol
RPC Remote Procedure Call
SAML Security Assertion Mark-up Language
SASL Simple Authentication and Security Layer
SED Self Encrypting Drive
SQL Structured Query Language
SR-IOV Single Root Input Output Virtualization
SSH Secure SHell
SSL Secure Socket Layer
TCP Transfer Control Protocol
URI Uniform Resource Identifier
UUID Universally Unique IDentifier
VLAN Virtual LAN
VM Virtual Machine
VNC Virtual Network Computing
VPN Virtual Private Network
VXLAN Virtual eXtensible Local Area Network
WSGI Web Server Gateway Interface

4 Introduction
Building on open source software can help advance certain goals of NFV, such as accelerated time-to-market and
improved interoperability. To do so effectively calls for having a knowledge base of the security features and
cryptographic algorithms supported in each relevant code base. In particular, NFV applications are subject to privacy
and security regulations. The knowledge base helps shed light on how to best apply the pertinent software and on
enhancements necessary to meet the NFV security needs. It is also useful for other reasons. Chief among them are:

• export control of cryptographic software;

• compliance with procurement processes;

• follow-up on alerts from US-CERT [i.2] and other similar organizations; and

• determination of the relevant elements for security analytics.

Such a knowledge base is of particular importance in the area of management and orchestration, which plays a critical
role in NFV security.

The present document addresses OpenStack, a widely adopted cloud operating system, as the first case study. It aims to
cover all applicable aspects of information and network security, including:

• Identity and access management

• Communication security

• Stored data security

• Firewalling, zoning, and topology hiding

• Availability

ETSI

ETSI GS NFV-SEC 002 V1.1.1 (2015-08)9

• Logging and monitoring

• Compute isolation

NOTE: OpenStack™ is a set of open source tools for building and managing cloud-computing software platforms
for public and privvate clouds.

 It consists of a group of interrelated projects that control pools of processing, storage, and networking
resources throughout a data center e.g. Neutron, Nova, Keystone, Barbican, Swift, Glance, Trove, Cinder,
etc.

The present document describes the OpenStack modules that provide security services (e.g. authentication,
authorization, confidentiality protection and integrity protection) together with their respective dependencies on
cryptographic protocols and algorithms. It also makes a set of recommendations on the use of and enhancements to
OpenStack as pertinent to NFV. The case study takes into account the issues identified in ETSI GS NFV-SEC 001 [i.4]
and the related requirements specified in ETSI GS NFV 004 [i.5] and ETSI GS NFV-MAN 001 [i.6].

5 Identity and access management
5.1 General
Keystone is the component in OpenStack that provides centralized authentication and authorization. It is used by all
OpenStack components for API access control. Hence, at a high level, a user is authenticated by Keystone first before
gaining access to any other service (Keystone may employ an external authentication system). Upon successful
authentication, the user is given a temporary token. From this point on, to get a service, the user includes the token in
the service request. The user can receive the service if and only if the token is validated and if the user has the proper
roles.

Keystone is organized as a set of internal services, including the identity service, token service, and catalog service. The
identity service handles user authentication and user-data validation. The following constructs are basic to the service:

• User, which may be a person or a process using an OpenStack service.

• Project (or tenant), which owns a set of OpenStack resources. A project shall be assigned a domain.

• Group, which is a set of users. A group shall be assigned a domain. A user may be assigned one or multiple
groups.

• Domain, which is a set of users, groups, and projects.

• Role, which specifies a set of rights and privileges. Roles can be granted at either the domain or project level.
A group may be assigned one or multiple roles on a domain. A user may be assigned one or multiple roles on a
project or domain. An example role is admin. A user shall have a role assigned to have access to a resource.

The identity service supports basic management of user data (e.g. create, read, update and delete). It also has the
flexibility to use a pluggable authentication or authorization module through a backend. Common backends include
Lightweight Directory Access Protocol (LDAP) servers, SQL databases and Key Value Stores (KVS). Keystone uses an
SQL backend by default.

The identity service is accessible through a REST API. The corresponding API endpoint is, in fact, the entry point to all
services. An endpoint is a network-accessible address in the form of a Uniform Resource Identifier (URI). The identity
service may support a separate endpoint for administrative purposes. It goes without saying that the transport of all API
access transactions needs to be protected. In general, access control is based on configurable policy stored in a JSON
file. Other components in OpenStack can further customize the policy according to their respective service contexts.
Keystone supports an SQL policy backend.

The token service deals with token management and validation. It relies on a database to store tokens and the associated
data, including the token revocation list (or token revocation events) and per-token information (e.g. lifespan and
scope). The scope of a token is determined by a combination of projects (or domains) and roles associated with the user.
An unscoped token does not include a specified role. Such a token may be issued during the initial authentication of the
user, who can then use the token to discover accessible projects and then exchange it for a scoped token.

ETSI

ETSI GS NFV-SEC 002 V1.1.1 (2015-08)10

As the basis for service access, tokens shall be protected from forgery, and from unauthorized access and alteration in
transit and at rest. The token service also provides protection in this regard. Several types of tokens are supported,
including Public Key Infrastructure (PKI) and Universally Unique IDentifier (UUID). The token type in use as well as
other specifics (e.g. token lifespan) is configurable. The default token type is UUID. Depending on the token type, it
may be useful to cache tokens to enhance performance. OpenStack services can be configured to this end. When used,
token caches need to be protected and expiration times need to be set appropriately. Custom token types are also
possible through external modules.

The catalogue service manages a registry of all OpenStack services. It allows a user to discover the entitled services and
the corresponding endpoints. Services can be organized in terms of regions, while endpoints classified as public,
internal or administrative. It is also possible to have tenant-specific endpoints. Keystone supports an SQL catalogue
backend.

5.2 PKI tokens
5.2.0 General
A PKI token is a Cryptographic Message Syntax (CMS) string, essentially data that are digitally signed and base64
encoded. The specifics of the data signed are context-dependent. They may include information on, for example, the
user, tenant, role, trust, timestamp and entitled services. One characteristic of such a token is its long length. It is
possible that a PKI token is too long to fit into either a header or URI. To reduce the token size, Keystone supports
compression through zlib. Still the size of a compressed PKI token is much larger than that of a UUID token.

PKI tokens are verifiable by any API endpoints as long as they have access to Keystone's signing certificate, the
information for verifying the signing certificate (i.e. the certificate chain and certificate revocation list), and the token
revocation list (or revocation event records). Keystone provides an API for retrieval of relevant signing certificates.
Decentralized token validation reduces the chance of Keystone becoming a bottleneck. For this reason, PKI had been
the default token type since the Grizzly release. Nevertheless, it has been changed back to UUID in the Juno release
based on deployment experience. The concerns are largely due to the large size of PKI tokens.

5.2.1 PKI set-up
Keystone provides the utility for generating the signing key, the corresponding certificate and the certificate chain that
are required for token generation and management. The required material may be externally generated and imported.
Either way, it is stored in separate files in the Privacy Enhanced Mail (PEM) format in the directories as specified in the
Keystone configuration file (i.e. keystone.conf). Keystone does not support encryption of private key files but relies
on the access control mechanisms of the underlying operating system to protect such files.

The Keystone utility for generating signing keys and certificates is the command keystone-manage pki_setup,
which is based on OpenSSL. The key size and certificate lifespan are configurable through keystone.conf. The
signature algorithm in use is RSA-SHA256. RSA is hardcoded in keystone/common/openssl.py and SHA256 in
keystoneclient/common/cms.py.

5.2.2 Token generation
Table 1

Cryptographic
module used

openssl cms -sign -signer
/etc/keystone/ssl/certs/signing_cert.pem -inkey
/etc/keystone/ssl/private/signing_key.pem -
outform PEM -nosmimecap -nodetach -nocerts –
noattr –md –sha256

Signature algorithm default RSA-SHA1 (with key-size = 2048)
Configurability configurable through the signing certificate and key as part of PKI

setup
Invoking module keystone/common/cms.py/cms_sign_text() or

keystoneclient/common/cms.py/cms_sign_text()

The token lifespan is configurable through keystone.conf. The default is one hour.

ETSI

ETSI GS NFV-SEC 002 V1.1.1 (2015-08)11

5.2.3 Token verification
A PKI token is valid if satisfying at least the following criteria:

• It has not expired.

• It had not been revoked.

• The signing certificate and token signature are valid. (The certificate chain is valid and no certificates have
been revoked.)

Table 2

Cryptographic
module used

openssl cms -verify -certifle
/etc/keystone/ssl/certs/signing_cert.pem –CAfile

/etc/keystone/ssl/certs/ca.pem -inform PEM -
nosmimecap -nodetach -nocerts -noattr

Signature algorithm default RSA-SHA1 (with key-size = 2048)
Configurability configurable through the signing certificate and key as part of PKI

setup
Invoking module keystone/common/cms.py/cms_verify() or

keystoneclient/common/cms.py/cms_verify()

5.2.4 Token indexing
To reference PKI tokens, their hash values are used. The hash algorithm is configurable.

Table 3

Cryptographic
module used

hashlib.py

Hash algorithm default MD5 (expected to change to SHA256)
Configurability The hash algorithm is configurable via hash_algorithms in

keystone.conf.
Invoking module keystone/common/cms.py/cms_hash_token() or

keystoneclient/common/cms.py/cms_hash_token()

ETSI

ETSI GS NFV-SEC 002 V1.1.1 (2015-08)12

5.3 UUID tokens
UUID tokens are randomly generated strings that are verifiable by Keystone only. The use of such tokens necessitates a
persistent storage backend. A UUID token is valid if there is a non-expired matching token in the backend.

Table 4

Cryptographic
module used

uuid.uuid4().hex (from uuid.py)

Random number
generation

/dev/urandom or a pseudo-random number generator

Configurability Platform-dependent
Invoking module keystone.token.providers.uuid.py

NOTE 1: uuid.uuid4() makes use of the available UUID library from the platform (e.g.
libuuid on Linux). If both uuid_generate_rand() and
uuid_generate_time()are available, the former is the first choice.
uuid_generate_rand()builds on /dev/urandom, while
uuid_generate_time() is based on the local current time, the MAC
address (if available), and a pseudo-random number. If no UUID library is
available, uuid.uuid4() constructs UUIDs based on /dev/urandom
directly. If /dev/urandom is unavailable, it constructs UUIDs based on the
pseudo-random number generators implemented in random.py, which are not
deemed cryptographically secure.

NOTE 2: /dev/urandom is not as strong as /dev/random. The latter will return bits

only if there is sufficient entropy in the input. This is known as blocking. In

contrast, the former is non-blocking.

NOTE 3: Pseudo-random number generation should be NIST FIPS-186-4
[i.17] compliant.

5.4 Trusts
Keystone further supports delegation through the construct of trust, which is not cryptographically based. The construct
is particularly relevant to services (e.g. Heat) involving deferred operations. In these cases, tokens alone are insufficient;
they are short lived.

A trust is between two parties: the trustor and trustee. Only the trustor can create a trust, which represents the trustor's
consent to let the trustee act on the trustor's behalf. The trustee has exclusive use of the trust. To carry out a delegated
task, the trustee uses a somewhat special token that reflects its delegated role. The special token is known as a trust
token, which is just a normal token with additional trust-related information. The trustee (after being authenticated)
obtains a trust token from Keystone by presenting a trust. For example, a Heat service user gets a token from Keystone
based on a trust with Alice for accessing Nova and uses the token to create a new instance of Alice's stack on her behalf
in response to an auto-scaling or a reporting event.

A trust has a limited scope. In other words, only a sub-set of the trustor's privileges is delegated to the trustee. The
delegated set of privileges is a combination of a project and a list of roles associated with the trustor. In Heat, the
default role is heat_stack_owner. This is configurable through heat.conf. A token derived from a trust will have
the same scope as the trust.

Trusts are immutable once created. To update a trust relationship, the trustor deletes the old trust and creates a new one.
Upon deletion of the old token, any tokens derived from it are revoked. If the trustor loses any delegated privileges, the
trust becomes invalid.

A trust may have a limited lifetime. If the expiration time is not specified, the trust is valid until it is explicitly revoked.
The default is infinite lifetime and it is hardcoded.

A trust may be constrained in terms of the number of times that it can be used for getting a token. The default is no cap
and it is hardcoded.

ETSI

ETSI GS NFV-SEC 002 V1.1.1 (2015-08)13

A trust may allow "impersonation" so that the trustee appears as the trustor to services validating a trust token.
(Impersonation as meant in OpenStack is a misnomer, given that it refers to authorized use of an identity.)
Impersonation is enabled by default. This is configurable through keystone.conf. Note that a trust token carries a
trust object containing all the related information, including the impersonation flag. So an impersonator is known in
effect. When impersonation is enabled, logs need to capture the information necessary for auditing and non-repudiation
purposes.

Delegation may be recursive so that the original trustee further delegates another trustee, becoming a trustor as a result.
This is controlled by the flag allow_redelegation, which is disabled by default. In the case of recursive delegation,
the trust construct further includes an attribute for specifying the depth of delegation, or the length of the re-delegation
chain. A re-delegation depth of the value zero means that further delegation is impossible. The depth of re-delegation is
configurable through keystone.conf. Recursive delegation is applicable to VM lifecycle management (as
implemented in Solum).

By default, the authentication method for deferred operations is set to passwords instead of trusts. This requires storage
of passwords in yet another backend, which adds complications. This is configurable through heat.conf.

The default backend for trusts is SQL. This is configurable through keystone.conf. The database keeps track of,
among other things, the expiration time, deletion time and remaining quota of each trust. Trusts, as designed, do not
employ any cryptographic measures, and are vulnerable to forgery and tampering. Proper controls needs to be in place
to protect the trust information and support auditing and non-repudiation.

Trusts can be queried at the identity API endpoint. The access control policy is configurable through a Keystone policy
file (typically policy.json). For obvious reasons, only a trustor or trustee may issue queries. The related policy
should be set accordingly.

A trust is identified by a UUID, which is generated the same way as for an UUID token.

5.5 Token storage
Keystone supports the following back-ends for token storage in addition to the default SQLite database in some
ditstributions:

• SQL database (default).

 The storage is persistent. Expired tokens are not automatically removed from the backend. To purge such
tokens, the keystone-manage token_flush command can be used. Protection of the tokens in the
database is implementation-dependent.

• Key Value Store (KVS).

 The base implementation keeps tokens in memory. It is primarily for testing support.

• memcached [i.7].

 This is a key-value store in support of caching. The storage is in-memory, distributed, and ephemeral. Expired
tokens are removed automatically. Cached tokens may be protected through HMAC or HMAC together with
encryption. This is configurable through keystone.conf or the configuration file of another OpenStack
component (e.g. heat.conf).

ETSI

ETSI GS NFV-SEC 002 V1.1.1 (2015-08)14

Table 5

Cryptographic
module used

Crypto.hash and Crypto.Cipher in the Python
Cryptography Toolkit (pycrypto)

Digest algorithm SHA384
Encryption algorithm AES (with 128-bit keys)
Key derivation HMAC-based
Configurability Limited.

• The digest and encryption algorithms are hard-coded.
• The HMAC and encryption keys are derived from a

configurable secret key (memcache_secret_key) in a
configuration file, such as heat.conf.

• The HMAC key size is hard-coded to 128 bits.
• The encryption key size is hard-coded to 128 bits.

Invoking module keystoneclient.middleware.memcache_crypt.py

NOTE 1: Secret key protection relies on the access control mechanisms of the underlying
platform.

NOTE 2: memcached supports Simple Authentication and Security Layer (SASL) as an
option but the default is no authentication.

5.6 Token Transport
Keystone supports secure transport of tokens through SSL/TLS, although SSL/TLS is disabled by default. SSL/TLS
connections can be effected between Keystone and its user as well as between Keystone and its backend. The
information required for SSL/TLS operations is provisioned in the files as specified in keystone.conf.

Table 6

Cryptographic
module used

OpenSSL library (the SSL/TLS-specific part)

Cipher suite Negotiated during the handshake
Configurability • The list of candidate cipher suites is configurable through

openssl.cnf (that is part of the underlying platform) and
openssl.conf (that is part of OpenStack).

• Client authentication based on certificates is configurable
through keystone.conf.

Invoking module keystoneclient.session.Session()
NOTE: Keystone may run as part of an HTTP server. In this case, a different SSL/TLS

library may be used as dictated by the HTTP server.

5.7 Identity federation
Through identity federation Keystone can outsource identity management to an external provider known as an identity
provider. The assumption here is that the identity provider is trusted. It is, thus, straightforward for an operator to reuse
its existing identity management system in a monolithic NFV deployment scenario. There is no need for provisioning
existing users in Keystone. In the common nomenclature of identify federation, the user is called the principal and
Keystone the relying party.

The involvement of a third party to vouch for the authenticity of the user results in a new authentication workflow.
When receiving an authentication request, Keystone, instead of handling the request itself, redirects it to the identity
provider (typically through the user agent). Upon receiving the redirected request, the identity provider performs the
steps to authenticate the user, and then redirects the result as an attestation to Keystone (through the user agent). If the
user is attested authentic, Keystone generates an un-scoped token, based on which the user can find out the accessible
projects and obtain another token with a proper scope. Tokens generated for a federated user are distinguishable. They
carry information related to federation, such as the name of the identity provider, the identity federation protocol, and
the associated groups.

Keystone has the flexibility to support multiple identity federation protocols, such as the Security Assertion Mark-up
Language (SAML) 2.0, OpenID Connect [i.8], Kerberos, and Application Bridging for Federated Access Beyond web
(ABFAB) [i.9]. Support for SAML 2.0 is already available. Its use is configurable through keystone.conf
(i.e. adding saml2 to the list of authentication methods). Support for other protocols is in the works.

ETSI

ETSI GS NFV-SEC 002 V1.1.1 (2015-08)15

Keystone supports management of identity providers, including creation, deletion, update, and discovery. An identity
provider may not manage users in terms of the same attributes as Keystone. So attribute mapping is necessary. To this
end, Keystone supports management of attribute mapping on a protocol basis for each identity provider. Mapping is
done through a set of rules. Each rule maps a local attribute in Keystone to a remote attribute in the identity provider.
Typically a federated user is mapped to a group in Keystone and given the roles associated with the group. The default
backend for identity providers and mappings is SQL.

Identity federation is also applicable to token verification across two different OpenStack clouds. As a result, a token
generated by one cloud can be used to access another cloud. Such Keystone federation is under development. Again,
trust between the two OpenStack clouds is assumed and it is established through a separate process.

5.8 Identity API Access Control
API access control in Keystone is policy-based. To a certain degree, policy is configurable through a JSON file; what
gets enforced (or coded) is not always consistent. In the policy file, a set of rudimentary rules can be specified for each
call in the identity API. A rule prescribes a required role (e.g. admin) or a required matching condition for an attribute
(e.g. user_id) of the token and another parameter (e.g. trust.trustor_user_id) passed in the request. If a rule is
expected but undefined, the default rule that requires the admin role applies. The name and location of the JSON file is
configurable through keystone.conf. The default name is policy.json.

Each OpenStack module has its own policy file. There is no inbuilt mechanism for consistency across OpenStack in
terms of policy definition, decision, and enforcement. In general, protection of policy files is critical. There shall be
strict access control and audit trails.

5.9 Password Hashing
Keystone provides native support for password management, including password hashing.

Table 7

Cryptographic
module used

passlib.hash.sha512_crypt.encrypt()

Hashing algorithm hard coded (SHA512)
Configurability The number of rounds of SHA-512 to use in generation of the salt

is configurable via CONF.crypt_strength (default=40000) in
keystone.conf.

Invoking module passlib.hash.sha512_crypt.encrypt()
NOTE: In Passlib, the default number of rounds is 100 000.

5.10 Time Synchronization
Given that token expiration is a component of Identity and Access Management, time synchronization among the
servers making up an OpenStack cloud is critical. Time synchronization is not provided by OpenStack, and shall be
configured through the underlying operating system services, such as the Network Time Protocol (NTP) [i.10] or the
Precision Time Protocol (PTP) [i.11]. The time service shall also be securely configured to prevent servers from being
attacked in a way to cause an expired token from being considered still valid.

6 Communication Security
Communication security in an OpenStack-based infrastructure can be effected through means such as TLS, the Secure
Shell (SSH) protocol, and VPNaaS.

TLS supports confidentiality and integrity of communication over TCP, and authentication of communicating peers. For
TCP-based services in OpenStack, the use of TLS can be controlled through configuration (e.g. through the use_ssl
flag in a service configuration file). But TLS is not necessarily required by default where it is applicable, such as access
to Glance, Neutron and Virtual Network Computing (VNC) connections. OpenStack further allows TLS connections to
be set up when certificates cannot be verified. This may be controlled by the api_insecure or insecure flag,
which is disabled by default. The OpenStack proper supports TLS through the OpenSSL library, which is configurable
to forbid its predecessor SSL and the cipher suites that are known to be vulnerable.

ETSI

ETSI GS NFV-SEC 002 V1.1.1 (2015-08)16

The security functions supported by SSH are similar to those by TLS. A key difference is that SSH does not require
certificate-based authentication for servers. SSH is typically used for remote login and command execution. In the
OpenStack proper, the following controls are available for SSH:

• Injection of SSH key pairs to guest virtual machines for access by tenants [i.10]. This can be done by the
metadata service or by the hypervisor. In the latter case, the inject_key flag provides the control and it is
disabled by default. Note that the specific SSH software in use is application dependent.

• Host key checking upon first connection to a storage backend. Certain drivers in Cinder (the block storage
service) support issuing commands for execution on a storage backend through SSH. The
strict_ssh_host_key_policy flag controls whether an SSH client is to trust the public key of a newly
encountered SSH server. It is disabled by default. If it is enabled, Cinder will allow connection to a backend
only if the first host key presented is specified in the ssh_hosts_key_file file. Cinder supports an SSH
client based on the Paramiko library.

VPNaaS is part of Neutron, which provides the networking service in OpenStack. To date, VPNaaS supports site-to-site
IPsec tunnels. Standard transform protocols (i.e. ESP and AH) and modes (i.e. tunnel and transport) are supported. The
defaults are hardcoded to ESP and tunnel. The supported authentication algorithm is SHA-1; and encryption algorithms
are 3DES, AES-128, AES-192 and AES-256 (with the default hardcoded to AES-128). These are also applicable to the
Internet Key Exchange (IKE) protocol. For key exchange specifically, the supported phase 1 operation is limited to
Main Mode (which is reasonable) and the supported authentication method is limited to pre-shared secrets stored in
files. In addition, the supported Diffie-Hellman Groups are limited to 2 (1 024-bit modulus), 5 (1 536-bit modulus), and
14 (2 048-bit modulus). Here the default is hardcoded to Group 5, which provides the minimum protection to AES-128.

The IPsec driver to use is configurable. The default driver is based on Openswan, which, in turn, uses the Network
Security Services (NSS) libraries for cryptographic operations.

Note that it is possible to secure the communication between two compute hosts in general through mechanisms such as
IPsec.

7 Stored data security
7.1 Block Storage Encryption
Presently OpenStack provides limited native support for storage encryption. Only volumes in block storage can be
encrypted. Furthermore, secure key management, which is essential, is still in development under the Barbican project.
(Cinder is the module in OpenStack providing the persistent block storage service.)

To date, encryption (as well as decryption) is handled by Nova through the Linux kernel dm-crypt module. A
provisional configuration-based key manager is used by default to provide a single encryption key for all volumes.
Under such a situation, the secrecy of encrypted volumes depends on the secrecy of the key. Given that this key is
specified in the clear in a configuration file, access to the file shall be tightly controlled and monitored.

In the long run, a full-fledged key manager is expected to have the capabilities to generate individual volume encryption
keys on demand and store them securely, among other things. To mitigate the impact of a compromise, the key manager
also aims to avoid storing any information that can link keys to volumes. Cinder can already keep the key-volume
association information as part of the volume metadata.

dm-crypt offers transparent encryption of block devices. To a virtual machine, a normal block device is attached, and
I/O operations function as usual. dm-crypt provides mapping to the backend device with the required encryption and
decryption using the cryptographic primitives of the kernel crypto API. The supported algorithms and modes in the
kernel crypto API are platform dependent. The default for dm-crypt is also platform dependent.

An administrator may elect to use an encrypted Cinder volume and set the cipher, key size and other encryption
specifics using a command-line interface through the Horizon dashboard. In this case, the interface to dm-crypt may be
through the plain cryptsetup utility or its extension with Linux Unified Key Setup (LUKS). This is also settable by the
administrator through the command line interface. Both cryptsetup and cryptsetup-LUKS use the user-space
cryptographic module libgcrypt for key generation.

NOTE 1: cryptosetup-LUKS uses a passphrase to derive a key for encrypting a volume encryption key that it
generates separately. In contrast, cryptosetup deals with only volume encryption keys. It may use a
passphrase to derive a volume encryption key or import the key generated elsewhere.

ETSI

ETSI GS NFV-SEC 002 V1.1.1 (2015-08)17

NOTE 2: Both cryptosetup and cryptosetup-LUKS need to run as root.

NOTE 3: In the case of the configuration-based key manager, the fixed key serves as the encryption key to
cryptosetup and the passphrase to cryptosetup-LUKS.

Encryption of ephemeral storage is supported similarly. Here whether to encrypt the ephemeral storage of a virtual
machine instance, the cipher to use, and key size is configurable through the corresponding options in the
ephemeral_storage_encryption group in nova.conf. Encryption is disabled by default. If it is enabled, the
default cipher is aes-xts-plain64 and key size 512 bits. Eventually it will be possible for each instance to have an
individual encryption key. The key can be fetched from the key manager. For the time being, the default key manager is
configuration-based and supports a single key for all instances through nova.conf.

Encryption of ephemeral storage makes tenant data unreadable after a virtual machine has been terminated. An
administrator can still access tenant data, when the machine is running, paused, suspended or powered off. To prevent
data breach, steps are further taken to disconnect the dm-crypt device and flushing the encryption key from memory,
when the virtual machine is suspended or powered off.

7.2 Logical Volume Sanitization
The Cinder logical volume manager supports volume wiping to mitigate leakage of sensitive information. Presently,
there are two options available for the underlying wiping mechanism. In the first option, a volume is overwritten once
with all zeros through the Linux utility dd. In the second option, a volume is overwritten three times with "random" data
through the Linux utility shred. Wiping is applicable to "thick" volumes only. A parameter in the cinder.conf
controls whether to apply wiping and, if so, the option to use. The default is to use overwriting with all zeros in one
pass.

NOTE 1: shred assumes that data are written in place (i.e. at the same physical location). It is ineffective for cases
where this assumption is invalid, such as backend solid-state storage devices.

NOTE 2: shred needs to run as root.

NOTE 3: Logical volume sanitization is a matter separate from end-of-life sanitization. A storage device with
logical volume sanitation still needs to be disposed according to the best practices (e.g. physically
destroyed) when reaching the end of life.

NOTE 4: For thin volumes, overwriting with zeros is implied. An attempt to read a block not yet written will return
zeros.

NOTE 5: Encrypting volumes will ease the need for data erasure operations. Here the problem is relegated to secure
deletion of encryption keys.

8 Firewalling, zoning and topology hiding
8.1 Security group
Security groups are the primary mechanism that tenants can use to control network traffic from and to virtual machines
or network interfaces. A security group is defined by a set of rules. A rule consists of specific conditions (mainly
pertaining to the type, source and destination of traffic) and the action (e.g. drop, reject, or accept) to be taken if the
conditions are satisfied. For example, a rule could be specified to allow all outgoing traffic, support anti-spoofing of
MAC addresses, and block illegitimate DHCP messages. (A rule may even reference a security group as a traffic
source. This can shield dynamic IP addresses and reduce the churn of security group rules.) Overall, traffic is allowed
only if there is a rule permits it. Security groups are tenant-specific. Virtual machines (or network interfaces) are
assigned security groups when they are created.

Security groups may be provided by Nova-network or Neutron via configuration. Either way, the underlying
implementation is based on Linux iptables. By default, security groups are provided by Nova-network. But Neutron is
the recommended provider because of its advanced features and flexibility to use external plug-ins.

ETSI

ETSI GS NFV-SEC 002 V1.1.1 (2015-08)18

In Nova, whether to delegate security groups to another component is controlled by two configuration parameters:
firewall_driver and security_group_api. To let Neutron handle security groups, the two parameters need to be
set to the dummy, no-operation driver (i.e. nova.virt.firewall.NoopFirewallDriver) and neutron,
respectively. (By default, firewall_driver is set to the libvirt iptables driver and security_group_api to nova.)
In addition, the Neutron plug-in or agent in force shall be configured with a functional firewall driver and with the
enable_security_group flag enabled. Note that the enable_security_group flag is enabled by default. To
avoid potential conflicts, native Neutron agents (e.g. the Linux Bridge and Open vSwitch agents) are configured with
the no-operation firewall driver by default.

In Neutron, security groups are applied to virtual network interfaces (a.k.a. Neutron ports). (In Nova, security groups
are applied to virtual machines. As a result, all network interfaces on a virtual machine will have the same security
groups.) A Neutron port may be associated with one or more security groups upon creation. If it is not explicitly
assigned a security group, the tenant's default security group applies. By default, the default security group allows all
egress traffic (subject to anti-spoofing of MAC/IP addresses and DHCP messages), but limits ingress traffic to only that
from a security group member and an essential service (e.g. ICMPv6 for route advertisement). The default security
group (like other security groups) is customizable on a per-tenant basis.

Neutron security groups prevent traffic to pass through an intermediate virtual machine. To support virtual network
functions such as routers and firewalls, the port construct has been extended with the attribute
port_security_enabled. The attribute is essentially a flag and it is enabled by default. In this case, security-group
operations work the same way as before. If the flag is disabled, the port cannot be assigned a security group or an
allowed address pair. The flag is set upon port-creation request. Only a user with a privileged role (such as the cloud
administrator or owner) can issue such requests. Given that security-group and anti-spoofing rules no longer apply, the
resulted ports will need to be monitored with a separate mechanism for detection of anomalies, such as address
spoofing.

OpenStack provides a quota mechanism to limit resource utilization by tenants. For security groups Neutron supports
configuration of quotas through the following parameters:

• quota_security_group_rule (the number of rules per security group with 100 as the default)

• quota_security_group (the number of allowed security groups per project with 10 as the default)

Similar controls are available in Nova:

• quota_security_group_rules (the number of rules per security group with 20 as the default)

• quota_security_groups (the number of allowed security groups per project with 10 as the default)

In the Nova case, there is another configurable flag (i.e. allow_same_net_traffic) to globally control whether
virtual machines on the same subnet may communicate with each other. The flag is enabled by default. If
the allow_same_net_traffic flag is disabled, only the defined security groups apply.

8.2 Anti-spoofing
Nova-network supports anti-spoofing of MAC addresses, IP addresses, ARP messages and DHCP messages through the
libvirt network filter feature. Neutron is expected to provide equivalent support over time, although it cannot counter
spoofing of ARP messages to date. (Anti-spoofing of ARP messages in Neutron will be implemented based on
ebtables.) In general, regardless of the networking service in use, anti-spoofing is enforced by default.

8.3 Network Address Translation
In OpenStack, IP addresses are classified as fixed or floating. Fixed IP addresses are private, not routable externally. A
virtual machine is automatically assigned a private IP address upon creation in Nova. The IP address stays with the
virtual machine until it is terminated. In contrast, a floating IP address can be assigned to a running virtual machine and
be disassociated from it at any time. Floating IP addresses are typically public, routable. Nova allows a virtual machine
to be assigned a public IP address upon creation as well. This is controlled by the flag auto_assign_floating_ip in
nova.conf. By default, the flag is disabled.

NOTE: A prerequisite for Nova to handle public IP addresses is that the public interface to be bound to such
addresses has been configured. The interface is specified by the public_interface parameter in
nova.conf.

ETSI

ETSI GS NFV-SEC 002 V1.1.1 (2015-08)19

Network address translation makes it possible for a virtual machine with a private IP address to communicate with a
host on a public network. It may be provided by Nova-network or Neutron. In the case of Nova-network, the
implementation is based on Linux iptables. In particular, the configuration parameter force_snat_range specifies
the destination floating IP range to which traffic shall be subject to source network address translation.

In the case of Neutron, the L3 agent handles network address translation. Neutron supports dynamic provision and
configuration of virtual routers. A router may serve as a gateway connecting one or more private networks to a public
network. To support and isolate multiple routers on the same host, the L3 agent builds on Linux network namespaces.
Hence, each router has its own namespace, which makes it possible for tenants to have overlapping IP addresses.
Network address translation is effected by modifying the iptables in the router namespace.

8.4 Network isolation
Both Nova-network and Neutron support VLAN for segregating traffic of different tenants. Neutron further supports
VXLAN, and GRE for bridging VLANs across different networks. Neutron also has the flexibility to use plug-ins to
support additional L2 tunneling technologies.

8.5 Firewall-as-a-service
Neutron supports Firewall-as-a-Service through a native or external driver. The firewalls supported are at network
perimeters. The native driver is based on iptables. It supports configuration of related quotas through the following
parameters:

• quota_firewall (the number of allowed firewall per tenant with 1 as the default).

• quota_firewall_policy (the number of allowed firewall policy per tenant with 1 as the default).

• quota_firewall_rule (the number of allowed firewall rules per tenant with 100 as the default).

NOTE: Firewall-as-a-Service is still considered experimental as of the Kilo release.

9 Availability
In general, OpenStack deployments rely on external technologies to achieve high availability as well as to mitigate
denial-of-service attacks. But the OpenStack proper does provide native support for certain related features.

Compute hosts can be organized into zones of independent availability properties. The organization criteria are flexible.
They typically have to do with geo-location, network segmentation, power source, and certain hardware attributes.
Hence, a user can request to place virtual machines in more than one zone to achieve high availability. The availability
zone of a compute host is controlled by the configuration parameter default_availability_zone (with the default
value nova) in nova.conf. Another configuration parameter default_schedule_zone controls the available zone
where a new virtual machine is to be provisioned. By default, a new virtual machine is provisioned in one of the default
availability zones.

Block storage can be organized into availability zones as well. The availability zone of a storage node is controlled by
the configuration parameter storage_availability_zone (with the default value nova) in cinder.conf. Another
configuration parameter default_availability_zone controls the available zone where a new volume is to be
provisioned. By default, a new volume is provisioned in the zone specified by storage_availability_zone. In
addition, the availability zone of a cloned volume can be controlled by the flag cloned_volume_same_az. By
default, the flag is enabled so that a new volume resulted from cloning is in the same availability zone as that of the
source volume. Finally, Nova allows configuration of whether to limit a virtual machine and an attached volume to be
in the same availability zone through the flag cross_az_attach. By default, the flag is enabled.

ETSI

ETSI GS NFV-SEC 002 V1.1.1 (2015-08)20

Swift (the object storage service) supports high availability natively. It is cluster-based and stores multiple copies of
every object as separately as possible. Swift can distinguish the locations where objects are placed by region, zone,
server, and disk drive. Regions and zones are logical, definable by administrators. A region usually has a well-defined
geographical boundary, while a zone is akin to an availability zone in Nova (or Cinder). An administrator specifies the
number of regions as well as the number of copies to be stored for each object when creating the initial map of a cluster
with a Swift utility. (The recommended number of copies for each object is 3.) The servers and disk drives are each
assigned a region and a zone when they are added to a cluster. Again, this is done by the administrator with a special
utility. Eventually, the administrator will need to create a new ring (or rebalance an old ring) to reflect the assignment.
Ring is a fundamental construct in Swift for locating objects. It is based on a modified version of consistent hashing.

Neutron supports high availability for virtual routers based on the Virtual Router Redundancy Protocol. Whether to
enable high availability is controlled by the flag l3_ha in nova.conf. By default, the flag is disabled. Another
configuration parameter (max_l3_agents_per_router) controls the number of L3 agents to host a virtual router.
The number shall be at least 2 (the default value) and cannot exceed the number network nodes in a deployment. Yet
another configuration parameter (min_l3_agents_per_router) controls the minimum number of L3 agents that
shall be up when a highly available virtual router is created. The number shall be at least 2 (the default value).

Neutron also supports multiple DHCP agents per network. The configuration parameter dhcp_agents_per_network
controls the number of DHCP agents per network. The default value for the parameter is 1. To achieve high availability,
more than one DHCP agent per network is required. Note that the Neutron DHCP agent provides a control for the
maximum number of DHCP leases via the configuration parameter dnsmasq_lease_max. The control helps mitigate
denial-of-service attacks.

10 Logging and monitoring
10.1 Logging
The native code of OpenStack uses the Python logging module for application logging. The module provides standard
features, such as a common set of logging levels for classifying the logged events, log file rotation, and runtime logging
configuration. The logging levels, in the ascending order, include DEBUG, INFO, WARNING, ERROR, and
CRITICAL. The actual logs generated at run time are configurable. A log entry is generated for an event if the logging
level assigned to it is higher than the configured level. So the total amount of information logged is increasing with the
logging level.

It is also possible to add custom logging levels according to application needs. To date, OpenStack has defined a custom
logging level, AUDIT. But its distinction from other levels is unclear and it is rarely used.

NOTE: According to https://review.openstack.org/#/c/91446/, the plan is to get rid of AUDIT.

OpenStack provides an overlay for logging configuration on a per module basis through a module-specific
configuration file (e.g. the keystone.conf file for Keystone). Among other things, the logging level, where to keep
logs, and the formats of logged messages are configurable.

The logging level is set to WARNING by default for most modules. It may be changed to INFO or DEBUG. The
logging level for a set of third-party Python libraries is also configurable through the same configuration files. The set
consists of the following libraries together with their default logging levels:

• amqp=WARN

• amqplib=WARN

• boto=WARN

• iso8601=WARN

• keystonemiddleware=WARN

• oslo.messaging=INFO

• qpid=WARN

• requests.packages.urllib3.connectionpool=WARN

https://review.openstack.org/

ETSI

ETSI GS NFV-SEC 002 V1.1.1 (2015-08)21

• requests.packages.urllib3.util.retry=WARN

• routes.middleware=WARN

• sqlalchemy=WARN

• stevedore=WARN

• suds=INFO

• urllib3.connectionpool=WARN

• urllib3.util.retry=WARN

• websocket=WARN

In general, developers control what events to log, and the message and logging level for each event. Because of the
large number of developers involved, there is no consistent use of logging levels throughout a module or across
modules in OpenStack. For example, a user token validation error is logged at the INFO level in one place, while lack
of credentials is logged at the ERROR level in another place. It has also been known that the logs of an OpenStack
deployment contain stack traces and errors even in a normal condition. Logs are useful in several aspects, such as
debugging, troubleshooting, auditing, and yielding insights. Prudent and consistent use of logging levels simplifies log
analysis. It is desirable to have logging guidelines in place and to enforce them through code review and verification
tools.

A logging best practice is to avoid logging unnecessary sensitive information outside of a trust boundary. It is known
that OpenStack logs contain sensitive information (e.g. passwords and authorization tokens). The OpenStack
community is working toward implementing the best practice.

Where to keep logs is configurable by specifying the file name and base directory in the relevant configuration files.
The default is stdout. In general, each module keeps a separate log file. To ease management of multiple log files,
OpenStack supports sending them to a centralized logging server based on syslog. Centralized logging, however, is
disabled by default. When centralized logging is enabled, module-specific facilities may be further configured to
distinguish logs from different modules. The syslog protocol in use is configurable and it may be as specified in
IETF RFC 3164 [i.14] or IETF RFC 5424 [i.15]. In the long run, only IETF RFC 5424 [i.15] will be supported. The
actual syslog implementation is outside of OpenStack and is platform dependent. A best practice for centralized logging
is to use a secure, reliable transport for transferring logs. OpenStack also relies on external utilities for general log
management, such as access control and protection of logs.

10.2 Event notification
Events, similar to logs, can serve as a basis for purposes such as accounting, security monitoring, troubleshooting, and
auditing. Events may reflect state changes or access to services. OpenStack supports event notifications through an API
built on the AMQP-based messaging service provided by the Oslo module. Other modules emit and consume
notifications through the API. Multiple backend drivers are supported for the actual transport of notifications, including
RabbitMQ, Qpid, and ZeroMQ. The driver to use is configurable. The default is RabbitMQ (controlled through the RPC
backend driver parameter).

An event notification is uniquely identifiable and conveys information such as who publishes the event, what the event
is about (e.g. the involved operation), when the event took place, and the priority of the event. The set of priority levels
in use mirrors that of logging levels. Depending on the modules, the priority level may be configurable. This is the case
for Nova, Trove (the database service), Sahara (the data processing service), Heat, and Ceilometer (the telemetry
service).

OpenStack also supports generation of event records according to the Cloud Auditing Data Federation (CADF) [i.18]
schema from the DMTF (http://www.dmtf.org/standards/cadf) through the pyCADF library. Having standard event
records allows federation and aggregation of auditing data from different cloud infrastructures. The pyCADF library
also provides a WSGI middleware filter that can be used to audit API requests and responses in OpenStack.

In Keystone, a notification is sent when a resource of a type in a hard-coded set is created, updated, or deleted
successfully. In case of failure, only normal exception handling is in effect. The set of resource types includes project,
role, user, trust, and policy, to name a few. The priority level is not configurable but hard coded to INFO.

http://www.dmtf.org/standards/cadf

ETSI

ETSI GS NFV-SEC 002 V1.1.1 (2015-08)22

For transporting notifications the configured RPC backend driver is used by default. On CADF, Keystone to date
supports generating compliant records for authentication and authorization events (including federated authentication
and role assignment).

11 Compute isolation
The compute hosts in an availability zone can be further organized in terms of aggregates. The compute hosts in the
same aggregate share a set of attributes (such as a tenant or a hardware capability) defined by administrators. The
shared attributes become the metadata associated with the host aggregate. It is possible for a compute host to belong to
more than one aggregate. A generic application of host aggregates is to support compute allocation based on custom
attributes and it is embodied in the AggregateInstanceExtraSpecsFilter filter. This generic filter has the
flexibility to support varied use case. For example, compute hosts can be segregated according to security zones and a
host in an aggregate can be allocated based on the associated zone. Another use case is to have tenant-specific
aggregates for multi-tenancy hardening. For whatever reasons, Nova has implemented a filter
(AggregateInstanceExtraSpecsFilter) that is specific to the use case too. The filter allows a tenant to place a
virtual machine only on a host aggregate associated with the tenant. Another specific (and seemingly redundant) filter
supported is AggregateTypeAffinityFilter. The filter allows a virtual machine to be placed on a host aggregate
associated with a particular type.

Besides host aggregates, Nova also supports a set of filters applicable to compute isolation. In particular, the filter
IsolatedHostsFilter can limit instantiation of a special set of images to a special set of hosts. Whether to do so is
configurable. The configuration parameters isolated_images and isolated_hosts specify the respective sets. To
further control whether the special set of hosts can run images outside of the special set, the flag
restrict_isolated_hosts_to_isolated_images is provided. By default, the flag is enabled to enforce strict
isolation.

Other filters are as follows:

• DifferentHostFilter, which allows a new virtual machine to be placed on a host only if there are no
virtual machines on a specific list residing there.

• SameHostFilter, which allows a new virtual machine to be placed on the same host as another virtual
machine on a specific list.

• ServerGroupAffinityFilter, which allows a virtual machine of a specific group to be placed on the same
host as other virtual machines in the same group.

• ServerGroupAntiAffinityFilter, which allows every virtual machine of a specific group to be placed on
a different host.

• TrustedFilter, which allows a virtual machine to be placed on a host that supports remote attestation.

• TypeAffinityFilter, which allows a virtual machine of a certain type to be placed on a host only if no
virtual machines of a different type reside there.

The use of these filters is controlled by the parameter scheduler_default_filters in nova.conf. The parameter
specifies the list of filters in effect when a request does not specify a filter explicitly. By default, it includes the
following filters:

• RetryFilter

• AvailabilityZoneFilter

• RamFilter

• ComputeFilter

• ComputeCapabilitiesFilter

• ImagePropertiesFilter

• ServerGroupAntiAffinityFilter

ETSI

ETSI GS NFV-SEC 002 V1.1.1 (2015-08)23

• ServerGroupAffinityFilter

12 Guidance on the use of OpenStack in NFV
OpenStack services are configurable through a myriad of configuration files. These files often contain sensitive
information, such as admin passwords and encryption keys. Their access shall be reserved for a strict set of privileged
users. The best practices for strong access control, file integrity protection, and monitoring of access activities shall be
implemented.

The default configurations of OpenStack are not always optimal for security. For example, by default, access to
messaging queues is over TCP, remote console access is over TCP, SHA-1 is used as the digest algorithm for
signatures, volume encryption is disabled, and the method for wiping old volumes is "overwriting with zeros." In an
NFV environment, OpenStack configurations will need to be hardened. The hardening specifics are deployment-
dependent. Some common recommendations for configuration hardening are as follows:

• TLS should be used wherever applicable, including access to API endpoints, internal messaging queues,
database servers, and virtual machine consoles. To use TLS properly, both clients and servers shall be
configured to user public key certificates, forbid protocol versions earlier than TLS v1.2 (including the SSL
predecessors), and disallow insecure cipher suites. TLS requires the availability of a PKI that generates public
key certificates as specified in IETF RFC 5280 [i.16]. In general, the best practices for managing certificates
and keys (especially those for signing) need to be followed. A key challenge to PKI deployment is tracking of
the revocation status of certificates to ensure their validity. The open source project Anchor aims to eliminate
the need for certificate revocation. It is developing an ephemeral PKI service that supports automated
verification of certificate signing requests and signing of short-lived (namely ephemeral) certificates. Anchor
is an option for further study.

• Advanced scheduler filters in Nova that can further enforce compute isolation shall be enabled. Such filters,
among other things, allow selection of compute hosts according to tenant, application type, security zone, and
trust.

• Neutron rather than Nova shall be used for providing networking services. Neutron together with external
plug-ins provides more robust support for network segregation through load balancer as a service, firewall as a
service, and VPN as a service.

• The internal communication between OpenStack components shall be on an isolated management network not
rea\chable from external networks. Similarly, networks for inter-instance communication and for external
networks reachability shall be separate and distinguishable in terms of security policies.

• Encryption of Cinder volumes and ephemeral volumes should be enabled.

• The sanitization option of overwriting existing volumes three times with "random" data shall be used, if the
volumes are unencrypted.

• Centralized logging based on syslog shall be enabled.

OpenStack consists of loosely-coupled modules. There was no master plan to address security consistently across the
different modules. The use of Keystone to provide centralized identity and access management is a step in the right
direction. As the gatekeeper to other OpenStack services, it is essential that Keystone be configured strictly so that both
the storage and transport for tokens are protected based on best practices. In addition, it is highly recommended to
configure Keystone to use an external system that supports strong user authentication; passwords are the only method
for initial user authentication that Keystone supports natively. Furthermore, Keystone logs needs to be monitored
closely. Naturally, the best practices for log management need to be followed as well.

OpenStack is in the process of deprecating its native support for rate limiting of API requests. External measures shall
be used to limit the rate of requests to public API endpoints.

The OpenStack Security Guide [i.12] provides additional guidelines on deploying and operating OpenStack-based
infrastructures of varied security requirements.

It goes without saying that as any other software, OpenStack in use shall be kept-up-to-date, with security patches
applied in a timely fashion.

http://docs.openstack.org/sec/

ETSI

ETSI GS NFV-SEC 002 V1.1.1 (2015-08)24

13 Recommended OpenStack enhancements in support
of NFV

NFV applications usually have high performance requirements. SR-IOV is a technology that can be used to boost
network I/O performance in NFV. It achieves performance gains by allowing a guest virtual machine to have a direct
data path to the network controller. To date, data transmission over such a path is not part of what can be monitored by
the existing OpenStack inbuilt agents. Additional mechanisms will need to be developed to address the gap.

NOTE: An alternative to SR-IOV is vSwitch acceleration. But certain accelerated-vSwitch implementations
might be vulnerable to DoS attacks through direct memory access.

Encryption is a main enabler for confidentiality protection. For encryption to be effective, encryption keys need to be
properly managed and protected. To date, encryption keys used in OpenStack are stored in the clear, which is not a
security practice. The project Barbican on key management helps address the gap. With Barbican, encryption keys can
be encrypted with Key Encryptions Keys on a per tenant basis. Similarly, Key Encryptions Keys can be encrypted with
Master Key Encryption Keys on a per tenant basis. As such, secure storage and management of Master Key Encryption
Keys is critical and best practices call for the use of dedicated hardware-based systems. The OpenStack community
needs to further the Barbican effort to stabilize the code base for production user and to address the integration with
hardware security modules or other hardware-based solutions, such as isolated secure execution environments. Note
that the isolated secure execution environment is generic and has no connection to the Trusted Execution Environment
or Secure Execution specified by the GlobalPlatform organization.

Secure deletion provides assurance that deleted data in shared storage cannot be recovered. Support for secure deletion
is preliminary to date in OpenStack. Swift (which, in turn, is used by services such as Glance and Trove) does not
support secure deletion of objects. Nova and Cinder provides limited support for logical volume sanitization. Two
methods are supported. Neither is strong enough. Moreover, the more secure method based on shred assumes that data
are written in place. This method is ineffective for cases where this assumption is invalid, such as backend solid-state
drives where write operations are distributed evenly to avoid localized wearing. Yet solid state drives support higher I/O
throughput than traditional hard disk drives. They are expected to be in wide use to meet NFV performance
requirements. Hence, secure deletion methods that are stronger in general as well as secure deletion methods that are
suitable for solid state storage are in order. The Self Encrypting Drive (SED) technology [i.13] is designed to provide
full or partial cryptographic erasure of storage and may be applicable here. It is worth noting that secure deletion of data
can be reduced to secure deletion of encryption keys if data are encrypted.

Legal and regulatory conditions may restrict where certain applications can run, where user data can be stored, and
whether certain user data can flow across national or organizational borders. Lawful interception is an example. Those
restrictions give rise to the need for supporting trusted geo-locations in NFV and might call for specialized hardware in
support of trusted computing to provide the level of trust required. In the case of lawful interception, there is a further
challenge to shield the highly confidential workloads on a host from root at the host level. Active study is underway to
address the challenge. A hardware solution based on trusted computing alone might be insufficient.

ETSI

ETSI GS NFV-SEC 002 V1.1.1 (2015-08)25

Annex A (informative):
Authors & contributors
The following people have contributed to the present document:

Rapporteur:

Ms. Huilan, Lu, Alcatel-Lucent

Other contributors:

Mr. Igor, Faynberg, Alcatel-Lucent

Mr. Nathan Kinder, Red Hat

Mr. Bob, Moskowitz, Verizon

Mr. T., Prabhu, NEC

Mr. Kapil Sood, Intel

ETSI

ETSI GS NFV-SEC 002 V1.1.1 (2015-08)26

Annex B (informative):
Bibliography
ETSI GS NFV-SEC 003: "Network Functions Virtualisation (NFV); NFV Security; Security and Trust Guidance",
clause 4.4.3.2.3.

ETSI

ETSI GS NFV-SEC 002 V1.1.1 (2015-08)27

History
Document history

V1.1.1 August 2015 Publication

	Intellectual Property Rights
	Foreword
	Modal verbs terminology
	1 Scope
	2 References
	2.1 Normative references
	2.2 Informative references

	3 Definitions and abbreviations
	3.1 Definitions
	3.2 Abbreviations

	4 Introduction
	5 Identity and access management
	5.1 General
	5.2 PKI tokens
	5.2.0 General
	5.2.1 PKI set-up
	5.2.2 Token generation
	5.2.3 Token verification
	5.2.4 Token indexing

	5.3 UUID tokens
	5.4 Trusts
	5.5 Token storage
	5.6 Token Transport
	5.7 Identity federation
	5.8 Identity API Access Control
	5.9 Password Hashing
	5.10 Time Synchronization

	6 Communication Security
	7 Stored data security
	7.1 Block Storage Encryption
	7.2 Logical Volume Sanitization

	8 Firewalling, zoning, and topology hiding
	8.1 Security group
	8.2 Anti-spoofing
	8.3 Network Address Translation
	8.4 Network isolation
	8.5 Firewall-as-a-service

	9 Availability
	10 Logging and monitoring
	10.1 Logging
	10.2 Event notification

	11 Compute isolation
	12 Guidance on the use of OpenStack in NFV
	13 Recommended OpenStack enhancements in support of NFV
	Annex A (informative): Authors & contributors
	Annex B (informative): Bibliography
	History

