

ETSI GS NFV-EVE 005 V1.1.1 (2015-12)

Network Functions Virtualisation (NFV);
Ecosystem;

Report on SDN Usage in NFV Architectural Framework

Disclaimer

This document has been produced and approved by the Network Functions Virtualisation (NFV) ETSI Industry Specification
Group (ISG) and represents the views of those members who participated in this ISG.

It does not necessarily represent the views of the entire ETSI membership.

GROUP SPECIFICATION

ETSI

ETSI GS NFV-EVE 005 V1.1.1 (2015-12)2

Reference
DGS/NFV-EVE005

Keywords
NFV, SDN

ETSI

650 Route des Lucioles
F-06921 Sophia Antipolis Cedex - FRANCE

Tel.: +33 4 92 94 42 00 Fax: +33 4 93 65 47 16

Siret N° 348 623 562 00017 - NAF 742 C

Association à but non lucratif enregistrée à la
Sous-Préfecture de Grasse (06) N° 7803/88

Important notice

The present document can be downloaded from:
http://www.etsi.org/standards-search

The present document may be made available in electronic versions and/or in print. The content of any electronic and/or
print versions of the present document shall not be modified without the prior written authorization of ETSI. In case of any

existing or perceived difference in contents between such versions and/or in print, the only prevailing document is the
print of the Portable Document Format (PDF) version kept on a specific network drive within ETSI Secretariat.

Users of the present document should be aware that the document may be subject to revision or change of status.
Information on the current status of this and other ETSI documents is available at

http://portal.etsi.org/tb/status/status.asp

If you find errors in the present document, please send your comment to one of the following services:
https://portal.etsi.org/People/CommiteeSupportStaff.aspx

Copyright Notification

No part may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying
and microfilm except as authorized by written permission of ETSI.

The content of the PDF version shall not be modified without the written authorization of ETSI.
The copyright and the foregoing restriction extend to reproduction in all media.

© European Telecommunications Standards Institute 2015.

All rights reserved.

DECTTM, PLUGTESTSTM, UMTSTM and the ETSI logo are Trade Marks of ETSI registered for the benefit of its Members.
3GPPTM and LTE™ are Trade Marks of ETSI registered for the benefit of its Members and

of the 3GPP Organizational Partners.
GSM® and the GSM logo are Trade Marks registered and owned by the GSM Association.

http://www.etsi.org/standards-search
http://portal.etsi.org/tb/status/status.asp
https://portal.etsi.org/People/CommiteeSupportStaff.aspx

ETSI

ETSI GS NFV-EVE 005 V1.1.1 (2015-12)3

Contents

Intellectual Property Rights .. 7

Foreword ... 7

Modal verbs terminology .. 7

1 Scope .. 8

2 References .. 8

2.1 Normative references ... 8

2.2 Informative references .. 8

3 Definitions and abbreviations ... 9

3.1 Definitions .. 9

3.2 Abbreviations ... 9

4 Overview of SDN in the NFV architectural framework... 10

4.1 Introduction .. 10

4.2 SDN scope .. 10

4.3 SDN in the NFV architectural framework .. 11

4.3.1 General .. 11

4.3.2 SDN management plane ... 11

4.3.3 Position of SDN resources in an NFV architectural framework ... 12

4.3.4 Position of the SDN controller in an NFV architectural framework ... 12

4.3.5 Position of SDN applications in an NFV architectural framework ... 13

4.4 SDN controller interfaces in the NFV architectural framework ... 14

4.4.1 Introduction... 14

4.4.2 SDN resource control interface options .. 16

4.4.3 SDN controller orchestration interface options... 17

4.4.4 SDN application control interface options .. 18

4.5 SDN controller to controller interface in NFV ... 20

4.5.1 SDN controller to controller interface options in NFV ... 20

4.5.2 SDN controller federation options in NFV ... 21

5 Design patterns of SDN in the NFV architectural framework ... 21

5.1 Introduction .. 21

5.2 SDN technology integration options with NFV ... 22

5.2.0 Introduction... 22

5.2.1 Interconnecting VNFCs using SDN .. 22

5.2.2 Interconnecting VNFs using SDN .. 22

5.2.2.0 Introduction ... 22

5.2.2.1 Chaining based on network service designed according to a VNF-FG ... 22

5.2.2.2 Chaining based on customer policy/service .. 22

5.2.2.3 Chaining based on VNF processing .. 23

5.2.2.4 Load balancing across VNF's .. 23

5.3 SDN across multiple VIM .. 23

5.3.0 Introduction... 23

5.3.1 SDN controller interfaces ... 23

5.3.2 Scenarios for SDN across multiple VIMs ... 24

5.3.3 Challenges for SDN across multiple VIMs ... 24

5.3.4 Analysis of SDN across multiple VIMs .. 24

5.3.4.1 SDN across multiple VIMs located in a single NFVI-PoP ... 24

5.3.4.2 SDN across multiple VIM in different NFVI-PoPs .. 24

5.3.4.2.0 Introduction ... 24

5.3.4.2.1 VNFs across multiple NFVI-PoP locations with a static bit pipe between them 25

5.3.4.2.2 VNFs across multiple NFVI-PoP locations, SDN-based NaaS between them 25

5.3.4.2.3 VNFs across multiple NFVI-PoP locations - NFVI-PoP and WAN in a common trust domain
(Option A) ... 26

5.3.4.2.4 VNFs across multiple NFVI-PoP locations - NFVI-PoP and WAN in different trust domains -
client access to virtual WAN resources (Option B) ... 26

ETSI

ETSI GS NFV-EVE 005 V1.1.1 (2015-12)4

5.3.4.2.5 VNFs across multiple NFVI-PoP locations - NFVI-PoP and WAN in different trust domains -
client access to physical host resources (Option C) ... 27

5.3.4.2.6 SDN based NFV IaaS across multiple administration domains .. 28

5.3.4.2.7 Multiple VIM for a mobile network .. 30

5.4 SDN controller hierarchy ... 30

5.4.1 Introduction... 30

5.4.2 Technical and business scenario ... 31

5.4.2.1 SDN controller hierarchy scenarios overview ... 31

5.4.2.2 SDN controller hierarchy for distributed performance, scalability and reliability for multilayer
and single-layer transport network .. 31

5.4.2.3 SDN controller hierarchy for distributed, cross-SP or cross-domain services 32

5.4.2.4 SDN controller hierarchy for NaaS ... 33

5.4.2.5 SDN controller hierarchy for multi-domain, transport network fast fault recover 33

5.4.3 Mapping of SDN controller to the ETSI NFV architecture .. 34

5.4.3.1 Introduction ... 34

5.4.3.2 Hierarchy of SDN controllers in the NFVI ... 34

5.4.3.3 Hierarchy of SDN controllers in a VNF .. 35

5.4.3.4 Hierarchy of SDN controller across functional blocks .. 35

5.4.3.5 Hierarchy of SDN controllers below the WIM ... 35

5.5 SDN controller in a Virtualised environment ... 35

5.5.1 Introduction... 35

5.5.2 Virtualisation of SDN Controller .. 35

5.5.3 SDN controller across multiple Virtualised environment ... 36

5.6 SDN and VNF forwarding graph ... 37

5.6.1 General .. 37

5.6.2 Static NCT .. 37

5.6.3 Dynamic NCT ... 37

5.7 SDN controllers in the tenant and the infrastructure domains .. 38

5.8 Service Function Chaining ... 40

5.8.1 Introduction... 40

5.8.2 Service Function Chaining (SFC) ... 40

5.8.3 SFC and SDN ... 41

5.8.4 SFC, SDN and NFV with a single NFVI domain ... 42

5.8.4.0 Introduction ... 42

5.8.4.1 Service function chain in the NFVI ... 43

5.8.4.2 Service function chain in the tenant domain ... 45

5.8.4.3 Different options to control a dynamic service chain .. 46

5.8.5 End to end carrier network with SFC, SDN and NFV .. 47

5.8.6 SFC, SDN, NFV with multi-domain, scalability, etc. ... 48

6 Functional recommendations ... 49

6.1 Introduction .. 49

6.2 Functional recommendations related to security .. 52

6.3 Functional recommendations related to SDN controller .. 52

6.4 Functional recommendations on connectivity and interfaces ... 53

6.5 Functional recommendations on NFV Management and Orchestration ... 54

6.5.1 General .. 54

6.5.2 Inter-administrative domain connectivity coordination .. 54

6.5.3 Support of operations to an SDN controller below the VIM .. 55

6.5.4 Support of ordering and charging operations between multiple administrative domains 55

6.6 Recommendations on operational aspects .. 55

Annex A (informative): SDN in ETSI NFV POC .. 57

A.0 Introduction .. 57

A.1 POC#1: Open NFV Framework Project ... 57

A.2 POC#2: Service Chaining for NW function selection in Carrier Networks ... 60

A.3 POC#8: Automated Network Orchestration ... 62

A.4 POC#13: Multi-Layered Traffic Steering for Gi-Lan .. 64

ETSI

ETSI GS NFV-EVE 005 V1.1.1 (2015-12)5

A.5 POC#14: Forces applicability for NFV and integrated SDN ... 66

A.6 POC#15: Subscriber Aware Sgi/Gi-lan Virtualisation ... 68

A.7 POC#16: NFVIaaS with Secure SDN-controlled WAN Gateway ... 70

A.8 POC#21: network intensive and compute intensive hardware acceleration ... 72

A.9 POC#23: E2E orchestration of Virtualised LTE Core-Network functions .. 74

A.10 POC#26: Virtual EPC with SDN functions in Mobile Backhaul Networks .. 76

A.11 POC#27: VoLTE Service based on vEPC and vIMS architecture ... 78

A.12 POC#28: SDN Controlled VNF Forwarding graph ... 80

A.13 POC#34: SDN-enabled Virtual EPC Gateway ... 84

A.14 POC#38: Full ISO-7 layer stack fulfilment, activation and orchestration of VNFs in carrier
networks ... 85

Annex B (informative): SDN Use Cases in NFV environment ... 91

B.1 Introduction .. 91

B.2 Multi-Layer Bandwidth on Demand .. 91

B.2.1 Introduction .. 91

B.2.2 Problem Description ... 91

B.2.3 Solution Description ... 92

B.3 Bandwidth Defragmentation .. 92

B.3.1 Problem Description ... 92

B.3.2 Solution Description ... 93

B.4 Policy Based Configuration .. 93

B.4.1 Problem Description ... 93

B.4.2 Solution Description ... 93

B.4.3 Scope of Policy Based Configuration ... 95

B.4.4 Questions raised by Policy Based Configuration ... 95

B.5 Virtual CPE .. 95

B.5.1 Problem Description ... 95

B.5.2 Solution Description ... 96

Annex C (informative): Comparison of Opensource SDN Controller ... 99

C.1 Introduction .. 99

C.2 List of Opensource SDN controller .. 99

C.2.0 Introduction .. 99

C.2.1 Floodlight ... 100

C.2.2 OpenDaylight ... 100

C.2.3 OpenContrail .. 104

C.2.4 Ryu ... 106

C.2.5 ONOS ... 108

C.2.5.1 Introduction... 108

C.2.5.2 ONOS Architecture... 109

C.2.5.3 ONOS User Interface .. 110

C.2.6 MidoNet ... 111

C.3 Comparison criteria .. 113

C.3.1 List of Comparison Criteria .. 113

C.3.2 Impact of Docker .. 114

C.4 Comparison table .. 115

C.5 ETSI NFV POC with Opensource SDN Controller ... 115

C.5.1 List of POC and Opensource Controller used .. 115

ETSI

ETSI GS NFV-EVE 005 V1.1.1 (2015-12)6

C.6 Lessons learnt ... 116

C.7 Other Opensource SDN components.. 117

C.7.1 Switch Software and Stand-Alone OpenFlow Stacks... 117

C.7.2 Controller Platforms ... 117

C.7.3 Special Purpose Controllers ... 117

C.7.4 Misc .. 118

Annex D (informative): Authors & contributors ... 119

Annex E (informative): Change History .. 121

History .. 125

ETSI

ETSI GS NFV-EVE 005 V1.1.1 (2015-12)7

Intellectual Property Rights
IPRs essential or potentially essential to the present document may have been declared to ETSI. The information
pertaining to these essential IPRs, if any, is publicly available for ETSI members and non-members, and can be found
in ETSI SR 000 314: "Intellectual Property Rights (IPRs); Essential, or potentially Essential, IPRs notified to ETSI in
respect of ETSI standards", which is available from the ETSI Secretariat. Latest updates are available on the ETSI Web
server (http://ipr.etsi.org).

Pursuant to the ETSI IPR Policy, no investigation, including IPR searches, has been carried out by ETSI. No guarantee
can be given as to the existence of other IPRs not referenced in ETSI SR 000 314 (or the updates on the ETSI Web
server) which are, or may be, or may become, essential to the present document.

Foreword
This Group Specification (GS) has been produced by ETSI Industry Specification Group (ISG) Network Functions
Virtualisation (NFV).

Modal verbs terminology
In the present document "shall", "shall not", "should", "should not", "may", "need not", "will", "will not", "can" and
"cannot" are to be interpreted as described in clause 3.2 of the ETSI Drafting Rules (Verbal forms for the expression of
provisions).

"must" and "must not" are NOT allowed in ETSI deliverables except when used in direct citation.

http://webapp.etsi.org/IPR/home.asp
http://portal.etsi.org/Help/editHelp!/Howtostart/ETSIDraftingRules.aspx

ETSI

ETSI GS NFV-EVE 005 V1.1.1 (2015-12)8

1 Scope
The present document identifies the most common design patterns for using SDN in an NFV architectural framework. It
also identifies potential recommendations to be fulfilled by the entities that perform the integration.

2 References

2.1 Normative references
References are either specific (identified by date of publication and/or edition number or version number) or
non-specific. For specific references, only the cited version applies. For non-specific references, the latest version of the
reference document (including any amendments) applies.

Referenced documents which are not found to be publicly available in the expected location might be found at
http://docbox.etsi.org/Reference.

NOTE: While any hyperlinks included in this clause were valid at the time of publication, ETSI cannot guarantee
their long term validity.

The following referenced documents are necessary for the application of the present document.

Not applicable.

2.2 Informative references
References are either specific (identified by date of publication and/or edition number or version number) or
non-specific. For specific references, only the cited version applies. For non-specific references, the latest version of the
reference document (including any amendments) applies.

NOTE: While any hyperlinks included in this clause were valid at the time of publication, ETSI cannot guarantee
their long term validity.

The following referenced documents are not necessary for the application of the present document but they assist the
user with regard to a particular subject area.

[i.1] ETSI GS NFV-INF 005 (V.1.1.1) - (12-2014): "Network Functions Virtualisation (NFV);
Infrastructure; Network Domain".

[i.2] ETSI GS NFV-MAN 001 (V1.1.1) - (12-2014): "Network Functions Virtualisation (NFV);
Management and Orchestration".

[i.3] ETSI GS NFV 002 (V1.2.1) - (12-2014): "Network Functions Virtualisation (NFV); Architectural
Framework".

[i.4] ETSI GS NFV 003 (V1.2.1) - (12-2014): "Network Functions Virtualisation (NFV); Terminology
for Main Concepts in NFV".

[i.5] ETSI GS NFV-SWA 001: "Network Functions Virtualisation (NFV); Virtual Network Functions
Architecture".

[i.6] Open Networking Foundation TR-502: "SDN Architecture", Issue 1.0, June 2014.

[i.7] Metro Ethernet Forum (V1.1) (February 2012): "Carrier Ethernet for Delivery of Private Cloud
Services".

[i.8] Recommendation ITU-T Y.3300 (06-2014): "Framework of software-defined networking".

[i.9] IETF SFC Architecture.

NOTE: Available at http://tools.ietf.org/pdf/draft-ietf-sfc-architecture-07.pdf.

http://docbox.etsi.org/Reference
http://tools.ietf.org/pdf/draft-ietf-sfc-architecture-07.pdf

ETSI

ETSI GS NFV-EVE 005 V1.1.1 (2015-12)9

[i.10] IETF Service Function Chain Extension Architecture.

NOTE: Available at https://tools.ietf.org/pdf/draft-gu-sfc-extend-architecture-00.pdf.

[i.11] IETF I2NSF Interface to Network Security Functions.

NOTE: Available at http://datatracker.ietf.org/doc/charter-ietf-i2nsf/.

[i.12] Floodlight®: http://www.projectfloodlight.org/floodlight/.

[i.13] OpenDaylight®: http://www.opendaylight.org/.

[i.14] OpenContrail: http://www.opencontrail.org/.

[i.15] ONOS®: http://onosproject.org/.

[i.16] Ryu: http://osrg.github.io/ryu/.

[i.17] Midonet®: https://www.midonet.org/.

[i.18] IETF RFC 5493 (April 2009): "Requirements for the Conversion between Permanent Connections
and Switched Connections in a Generalized Multiprotocol Label Switching (GPMLS) Network".

NOTE: Available at https://tools.ietf.org/html/rfc5493.

[i.19] IETF RFC 6830 (January 2013): "The Locator/ID Separation Protocol (LISP)".

[i.20] IETF RFC 7285 (September 2014): "Application-Layer Traffic Optimization (ALTO) Protocol".

[i.21] IETF RFC 7348: "Virtual eXtensible Local Area Network (VXLAN): A Framework for
Overlaying Virtualized Layer 2 Networks over Layer 3 Networks".

NOTE: Available at http://www.rfc-editor.org/rfc/rfc7348.txt.

[i.22] IETF RFC 7426 (January 2015): "Software-Defined Networking (SDN): Layers and Architecture
Terminology".

NOTE: Avaiable at http://www.rfc-editor.org/rfc/rfc7426.txt.

[i.23] IETF RFC 7432: "BGP MPLS-Based Ethernet VPN".

NOTE: Avaiable at https://tools.ietf.org/rfc/rfc7432.txt.

[i.24] ONOS® Developer's Guide.

NOTE: Available at https://wiki.onosproject.org/display/ONOS/Developer's+Guide.

3 Definitions and abbreviations

3.1 Definitions
For the purposes of the present document, the terms and definitions given in ETSI GS NFV 003 [i.4] and the following
apply:

Openflow: trademark from the Open Networking Foundation (ONF) for an SDN standard protocol which enables
remote programming of the forwarding plane

3.2 Abbreviations
For the purposes of the present document, the abbreviations given in ETSI GS NFV 003 [i.4] and the following apply:

DC Data Center
EM Element Manager
ETSI European Telecommunications Standards Institute
FIB Forwarding Information Base (OSI Layer 3 forwarding table)

https://tools.ietf.org/pdf/draft-gu-sfc-extend-architecture-00.pdf
http://datatracker.ietf.org/doc/charter-ietf-i2nsf/
http://www.projectfloodlight.org/floodlight/
http://www.opendaylight.org/
http://www.opencontrail.org/
http://onosproject.org/
http://osrg.github.io/ryu/
https://www.midonet.org/
https://tools.ietf.org/html/rfc5493
http://www.rfc-editor.org/rfc/rfc7348.txt
http://www.rfc-editor.org/rfc/rfc7426.txt
https://tools.ietf.org/rfc/rfc7432.txt
https://wiki.onosproject.org/display/ONOS/Developer's+Guide

ETSI

ETSI GS NFV-EVE 005 V1.1.1 (2015-12)10

HSDN Hierarchical SDN
ISG Industry Standards Group
ITU-T International Telecommunication Union-Standardization Sector
LFIB Label Forwarding Information Base (MPLS forwarding table)
MPLS Multi-Protocol Label Switching
OAM Operation and Management
NCT Network Connectivity Topology
NE Network Element
NFP Network Forwarding Path
POP Point of Presence
SDN Software Defined Networks
SFC Service Function Chaining
SP Service Provider
VTN Virtual Tenant Network

4 Overview of SDN in the NFV architectural framework

4.1 Introduction
ETSI ISG NFV has defined an NFV architectural framework operating on the basis of the principle of separating
network functions from the hardware they run on by using virtual hardware abstraction. The major components in this
framework are (From ETSI GS NFV 002 [i.3]):

• Network Functions Virtualisation Infrastructure (NFVI): subsystem which encompasses Compute, Network
and Storage resources, i.e. the totality of all hardware and software components that build up the environment
in which VNFs are deployed.

• Management and Orchestration (MANO): subsystem which includes the Network Functions Virtualisation
Orchestrator (NFVO), the Virtualised Infrastructure Manager (VIM) and Virtual Network Function Manager
(VNFM).

• Virtual Network Functions (VNFs): deployed in the NFVI.

The present document provides an overview of SDN in relation to this ETSI NFV architectural framework as well as a
summary of current industry work including a comparison of network controllers and PoCs including NFV and SDN.

4.2 SDN scope
Recommendation ITU-T Y.3300 [i.8] defines SDN as 'a set of techniques that enables to directly program, orchestrate,
control and manage network resources, which facilitates the design, delivery and operation of network services in a
dynamic and scalable manner'. Although this broad definition translates in many different ways in terms of
specifications and implementations, most SDN-labelled solutions relocates the control of network resources to
dedicated network elements, namely SDN controllers and might be mapped to the 3-layers reference model depicted in
figure 1.

Figure 1: Concept of SDN (from Recommendation ITU-T Y. 3300 [i.8])

ETSI

ETSI GS NFV-EVE 005 V1.1.1 (2015-12)11

While there are other possible models, the present document focuses on the model described in figure 1.

Within the NFV architectural framework [i.3], SDN solutions might be used in the infrastructure domain, in the tenant
domain or both.

When used in the infrastructure domain, the SDN controller acts as a Network Controller, as per
ETSI GS NFV-MAN 001 [i.2]. In the present document SDN refers to software control of physical or virtual network
resources that use standard interfaces (open APIs) to facilitate interoperability and evolution in a multi-vendor
environment.

The SDN controller is not necessarily a stand-alone physical entity, e.g. a software component(s) of the VIM. Ideally,
when the SDN technology is used in the infrastructure domain, the VIM, the SDN controller, and the Network
Resources (physical or virtual) form a hierarchy for delivering connectivity services. In some cases, multiple SDN
controllers form a hierarchy across management and resources, depending on the placement of the functionality. The
SDN controller responsibility includes very specific control functions, interfacing with management agents responsible
for control and management functions.

NOTE: SDN applications, SDN controllers and SDN resources come from one or different vendors, and are
typically implemented in different VNF. The NFVO while on-boarding these VNFs would want to know
that they are related and able to communicate with each other.

There is a large landscape of SDN architectures (NFV and non-NFV) and SDN controller functionality encompassing a
variety of capabilities e.g. service negotiation, network element provisioning, and control of resources. This broader
interpretation of SDN is beyond the scope of the present document.

4.3 SDN in the NFV architectural framework

4.3.1 General

As stated above, the focus of the present document lays on how network services and associated resources
implemented, according to an SDN architecture, might be integrated with the NFV architectural framework by
identifying possible design patterns and associated requirements. Many technical and non-technical issues need to be
formulated and answered regarding all the functional entities that constitute this integrated architectural framework,
such as:

• The position of the SDN resources.

• The position of the SDN controller.

• The softwarization & virtualisation of the various SDN entities.

• The interaction between the Element Managers, VNF Managers, SDN controllers and SDN applications that
become enabled VNFs.

• The hierarchy of SDN networks.

• The position of the overlay SDN networks.

• Others.

4.3.2 SDN management plane

IETF RFC 7426 [i.22] discusses the distinction between control and management plane in an SDN environment. In
brief the control plane is mostly responsible for making decisions on how packets are forwarded by one or more
network resources and pushing such decisions down to the network resources for execution, whilst the management
plane is mostly responsible for monitoring, configuring, and maintaining network devices, e.g. making decisions
regarding the state of a network resources.

IETF RFC 7426 [i.22] also discusses the differentiation between these two planes by identifying their characteristics. It
does so by showcasing four characteristics: (1) timescale, i.e. how often and how fast resources are configured and state
persistence; (2) longevity of the state; (3) locality, i.e. centralized or distributed; (4) insights from the CAP theorem, e.g.
the control plane is available, whilst the management plane is consistent.

ETSI

ETSI GS NFV-EVE 005 V1.1.1 (2015-12)12

Actually the CAP theorem (https://en.wikipedia.org/wiki/CAP_theorem) states that it is impossible for a distributed
computer system to simultaneously provide consistency, availability and partition tolerance.

NOTE: The distinction between the control and management plane has become somewhat muddled due to the
logical centralization of the control plane which is more of the domain of the management plane.

4.3.3 Position of SDN resources in an NFV architectural framework

The first entities to be considered are the SDN resources. Multiple scenarios might be envisaged for their actual location
or for their images:

• Case a: physical switch or router

• Case b: virtual switch or router

• Case c: e-switch, software based SDN enabled switch in a server NIC

• Case d: switch or router as a VNF

In case d the resource might be logically part of the NFVI or belong to an independent tenant's domain. An example of
case d is illustrated in NFV PoC#14 (clause B.5). This PoC has demonstrated the usage of SDN in an NFV environment
by splitting the Service Gateway (SGW) and Packet Gateway (PGW) of the Long Term Evolution (LTE) architecture
into a control and data plane for each, using an open interface, in this case IETF's ForCES. PoC#14 demonstrates that
the data plane functionality might be deployed as VNF and controlled as a network resource.

Figure 2 shows the functional entities in the NFV architectural framework [i.3] for the scenarios identified above.

Figure 2: Possible SDN Resource Locations in the NFV Architectural Framework
(adaptation from [i.3])

4.3.4 Position of the SDN controller in an NFV architectural framework

The second entity in this context is the SDN controller, which interfaces with SDN network resources via the Resource
Control Interface. One SDN controller might interface with multiple SDN network resources.

Multiple scenarios exist to illustrate the possible locations of an SDN Controller in the context of an NFV framework:

• Case 1: the SDN controller is merged with the Virtualised Infrastructure Manager functionality.

https://en.wikipedia.org/wiki/CAP_theorem

ETSI

ETSI GS NFV-EVE 005 V1.1.1 (2015-12)13

• Case 2: the SDN controller is Virtualised as a VNF.

• Case 3: the SDN controller is part of the NFVI and is not a VNF.

• Case 4: the SDN controller is part of the OSS/BSS.

• Case 5: the SDN controller is a PNF.

Figure 3: Possible SDN Controller Locations in the NFV Architectural Framework

Case 1: SDN controller functionality merged with the VIM functionality, in such case the two functions are not
distinguishable.

Case 2: SDN controller as a VNF is typically the case of an SDN controller Virtualised as a VNF itself, or being
part of a VNF. This VNF might be logically part of the NFVI and therefore belong to a special
infrastructure tenant or belong to an independent tenant.

Case 3: SDN controller in the NFVI is a classic case of SDN controller for the network connectivity in the NFVI,
where the SDN controller is not implemented as a VNF.

Case 4: SDN controller part of the OSS, is illustrated in clause 5.7, figures 27 and 28 as the tenant SDN
controller.

Case 5: SDN controller as a PNF - while this case exists, it has not been studied in the rest of the present
document.

4.3.5 Position of SDN applications in an NFV architectural framework

The third entity to be considered is the SDN application which interfaces with the SDN controller. An SDN application
might interface with multiple SDN controllers. Multiple case scenarios might be envisioned, for the position of the SDN
applications in the NFV architectural framework, such as:

• Case i: as part of a PNF

• Case ii: as part of the VIM

• Case iii: Virtualised as a VNF

• Case iv: as part of an EM

• Case v: as part of the OSS/BSS

ETSI

ETSI GS NFV-EVE 005 V1.1.1 (2015-12)14

Figure 4: Possible SDN Application Locations in the NFV Architectural Framework

The positions of the SDN applications are further expanded:

Case i: the network hardware might be a physical appliance talking to an SDN controller, or a complete solution
including multiple SDN components, such as SDN controller + SDN application for instance.

Case ii: the VIM might be an application interfacing with an SDN controller in the NFVI - for instance OpenStack
Neutron as a VIM interfacing with an SDN controller in the NFVI.

Case iii: the SDN application might be a VNF talking to an SDN controller, being Virtualised or not. For instance
a PCRF VNF might talk to an SDN controller for some policy management for traffic steering.

Case iv: the SDN application might be an element manager interfacing with an SDN controller to collect some
metrics or configure some parameters.

Case v: the SDN application might be an application interfacing with an SDN controller for instance in the
OSS-BSS for tenant SDN service definitions.

4.4 SDN controller interfaces in the NFV architectural
framework

4.4.1 Introduction

The SDN controller entity has several possible interfaces. The interfaces are shown in figure 5.

ETSI

ETSI GS NFV-EVE 005 V1.1.1 (2015-12)15

Figure 5: SDN Controller Interfaces

Figure 5 is based on figure 1, but with names for the interfaces so these interface names can be referenced.

As described above in clause 4.2 (and taken from Recommendation ITU-T Y.3300 [i.8]), an SDN controller comprises
the following elements:

• Application Control Interface - interface between an SDN controller and an SDN application - it provides an
application programmatic control of abstracted network resources.

• Resource Control Interface - Interface between an SDN controller and SDN resources - it is used to control
network resources.

• Orchestration Interface - interface between an SDN controller and an NFV Orchestrator:

- It might need to pass information between the 2 entities, such as topology information in both directions.

- The interface might be an indirect interface.

- The same interface might also be used between an SDN application and an NFV Orchestrator.

• Controller-Controller Interface - interface between SDN controllers:

- It might need to pass information between SDN controllers either in the same hierarchy or in different
hierarchies.

The different SDN controller interfaces need to be supported in an NFV environment.

Some open source projects, such as ODL or ONOS® (see note), have also defined a Controller-Controller interface for
SDN controllers to interact with each other. This might be exploited when federation of SDN controllers is being used
for scalability reasons for instance. Today these interfaces remain specific to a given controller implementation and are
not open to be used across different types of SDN controllers.

NOTE: "ONOS is the trade name of a collaborative open source project from The Linux Foundation. This
information is given for the convenience of users of the present document and does not constitute an
endorsement by ETSI of the product named. Equivalent products may be used if they can be shown to
lead to the same results".

Also some entities, typically ONF and ODL, have defined Application Control interfaces such as the Intent NorthBound
Interface.

ETSI

ETSI GS NFV-EVE 005 V1.1.1 (2015-12)16

The Intent NorthBound Interface interactions between applications and controllers are run-time (i.e. real-time)
negotiations between an application layer that defines a network service and a controller layer that implements that
service. The application layer network service defines the "what" of a given service, with some constraints on the
requested service implementation or properties (SLA, latency, performance, etc.). Negotiations start by a set of
interactions that begin with a service request by the application to the controller and terminate with agreement or not by
the controller to deliver the requested service within the defined constraints, and by the application layer to accept
delivery of that network service. Typically an Intent NorthBound interaction is a negotiation with four stages:

• Request

• Response

• Selection

• Confirmation

It defines the "what": substance (e.g. "get me from A to B") with constraints (e.g. "before time C").

From an SDN controller perspective, Intent NorthBound Interface functions might be implemented as a controller-
associated abstraction between applications and controller, or directly within/as part of the controller itself.

From an NFV architectural framework perspective, the Intent NorthBound Interface could be considered as the
Application Control Interface provided by the SDN controller if that layer is embedded in the SDN controller, or it
could be considered as an SDN application if it seats on top of the SDN controller. As an SDN application it could be a
VNF itself.

The diagrams and tables below show the different combinations between the different components. The analysis has
been divided in 2 cases to simplify the diagrams and tables: SDN controller and SDN application, then SDN controller
and SDN resources.

The cases that were considered irrelevant have been removed, again to simplify the diagrams and tables, and focus on
the most relevant cases.

4.4.2 SDN resource control interface options

Figure 6: SDN Resource Control Interface Options in NFV

Figure 6 shows the different implementation options for the SDN Resource Control Interface. The NFV environment
would support the different implementation options.

ETSI

ETSI GS NFV-EVE 005 V1.1.1 (2015-12)17

Table 1: A List of SDN Resource Control Interface Options in NFV

I/F Ref. SDN Controller
Location

SDN Resource Location Comments

1a 1. VIM a. NFVI (Network
Hardware)

1b 1. VIM b. Virtual Network
1c 1. VIM c. Computing Hardware
1d 1. VIM d. VNF Only if the VNF logically belongs to the NFVI
2a 2. VNF a. NFVI (Network

Hardware)
Only if the VNF logically belongs to the NFVI

2b 2. VNF b. Virtual Network Only if the VNF logically belongs to the NFVI
2c 2. VNF c. Computing Hardware Only if the VNF logically belongs to the NFVI,
2d 2. VNF d. VNF No need to specify VNF-VNF interface,
3a 3. NFVI a. NFVI (Network

Hardware)
Internal NFVI interface

3b 3. NFVI b. Virtual Network Internal NFVI interface
3c 3. NFVI c. Computing Hardware Internal NFVI interface
3d 3. NFVI d. VNF Only if the VNF logically belongs to the NFVI,

Not common.
4d 4. OSS/BSS d. VNF Applicable to the OSS/BSS of a VNF tenant

There are several suggested SDN Resource Control Interfaces such as OpenFlow. NFV might optionally use some of
these suggested SDN Resource Control Interfaces. The list in table 1 suggests that the same SDN Resource Control
Interface be used in various implementation options. Some of the interfaces listed might be indirect interfaces. This
means that the SDN Resource Control Interface between the SDN controller and the SDN resource might flow through
other NFV entities.

4.4.3 SDN controller orchestration interface options

Figure 7: SDN Controller/Application Orchestration Interface Options

NFV Management and Orchestration

Computing
Hardware

Storage
Hardware

Network
Hardware

Hardware resources

Virtualisation Layer

Virtualised
Infrastructure
Manager(s)

VNF
Manager(s)

NFV
Orchestrator

OSS/BSS

NFVI

VNF 3VNF 1

Virtual
Computing

Virtual
Storage

Virtual
Network

EM 2 EM 3EM 1

Or-Vi

Or-Vnfm

Vi-Vnfm

Os-Ma

Ve-Vnfm

Nf-Vi

Vn-Nf

Vl-Ha

Service, VNF and
Infrastructure
Description

VNF 2

SDN Controller &
SDN Application

1

2

3

4

iii

i

ii

v

ETSI

ETSI GS NFV-EVE 005 V1.1.1 (2015-12)18

The orchestration might need to access either SDN controllers or SDN applications. From an orchestration perspective,
an SDN controller and SDN applications have a lot in common so the orchestrator might interface both using the same
interface. Figure 7 puts the SDN controller and SDN application together, reusing the same orchestration interface. This
is also an actual implementation option, as many SDN controllers also include SDN applications.

Figure 7 shows the different implementation options for the SDN controller Orchestration Interface. Below are the
different implementation options.

Table 2: A List of SDN Controller/Application Orchestration Interface Options in NFV

I/F Ref SDN Controller/SDN
Application Location

Orchestration Location Comments

1 1. VIM NFVO Uses Or-Vi interface
2 2. VNF NFVO
3 3. NFVI NFVO
4 4. OSS/BSS NFVO Uses Os-Ma interface

The information conveyed between the NFVO and the SDN controller is similar in all cases. A single SDN controller
Orchestration Interface is used in all cases. It is recommended to use existing interfaces where possible. In the case
where the SDN controller is implemented as a VNF, the SDN controller Orchestration Interface might possibly be
achieved indirectly through the VNF Manager. In the case where the SDN controller is implemented in the NFVI, the
SDN controller Orchestration Interface might possibly be achieved indirectly through the VIM.

4.4.4 SDN application control interface options

Figure 8: SDN Application Control Interface Options in NFV

Figure 8 shows the different implementation options for the SDN Application Control Interface. There are several cases
where the SDN controller and the SDN applications reside in similar entities. In these cases the interface might be an
internal interface. For example, an SDN controller in a VNF might include one or more SDN applications. In this case
the interface between the SDN applications and the SDN controller in the same VNF is an internal interface.

ETSI

ETSI GS NFV-EVE 005 V1.1.1 (2015-12)19

Table 3: A List of SDN Application Control Interface Options in NFV

I/F Ref SDN Controller Location SDN Application
Location

Comments

1i 1. VIM i. NFVI (Network
Hardware)

Not common

1ii 1. VIM ii. VIM VIM includes an SDN application and the SDN
controller functionality is merged with the VIM. An
internal VIM Interface.

1iii 1. VIM iii. VNF Assumes the VNF is logically part of the NFVI
1v 1. VIM v. OSS/BSS
2i 2. VNF i. NFVI (Network

Hardware)
Not common. Assumes the VNF is logically part of
the NFVI

2ii 2. VNF ii. VIM Not common
2iii 2. VNF iii. VNF Case 1: SDN controller includes an SDN application

In this case the interface is internal. Out of scope of
the present document.
Case 2: SDN controller and SDN application VNFs.
VNF will expose REST API, as Application Control
Interface
Both VNFs either logically belong to the NFVI or to
independent infrastructure tenants.

2iv 2. VNF iv. EM Not common
2v 2. VNF v. OSS/BSS Not common
3i 3. NFVI i. NFVI (Network

Hardware)
Internal NFVI interface.

3ii 3. NFVI ii. VIM
3iii 3. NFVI iii. VNF
4v 4. OSS/BSS v. OSS/BSS OSS/BSS includes both an SDN application and an

SDN controller. An internal OSS/BSS interface.

There are several suggested SDN Application Control Interfaces such as the Intent NorthBound Interface. NFV might
optionally use some of these suggested SDN Application Control Interfaces. The list in table 3 shows that the same
SDN Application Control Interface can be used in various implementation options. Some of the interfaces listed might
be indirect interfaces. This means that the SDN Application Control Interface between the SDN controller and an SDN
application might flow through other NFV entities.

ETSI

ETSI GS NFV-EVE 005 V1.1.1 (2015-12)20

4.5 SDN controller to controller interface in NFV

4.5.1 SDN controller to controller interface options in NFV

Figure 9: SDN Controller to Controller Interface Options in NFV

SDN controllers might have several possible location within the NFV reference architecture, as shown in figure 3. The
SDN controllers interface between each other using the SDN Controller to Controller Interface. Figure 9 shows the
different implementation options for the SDN Controller to Controller Interface. There are several cases where the SDN
controllers reside in different NFV entities. In these cases SDN Controller to Controller Interface needs to be an
external interface. For example, an SDN controller in a VNF might interface with an SDN controller in the VIM.

Table 4: A List of SDN Controller to Controller Interface Options in NFV

I/F Ref SDN Controller
Location

SDN controller Location Comments

12 1. VIM 2. VNF
13 1. VIM 3. NFVI
23 2. VNF 3. NFVI
24 2. VNF 4. OSS/BSS Not common

There are several suggested SDN Controller to Controller Interface. NFV might optionally use some of these suggested
SDN Controller to Controller Interface. The list in table 4 suggests that the same SDN Controller to Controller Interface
be used in various implementation options. Some of the interfaces listed might be indirect interfaces. This means that
the SDN Controller to Controller Interface flow through other NFV entities.

NFV Management and Orchestration

Computing
Hardware

Storage
Hardware

Network
Hardware

Hardware resources

Virtualisation Layer
Virtualised

Infrastructure
Manager(s)

VNF
Manager(s)

NFV
Orchestrator

OSS/BSS

NFVI

VNF 3VNF 1

Virtual
Computing

Virtual
Storage

Virtual
Network

EM 2 EM 3EM 1

Or-Vi

Or-Vnfm

Vi-Vnfm

Os-Ma

Ve-Vnfm

Nf-Vi

Vn-Nf

Vl-Ha

Service, VNF and
Infrastructure
Description

VNF 2

SDN Controller

1

2

3

4

ETSI

ETSI GS NFV-EVE 005 V1.1.1 (2015-12)21

4.5.2 SDN controller federation options in NFV

Figure 10: SDN Controller Federation Options in NFV

SDN controllers' federation might take place in several locations within the NFV reference architecture. The SDN
controllers' federation is done using the SDN Controller to Controller Interface. Figure 10 shows the different
implementation options for SDN federation in the NFV reference architecture.

Table 5: List of SDN Controller Federation Options in NFV

I/F Ref SDN Controller
Location

SDN Controller
Location

Comments

11 1. VIM 1. VIM
22 2. VNF 2. VNF
33 3. NFVI 3. NFVI Not common

SDN controllers' federation might take place within a single domain. For example several SDN controllers residing as
VNFs in a single NFVI-PoP might form a cluster. This cluster might be used for high availability and load balancing
purposes.

SDN controllers' federation might also take place across different administrator domains or NFVI-PoPs. For example
several SDN controllers implemented across different VIMs might be federated. This federation allows for sharing and
passing resources between VIMs.

5 Design patterns of SDN in the NFV architectural framework

5.1 Introduction
This clause is describing common usage patterns of SDN design and operations. The goal is to capture all practically
relevant points in applying SDN application, SDN controller, and SDN resource, from which recommendations on these
entities might be derived.

NFV Management and Orchestration

Computing
Hardware

Storage
Hardware

Network
Hardware

Hardware resources

Virtualisation Layer
Virtualised

Infrastructure
Manager(s)

VNF
Manager(s)

NFV
Orchestrator

OSS/BSS

NFVI

VNF 3VNF 1

Virtual
Computing

Virtual
Storage

Virtual
Network

EM 2 EM 3EM 1

Or-Vi

Or-Vnfm

Vi-Vnfm

Os-Ma

Ve-Vnfm

Nf-Vi

Vn-Nf

Vl-Ha

Service, VNF and
Infrastructure
Description

VNF 2

SDN Controller

1

2

3

4

1

2

3

ETSI

ETSI GS NFV-EVE 005 V1.1.1 (2015-12)22

5.2 SDN technology integration options with NFV

5.2.0 Introduction

This clause describes options for how SDN technology might be integrated into the NFV framework.

NOTE: Data plane is used here to refer to the network associated with the primary traffic a VNF is designed to
process. Not considered here are how SDN and NFV are integrated in the data plane or the management
and the control planes.

5.2.1 Interconnecting VNFCs using SDN

A VNF might be composed of several VNFCs with SDN used to both establish links between VNFCs and support other
functions such as managing traffic between the VNFCs.

5.2.2 Interconnecting VNFs using SDN

5.2.2.0 Introduction

A network service might be composed of a source, a destination, and a set of intermediate interconnected VNFs that
process the traffic from the source to the destination. This chaining of VNFs might occur in a number of scenarios,
outlined below.

5.2.2.1 Chaining based on network service designed according to a VNF-FG

A Network Service, as defined in [i.2], figure 6.5, contains one or more VNF-FG definitions that might be used when
creating an instance of that Network Service. VNFs, therefore, might be chained together based upon the graph defined
in one or more of a Network Service's VNF-FGs. This is a static chaining, applied at instantiation time of the network
service. The interconnection between the VNF might be implemented by using L2/L3 segments and is established based
on the fixed VNF-FGs that are defined ahead of time in the Network Service Descriptor.

Figure 11: Network Service as defined in figure 6.5 in MANO GS [i.2]

5.2.2.2 Chaining based on customer policy/service

The previous example describes a fairly static establishment of a VNF chain, where a pre-defined VNF-FG is used and
there is nearly no consideration of additional context. However, a more dynamic and flexible delivery of VNF chains is
also envisioned. Which VNFs are connected and in what order will be determined, at the time of service instantiation,
based on a variety of factors that will include policies, network, compute and storage conditions, and customer based
policies.

ETSI

ETSI GS NFV-EVE 005 V1.1.1 (2015-12)23

5.2.2.3 Chaining based on VNF processing

VNF chaining with regard to a specific or aggregate traffic flow might be modified on the fly depending on the
processing provided by a VNF. For example a security related VNF might want to change a traffic path. This might be
done by providing that VNF with direct or non-direct access (e.g. via the NFVO or VIM) to the Application Control
Interface of an SDN controller so that the change might be dynamically implemented.

5.2.2.4 Load balancing across VNF's

A key capability of the NFV architecture is VNF elasticity. Elasticity enables scaling in order to grow or shrink traffic
handling capacity either by adding or removing VNFC or VNF instances. The ETSI NFV architecture framework
supports both of these options. For example, SDN might be used for automating the network so that when additional
capacity is required, ingress traffic might be segregated per policy and forwarded to new additional elements for
processing. Load balancing is considered as a L1-7capability.

Figure 12: Load Balancing Across VNFs

For providing this capability SDN controller(s,) might receive input from the ETSI MANO functional entities so that
they might keep track of VNF instances, availability etc. and traffic might be forwarded to the appropriate instance as
per policy. This traffic segregation as per policy, has to be implemented at a line rate.

5.3 SDN across multiple VIM

5.3.0 Introduction

The clause 5.3 follows the general principles described in ETSI GS NFV-MAN 001 [i.2] (particularly clause 5.6.2),
ETSI GS NFV-INF 005 [i.1] for network controllers in the NFV architectural framework [i.3] and the SDN architecture
outlined in [i.6].

5.3.1 SDN controller interfaces

As described above in clause 4.2 (and taken from Recommendation ITU-T Y.3300 [i.8]), an SDN controller has got a:

• Northbound interface called the Application-Control Interface (ACI) - provides a northbound application
programmatic control of abstracted network resources.

ETSI

ETSI GS NFV-EVE 005 V1.1.1 (2015-12)24

• Southbound interface, called the Resource-Control Interface (RCI) - controls network resources.

The possibility of defining different levels of abstraction for the network resources enables the definition of
hierarchically recursive application/controller layers, with higher levels providing greater abstraction and broader scope.
Here the Application Control Interface from one SDN controller presents abstract network resources to the resource-
control interface of an SDN controller above it.

A number of the multi-VIM scenarios described below utilize hierarchical controllers and network abstractions. These
enable the optimized utilization of network resources and the secure isolation of network resources across multiple trust
domains.

5.3.2 Scenarios for SDN across multiple VIMs

To identify the challenges related to SDN deployment across multiple VIMs, two basic scenarios are considered
separately:

a) VIM instances located in the same NFVI-PoP; and

b) VIM instances located in different NFVI-PoPs.

In case b, at least one and possibly multiple WAN domains will exist between the NFVI-PoPs. The WAN connection
supports SDN connectivity between VNFs, as well as PNFs, present in different NFVI-PoP.

5.3.3 Challenges for SDN across multiple VIMs

The two scenarios listed in clause 5.3.2 pose different challenges, including (but not limited to):

• The crossing of administrative or organizational boundaries usually imposes requirements at various levels,
e.g. connectivity, security, SLA fulfilment, information hiding, which constrains the choice of possible
solutions.

• The characteristics of network protocols used in the scope of a NFVI-PoP and in the WAN are significantly
different.

• The provisioning of network services across VIMs with requirements such as end-to-end low latency.

• The dynamic setup of paths between newly instantiated VNF, and existing PNF or VNF over WAN.

• Ensuring connection as well as SLA guarantee for VNF scaling over multiple NFVI-PoPs.

• The extension of virtual links outside the NFVI-PoP into the WAN.

• Transport network reconfiguration, e.g. during natural disasters, network congestion, etc.

5.3.4 Analysis of SDN across multiple VIMs

5.3.4.1 SDN across multiple VIMs located in a single NFVI-PoP

a) In this case, a single trust domain is supposed to exist between endpoints, therefore the administration of NFVI
and network resources is supposed to be handled by a single entity, which considerably simplifies the problem.
The interconnection between VIM instances is supposed to be provided by protocols typically used in data
centers (e.g. VXLAN, NVGRE, LISP).

5.3.4.2 SDN across multiple VIM in different NFVI-PoPs

5.3.4.2.0 Introduction

End-to-end connectivity between VMs hosted on different NFVI-PoPs is built on network resources in three different
segments:

• the internal networks of the edge NFVI-PoPs;

• the gateway routers at the edges NFVI-PoPs;

• the WAN transport network in between.

ETSI

ETSI GS NFV-EVE 005 V1.1.1 (2015-12)25

The configuration of the intra-NFVI-PoP network resources is locally enforced, under the supervision of the respective
VIM. One or more WAN domains are expected to exist between NFVI-PoPs.

When there are multiple WAN domains, an understanding of the capabilities and connectivity endpoints provided by
these WANs is necessary, so that an appropriate WAN will be used at path setup, based upon the VNF locations and
traffic service classes needed.

Different trust or organizational boundaries are expected to exist between the NFVI-PoP and the WAN domains. WAN
operators and NFVI-PoP operators might be different, with the NFVI-PoP operator using the WAN services provided
by the WAN operator. In the following, two basic sub-scenarios are briefly described.

5.3.4.2.1 VNFs across multiple NFVI-PoP locations with a static bit pipe between them

In this case, an overlay network, crossing transparently one or more network domains and trust/organizational
boundaries, built upon a pre-allocated static WAN connectivity service (e.g. E-Line, E-LAN, IP/MPLS VPN) and
typically based on a long-term contract, is established between multiple termination points located at geographically
remote NFVI-PoPs under the same trust domain. This scenario is rather simple, as it does not require coordination
between NFVI-PoP and WAN resources, but also limited in the sense that the WAN resources do not follow agility and
dynamism of the NFVI-PoP network environment.

Figure 13 below illustrates the simplest case (this basic scenario could be extended to any number of NFVI-PoPs),
where a point-to-point connection between two NFVI-PoPs is transparently carried across the WAN over a transport
tunnel by means of technologies such as MPLS or IEEE 802.1ad. Each endpoint is aware of the specific characteristics
(e.g. bandwidth capacity) of the inter-NFVI-PoP connection, but the WAN network nodes are only aware of the
transport pipe. Thus, the lifecycle of the inter-NFVI PoP inner connection (e.g. establishment, modification, release) is
controlled by the intervening VIMs, but not the WAN domain(s) in between.

Changes to the outer tunnel, if needed at all, are expected to occur on a relatively large timescale and are not expected
to require automated control mechanisms.

From the perspective of the NFVO, this solution, utilizing the static tunnel, appears identical to the first scenario with a
single NFVI-PoP containing multiple VIM of the same trust domain. Establishment of the network connections among
the NFVI is basically the same, regardless of whether the VNF are in the same or remote NFVI-PoP.

Figure 13: NFVI-PoP Interconnection with Pre-Provisioned Static Pipe

5.3.4.2.2 VNFs across multiple NFVI-PoP locations, SDN-based NaaS between them

This scenario leverages SDN-based control in the WAN to build a richer networking environment. The WAN domain
between NFVI-PoPs provides an "on-demand" connectivity service, NaaS (Network as a Service). This scenario is more
complex than the previous one, in the sense that it requires coordinated control of NFVI and WAN resources. WAN
connectivity services are explicitly requested by the NFVO through the WIM (WAN Infrastructure Manager), following
the model described in [i.1]. Following the interface terminology proposed in [i.1], this corresponds to the Nd-Nd
interface, in the case where the WAN domains interconnecting the NFVI-PoPs are SDN-enabled.

ETSI

ETSI GS NFV-EVE 005 V1.1.1 (2015-12)26

The connectivity service provided by the WAN domain could be either L2-based (e.g. following service models defined
by the MEF – Ethernet Virtual Private Line, Ethernet Virtual Private LAN, Ethernet Virtual Tree [i.7]), or L3-based
(e.g. IP/MPLS VPN).

From a functional point of view, there is a client-provider relationship between each NFVI-PoP and the respective
WAN provider, even if they are under the administration of the same business entity.

The level of trust between the NFVI-PoP and the WAN domain(s) might have implications in terms of resource
management policies, security and information sharing (usually, network operators are unwilling to reveal the internal
details of their network infrastructure). Figures 14 to 16 illustrate three possible approaches for the interaction between
the NFV orchestration and the WAN domains in this scenario. These three approaches might be mapped directly into 3
out of 4 scenarios described in [i.6] (clause 5, "Control functions and interactions") for the SDN control plane.

5.3.4.2.3 VNFs across multiple NFVI-PoP locations - NFVI-PoP and WAN in a common
trust domain (Option A)

In this scenario, also called Option A in the present clause, the WIM implements the application-control interface and
uses directly the services exposed by the northbound interface of the WAN SDN controller. The WAN SDN controller,
administered by the WAN operator, is in charge of managing the underlying physical resources. This is a good
candidate for cases where NFVI and WAN resources are administered by the same entity.

NOTE: This is not a case of the WIM executing network controller actions over and above the WAN SDN
controller. Here in Option A the WAN SDN controller and the NVFI network resources it controls are in
the same trust domain as the NVFI-PoPs. In fact, how the WIM manages the WAN resources mirrors the
VIM control of the NFVI-PoP resources. A 2-tier hierarchy of controllers, used when the WAN and
NFVI-PoPs are in different trust domains, is described as Option B.

Figure 14: A Single SDN Controller for the WAN Resources (Option A)

5.3.4.2.4 VNFs across multiple NFVI-PoP locations - NFVI-PoP and WAN in different trust
domains - client access to virtual WAN resources (Option B)

Option B might be seen as an extension of option A by defining a 2-level hierarchy of SDN controllers - C (Client,
administratively part of the endpoints' NFVI-PoP trust domain) and P (Provider, administratively part of the WAN).

ETSI

ETSI GS NFV-EVE 005 V1.1.1 (2015-12)27

As described in [i.6], the WAN SDN controller accommodates an agent for each client virtual network controller (C).
This agent presents a distinct application-control interface to each client virtual network controller. Controller P, as
described above, provides a northbound application programmatic control of abstracted network resources. To support
multiple client networks, the WAN P controller provides a unique set of abstracted resources to each client. In this case,
a client virtual network controller (C) manages only the abstract network resources the WAN P controller exposes to it.
This capability to define different levels of abstraction of the network resources for different client virtual network
controllers might be a particularly useful feature to establish different administration models of the WAN in a flexible
way.

In the figure 15 below, the MANO components for multiple clients are presented. These include the clients' NFVO,
WIM and SDN controllers that interacts with the WAN SDN controller. Each client controller is presented with a
unique ACI / network abstraction.

This scenario, Option B, includes a 2-level hierarchy of SDN controllers. A detailed analysis of this SDN controller
hierarchy is included in clause 5.4.

Figure 15: WAN Controller Presenting Multiple ACI for unique abstractions per client (Option B)

5.3.4.2.5 VNFs across multiple NFVI-PoP locations - NFVI-PoP and WAN in different trust
domains - client access to physical host resources (Option C)

In this scenario, Option C, the WIM requests network resources through an SDN controller, which interacts directly
with the network nodes. This means the client SDN controller is being provided direct access to control a subset of the
WAN network resources.

ETSI

ETSI GS NFV-EVE 005 V1.1.1 (2015-12)28

Figure 16: No WAN Controller - each client SDN controller has direct access
to WAN resources (Option C)

The options indicated above might be mapped to the scenarios described in clause 5 of [i.6], "Control functions and
interactions", as follows:

• Option A maps into scenario "Single player SDN provider" ([i.6], clause 5.1).

• Option B maps into scenario "SDN provider with Virtualised network, non-recursive" ([i.6], clause 5.3).

• Option C maps into scenario "SDN provider with SDN clients, with underlying network exposed" ([i.6],
clause 5.2). This option, classified as "not recommended for deployment in practice", is included here for
completeness.

• The fourth scenario described in [i.6], clause 5.4 "SDN provider with recursive Virtualised network" is
considered to be beyond the scope of this clause.

Although option B, as described above, includes a 2-level hierarchy of SDN controllers, a detailed analysis of SDN
controller hierarchy issues is not performed here (but rather in the present document clause 5.4 - "SDN controller
hierarchy").

5.3.4.2.6 SDN based NFV IaaS across multiple administration domains

An additional pair of scenarios to consider is when a network service expands its domain by creating a virtual PoP
within the NVFI-PoP of another trust domain. Here, the expanding service is a client of IaaS / NaaS offerings from the
host (or server) service.

These scenarios might occur, for example, when a service provider wants to expand geographically and either needs to
do so quickly, temporarily, or simply manage its size dynamically, based on demand.

Two versions are presented here:

• The first is where the NaaS/PaaS service provides resources based on an abstraction provided by an SDN
controller of the NaaS/PaaS provider (figure 17).

ETSI

ETSI GS NFV-EVE 005 V1.1.1 (2015-12)29

Figure 17: Virtual NFVI-PoP of Provider A Running as Guest in NFVI-PoP of Provider B

Here, network control is managed in a way similar to the Option B, described earlier. The SDN controller of the host
NFVI-PoP presents a client specific network abstraction (via its Application Control Interface) to the controller of the
guest virtual NFVI. In other words, the network of the virtual PoP is the abstraction the host service SDN controller
presents to it.

Besides presenting the client specific Application Control Interface to the guest SDN controller, the host SDN controller
also presents one to its own VIM.

• The second scenario is similar to what is in the Option C described above, where the NaaS provides the tenant
provider PoP A1 direct access to the underlying networking infrastructure. This is shown in figure 18.

Figure 18: Virtual NFVI-PoP of Provider A Running as Guest in NFVI-PoP of Provider B

ETSI

ETSI GS NFV-EVE 005 V1.1.1 (2015-12)30

5.3.4.2.7 Multiple VIM for a mobile network

Figure 19 provides a detailed inter-VIM SDN scenario for a mobile network which extends the option B illustrated in
figure 15 of clause 5.3.4.2.4. The data plane is depicted more explicitly and the role of function blocks involved in inter-
VIM connection management is described.

This scenario depicts a mobile network service provider that inter-connects its NFVI-PoPs utilizing other administration
domains supportive for SDN controller and SDN data plane.

Figure 19: The Mobile Network Scenario for SDN based NaaS
Provided by Other Administration Domain

As shown in the figure 19, the NFVI-PoP #1, #2 and #3 are inter-connected through administration domain #1 and #2
which deploys SDN architecture based network. The administration domain #1 and #2 host multiple SDN data plane
elements and provide the Virtualised network resources through a SDN controller to the WIM managed by the mobile
network service provider. The mobile network service provider might orchestrate the NFVI-PoP networking resources
offered by the VIMs and cross NFVI-PoP networking resources by the WIM through the NFV Orchestrator.

As per ETSI GS NFV-MAN 001 [i.2], the inter NFVI-PoP connections are managed by NFV Orchestrator and WIM,
i.e. inter-connection establish/release/change decisions are at the NFV Orchestrator level and operations conducted at
the WIM level.

5.4 SDN controller hierarchy

5.4.1 Introduction

• A few key technical and business drivers typically drive the hierarchy of SDN controllers. These include:
Improving performance, scalability and reliability by dividing the network.

• Supporting multiple administrative domains / tenant networks.

• Defining multiple network layers Virtualisation.

Mapped to the ETSI NFV architectural framework, this translates into a set of options for applying a hierarchy of SDN
controllers. This clause describes some SDN controller hierarchies and possible scenarios for their application.

As described in figure 3 SDN controllers might be used in different functional blocks of the ETSI NFV architectural
framework, such as in the NFVI or as a VNF. As such SDN Controller hierarchy might be used in WAN environment,
inside Data Center, between WAN and Data Center PoP.

This clause describes SDN Controller hierarchies and scenarios for implementation.

ETSI

ETSI GS NFV-EVE 005 V1.1.1 (2015-12)31

5.4.2 Technical and business scenario

5.4.2.1 SDN controller hierarchy scenarios overview

The following SDN controller hierarchy scenarios are being described in this clause:

• Distributed performance, scalability and reliability

• Administrative domains interaction

• NaaS management

• Multilayer transport fault management

5.4.2.2 SDN controller hierarchy for distributed performance, scalability and reliability
for multilayer and single-layer transport network

WAN and Data Centre networks typically have hierarchical structures with potentially a very large number of NEs. An
SDN controller not only manages traffic handling rules for all of these NEs but also collects status notifications (OAM
information). Therefore, an SDN controller hierarchy approach could be used to avoid performance, scalability and
reliability issues. The top network controller will manage network resource abstractions provided by lower level
controllers. Lower layer network controllers will manage sets of NEs associated with them. If one of these network
controllers fails, another controller will serve as a backup.

In the figure 20 below, there is an SDN hierarchy for a multilayer network where SDN controller of packet transport
network might use the abstraction provided by SDN controller of the optical transport network.

Figures 20 and 21 present a Hierarchical SDN architecture (HSDN) for WAN and Data Center environments,
respectively. Each top layer serves as a transport connecting other networks of systems. This approach helps to shrink
FIB/LFIB transport tables at each layer. The packet transport like MPLS network might be divided into layers and one
layer will be carried by another layers. FIB/LFIB information will be kept respectively on each layer SDN controllers,
so it will be logical to use hierarchy approach on SDN controller layer.

NOTE 1: ON-Optical Node, P - Provider, PE-Provide Edge, N-PE - Network Provide Edge, U-PE - User Provider Edge,
AS - Access Switch.

NOTE 2: The hierarchy of controllers on the right plane controls the forwarding rules of elements on the left plane.

Figure 20: Typical WAN Packet Transport Structure

ETSI

ETSI GS NFV-EVE 005 V1.1.1 (2015-12)32

NOTE 1: GW - Gateway, SN - Spine Node, LN - Leaf Node, TOR - Top of the Rack, SVR - Server, VM - Virtual
Machine.

NOTE 2: The hierarchy of controllers on the right plane controls the forwarding rules of elements on the left plane.

Figure 21: Typical Data Center Structure

5.4.2.3 SDN controller hierarchy for distributed, cross-SP or cross-domain services

An SDN controller hierarchy might be used when one SP provides network transport resources to another SP.

This was described earlier in clause 5.3.4.2.2, and was also called Option B. Figure 22, shows 2 WAN domains
belonging to SP3 and SP4, respectively. The WAN networks of SP3 and SP4 provide connectivity service for SP1 and
SP2. The WIM and SDN controllers of SP1 and SP2, by using R-CI to A-CI interfaces, might make specific
connectivity requests of SP3 and SP4. In the figure 22, the SDN controller "client1" is responsible for providing a
northbound abstract view of WAN connectivity, while at the same time, choosing how to support that view via requests
of the SP3 and SP4 SDN controllers below. SP2 also have SDN controller (client 2) connected to WAN SP4 to
orchestrate NFV-PoP connections across WAN domain.

Figure 22: SDN Hierarchy for Different SP

In figure 23, a SP provides connectivity services based on its own WAN, (no other SP owns or manages it.) Here the
layers of SDN controllers exist to support distinct virtual network abstractions for different organizations within the SP.
There is a transport-level network controller to configure the transport connectivity. On top of it, there are separate
controllers to coordinate the transport controller with VIM controllers of certain DCs, for example, for certain service
types. PoP A / PoP B responsible for business services and PoP C / PoP D are responsible for generic services.

ETSI

ETSI GS NFV-EVE 005 V1.1.1 (2015-12)33

Figure 23: SDN Hierarchy Within one SP for Service Differentiation Purpose

5.4.2.4 SDN controller hierarchy for NaaS

In figure 24, a SP provides NFVI-B service inside his own NFVI-A. SDN hierarchy allows easy network resources
management for NFVI-B within NFVI-A. Access Transport (some vSwiches) might be controlled directly by a tenant
within his own NFVI-B however this network infrastructure might be connected to external carrier transport NFVI-B.

SDN controllers hierarchy will be used to maintain such boundary connectivity.

Figure 24: SDN Hierarchy Within one SP - NaaS

5.4.2.5 SDN controller hierarchy for multi-domain, transport network fast fault
recover

Usually a SP network consists of multiple transport layers usually of distinct technologies, where each transport layer
has dedicated management. All global service flow optimization, management and deployment actions are driven by the
WIM and upper layer orchestration.

To configure automatic fail-over, an SDN controller hierarchy might be used. Faults within each layer might be fixed
independently without impact to higher layers or services. Such an approach could remove the WIM and upper layer
orchestration from being used to address many WAN faults, with the expectation of more rapid problem resolution.

Furthermore, layers across the WAN might be managed or owned by different SP. There might be two independent
MPLS over one or more OTN over one or more optical networks, some subsets of these in different trust domains,
managed by different SP. A transport failure might be detected directly and resolved directly in a layer, with
communications between layers for optimization, as needed.

To pre-configure back-up options if some network fault occurs, the underlying SDN controller will inform the top SDN
controller to sync the back-up configuration with the NE or networks that the top controller manages for back-up as
shown in figure 25.

ETSI

ETSI GS NFV-EVE 005 V1.1.1 (2015-12)34

Figure 25: SDN Controller Hierarchy for Fault Management in Multilayer Transport network

The same approach might be used within a Data Center as illustrated in figure 26. The tenant virtual site NFVI-B might
use a WAN transport which is different from the one used by the host site, NFVI-A.. In case of failure of the primary
carrier transport within NFVI-A tenant, NFI-B SDN controller will be informed by NFVI-A SDN controller and
NVFI-B access transport will be fast and safely switched to the backup carrier transport within NFVI-A.

Figure 26: SDN Controller Hierarchy for Fault Management in Multilayer Transport network

SDN hierarchy information exchange in the two above scenarios also might be used for traffic management.

The carrier SDN controller might inform the access SDN controller not only about total transport failures but also about
degradation issues. So the access SDN controller might decries traffic to a particular transport and perform load
balancing between primary and backup transport.

5.4.3 Mapping of SDN controller to the ETSI NFV architecture

5.4.3.1 Introduction

An SDN controller hierarchy might be implemented within and across different functional blocks of the ETSI NFV
functional architecture. The present clause describes a number of these implementation options.

5.4.3.2 Hierarchy of SDN controllers in the NFVI

The hierarchy of SDN controllers within the NFVI might fold under 3 cases:

• Hierarchy within a same domain, with underlay and overlay.

The NFVI might be composed of an underlay SDN-based network, managed by another SDN controller in the same
layer.

The SDN might also be implemented in the overlay network, and have an SDN controller to manage this overlay.

ETSI

ETSI GS NFV-EVE 005 V1.1.1 (2015-12)35

When both cases are implemented there might be a hierarchy of SDN controllers within the same NFVI PoP and trust
domain.

• Hierarchy within a same or multiple domain related to hierarchy of network layers.

In many telecom networks, there are layers of network technologies. Typically for optical networks, as illustrated in
Clause C, the SDN controllers are connected to each other via northbound interfaces.

• Hierarchy due to business relationship sharing resources within a same NFVI.

In the final scenario, a Network provider who has an SDN enabled network, exposes some network resources to a guest
NFVI-PoP. In this case, as illustrated in figure 17, there might be a hierarchy of SDN controllers, with one SDN
controller in NFVI-PoP B1 host network, and one in guest NFVI-PoP A1. The SDN controller B1 is managed by
Provider B1, while SDN controller A1 is managed by Provider A1. SDN controller A1 sits on top of the northbound
API of SDN controller B1. Both SDN controllers might be Virtualised.

5.4.3.3 Hierarchy of SDN controllers in a VNF

The other case is hierarchy of VNF, where these VNFs are SDN controllers. This might occur in an NFV environment
where multiple applications use SDN controllers Virtualised, VNF, and have to exchange information across those VNF
controllers. This interfaces would be the inter-VNF interface defined in ETSI GS NFV-SWA [i.5] as SWA-1. These
relationships between SDN controllers VNF might be part of a Network Service defined by the NFVO.

5.4.3.4 Hierarchy of SDN controller across functional blocks

The hierarchy of SDN controllers might occur across functional blocks.

For example, it is the case if an SDN controller co-located with the VIM invokes an SDN controller in the NFVI to
allocate NFVI network resources. This case happens when a VIM SDN controller both has direct control of NFVI
network resources, for example SDN enabled vSwitch, and indirect control of NFVI network resources, for example
control of physical SDN switches through an SDN controller provided by a NFVI vendor. It is also the case when a
VIM is across multiple NFVI and a WAN, and the VIM SDN controller defines connectivity across these different
domains. That VIM SDN controller will interact with the NFVI SDN controller to allocate NFVI network resources or
change network paths. This is sometimes combined with hierarchy of SDN controller within a functional block:
typically the VIM SDN controller interacts with an NFVI SDN controller, that interacts with another SDN controller
within that same NFVI.

5.4.3.5 Hierarchy of SDN controllers below the WIM

While the WIM is not explicitly represented in the ETSI GS NFV 002 [i.3] architectural framework, there is the case of
SDN controllers below the WIM in clause 5.3.4 and the hierarchy of SDN controller below the WIM in multiple figures
such as figures 15, 17, 18, 19, 20, 21, 22 and 25. This hierarchy occurs when layers and regions of multiple trust
domains occur in the Wide Area Network: with a C domain (Client, administratively part of the endpoints' NFVI-PoP
trust domain) and P (Provider, administratively part of the WAN).

5.5 SDN controller in a Virtualised environment

5.5.1 Introduction

Clause 4.3.4 describes the case where an SDN controller is in an NFV architectural framework. In the previous
clause 5.4.3.3, is described the scenario where an SDN controller might be Virtualised and be a VNF.

The present clause describes additional use cases, with some guidelines towards the design of an SDN controller to be
deployed in a Virtualised environment.

5.5.2 Virtualisation of SDN Controller

A Virtualised SDN controller might be:

• A VNFC;

• A VNF; or

ETSI

ETSI GS NFV-EVE 005 V1.1.1 (2015-12)36

• A Network Service (NS) composed of multiple VNF that constitute the different sub-elements of the SDN
controller.

This SDN controller to be deployed in an NFV architectural framework:

• would come with a software image and a description of resources required to deploy this software image.

If it is a VNFC, these resource descriptions would be part of the VNF Descriptor, VNFD or the parent VNF.

If it is a VNF, it would be the VNFD.

If it is a NS, it would be part of the NS Descriptor, NSD.

• would follow the architecture guidelines of ETSI NFV.

If it is a VNFC or VNF, these guidelines are primarily as described in ETSI NFV SWA [i.5].

If it is a NS, these are primarily described in ETSI NFV MANO [i.2].

This includes the lifecycle management of the Virtualised SDN controller, and its relationship with the other entities of
the NFV architectural framework. Based on our review of opensource SDN controllers available today, none of the ones
studied, provide a software image and descriptors as currently defined by ETSI NFV. This could be an area of
enhancement on their side.

An SDN controller existing as a VNF will ultimately be controlling resources that are physical or virtual and in effect be
controlling PNFs or VNFs.

5.5.3 SDN controller across multiple Virtualised environment

In the present document a number of use cases have been studied where SDN controller are used in the ETSI NFV
architectural framework. In all those cases the SDN controller is considered within the same Virtualised environment,
with one NFV Orchestrator.

However there might be cases where the Virtualised SDN controller sits on top of multiple Virtualised environment, i.e.
multiple operators and controls an SDN network that defines end to end paths across multiple operators.

Figure 27: SDN Controller of a Service Provider #3, Across Multiple Service Providers

ETSI

ETSI GS NFV-EVE 005 V1.1.1 (2015-12)37

This use case which stretches beyond the current architectures covered by ETSI NFV raises a number of open questions
such as:

• if SDN Controller #3 needs to control virtual resources deployed in SP#1 or SP#2, how this would be achieved
needs to be addressed:

- One option would be to go through the NFVO#3. In that case, the question is whether the NFVO#3
reaches NFVO#1 or NFVO#2 directly , or if there is an OSS in between the NFVOs.

- Another option would be to go directly to the SDN resources or connect to an SDN controller deployed
in the SP#1 or SP#2 NFVI PoP.

These use cases will become more and more popular as SDN is being deployed and combined with NaaS type of
offering that will allow virtual network operators to define network services that span across multiple service providers
and uses virtual resources deployed and reserved in the NFVI PoP of those service providers.

5.6 SDN and VNF forwarding graph

5.6.1 General

As described in ETSI GS NFV-MAN 001 [i.2], a VNFFG descriptor contains a list of Virtual Links to be established
between its constituent VNFs and PNFs to form a Network Connection Topology (NCT) and might contain one or more
Network Forwarding Path (NFP) elements associating traffic flows matching certain criteria to forwarding paths (i.e.
the actual sequence of network functions to be traversed) within an NCT. The SDN technology might play a role for
implementing both the NCT and NFP. The SDN controllers involved in the configuration of an NFP might be different
from those involved in setting up the underlying NCT.

5.6.2 Static NCT

To implement a VNFFG, according to the architectural model described in clause 5.6 of ETSI GS NFV-MAN 001 [i.2],
one or more SDN controllers would receive requests received from the NFVO, via one or more VIM or WAN
infrastructure managers. Input parameters for these requests would be derived from the contents of the VNFFG
descriptor.

An alternative implementation model, although not explicitly described in ETSI GS NFV-MAN 001 [i.2] would consist
in omitting the NFPs from the VNFFG descriptor and relying on a service chaining application (hosted in the OSS or in
a VNF) to request one or more SDN controllers to configure the appropriate routers and switches with a set of rules
associating traffic flows matching certain criteria to forwarding paths. This approach might be relevant to implement the
scenario described in clause 5.1.2.2.

The above cases assume that the definition of an NFP is relatively static while there are cases (e.g. see clause 5.1.2.3)
where network forwarding paths are decided at runtime, e.g. by a VNF instance. This would require either:

- the ability for a VNF instance to request the NFVO to add or modify an NFP in a VNFFG;

- the ability for a VNF instance to access an SDN controller to provide NFP descriptions through means
independent from NFV Management and Orchestration.

These procedures are not described in ETSI GS NFV-MAN 001 [i.2]. The first approach would require an evolution of
the NFV architectural framework as it introduces a new reference point. In the second approach the communication
between the VNF requesting the modification and the SDN controller could be seen as occurring at the SWA-1
reference point.

5.6.3 Dynamic NCT

Clause 5.5.2 assumes that the NCT is specified at the design time of a network service or is modified upon request of an
OSS function. However, there might be cases (see clause 5.1.2.3) where an NCT would need to be modified at run time
by a VNF instance. This would require the ability for a VNF instance to request the NFVO to modify a VNFFG. This
procedure is not described in ETSI GS NFV-MAN 001 [i.2] and would require an evolution of the NFV architectural
framework.

Once an NCT has been modified, modification of a related NFPs might be performed as per clause 5.5.2.

ETSI

ETSI GS NFV-EVE 005 V1.1.1 (2015-12)38

5.7 SDN controllers in the tenant and the infrastructure domains
There are two kinds of connectivity services in the NFV architectural framework, both of which require control
capabilities and the orchestration and management of different types of resources for building and accomplishing a
proper delivery, as NFV uses the network at two layers.

The first type of connectivity services are those provided by the NFVI to enable communication among VNFs and
among their components, including the cases when those VNFs are instantiated in separated PoPs, reachable through a
WAN connection. There is a clear understanding that SDN plays a key role to support the requirements on elasticity and
Virtualisation for the infrastructural network to support the VNFs. This is the role of the infrastructure controller,
managed by the VIM, and extensively discussed across the present document

The second deals with the network services provided at the service tenant layer (see note), and has to deal with the
operation and management of the network service's constituent VNFs, and includes whatever semantics are related to
the network service and that might be controlled by means of the SDN paradigm, through a programmatic, logically
centralized control of the data forwarding plane (this would include functions like routing, filtering, service path
selection, classification, etc.). The network services at this layer are suitable to be managed according to the SDN
paradigm, and that is the proposed role of the tenant controller. It is important to highlight that applying SDN principles
at this layer provides a concordance of the upper part of the NFV architecture with the general SDN proposal of a
common control plane on top of which applications run. Those applications might range from enforcing intent-based
policies provided by users to actually implementing OSS functions: the SDN model is general enough to accommodate
all these uses.

NOTE: At the moment of this writing, the term "tenant" has no agreed definition within the ETSI NFV ISG.
While such a definition is agreed, we use the term along this text in rather wide section, considering a
tenant whatever entity (person, organizational unit, organization, etc.) using the NFVI to provide or
manage network services.

While the first set of control actions are related to the semantics of the service itself (as intended by the deployment of
the corresponding VNFs), the second set is related to the infrastructure resources. Despite of their different nature, all of
these control actions have to be orchestrated in a consistent way to perform the expected service and to dynamically
adapt to service changing conditions, as for instance the instantiation of new VNFs for that service. Furthermore, both
kinds of control actions have to be comprehensively considered (i.e. synchronized and coordinated) at the same time.

The archetypal deployment of both controllers will allow to consider the infrastructure controller as providing the
supporting underlay through the NFVI network Virtualisation layer, and the tenant controller providing an overlay
composed of the tenant VNFs. From this point, relevant use cases are:

• Performing coordinated service function chaining by:

- VNF composition, provided by the infrastructure controller through the NSD.

- Dynamic VNF composition (according to user identity data, for example), provided by the tenant
controller.

• Support for any hierarchical relationship between controllers running with awareness of VNF deployment and
controllers running as part of the NFVI.

Figure 28 graphically presents the intended position of SDN controllers for both the infrastructure domain and the tenant
domain within the NFV architecture framework.

ETSI

ETSI GS NFV-EVE 005 V1.1.1 (2015-12)39

Figure 28: Positioning Infrastructure and Tenant SDN Controllers in the NFV Architecture

More detailed deployment options are shown in figure 29.

The SDN controller in the tenant domain, which might itself be a VNF, interacts with the different deployed VNFs in
order to instruct those VNFs for taking actions on the traffic. On the other side, the SDN controller in the infrastructure
domain is in charge of setting up the required connectivity (including the WAN) for communicating those VNFs. The
SDN controller in the infrastructure domain supports the infrastructure network (as initially conceived by the original
NFV proposal), while the SDN controller in the tenant domain provides a programmatic, and potentially simplified
VNF management interface (note the intended direct connection to VNF 1 in the above figure 28, where this VNF 1
would be providing a direct SDN interface: OpenFlow, I2RS, etc.). Since the NFVO is in charge of orchestrating the
NFVI resources and lifecycle management of network services, it might be completely orthogonal to the tenant SDN
controller. NFVO is to be concerned precisely about the policy and rules being applied by the infrastructure controller.

There is a need for coordination between both controllers (if service chaining is performed at both layers it would be
highly desirable, for example), though whether both controllers might interact directly through a new reference point as
shown in figure 28, or indirectly via the MANO stack requires further study. Note this is coordination, not implying a
direct control of the infrastructure controller by the tenant one, or vice versa. On the one hand, the MANO stack could
provide the tenant controller abstracted information about the virtual infrastructure network and allow some degree of
interaction in both directions. On the other hand, using the MANO stack would require some extensions to the
interfaces being currently considered, and it could probably violate the decoupling between MANO and network service
semantics. In any case the reference point depicted there would be out of the scope of NFV specifications, as it is the
case of the reference point between the OSS/BSS and the infrastructure domain, and would require the availability of a
specific ACI (Application Control Interface) for the infrastructure controller, as it is foreseeable that the abstraction
supported through this interface would be different to the one provided by the infrastructure controller to the VIM.

Figure 29 shows two deployment options for the tenant controller, either as a VNF and therefore part of a network
service deployment, or being part of the (new generation) OSS and therefore able to interact with several network
services and even several tenant deployments if required. In both cases, the tenant controllers would be able to interact
with the OSS either through a direct interface or by accessing data and policy repositories, such as HSS or PCRF.

ETSI

ETSI GS NFV-EVE 005 V1.1.1 (2015-12)40

Figure 29: Deployment Options for the Tenant Controller

5.8 Service Function Chaining

5.8.1 Introduction

The following use case describes Service Function Chaining, SFC, combined with SDN and the ETSI NFV
architectural framework.

5.8.2 Service Function Chaining (SFC)

Defined by IETF, the SFC architecture is described in [i.9] and has identified a number of components as shown in
figure 30 such as:

• SFC aware network functions and SFC unaware network functions

• SFC Proxy

• SF Forwarder

• SFC Classifier

ETSI

ETSI GS NFV-EVE 005 V1.1.1 (2015-12)41

Figure 30: SFC Architecture Components (as defined by IETF)

The basic SFC architecture in IETF [i.9] does not consider SDN explicitly, neither NFV. IETF SFC is work in progress.

IETF has recently suggested a draft to address SFC with SDN/NFV [i.10]. The following clauses will propose some
combination of SFC with SDN and NFV.

In the present document, the term SFC network function is used; however the IETF term 'service function' is used for
what ISG NFV calls 'network function'.

5.8.3 SFC and SDN

In figure 30, and other figures in the clause 5.8, the term network is used as a generic term for networking resources
carrying the traffic.

When SDN is being introduced in this network layer, that network is then composed of SDN resources, controlled by an
SDN controller, as described in figure 31.

Figure 31: Adding SDN to SFC Underlying Network

The other case is to have SDN introduced in the SFC functions. In this situation, the SFC Classifier and the SF
Forwarder could become SDN resources, and be controlled by an SDN controller, as described in figure 32.

ETSI

ETSI GS NFV-EVE 005 V1.1.1 (2015-12)42

Figure 32: Adding SDN to SFC Components

This is typically the case in the diagram below, figure 33, where incoming traffic flows through an SFC Classifier being
an SDN resource in that case, controlled by an SDN controller, then goes to a Service Function Forwarder to an SFC
aware function, then back to the SF Forwarder to another SFC function but SFC unaware using an SFC Proxy.

Figure 33: Traffic Flow with SFC and SDN

The entire SFC flow is defined by the SFC Application. This is an SDN application that implements the SFC service
using the SDN controller. The flow might go through multiple SF Forwarder (SFF) typically, this diagram is a
simplified view.

Also traffic might brand out after the SFC classifier or anytime within the path.

5.8.4 SFC, SDN and NFV with a single NFVI domain

5.8.4.0 Introduction

As NFV is being introduced, any of the components defined above might potentially be Virtualised and deployed on a
Virtualized infrastructure managed by a Virtualisation management & orchestration environment, as described in
figure 34.

ETSI

ETSI GS NFV-EVE 005 V1.1.1 (2015-12)43

Figure 34: Virtualisation of the SFC Functions with SDN Controller as a VNF

Multiple cases might be envisioned:

• Case a: the Service Function Chain is defined in the NFVI. The SDN controller is deployed in the NFVI.

• Case b: the Service Function Chain is defined in the tenant domain. Some virtual resources are allocated to the
tenant who deploys his service chaining functions, typically as an overlay network, with his virtual switching
SDN enabled and his SDN controller.

5.8.4.1 Service function chain in the NFVI

In this case, SDN is used either in the NFVI underlay, meaning on native switches and routers, or as an overlay with
virtual switches and routers SDN enabled on top of non SDN switches and routers. In both cases, an SDN controller is
deployed in the NFVI, figure 35, connected to the VIM, and the NFPs are used to control the service chaining. Example
of such configuration include using SDN switches or vswitch in the NFVI, with an OpenDaylight® (see note) SDN
controller connected to an OpenStack Neutron, like in POC#8 , and in line with MANO [i.2] figure 5.2.as shown in
figure 35. The SDN routers/switches of the NFVI, would play the SFF role.

Figure 35: SDN Controller in NFVI (based on MANO [i.2] figure 5.2)

NOTE: "Opendaylight is the trade name of a collaborative open source project from The Linux Foundation. This
information is given for the convenience of users of the present document and does not constitute an
endorsement by ETSI of the product named. Equivalent products may be used if they can be shown to
lead to the same results".

ETSI

ETSI GS NFV-EVE 005 V1.1.1 (2015-12)44

The Network Services (NS) as defined by ETSI MANO , as shown in figure 36, would then be deployed on this SDN
enabled Virtualized infrastructure. Considering NS within a same VIM domain, a NS could go through multiple VNF
and potentially PNF. Virtual Links (VL) would be defined between the VNFs as shown in figure 6.5 of ETSI
GS NFV-MANO [i.2]. A set of VLs in a NS form a Network Connection Topology (NCT) as described in ETSI
GS NFV-SWA 001 [i.5]. A VNFFG might reference other information elements in the NS such as PNFs, VLs and
VNFs. A VNFFG also contains a Network Forwarding Path (NFP) element. In our case, SDN is used to setup a
Network Connectivity Topology (NCT) and several Network Forwarding Paths (NFPs). Then depending on the type of
traffic, different Network Function Path (NFP) will be used to carry the traffic through appropriate VNFs. As new
elements, VNFs or PNFs, are introduced in the service chain, a new NCT and a new set of NFPs is being defined.

NSs are typically managed by the NFVO based on their NSD which defines the VNFFG and NFPs.

Figure 36: VL between VNF (i.e. SFC VNF), and VNFFG/NFP as defined in ETSI GS NFV-MAN 001 [i.2]

In summary, as SFC defined earlier is mapped with the ETSI NFV architectural framework in the case where the SFC is
defined in the NFVI, the following elements are introduced:

• Some SFC service function might be Virtualized and become VNFC or VNF: SFC aware functions, SFC
unaware functions, SFC Classifier, SFC proxy, SFC/SDN Controller and SF Forwarder.

• Others might remain non Virtualised.

• The SFC/SDN controller is deployed in the NFVI and typically connects with the VIM.

• The SDN routers/switches, Virtualised or not, underlay or overlay, play the role of SF Forwarder.

• An NFV Orchestrator is introduced to deploy the VNF and manage the NS that will define the NCT and NFPs
used by the Service Function Chaining. It will interface with the VIM and the VNF Manager(s).

• Descriptors will be defined for VNF, VL, PNF, VNF-FG and NS.

This mapping is illustrated in figure 37.

ETSI

ETSI GS NFV-EVE 005 V1.1.1 (2015-12)45

Figure 37: SFC with SDN and NFV based on figure 3 ETSI GS NFV-INF 005 [i.1]

5.8.4.2 Service function chain in the tenant domain

The second case, illustrated in figure 38, is to consider the SFC in the tenant domain. In this case the SFF and the SDN
controller are VNFs and are part of a tenant NS. An appropriate NCT has been setup in the NFVI.

NOTE 1: SDN might be used by the NFVI to setup this NCT but this is internal to the NFVI and not visible to the
SFC.

Once the virtual resources have been allocated to a tenant, he might deploy his VNF, SFF and SDN controller, but also
SFC classifier and necessary SFC proxy, and define service chains depending on the classification of the traffic. These
service chains might be uploaded on the SDN controller to be implemented on the SF Forwarder and evolve
dynamically. Typically the service chains are often defined within a traffic steering/service chaining application that sits
on top of the Application Control Interface of the SDN Controller.

NOTE 2: Some implementation use the NFV Orchestrator to define these service chains, leveraging the fact that the
NFVO has the view of the end to end topology. In that case this might require the NFVO to have a direct
link to the SDN controller.

Figure 38: SFC in the Tenant Domain

ETSI

ETSI GS NFV-EVE 005 V1.1.1 (2015-12)46

5.8.4.3 Different options to control a dynamic service chain

The following figures 39 and 40 show how the two architectural options described earlier relate to the role of the
optional NFPs in the NSD.

Figure 39 depicts a configuration where service chaining solely relies on switching and routing capabilities provided by
the NFVI. The SDN controller in the NFVI receives all necessary instructions from the VIM. This includes instructions
on the virtual links to be setup and on the forwarding rules to be applied to particular flows. This approach requires
VNF Forwarding Graph descriptors to include one or more NFP descriptor.

Figure 39: NFV Service Chaining with Infrastructure Support

Figure 40 depicts a configuration where service chaining relies on virtual switching and routing capabilities provided by
VNFs as part of a Network Service (tenant). One of these VNFs is an SDN controller, which provides forwarding rules
to one or more virtual router or virtual switch implemented in the form of VNF as well. These forwarding rules
determine the paths that traffic flows between the other VNFs follow. These traffic flows are carried over a set of virtual
links established with the support of another SDN controller in the NFVI. This approach assumes Forwarding Graph
descriptors do not include any NFP descriptor.

NOTE: The SDN controller is here in the NFVI, but it could be elsewhere, i.e. in the VIM.

ETSI

ETSI GS NFV-EVE 005 V1.1.1 (2015-12)47

Figure 40: NFV Service Chaining in the Overlay (Tenant) Network

5.8.5 End to end carrier network with SFC, SDN and NFV

Within carrier networks, multiple access networks are being provided such as mobile, wifi, xDSL, cable, FFTH, etc.

As network and service providers move network functions into the cloud as shared resources in a data center, and want
to optimize the usage of these resources, especially for video traffic for instance, with NAT, firewall, video
optimization, TCP optimization etc., they introduce SFC and SDN in the data center for instance. Besides coping with
traffic increase and getting more flexibility, they also introduce NFV in the data center.

Typically in the example below, figure 41, the different access networks leverage the service function chaining
implemented in the NFVI of a common data center.

Figure 41: End to End Carrier Network with SFC, SDN, NFV in the Data Center

ETSI

ETSI GS NFV-EVE 005 V1.1.1 (2015-12)48

5.8.6 SFC, SDN, NFV with multi-domain, scalability, etc.

As the system evolves with multiple NFVI-VIM domains, scalability of the VNF, failover with geographic redundancy
across multiple domains, the SFC environment has to become very dynamic, flexible and performant. In the case of the
SFC in the NFVI, the NFVO has to define the service chains, NS, across multiple VIM with SDN controllers as
illustrated in figure 42. As the service chain evolve dynamically, their implementation through the different layers of
APIs, VIM API, SDN controller API, has to perform to avoid latency in the network. The NFVO might also need to
control the WIM in order to define chains that span across WANs.

Figure 42: SFC in the NFVI with SDN and NFV in a Multi-Domain, Scalable Environment

After the VNF2 scalability request which creates a VNF 2bis under NFVI-PoP 3, or the VNF2 failover with geographic
redundancy to NFVI-PoP 3, as illustrated in figure 42, new virtual links might have to be defined, with new VNF-FG as
shown in figure 43.

The service chain then evolves not only by defining new paths among static Network Connection Topology (NCT), but
also to adapt to dynamic NCT.

ETSI

ETSI GS NFV-EVE 005 V1.1.1 (2015-12)49

Figure 43: SFC in the NFVI with SDN and NFV in a Multi-domain and virtual links

Latency has been mentioned when provisioning a service chain through a layer of APIs. But requirements could also
come with service chains themselves, such as guaranteed low latency over a given E2E network service, which brings
some further enhancements of the ETSI NFV specifications in terms of resource capacity exposure and E2E path
latency calculation before allocating and configuring NFPs, but also proper monitoring to measure this latency.

6 Functional recommendations

6.1 Introduction
The current list of recommendations is the following:

REC#1:

• Use case: SDN controller and associated SDN network resources need to be able to communicate, especially
during scaling and migration of any of these components.

• Recommendation: it is suggested that a requirement be specified for the NFV architectural framework to
enable a given SDN controller to always be able to communicate with its associated SDN resources and
provide a mechanism to associate the two.

• Comment: this is particularly sensitive during scaling or migration of any of these components. This
communication and the association procedure have to be made in a secure way. When the SDN technology is
used in the tenant domain, the above requirement might be fulfilled by grouping the VNFs and/or PNFs
corresponding to these components in the same NS and by specifying suitable requirements in the associated
virtual link descriptors.

• Clause: 4.2.

REC#2:

• Use case: SDN controller is a PNF.

• Recommendation: it is suggested that a requirement be specified for the NFV architecture framework to
support SDN controller being a PNF.

ETSI

ETSI GS NFV-EVE 005 V1.1.1 (2015-12)50

• Comment: further study might be conducted to analyse the impact of having an SDN controller PNF
interacting with the NFV architecture framework to access NFV resources or SDN controller VNF for
instance.

• Clause: 4.3.4.

REC#3:

• Use case: VNF might be deployed in Docker® containers. Virtualised SDN components (NW resource,
controller or application) might be VNF or VNFCs, but also SDN controller might have to configure virtual
links and network forwarding path across resources in Docker.

NOTE: "Docker is a registered trademark of Docker, Inc. This information is given for the convenience of users
of the present document and does not constitute an endorsement by ETSI of the product named.
Equivalent products may be used if they can be shown to lead to the same results".

• Recommendation: it is suggested to further study NFV management with SDN control & Docker container
based VNF.

• Clause: C.3.2.

REC#4:

• Use case: interaction between tenant and infrastructure controller, or interactions between multiple SDN
controllers as illustrated with East-West interface for instance that might be located in different building
blocks on the NFV architecture.

• Recommendation: it is suggested to further study the controller-controller interfaces.

• Comment: for the tenant to infrastructure interactions, one of the key points of such a study will be to assess
about using for this purpose dedicated, direct inter-controller interfaces (realized by any of the means already
proposed, from protocols like BGP to specialized topology abstractions directly connected to the SDN model
being used by the controllers), or to employ specific messages or parameters through the MANO stack.

• Clause: 4.4.1.

REC#5:

• Use case: intent-enabled interface is being used to interface with the SDN controller.

• Recommendation: it is suggested to further study the impact of intent-enabled interfaces on the NFV
technologies.

• Comment: intent-enabled interfaces will constitute one of the essential mechanisms for providing network
users access to network services, and therefore constitute a key aspect for interaction among VNFs and the
NFVI, among VNFs themselves, and among NFV-enabled services and their users.

• Clause: 4.4.1.

REC#6:

• Use case: the NFVO might need access to an SDN controller or to an SDN application, in order to pass
information between the 2 entities, such as topology information.

• Recommendation: It is suggested that a study be started to assess whether to support an SDN controller
orchestration interface between the NFVO and an SDN controller in the cases where the SDN controller is
implemented as a VNF or inside the NFVI. The study would also assess whether to support the same interface
between the NFVO and an SDN application.

• Clause: 4.4.3.

REC#7:

• Use case: in case the SDN controller is a tenant SDN controller (case 4), an interface might exist with the
infrastructure SDN controller (case 3).

ETSI

ETSI GS NFV-EVE 005 V1.1.1 (2015-12)51

• Recommendation: it is suggested that further study is conducted on the interactions and interface needed
between a tenant SDN controller and an infrastructure SDN controller.

• Clause: 4.5.1.

REC#8:

• Use case: in case of paths set up in an NFV architecture with different service classes across multiple VIM and
multiple WAN domains, the respective WAN domain capabilities and connectivity endpoints need to be
available.

• Recommendation: it is suggested that WAN domain capabilities and connectivity end points requirements be
specified when one or more WAN domains are involved via WIM.

• Clause: 5.3.4.2.0.

REC#9:

• Use case: in case NFVI-PoP interconnect via a WAN, a point-to-point connection between two NFVI-PoPs is
transparently carried across the WAN over a transport tunnel by means of technologies such as MPLS or IEEE
802.1ad. Each endpoint is aware of the specific characteristics (e.g. bandwidth capacity) of the inter-NFVI-
PoP connection, but the WAN network nodes are only aware of the transport pipe. Thus, the lifecycle of the
inter-NFVI PoP inner connection (e.g. establishment, modification, release) is controlled by the intervening
VIMs, but not the WAN domain(s) in between.

• Recommendation: it is suggested that further study is conducted to clarify how VIMs might request
connectivity to the WAN domain in case of interconnected VIMs via WAN.

• Comment: more details can be found in the present document, clause 5.3.2.

• Clause: 5.3.4.2.1.

REC#10:

• Use case: the inner connection management controlled by the intervening VIMs might request direct
connectivity across the WAN domain.

• Recommendation: it is suggested that further study is conducted on how VIMs might request direct
connectivity across the WAN domain.

• Comment: VIM could connect to the WAN domain via OSS, via NFVO or directly.

• Clause: 5.3.4.2.1.

REC#11:

• Use case: NFVI-PoPs might be interconnected via one (figure 15) or multiple (figure 16) WAN domain, each
being managed by the same or different providers. In case of different providers, they might be different
NFVO (figure 16) managing different WAN domains.

• Recommendation: it is suggested that further study be conducted to analyse the relationship between each
NFVI-PoP and the respective WAN domains/providers , in particular with regards of the role of the NFVO.

• Clause: 5.3.4.2.2.

REC#12:

• Use case: a VNF processing might trigger a modification of network path and require changes to a dynamic
VNF service chaining. The VNF instance requesting that change might need to ask the NFVO to access to the
northbound interface of an SDN controller to implement that change.

• Recommendation: it is suggested to further study this sort of direct access from a VNF to the NFVO to
evaluate if a new interface is needed between VNF and NFVO in the ETSI NFV architecture.

ETSI

ETSI GS NFV-EVE 005 V1.1.1 (2015-12)52

• Comment: today interfaces exist between VNF and VNF, or a VNF and its VNF manager, but not to an SDN
controller in the NFVI or VIM. The NFVO would validate the request, check that SDN controller location and
authorize access or perform the change.

• Clause: 5.6.2.

6.2 Functional recommendations related to security
REC#SEC.1:

• Use case: attacks mounted via the Forwarding Plane. Examples are reconnaissance attacks, DoS and resource
exhaustion attacks and vulnerability exploits.

• Recommendation: it is suggested that a requirement be specified to prevent attacks mounted via the
Forwarding Plane against SDN switches and controllers.

REC#SEC.2:

• Use case: attacks from the control network. Examples are attacking the integrity and confidentiality of the
controller-switch traffic, exploiting vulnerabilities of controller-switch interface implementations, DoS and
reconnaissance attacks.

• Recommendation: it is suggested that a requirement be specified to mitigate attacks from the control network.

REC#SEC.3:

• Use case: attacks via the SDN Controller's Application Control Interface. Examples are vulnerable Application
Control Interfaces, malicious or faulty applications running as part of the controller, unsecure protocols at the
NBI, applications that are not authenticated and authorized, malicious or unexpected network control by
(multiple) applications (rerouting flows, changing header fields to evade security policies also between
different tenants).

• Recommendation: it is suggested that a requirement be specified to mitigate attacks via the SDN Controller's
Application Control Interface.

REC#SEC.4:

• Use Case: Attacks against controllers and switches via the Virtualised environment. Compromising the
Virtualised environment (e.g. hypervisors) might also compromise Virtualised switches, controllers and
applications. Examples are unreliable isolation between the different switches or control of SDN controllers
through errors in hypervisors and virtual machines.

• Recommendation: It is suggested that a requirement be specified to mitigate attacks against controllers and
switches via the Virtualised environment.

6.3 Functional recommendations related to SDN controller
REC#13:

• Use Case: SDN controller located in the NFVI.

• Recommendation: it is suggested that a further study is conducted to clarify the exact location of an SDN
controller in the NFVI according to NFV-INF architecture building blocks (ETSI GS NFV-INF 005 [i.1],
figure 2).

• Clause 4.3.4.

REC#14:

• Use Case: the SDN controller might request the dynamic creation, deletion, modification of VNF Forwarding
Graphs under its control.

• Recommendation: it is suggested to further study the NS lifecycle management request coming from SDN
controller to the NFV Management & Orchestration.

ETSI

ETSI GS NFV-EVE 005 V1.1.1 (2015-12)53

• Comment: this use case only makes sense in the case of an SDN controller in the tenant domain requesting
modification of a VNFFG in the same domain.

REC#15:

• Use Case: the SDN controller might use a semi-static resource inventory of various VNF types and instance as
components in its own service offerings.

• Recommendation: it is suggested to further study the access or synchronization of NFV MANO repositories
with SDN repositories, i.e. for VNF instance repository.

• Comment: this use case only makes sense in case of an SDN controller in the tenant domain. The NFV
architecture holds metadata and instance repository. Interfaces to these repository are not clearly defined
today.

REC#16:

• Use case: an SDN controller might relocate traffic to make better use of existing resources or might request
additional resources. Rather than re-routing traffic, the NFV environment scales and migrates resources, driven
by its own measurements or by request from another domain.

• Recommendation: it is suggested to further study the case where traffic steering or some capacity issue triggers
actions and has to choose between rerouting traffic, i.e. asking SDN controller to reroute traffic, or scale
resources, VNF or NS.

• Comment: the SDN controller has some understanding of the NW and the available options, NFV MANO has
some understanding of the available resources and virtual functions, these 2 are complementary and could be
coordinated to make best decision while optimizing resource usage & deliver best quality of service.

6.4 Functional recommendations on connectivity and interfaces
REC#17:

• Use case: MANO functional entity might request an SDN controller to change SDN traffic redirections
dynamically at line rate.

• Recommendation: it is suggested that a requirement be specified for the interface between relevant MANO
functional entities and SDN controller to provide low latency.

• Clause: 5.2.2.

REC#18:

• Use case: when presented with a service request, an SDN controller chooses instances of VNFs, FGs, and non-
NFV resources, according to criteria that might include endpoint location, geographic or topological proximity
of available resources, delay, aggregate or fine-grained load, monetary cost, fate-sharing, or other factors.

• Recommendation: it is suggested to further study the interface between NFV MANO and the SDN controller
to address some of the SDN controller request such as monetary cost and delay for instance.

• Comment: some of these parameters are technical and might come from the infrastructure, i.e. delay, but
others might be more business related, i.e. cost.

REC#19:

• Use case: MANO Network Forwarding Path provides classification and selection rules as attributes. These
attributes and associated policies are passed to the SDN controller that has its own policies. Some correlation
has to be performed.

• Recommendation: it is suggested to further study policy management between NFV MANO and SDN
controller.

• Clause: B.4.4.

ETSI

ETSI GS NFV-EVE 005 V1.1.1 (2015-12)54

REC#20:

• Use case: some resources of an NFVI might be physically dedicated for use by NFV-MANO, but many
resources, especially in the WAN, will be shared with other NFV network domain, or with other non- NFV
network domain, and in particular with SDN. NFV-MANO and SDN coordinate their claims to the shared
resources.

• Recommendation: it is suggested to further study the coordination of concurrent claims coming from SDN
controller or NFV-MANO to shared resources in an NFV environment.

6.5 Functional recommendations on NFV Management and
Orchestration

6.5.1 General

This clause describes functional recommendations on the NFV-MANO as following the general principles cited in
ETSI GS NFV-MAN 001 [i.2] (particularly clauses 5.6.2 and 5.6.3) and in clause 5.2.2 of the present document.

The following list expresses the non-exhaustive recommended functionalities performed by the NFV-MANO. Those
functionalities might be exposed by means of interfaces consumed by the MANO functional blocks or by authorized
external entities:

• inter-administrative domain connectivity coordination;

• support of operations to an SDN controller below the VIM;

• support of ordering and charging across multiple administrative domains.

6.5.2 Inter-administrative domain connectivity coordination

The inter-administrative domain connectivity coordination is responsible for managing virtual links dynamically and
consistently on top of the underlying NFVI network resources across multiple administrative domains by means of
programmatic interfaces produced by the network controller in each administrative domain. In the setup and control of
virtual links, the inter-administrative domain connectivity coordination requests each administrative domain to play any
of the three roles: sender, receiver or relay domain.

• The sender domain is required to be informed of which addresses and/or identifiers are destined and which
administrative domain(s) are the next.

• The receiver domain is required to be informed of which addresses and/or identifiers are received.

• The relay domain is required to be informed of which set of addresses and/or identifiers is relayed and which
Administrative Domain(s) are the next.

The inter-administrative domain connectivity coordination informs them of their required information.

REC#21:

• Use case: the NFV-MANO functional blocks or authorized external entities might set up partial virtual link
within each administrative domain dynamically and consistently across multiple administrative domains based
on the result of the inter-administrative domain connectivity coordination; in such cases for inter-VIM SDN as
described in clause 5.3.4.2.

• Recommendation: it is recommended that a requirement be specified for the NFV-MANO to ensure that
administrative domain(s) are provided with enough information to ensure that the proper network connectivity
role is performed by the SDN controller(s), including:

- For SDN across VIM in different NFVI-PoP, with pre-allocated static WAN connectivity service (see
clause 5.3.4.2.1), the inter-administrative domain connectivity coordination (which is played by VIM of
a sender administrative domain) is informed about destination addresses and/or identifiers of virtual links
to reach the receiver administrative domain.

ETSI

ETSI GS NFV-EVE 005 V1.1.1 (2015-12)55

- For SDN across VIM in different NFVI-PoP with SDN-based NaaS between NFVI-PoPs (clause
5.3.4.2.2), the inter-administrative domain connectivity coordination (which is played by WIM) is
informed about origin and destination addresses and/or identifiers of virtual links so that WIM might
determine the role of each administrative domain to configure the end-to-end connectivity.

6.5.3 Support of operations to an SDN controller below the VIM

REC#22:

• Use case: the VIM may need access to an SDN controller that is in the NFVI.

• Recommendation: it is suggested that a requirement be specified for the Nf-Vi interface to support operations
going to an SDN controller.

6.5.4 Support of ordering and charging operations between multiple
administrative domains

REC#23:

• Use Case: some use cases address interworking between multiple administrative domains (different trust
domains), sometimes between competitive companies. Some NFV services span across multiple administrative
domains with NFV/SDN interworking. These cases will require attention to many factors such as ordering and
charging mechanisms, inter-administrative domain security considerations and the need for standardized
service descriptions and identifiers.

• Recommendation: it is suggested to further study the requirements for interworking between multiple
administrative domains using NFV and SDN, including ordering, charging, and inter-administrative domain
security requirements.

• Clause: 5.5.3 figure 27.

6.6 Recommendations on operational aspects
The following are proposed operational recommendations based on IETF RFC 5493 [i.18] which discusses supporting
conversions between distributed control and centralized control of network resources. These scenario are considered
when introducing SDN in a network or evolving the existing SDN infrastructure: new SDN controller instance,
migration, etc.

REC#24:

• Use case: transfer from/to management plane (or control Plane) to SDN control.

• Recommendation: it is suggested that a requirement be specified to transfer the ownership of resources from a
management plane (or control plane) to SDN control (and vice versa).

REC#25:

• Use case: infrastructure consistency during control transfers from/to management plane (or control Plane) to
SDN control.

• Recommendation: it is suggested that a requirement be specified for the infrastructure resources and the NFV
environment need to stay in place throughout any control transfer or control update process. Services need to
follow the same path through the network and use the same network resources.

REC#26:

• Use case: no Disruption of user traffic or alarms towards end users during control transfers from/to
management plane (or control plane) to SDN control.

• Recommendation: it is suggested that a requirement be specified for control transfer process not to cause any
disruption of user traffic. No alarms have to be generated towards the end users.

ETSI

ETSI GS NFV-EVE 005 V1.1.1 (2015-12)56

REC#27:

• Use case: no alarms to end users traffic during control transfers from/to management plane (or control plane)
to SDN control.

• Recommendation: it is suggested that a requirement be specified for no alarms to be generated towards the end
users during control transfers.

REC#28:

• Use case: synchronization of control state during conversion, transferring control from management plane to
SDN control.

• Recommendation: it is suggested that a requirement be specified to assure that the control state of the service
path is synchronized across the resources before the control conversion is considered complete.

REC#29:

• Use case: support for more than one control entity.

• Recommendation: it is suggested that a requirement be specified to be possible to segment a service
path/resources under different control domains (co-existence).

REC#30:

• Use case: failure of transfer, transferring control from management plane to SDN control.

• Recommendation: it is suggested that a requirement be specified to be possible for a transfer from one control
entity to another to fail in a non-destructive way, leaving the ownership unchanged and without impacting
traffic.

• Comment: if during the transfer procedure issues arise causing an unsuccessful or unexpected result, it needs
to be assured that: a) user traffic is not affected, b) the service path state is not impacted. Point b) assures that
even in case of some failure during the transfer, the state of a service path/resources is brought back to the
initial one and is fully under the control of the owning entity.

REC#31:

• Use case: security and policy considerations, transferring control from management plane to SDN control.

• Recommendation: it is suggested that a requirement be specified to support security and policy mechanism
that would prevent from malicious intervention during transfer of control from management plane to SDN
control.

• Comment: allowing control transfers introduces a possibility of malicious intervention. It is recommended that
appropriate security and policy mechanisms are supported.

ETSI

ETSI GS NFV-EVE 005 V1.1.1 (2015-12)57

Annex A (informative):
SDN in ETSI NFV POC

A.0 Introduction
This annex provides a summary of the ETSI NFV PoCs demonstrations involving the SDN technology. Any deviation
between the solutions implemented for these PoCs and the ETSI NFV architectural framework is not to be understood
as a proposal to modify this architectural framework.

A.1 POC#1: Open NFV Framework Project

Figure A.1: POC#1 - Open NFV Framework Project

Table A.1

Describe Application This POC provides a high-level abstraction over both NFV and SDN for
unified Management and Operations. It presents a Northbound API to
OSS/BSS systems that exposes a Catalog of network capabilities and
hides MANO complexity, providing the necessary abstractions for
management to express its intent over infrastructure by policy without
considering implementation details. It supports feedback loops for fully
dynamic services, which might leverage active monitoring to drive re-
evaluation of policies (real-time and batch analytics) for network
operations to scale, heal, move and terminate functions to meet SLAs.
It supports an end-to-end solution for a multi-vendor, multi-technology,
multi-protocol and multi-PoP environments with dynamically composed
service chains that are "network aware". System demonstrations extend
from core to cRAN, where microcell LTE networks are instantiated using
the same methods as core functions such as IMS. A single instance
might support VM deployments via OpenStack or other mechanism, as
well as Docker containers.

ETSI

ETSI GS NFV-EVE 005 V1.1.1 (2015-12)58

The MANO middleware platform for this POC features an information-
model based fabric for declaring connections and composing services, as
well as a run-time with lifecycle management. It might perform the
functions of NFV Orchestrator and VNF Manager for a unified
architecture, but also serves as an Orchestrator of Orchestrators /
Federated Controller.
It supports a catalog of VNFs provided by eco-system partners including:
IMS, DPI, EPC and eNodeB.
This POC is deployed in a lab, with hardware and integration services, as
well as switches, acceleration and OpenStack orchestration.

Role of SDN DPI and cRAN aspects of the system require SDN level policies to be in
place. In particular, the DPI VNFs requires that core functions such as
IMS have their packets routed through and/or copied to its ports so that it
might analyse the traffic. Likewise, with the cRAN, flow level policies
need to be in place to ensure packets from connected devices are
chained properly through the DPI components.

Role of NFV Orchestrator The NFV orchestrator is used to translate declarative policies into
dynamic processes, in this POC this involves multi-variant constraint
satisfaction to calculate deployment manifests and then the correct steps
for realizing a service. Part of this process involves evaluating the
requirements for each component, so for instance, when a VNF for DPI is
used the NFV orchestrator sees the requirement that packets have to be
mirrored to one of its ports, it then scans the connected Infrastructure (or
VIMs) to see what capabilities are available, and in this case settles on
both the use of the OpenStack Open vSwitch plugin for instantiation, and
then direction use of Open vSwitch through OpenFlow for subsequent
configuration. From there the NFV Orchestrator is charged with
generating an interface to each components, and determining the order
and payloads of messages sent across each interface.

Network Controller details Given OpenStack is the platform used for the ETSI NFV VIM, Open
vSwitch plug-in is used for basic establishment of routers/networks, then
the NFV orchestrator interfaces directly with Open vSwitch for the
established networks.

Network controller to NFV Orchestrator
interface and function

As detailed above, the NFV orchestrator interfaces both with the
Openstack Neutron REST API and directly with the Open vSwitch NC
using its REST-based OpenFlow API.

Data Forwarding Plane As provided by the Open vSwitch.
Data Control Plane (Programming plane) Our focus is on the determination and generation of proper SDN level

policies based on the overall service requirement. Here the control plane
issues FlowMod commands to affect the changes in packets in the Data
Forwarding Plane, for instance to ensure chaining of IMS packets to DPI.

ETSI

ETSI GS NFV-EVE 005 V1.1.1 (2015-12)59

Lessons learned and (new) requirements The overall goals of our POC are focused on high-level orchestration of
VNFs, but it became evident early on that the SDN level would need to
be included even for simple applications. The out of the box OpenStack
does not have the capabilities necessary for advanced use cases. To
overcome this, Neutron Plug-ins might be used to add SDN capabilities
to the OpenStack, however the two paths this offers each have
limitations. People would either create your own Plug-in, at best creating
a customized software extension with limited reuse, or they might re-use
one of the many existing Plug-ins (Open vSwitch, OpenDaylight, ML2,
etc.). In any case, concepts of SDN will be a requirement of any
orchestrator, however writing them to any specific plugin will limit their
applicability, and it is unclear version to version which plug-ins will
survive in their current form. The API evolution in OpenStack itself is
problematic; the flow through to the semantics involved with using the
plugins compounds this. For this POC, a more robust solution was to
utilize a plugin such as the Open vSwitch minimally to simply instantiate
the underlying structure, then to communicate with it directly using the
underlying standard, establishing a pattern that is decoupled from the
APIs of any specific plugin and portable to other NFV VIM. This
represented a natural extension to our service model to include base
concepts of flow-based requirements to our common set of abstractions.
Given our declarative approach, this meant extending our information
model with a few additional SDN/OpenFlow-like commands/constraints.
Our generalized approach to synthesizing interfaces allowed to generate
an OpenFlow interface using the same techniques as are used for
communicating with OpenStack, further demonstrating the value in a
holistic system for orchestration of both NFV and SDN layers involved in
cloud solutions.

Gaps Identified As this POC has demonstrated, it wraps and extends emerging protocols
and standards to provide early worked examples that in turn accelerate
protocol/standard evolution and adoption, in a positive self-reinforcing
loop. It allows minimum viable protocols/standards to be promoted early
and iterated quickly in a live testbed/system.
The problem is that OpenStack is low-level tooling with limited
abstractions.
The gap is that ETSI NFV does not describe a MANO application
architecture, without which implementations, as has been evidenced by
many NFV vendor demonstrations and Cloud deployments generally,
devolve into a sea of static scripts.
The implementation gap is a historic challenge in SDO community.
This POC provides a generalized platform (MANO middleware), a high-
level abstraction over NFV and SDN, which provides flexibility in a
diverse and evolving environment. It provides a bridge for implementing
ETSI NFV specifications along with other related protocols and standards
to achieve desired industry goals.

ETSI

ETSI GS NFV-EVE 005 V1.1.1 (2015-12)60

A.2 POC#2: Service Chaining for NW function selection
in Carrier Networks

Figure A.2: POC #2 Service Chaining for NW function selection in Carrier Networks

ETSI

ETSI GS NFV-EVE 005 V1.1.1 (2015-12)61

Table A.2

Describe Application This PoC demonstrates the concept of Service Function Chaining (SFC).
This PoC verify a new SFC method which works on carrier networks with
Virtualised NW functions (VNFs). VNFs are provided by several vendors
and some subjects will be clarified to consider in terms of interoperability.

Role of SDN SDN is used for classification of user traffic, adding labels to packet and
packet forwarding with tunnelling protocol. Our developed method adds
labels to each packet to achieve SFC. In this method, an SDN enabled
edge switch classifies packets and adds labels that show the Service
Function (SF) the packet to be forwarded.

Role of NFV Orchestrator The NFV Orchestrator has roles to manage user's service and VNFs,
create service chain of each user. In this POC, an original NFV
orchestrator was created and customized for this application.

Network Controller details In this PoC In this POC, the SDN Controller (Ryu) is used to manage
SDN enabled switch. Ryu [i.16]

Network Controller to NFV Orchestrator
interface and function

In this POC, REST APIs are used between NC and NFV orchestrator,
although the REST message description is our original.

Network Controller to Data Plane Control
interface and function
(Data Forwarding Plane)

In this POC environment, MPLS label is tentatively used as an SFC
(service Function Chain) label and OpenFlow vswitch as a forwarding
function in edge switch in order to implement the SFC method and
evaluate its efficiency.

Data Control Plane (Programming plane) The NFV Orchestrator exposes to users the interfaces necessary to
contract service functions. The contracted services are translated into
OpenFlow flow entries by the NFV Orchestrator.

Lessons learned and (new) requirements The network functions working as routers require virtual interfaces to
belong to various network segments. In SFC, VNFs might be connected
to/from various VNFs; thus, designing IP addresses will be difficult. an
OpenFlow controller has been temporally customized to reply to the
dummy ARP packet to make neighbour VNFs work as default gateways.

Gaps Identified The important point of our PoC is that new method is suggested to create
a VNFFG and service function chain inside the NFVI. Therefore,
intelligent load balancing is not considered. When performing load
balancing of SFC in realistic environment, the service chain will be
controlled dynamically depending on the resources of the VM or demand
of VNFs. In that case, service chains are reconstructed in real time. In
order to control the network in this way, taking advantage of the SDN is
important. Therefore, the control mechanism in conjunction with load
balancing of VNF is required.

ETSI

ETSI GS NFV-EVE 005 V1.1.1 (2015-12)62

A.3 POC#8: Automated Network Orchestration

Figure A.3: POC#8 Automated Network Orchestration

ETSI

ETSI GS NFV-EVE 005 V1.1.1 (2015-12)63

Table A.3

Describe Application This PoC demonstrates the use of an open source orchestration system
to automate the instantiation and scaling of a typical telecom messaging
application as VNF, consisting of multiple VNFC. The application is not
NFV-adapted and requires internal layer-2-connectivity for non-IP traffic
and pre-programmed MAC addresses on the interfaces.

Role of SDN SDN technology is used to implement the MAC forwarding required to
connect the clustered VNFC components within the VNF and to connect
the VNF to the network. The northbound abstraction of a L2 network is
provided by an SDN agent function in the SDN controller and consumed
by the SDN plugin component in Neutron. The required forwarding in the
virtual switches is implemented using OpenFlow as a south bond
protocol.

Role of NFV Orchestrator
Network Controller details The controller used in this PoC is an own development written in Erlang.

At the time this PoC was planned, there were no sufficient open source
alternatives available. In the meantime functional equivalents based on
OpenDaylight are used in similar PoC work.

Network Controller to Orchestrator
interface and function

The SDN agent component in the controller provides a Rest API to the
SDN plugin in Neutron, which in turn provides a Rest API to the NFV
orchestrator (the un-modified Openstack Networking API).

Data Forwarding Plane In the PoC environment, forwarding has been provided using
OpenFlow-1.3 capable virtual switches. The PoC used the CPqD
reference implementation of a software switch
(http://cpqd.github.io/ofsoftswitch13/), since switching performance was
not the primary focus of this PoC.

Data Control Plane (Programming plane) All needed network services, such as MAC learning, broadcast, flooding,
or multicasting, are implemented and controlled via the OpenFlow
interface. No native L2 switching function is used in the virtual switches.
An SDN daemon in the host connects newly created virtual NICs to the
OpenFlow switch and maps their ID's to the Openflow ports.

Lessons learned and (new) requirements The OpenFlow implementation provides an extremely flexible control
over the implemented services based on the OpenFlow 1.3 forwarding
abstractions. While this could be seen as overly complex for plain L2
services, it allows flexible integration of distributed routing, load
balancing, or forwarding graphs without changes in the control
architecture or vSwitch implementation.

Gaps Identified The approach shown requires a highly performant Openflow-capable
dataplane in the vSwitch, which is not available in open source products
today. The requirement is line-rate for multi-table Openflow pipelines
using one or maximum two cores per server.
In order to make use of the aforementioned flexibility of the southbound
resource control interface, more work is required to provide standardized
northbound abstractions of the required functionality for OpenStack,
OpenDaylight, and the NFV orchestrator in order to assure exposure of
networking capabilities all the way from OSS/BSS to the actual
forwarding.

http://cpqd.github.io/ofsoftswitch13

ETSI

ETSI GS NFV-EVE 005 V1.1.1 (2015-12)64

A.4 POC#13: Multi-Layered Traffic Steering for Gi-Lan

Figure A.4: POC#13 Multi-Layered Traffic Steering for Gi-Lan

ETSI

ETSI GS NFV-EVE 005 V1.1.1 (2015-12)65

Table A.4

Describe Application This POC demonstrates the concept of multi-layered traffic steering
system, i.e. support the definition of steering rules at different layers of
the networking stack and enforce those decision at the most appropriate
(Virtualised) device hence optimizing the utilization of network
components and, accordingly, reducing the need for high capacity high
level network components. In addition, this PoC, demonstrates the
Infrastructure and VNF-external Load Balancing models as described in
ETSI GS NFV-SWA 001 [i.5].

Role of SDN SDN serves two roles: 1. An SDN enabled forwarding fabric is used for
L3-L4 traffic steering; and 2. The SDN enabled forwarding fabric is also
used to support elasticity of the L7 traffic steering fabric, i.e. traffic that
might require L7 analysis is distributed, by the SDN enabled fabric,
among the different instances of the L7 traffic steering virtual appliance.
The traffic steering control application sits on top of an SDN controller
and programs thru it both the L3-L4 traffic steering flows as well as the
L7 traffic distribution flows.

Role of NFV Orchestrator The NFV Orchestrator is responsible for the provisioning of all the
components. The goal is to integrate the steering functionality with the
NFV Orchestrator , but initially the PoC will be based on vanilla
OpenStack

Network Controller details In this POC, a vendor SDN controller is used as a virtual appliance (a
VNFC). See gaps

Network controller to NFV Orchestrator
interface and function

Not applicable (see gaps)

Network Controller to Data Plane Control
interface and function
(Data Forwarding Plane)

In this POC, OVS is used as the L3-L4 steering component as well as the
load balancer for the L7 steering elastic fabric. In a more realistic
environment, the recommendation is to provide these functionalities with
physical switches both for performance and for flexibility in the
deployment of the different VNFCs that comprise the network service
(see gaps). The interface between NC and the OVS is OpenFlow (1.3 or
higher)

Data Control Plane (Programming plane) The Steering Control application exposes to users the interfaces
necessary to define service chains and steering rules. These rules are
translated into OF flow entries and/or ADC steering rules

Lessons learned and (new) requirements On-going - TBD
Gaps Identified In its current incarnation all the components in the PoC, including the NC,

the OVS and the value added services (VAS) VMs, are packed together
as a single VNF. In more realistic environment the VASs are not likely to
be part of the steering VNF and might be distributed over the entire NFVI,
hence a single OVS is not likely to be the proper solution. Instead, the
steering VNF needs to be able to create and manage the steering flows
on the physical network or at least in a partition of the physical network.
Whether this is done directly by the controller embedded in the VNF or by
an infrastructure controller in the NFVI the interfaces from VNF to
infrastructure switch and/or controller are not defined. Moreover, then
mechanisms (partitioning, prioritization, etc.) to enable VNFs to influence
traffic flows in the physical infrastructure are not defined.

ETSI

ETSI GS NFV-EVE 005 V1.1.1 (2015-12)66

A.5 POC#14: Forces applicability for NFV and integrated
SDN

Figure A.5: POC#14 Forces applicability for NFV and integrated SDN

ETSI

ETSI GS NFV-EVE 005 V1.1.1 (2015-12)67

Table A.5

Describe Application Demonstrate the applicability of the ForCES framework, both in terms of
modelling and interfacing. Show how the ForCES modelling language
might be used to model the infrastructure as well as the network
functions. Utilizing only the ForCES protocol on modelled entities, to
demonstrate control of both the infrastructure and the NFs. Provide a
view on how to use a single framework (model and protocol) for the
whole NFV architecture.

Role of SDN SDN is applied in two specific cases in this PoC. The first is to control
and manage the networking resources of the infrastructure, connect
containers and VMs. The second is the VNF itself, which is modelled and
abstracted using the ForCES model and is controlled by an EM
application.

Role of NFV Orchestrator The NFV orchestrator is an application on top of the VIM controller
requesting to set up the VMs and connect them together. The NFV
orchestrator in this PoC is a combined SDN & NFV orchestrator

Network Controller details There are actually two different groups of controllers and applications
using the controller. The first group is the EM CEs and applications
controlling the VNFs. The second group is the VIM which is acting as the
controller for the networking between VMs. It is important to highlight that
the controller is in fact both and SDN & NFV controller, as the Hypervisor
is also being modelled using the ForCES model, and as such the
controller is both an SDN & NFV controller.

Network Controller to NFV Orchestrator
interface and function

The NFV orchestrator being an application on top of the controller is
using ForCES specific APIs to request, provision and control the network
resources.

Data Forwarding Plane All data plane forwarding is performed by the VNFs.
Data Control Plane (Programming plane) Both, the EM control applications program the VNFs and the VIM

program the network infrastructure through the ForCES protocol
interface.

Lessons learned and (new) requirements The ForCES framework is applicable to both SDN and NFV.
Gaps Identified The interface between EM and NFV has not been specified and might

lead to vendor lock-ins for complete Virtualised solutions. Opening up
such an interface using SDN techniques will allow more stakeholders to
develop solutions and thus provide more variety and flexibility for
operators to select the best possible solutions.

ETSI

ETSI GS NFV-EVE 005 V1.1.1 (2015-12)68

A.6 POC#15: Subscriber Aware Sgi/Gi-lan Virtualisation

Figure A.6: POC#15 Subscriber Aware Sgi/Gi-lan Virtualisation

ETSI

ETSI GS NFV-EVE 005 V1.1.1 (2015-12)69

Table A.6

Describe Application This POC demonstrates:
1. A subscriber aware method for service chaining intrinsically

provided by the NFVI.
2. How a subscriber aware service chaining method applied in the

NFVI might enable Virtualisation of functions on the Sgi/Gi
interface and provide elasticity to VNFs.

3. How a subscriber's specific service function element chain is
selected and is composed from a catalog of individual functions,
where these functions might be hosted within a NFVI-PoP or
across NFVI-PoPs.

4. How Virtualisation might enable programmability of network
driven functions that are selected by subscribers on a self-
service portal.

Role of SDN SDN provides the fabric through which the traffic from/to the P-GW
to/from PDN passes. It creates steering so that traffic might be delivered
to/from VNFs. While VNFs interconnect on "an Ethernet interface" to the
fabric, the next hop VNF is chained on a per subscriber basis.
The PoC uses an SDN controller to dynamically configure the Ethernet
switches using OpenFlow. In the PoC subscribers are added to the
network. The SDN controller configures the end-to-end service chaining
path for each new subscriber.

Role of NFV Orchestrator The VIM is OpenStack. It creates/manages the virtual machines
associated with VNFs.
The networking component of OpenStack (Neutron) assigns IP/Mac
addresses, but is not responsible for setting up interconnectivity for the
VM, beyond configuration of vNIC.
The NFV orchestrator is not yet used in this POC.

Network Controller details Distributed controller that is federated using a distributed mapping
service (IETF LISP framework and ODL based). Controller sets up
connectivity from vNIC, vSwitch, to TOR and Subscriber aware switch.
Interconnectivity between TOR is via. Overlay that in PoC is beyond
scope of NC.
The Network Controller used is an SDN Controller. It is based on the
OpenDayLight controller.

Network Controller to NFV Orchestrator
interface and function

The SDN network controller interfaces with Openstack Neutron to keep
track of VNFs. This knowledge is global and distributed.
The integration of the Network Controller to the NFV orchestrator is
planned for the 2nd stage of the PoC.

Data Forwarding Plane Open Flow
The data plane uses OVS switches. The switches are used to establish
per subscriber service chains.
The switches are configured using OpenFlow.

Data Control Plane (Programming plane) Interface with policy engine so that per subscriber flows might be setup
when subscriber connects. This helps make the network programmable
on a per subscriber basis.

Lessons learned and (new) requirements
Gaps Identified The PoC identified a gap where the SDN controller, which is a VNF, does

not have a way to configure the infrastructure, according to the current
NFV reference architecture.
Another gap identified is the lack of a standard North Bound API to the
SDN controller. There was not a standard way to connect the SDN
controller to the orchestrator.

ETSI

ETSI GS NFV-EVE 005 V1.1.1 (2015-12)70

A.7 POC#16: NFVIaaS with Secure SDN-controlled WAN
Gateway

Figure A.7: POC#16 NFVIaaS with Secure SDN-controlled WAN Gateway

Figure A.8: POC#16 Mapping to NFV end-to-end architecture framework

ETSI

ETSI GS NFV-EVE 005 V1.1.1 (2015-12)71

Table A.7

Describe Application This POC evolves around using a cloud orchestrator, with OpenStack
integration, to provision a Virtualised network topology (VMs & VNFs)
while monitoring and enforcing SLAs via SDN-OpenFlow, including
across legacy MPLS WAN.

This PoC demonstrated the following:

1. The orchestration of a software-defined data centre, or NFVI

2. Deploy an enterprise service with SLAs (private –loud - NFVI)
enforced by monitoring real-time analytics through the Open
Source nTOP application

3. Provide VNF services such as firewall, IPS/IDS and load
balancer to the enterprise, or to remote users across the WAN

4. Ensure seamless connection over the WAN by having an
accelerated COTS server-based Gateway, hosting IDS/IPS,
firewall and load balancing VNFs

5. Demonstrate SLA across the WAN using orchestrator capability
to control the Open Source SDN-OpenFlow controller (RYU)
and the OpenFlow-capable Gateway while monitoring WAN
bandwidth using traffic monitoring application (e.g. nTOP) and
OpenFlow protocol statistics

6. Demonstrate interoperability with a legacy MPLS WAN switch-
router

In addition, the PoC demonstrated the co-existence of physical and
virtual functions (PNFs and VNFs) within a data centre, or between data
centres, across a legacy MPLS WAN.

Role of SDN This PoC uses an open source SDN controller (RYU) controlling a SDN
gateway. The gateway interfaces a multi-tenant data centre to a legacy
MPLS WAN. The PoC uses a full implementation of OpenFlow 1.3 with
multi-table and metering capabilities – all implemented on the SDN
gateway. It is important to note that this Gateway combines the functions
of SDN controller, WAN controller, and SDN gateway, and that of NFVI,
all in one physical, Virtualised platform. As a result, The gateway is
capable of hosting multiple VNFs. In fact the SDN controller is one such
VNF.

Role of NFV Orchestrator The NFV Orchestrator, acting as both NFV and VIM orchestrator, is used
to instantiate the software-defined data centre (SDDC), based on
requirements in a user-defined service template. In addition to controlling
the NFVI entities, it also interacts with the SDN WAN gateway to control
the SLA over the WAN.

Network Controller details The network controller is the open source RYU SDN controller. This is
implemented as a VNF, hosted by the gateway.

Network Controller to NFV Orchestrator
interface and function

The Network, or SDN, controller interfaces with the NFV/VIM orchestrator
through a RESTful type API. The gateway gathers flow statistics. The
orchestrator polls the gateway to obtain the traffic statistics. An
application hosted by the orchestrator computes the bandwidth (BW)
utilization, based on the gathered statistics. Based on the calculated BW,
the orchestrator sets the OpenFlow metering parameters on the gateway,
and as a result controls the amount of BW allocated to the video stream
application, transported over the WAN.

Data Forwarding Plane Data plane forwarding is implemented as a VNF hosted by NFVI
compute nodes, or by the gateway. The forwarding plane might be based
on physical or virtual network functions (PNFs and VNFs), including
security, management and monitoring functions.

Data Control Plane (Programming plane) In this PoC, OpenFlow was used to control the data plane network
elements for traffic forwarding, firewall, load balancing and other
applications.

Lessons learned and (new) requirements This PoC controls SLA over the WAN through the interaction between
the NFV/VIM orchestrator and the SDN controller. A need was identified
to control the SLA within the DC, in addition to the WAN.

ETSI

ETSI GS NFV-EVE 005 V1.1.1 (2015-12)72

Gaps Identified Although this might be a common knowledge, there is a stronger sense
to continue to highlight that SDN might control both physical and virtual
functions in the various GS documents. In addition, there is a need for
tight integration between the orchestrator and the SDN controller.

A.8 POC#21: network intensive and compute intensive
hardware acceleration

Figure A.9: POC#21 network intensive and compute intensive hardware acceleration

ETSI

ETSI GS NFV-EVE 005 V1.1.1 (2015-12)73

Table A.8

Describe Application Demonstrate the benefits or Hardware Acceleration in NFV environments
for compute and network intensive functions. The first stage shows how
rerouting of flows from the VNF to the Infrastructure Network might
improve performance. A Layer 7 Load balancer VNF is used as an
example VNF for this PoC.

Role of SDN SDN is used to program the physical network switches and NIC cards to
process and reroute traffic on behalf of the VNF based on the Dynamic
Rerouting of Packet Flow Routing as described in GS NFV-INF 005 [i.1].

Role of NFV Orchestrator Not applicable - the first stage of the PoC focused on the infrastructure
only and relied on manual provisioning.

Network Controller details The controller is a Protocol Oblivious Forwarding (POF) controller
(http://www.poforwarding.org/) that is based on Project Floodlight® (see
note) and enhances OpenFlow to be oblivious to the dataplane
forwarding protocol.

Network Controller to NFV Orchestrator
interface and function

Not applicable - the first stage of the PoC focused on the infrastructure
only and relied on manual provisioning. No NFV Orchestrator used.

Data Forwarding Plane Initially, all data plane forwarding is performed by the VNF that performs
the load balancing decision. Once it has made its load balancing
decision, the VNF requests some rules be added to the infrastructure
network (physical switch, NIC). It makes those requests through an
Optimization Interface that converts those requests into NBI calls to the
network controller.

Data Control Plane (Programming plane) The VNF programs the SDN switch/NIC through an optimization
interface.

Lessons learned and (new) requirements Scalability of the SDN controller and SDN agent/switch need to be taken
into consideration.

Gaps Identified • Need adoption of VNF API to SDN controller for HWA through
standards or open source.

• OpenFlow extensions are needed to support dynamic rerouting
based on L4-L7, preferably using protocol agnostic extensions
to provide the necessary flexibility and extendibility.

NOTE: "Floodlight is a registered trademark of Big Switch Networks, Inc. This information is given for the
convenience of users of the present document and does not constitute an endorsement by ETSI of the
product named. Equivalent products may be used if they can be shown to lead to the same results".

VN
F

Regular Path

Network Intensive
Accelerated Path

OpenFlow
Extensions
for L4-7

API

Infrastructure Network

SDN
contr
oller

https://docbox.etsi.org/ISG/NFV/EVE/05-CONTRIBUTIONS/2015/NFVEVE(15)000366r1_EVE005-Clause4_2_and_4_3.docx

ETSI

ETSI GS NFV-EVE 005 V1.1.1 (2015-12)74

A.9 POC#23: E2E orchestration of Virtualised LTE Core-
Network functions

Figure A.10: POC#23 E2E orchestration of Virtualised LTE Core-Network functions

ETSI

ETSI GS NFV-EVE 005 V1.1.1 (2015-12)75

Table A.9

Describe Application Our NFV orchestrator defines an interface between the NFV orchestrator
and the SDN controller for dynamically chaining various in-line & value-
add service functions (e.g. video optimization, content caching, etc.) in
the SGi LAN in the LTE core network

Role of SDN As briefly mentioned above, SDN is used within the SGi LAN for dynamic
service chaining based on the policy.
The following describes an example use-case. Assume User-1
subscribed to a video optimization service, whereas User-2 did not. In
such case, User-1's packets will be directed to the video optimization
service node (for a better user experience), whereas User-2's packets
will not be directed to the particular service node.

Role of NFV Orchestrator In our PoC architecture, the NFV orchestrator has the global view of the
Virtualised LTE network. Furthermore, all the dynamics on the network
service topology are managed through the NFV orchestrator using VNF-
FGs.
The topology dynamics information as defined in the ETSI NFV
specification get passed to the SDN controller (via our internally defined
interface between the orchestrator and the SDN controller) and used as
part of dynamic service chaining of the user traffic.

Network Controller details Currently in the PoC, a proprietary SDN controller is use. An earlier
version of this controller was used in a demo during MWC 2013..

Network Controller to NFV Orchestrator
interface and function

There is an interface between the SDN controller and the NFV
orchestrator to exchange the VNF-FG dynamics information. Whenever
there is a VNF-FG change, the NFV orchestrator sends the updated
VNF-FG information to the SDN controller.

Data Forwarding Plane The dynamic service chaining feature is transparent to both the data
packets and the in-line value-add network functions in the SGi LAN. The
value-add functions simply process the incoming packets in-line as they
receive them.

Data Control Plane (Programming plane) Data forwarding plane consists of SDN switches. The SDN controller
sends the data forwarding (i.e. OpenFlow) rules to the switches in the
SGi LAN, and the switches act as data packet forwarders based on the
rule received.

Lessons learned and (new) requirements • The number and variety of in-line and value-add functions in the
SGi LAN do not grow as fast as fast as initially anticipated

• On the other hand, if the number of functions happens to
increase dramatically, there might be scalaibility issues,
especially in OpenFlow (e.g. how many rules might be stored,
how fast has the rule-updates to be done, etc.).

Gaps Identified • Since the NFV orchestrator sends very primitive information (i.e.
VNF-FG) to the SDN controller, most complexity will be residing
in the implementation of the SDN controller and the applications
sitting on top of the SDN controller.

• There might also be scalability issues in the number of
OpenFlow rules to be stored as briefly mentioned above.

However, the above concerns do not belong to the scope of the NFV
orchestrator. At least from the scope of our PoC, no major gaps were
identified.

ETSI

ETSI GS NFV-EVE 005 V1.1.1 (2015-12)76

A.10 POC#26: Virtual EPC with SDN functions in Mobile
Backhaul Networks

Figure A.11: POC#26 Virtual EPC with SDN functions in Mobile Backhaul Networks

Table A.10

Describe Application This PoC will verify the entire Virtualisation of EPC (vEPC) and the
benefits that Network Function Virtualisation (NFV) and Software Defined
Network (SDN) bring to EPC. The Orchestrator interacts with virtual EPC
network elements such as the Mobility Management Entity (MME) to
receive mobility information and trigger the action in the SDN network
controller to change the required data plane flows to perform mobility
while maintaining the QoS assigned to the mobile devices across
network events.

Role of SDN In this PoC, several use cases of vEPC are demonstrated where
progressively the scenario moves from the usage of VNFs of existing
EPC network elements (scenario 1) to the integration of SDN as part of
the transport network used in the mobile backhaul (scenarios 2 and 3).
SDN is used to replace mobile network stack such as GTP replaced by
off the shelf switches e.g. Ethernet, VLAN or MPLS.

Role of Orchestrator The orchestrator relies on the information received by the vEPC to
configure the edge nodes of the SDN network to forward the specific user
data accordingly to the backhaul provisioned paths.

Network Controller details The SDN network controller is compliant with OpenFlow 1.3. The PoC
uses Ryu SDN network controller, which is available as open source and
developed in Python® (see note).

NC to Orchestrator interface and function The orchestrator application is implemented in Python, running directly
on top of the SDN network controller. The MME uses a REST-like API
based on JSON messages to interact with the SDN network controller to
notify mobile events.

Data Forwarding Plane The data forwarding planes are based on L2 switches with Ethernet,
VLAN or MPLS forwarding capabilities managed from the SDN network
controller.

ETSI

ETSI GS NFV-EVE 005 V1.1.1 (2015-12)77

Data Control Plane (Programming plane) There are different control planes in use:
• OpenFlow 1.3: TCP-based Between SDN network controller

and OpenFlow datapaths.
• 3GPP S1AP: SCTP-based between the eNB and the MME.
• 3GPP S11: UDP-based between the MME and the S/P-GW.

Lessons learned and (new) requirements The choice of Ryu for the SDN network controller application seems to
be appropriate as it allows fast development of Python applications for
realizing the orchestration. Network provisioning is performed proactively,
upon initialization of the setup, which does not introduce any operational
delays from the controller's perspective. The controller reacts to mobile
specific operations, i.e. attach, detach, handover setting up the
appropriate flows proactively. It also receive network events such as link
down, link up, congestion and acts to correct and adapt the network to
the new conditions to obtain the optimal performance and user
experience.
The provisioning of the backhaul, either VLAN-based or MPLS-based
seems suitable for our technology. In more extreme cases where no
dedicated Layer 2 paths are available, it would be possible to fall back to
standard layer 3 IP GRE tunnelling between endpoints, however it is not
preferred. Furthermore, it was demonstrated that mobile events require
only changes at the edge of the network, signalled from our SDN
controller, and would not affect by any means the existing backhaul
provisioning. These 2 functions might ran independently from each other
the moment there is an agreement on the communicating endpoints
based on specific packet fields (VLAN tags, MPLS labels or IP
addresses).
The 3GPP signalling mechanisms for handovers were executed
successfully, albeit further testing is required to make a more
comprehensive analysis of the delays in play and devise possible
optimizations.
The PoC shows the feasibility of adapting the standard 3GPP GTP
tunnelling to different use cases. Encapsulating the GTP in an MPLS
tunnel, or completely removing the GTP tunnelling, encapsulating the
user data in an MPLS tunnel, which then provides the scope previously
offered by GTP.
In addition, one of the lesson learnt is that SDN capable switch
implementations differ from one another, resulting in unexpected
behaviours that have to be specifically dealt with. In our setup, this meant
having to add middleboxes to perform MPLS Label Edge Router (LER)
functions was not originally conceived and contributes to increase the
delay, especially of the signalling events. Furthermore, the original
network design had to be reworked replacing the single broadcast
domain with routing techniques to connect the separated networks.
During the realization of the POC, a standalone policy and charging
function was realized using OpenFlow. This function brings together
MPLS encapsulation/decapsulation, Evolved Packet System (EPS)
bearer metering as well as Service Data Flow (SDF) metering that
enforces the Traffic Flow Templates (TFT) defined for a user. The
charging might be performed by collecting the flow/meter statistics from
the datapaths.

Gaps Identified ETSI NFV has not defined an interface between NFV Orchestrator and
SDN controller north bound interface in the form of a standard API.
Therefore, it is recommend that ETSI NFV pays attention to:

1. Interoperability and certification of OpenFlow or SDN
enabled switches to ensure the required functionality is
available.

2. Abstraction layers between HW and Virtualised
components. The SDN controller needs to access directly
to information in packet headers to determine new
locations of the packet forwarding during mobility events.
Therefore, it is recommend that applications (e.g. vMME)
having a direct access to the SDN controller instead of
API to the VIM.

3. Having NFV APIs built to access only virtual instances of
the network which do not require time critical actions.

ETSI

ETSI GS NFV-EVE 005 V1.1.1 (2015-12)78

A test framework with a broad number of tests has to be defined to
explore each possibility that the OpenFlow protocol supports. In this
direction, there is already some work developed by Ryu SDN Controller,
what they call the "Ryu Certification". However, additional effort is
required to complete the uses cases that evaluates the datapaths
implementation and their conformance with the standard OpenFlow. For
instance, the switches do not behave as expected what comes to the
internal treatment of the actions and matching functionality specified in
the Openflow specifications. For instance, the MPLS packet processing
differs in OpenvSwitch and OfSoftSwitch13 in terms of removing the
MPLS label and reprocessing the packet in a different table.
Our PoC considered the SDN controller as an additional VNF in addition
to other functions as MME and control plane S/P-GW. In the present
testbed, there is no interface with the cloud orchestration, but such
interfaces might simplify the connection of mobile specific VNFs as these
might control the underlying SDN network. Special abstractions need to
be defined for that purpose.
The EPC used in the PoC used single tenant but the multitenancy
support of EPC infrastructure was considered during the network
provisioning.

NOTE: "Python is a registered trademark of the Python Software Foundation. This information is given for the
convenience of users of the present document and does not constitute an endorsement by ETSI of the
product named. Equivalent products may be used if they can be shown to lead to the same results".

A.11 POC#27: VoLTE Service based on vEPC and vIMS
architecture

Figure A.12: POC#27 VoLTE Service based on vEPC and vIMS architecture

V
e-Vnfm

-em

V
e-
V
n
fm
-v
n
f V

e-V
nfm
-vnf

S1
-U

ETSI

ETSI GS NFV-EVE 005 V1.1.1 (2015-12)79

Table A.11

Describe Application The PoC demonstrates the end-to-end VoLTE service that might be
constructed based on vIMS and vEPC VNFs running on a multi-vendor NFV
environment.

Role of SDN SDN technology is used to separate the control plane and user plane in
vEPC xGW (SGW and PGW), that is, the control plane implementing SDN
controller deployed as VNFs runs in Virtualised environment, and the user
plane runs in SDN-based forwarding equipments.
On the other hand, SDN technology is introduced into NFVI to enhance the
capability of network management in telecom cloud.

Role of NFV Orchestrator The NFV Orchestrator has the role to manage the whole resources in multi-
vendor NFV environment, the instantiation of the VoLTE service and all
constituted VNFs, and their lifecycle management.

Network Controller details There are two kinds of Network controllers applied in different layers in this
PoC.
Type I, the Network controller is deployed as part of VNF and provides the
interaction with user plane of the EPC GW using SDN-based protocols.
Type II, the Network controller is introduced into VIM to enhance the
capability of network management in telecom cloud.

Network Controller to NFV Orchestrator
interface and function

In this PoC, the Type I Network Controller has no direct interface with the
NFV Orchestrator. The Type II Network Controller exposes interface through
VIM to NFV Orchestrator, through which the network resource might be
managed efficiently.

Data Forwarding Plane In this PoC, the SDN-based data forwarding equipments might be
Virtualised or non-Virtualised. The SDN-based data forwarding equipments
interact with Type I Network Controller based on OF-epc protocol (see note),
and interact with Type II Network Controller based on OpenFlow
implementation.

Data Control Plane (Programming
plane)

The SDN controller sends the data forwarding rules (i.e. defined in
OpenFlow, or OF-epc) to the forwarding equipments, and the forwarding
equipments act as data packet forwarders based on the rule received.

Lessons learned and (new)
requirements

Gaps Identified With the separation of control plane and data plane in EPC GW, the internal
private control-forwarding interfaces need be open and standardized, and
supported by the SDN-based interface. This gap now is considered in ONF.
More gaps will be identified and provided with the progress of this PoC.

NOTE: OF-epc is extended by ZTE based on the OF-mpc interface that is in progress in ONF.

ETSI

ETSI GS NFV-EVE 005 V1.1.1 (2015-12)80

A.12 POC#28: SDN Controlled VNF Forwarding graph

Figure A.13: POC#28 SDN controlled VNF Forwarding Graph

Table A.12

Describe
Application

SDN Controlled VNF Forwarding Graph

Role of SDN In this PoC, the SDN is used to control individual flows traversing through their designated virtual
network functions (VNF).
Assuming that the VNF are already interconnected, which might be controlled by traditional control
protocols or SDN approaches.
This PoC is SDN controlled Service layer (the Red Line) as defined in ETSI GS NFV-INF 005 [i.1]
clause 6.2.3 and in the reference diagram extracted from GS NFV-INF 005 [i.1] Network Function
Virtualisation Infrastructure Architecture (figure 22):

ETSI

ETSI GS NFV-EVE 005 V1.1.1 (2015-12) 81

PoC Architecture

The following figures maps the PoC components to NFV Architectural framework
(gs_NFV002v010101p.docx):

Mapping the PoC components to the End to End Service Forwarding Graph (ETSI GS NFV 002 [i.3]
V1.1.1 (2013-10):

SFC SDN Controller

SFC orchestrator

Plane Examples

Management SFC Orchestrator, i.e. SFC manager and SF VNF Manager
SFC applications (e.g. SFC OAM functions)

Control SFC SDN controllers

Data Classifier
SF Forwarders, SF Proxy
SF Nodes

ETSI

ETSI GS NFV-EVE 005 V1.1.1 (2015-12)82

Describe
Application

SDN Controlled VNF Forwarding Graph

SFC management and control plane elements are responsible for translating user/application
requests; converting requisite policies into network topology dependent paths; and disseminating
steering commands to relevant forwarding nodes. SFC data plane components are responsible for
carrying out the steering commands.
In the ONF SDN paradigm, the SFC Orchestrator requests necessary changes through the
northbound interface (NBI) of the OpenFlow SDN controller, which in turn implements the requested
changes via OpenFlow. If service function are not OpenFlow-speaking or are not under the domain of
OpenFlow SDN controllers, the SFC Manager might need to interact directly with the service functions
themselves or interact with another service function instance manager.

Role of NFV
Orchestrator

The SFC Manager Component of the NFV Orchestrator (Service Orchestrator) translates clients' high-
level intent policy based network-topology agnostic requirements into flow classification constructs,
and sequences of L4-L7 service function constructs associated with the flows. The SFC Manager
provides an interface for service clients to specify SFC requirements including the desired
classification criteria, policies, sequence of service functions, etc.
The Orchestrator consists of two key components: the SF Chain Manager and the SF Instance
Manager. The Chain Manager is responsible for translating user's SFC flow classification rules and
SFC requirements into flow classification constructs and associated sequences of L4-L7 service
functions. The Instance Manager is responsible for managing the life cycle of each service function
instance, and for keeping track of each service function instance's locator and chain header
encapsulation and transport capabilities. The Chain Manager will then pass these classification
constructs, sequence of service functions, and the L4-L7 service function instance catalogue to the
SDN Controller through the SDN NBI so that the SDN Controller might further translate them into
southbound OpenFlow programming constructs.

Network
Controller details

The SDN Controller is responsible for setting up service function steering/chaining paths. It translates
flow classification constructs and associated sequences of SF locators into southbound OpenFlow
programming commands. It locates the flow classifier and instructs it how to classify a flow and the
flow packets with an appropriate SFC header. It is also responsible for locating the sequence of SF
Forwarders associated with the sequence of SF Locators so as to enforce the flow going through the
sequence of designated SF Nodes. That is, the SDN Controller will use those OpenFlow programming
constructs to program the classifier to classify the traffic flows and program the SF Forwarders to steer
the flow through the sequence of SF locators.

Network
Controller to NFV
Orchestrator
interface and
function

• This interface allows communication of VNF instance locator and flavor details as well as a
service chain's service function ordering information. To support different types of SDN
Controllers, the Service Chain Orchestrator (might be implemented in OpenStack) will
interface with the SDN Controller through Plugin Driver mechanism. The Service Chain
Orchestrator will pass the following information to the SDN Controller:
− Sequence of Requested Service Functions: This specifies the sequence of service

function treatment for a tenant's traffic flow.
− Traffic Flow Classification rules: It consists of a set of flow descriptors.
− List of Available Service Function Instances: each SF Instance contains information such

as the Instance's Locator, the Instance's Flavor. An example of a SF Instance is a
firewall or an IDS.

ETSI

ETSI GS NFV-EVE 005 V1.1.1 (2015-12)83

Describe
Application

SDN Controlled VNF Forwarding Graph

Data Forwarding
Plane

|1 ----- |n |21 ---- |2m
+---+---+ +---+---+ +-+---+ +--+-----+
| SF#1 | |SF#n | |SF#i1| |SF#im |
| | | | | | | |
+---+---+ +---+---+ +--+--+ +--+--+--+

: : : : :
: : : : :

\ / \ /
+--------+ +---------+
|proxy | |proxy |

+--------------+ +--------+ +--------+---------+
 -->| Chain | | SFF | | SFF | ---

->
|classifier | |Node-1 | | Node-i |
+--------------+ +----+---+ +----+--+-+

\ | /
\ | SFC Encapsulation /
\ | /

,._
,-' `-.

/ `.
| Network |
`. /

`.__.................................. _,-'

The Service Function Forwarder (SFF) is responsible for forwarding data packets to their designated
service function instances. As the case with other SFC entities, the SFF might come in physical, virtual
or any other form factor. The SFF might make its forwarding/steering decision by matching the chain
identification information carried in the SFC header with the next-hop information provided by the SDN
controller. The SFC header would carry sufficient information for each SFF in the path to establish
symmetric flows in forward and reverse directions, if necessary.

Data Control
Plane
(Programming
plane)

OpenFlow 1.3+-capable SFFs might make its forwarding decisions on L2-L3 header fields such as
MAC or IP addresses. With an OpenFlow version that supports L4 fields such as TCP and UDP ports,
the SFF will be able to make forwarding decisions at L4.

Lessons learned
and (new)
requirements

One of the Key Components for Virtualised Network Functions:
• Data path have to be dynamically adapted to the Virtualised Network Functions as they are

moved, added, or removed.
• Without SDN, it is very difficult, if not impossible, for data flows to dynamically steered to their

designated service functions
• VNFs by different vendors have different features and need different provisioning. There are

mechanisms today (e.g. OpenFlow or IETF's I2RS) for SDN controller to dynamically control
L2/L3 switches and routers, it is virtually impossible to control security functions, such as
Authentication VNF, FW/IPS/IDS VNFs because there is no standard interface to those VNFs

SDN controlled Service Graph forwarding might be deployed in today's network without requiring
replacing existing equipment and control plan. But SDN Controller is not able to control non
switch/router based VNFs yet.

Gaps Identified There are many types of VNFs, the Video Optimization based VNF is very different from FW/IPS/IDS
based VNF, or Router/switch based VNF.
In order for NFV Orchestration to automatically utilize various types of VNF, it is recommend that ETSI
NFV to have an initiative to categorize VNFs, and then move on to define interfaces to various types of
VNFs.
For example, for the category of Flow based Security Functions (VNFs), "Subject - Object - Function -
Action" paradigm might be used to manage them as discussed in IETF I2NSF [i.11]

• Subject - Match values based on packet data Packet header or Packet payload
• Object - Match values based on context. E.g. State, time, geo-location, etc.
• Action- Egress processing, such as Invoke signaling; Packet forwarding and/or

transformation; Possibility for SDN/NFV integration
• Function = Functional Profile – E.g. IPS:<Profile>, signature file, Anti-virus file, URL filtering

file, Threat Database, etc. Integrated and one-pass checks on the content of packets.
The functional profile is vendor specific and differentiates vendor unique innovation.

ETSI

ETSI GS NFV-EVE 005 V1.1.1 (2015-12)84

A.13 POC#34: SDN-enabled Virtual EPC Gateway

Figure A.14: POC#34 SDN enabled Virtual EPC Gateway

Table A.13

Describe Application This PoC verifies an enhanced EPC Virtualisation architecture: by
introducing Software Defined Networking (SDN), EPC Virtual Functions
might be distributed to location of choice.
Rather than virtualizing EPC as a whole, the PoC presents an SDN-
based decomposition of EPC Gateways, SGW and PGW, into Control
and Data functions.
The EPC Gateway decomposition is designed to meet 3GPP functionality
and comply with SGW/PGW Data and Control external interfaces.
The distribution of Data Plane functions to the network edges, enables
Local Breakout towards network edge content and services and the
implementation of an Edge Service Chaining.
This solution enables service continuity for users handed over between
network edge locations.
Virtual Network Functions in the PoC are secured with an Intrusion
Detection System.

Role of SDN SDN is enabling decomposition of EPC Gateways, SGW and PGW, into
Control Plane and Data plane functions.
The EPC Data Plane is implemented based on SDN. SDN allows the
programming of GTP tunnels, per attached users and active bearers.
The SDN switch strips off GTP tunnel encapsulation in case traffic needs
to breakout locally.
SDN is also used to implement Service Chaining both in the core Gi-LAN
and in the edge.

Role of the NFV Orchestrator NFV Orchestrator instantiates the EPC and RAN VNFs, including EPC
Control Plane, EPC Data Plane and eNBs.

SDN Network Controller details SDN Controller is based on OpenDayLight, with required enhancements
to support GTP.

ETSI

ETSI GS NFV-EVE 005 V1.1.1 (2015-12)85

The SDN Controller is exposing an ACI (Application Control Interface) to
the EPC Control Plane to be able to manage GTP tunnels, based on
events indicated by the EPC Control. The downstream ACI is used to
reflect user state changes, active bearer information and user mobility
events, all mapped to EPC procedures (e.g. Attach, handover, etc.).
The upstream ACI is used for Data Plane usage reports.
The Controller's Resource Control Interface (RCI) uses OpenFlow 1.3

SDN NC to VIM and NFV Orchestrator
interfaces and functions

SDN Controller is running on OpenStack that is functioning as the
Virtualised Infrastructure Manager (VIM).
The Orchestrator coordinates the allocation of virtual resources in the
VIM and the Virtual Network Functions

Data Forwarding Plane The EPC Data Forwarding Plane was implemented based on SW-based
SDN switches, enhanced with GTP support, one acting as an Edge
Mobile Anchor and the other as a Core Mobile Anchor.
Data Forwarding Plane between eNB and SDN Switch acting as an Edge
Mobile Anchor uses GTP-U.
Data Forwarding Plane between SDN Switches, uses
GTP-U.
Data Forwarding Plane between VNFs on the Gi-LAN and on the Edge
Gi-LAN uses VXLAN.

Data Control Plane (Programming plane) Data Control Plane is based on OpenFlow 1.3. OpenFlow rules are
placed based on control messages received from the EPC Control Plane
through the SDN Controller Application Control Interface (ACI)

Lessons learned and (new) requirements An SDN-based vEPC Split has proven to support 3GPP functionality,
while allowing better performance and scale and supporting placement of
Data Plane functions, independently of Control Plane functions.
This architecture allows best-of-breed selection of EPC sub-functions.
The PoC architecture has proven to enable higher performance on the
EPC Control Plane, by extracting Data Plane functionality and
implementing it in an SDN infrastructure.
Data Plane performance is also proven to be high, based on OpenFlow
switches.
vEPC functions might be placed anywhere, and specifically Data Plane
functions might be pushed to network edges to allow local breakout
towards edge content and services.
Network Edge service examples include network edge caching, edge
CDN (Content Distribution Networking), multi-unicast of OTT Live Traffic
and hair-pinning of video conference traffic.
Service continuity is maintained in the event of mobility between network
edge locations.
Service Chaining is applicable in the network edge, avoiding over-
subscription of edge services.

Gaps Identified It is recommended that the VIM to SDN Controller interface be specified
to support carrier-grade life cycle management

A.14 POC#38: Full ISO-7 layer stack fulfilment, activation
and orchestration of VNFs in carrier networks

This PoC is built upon the ETSI/NFV reference architecture framework. The PoC includes VNFs from multiple
vendors, each with its own Element Manger and VNF Manager. Additional components to the ETSI framework are
highlighted in blue. These are described below.

ETSI

ETSI GS NFV-EVE 005 V1.1.1 (2015-12)86

Figure A.15: POC#38 SDN controlled VNF Forwarding Graph

Table A.14

Describe Application Use of SDN in an NFV architectural framework
This POC is focussed on full ISO 7-layer stack fulfilment, activation and
orchestration of VNFs in carrier networks. As part of fulfilment, the
connectivity between VNFs and between VNFs and enterprise network
customers' needs to be instantiated. SDN programming of the virtual
network is used to automatically create the required connectivity as part
of fulfilment. Creation of forwarding graphs to support service chaining is
also utilized to show how additional VNFs might be added to existing
customer services to provide new value added capabilities.

Role of SDN The SDN Policy Manager contains the networking policy requirements for
tenants in the NFVI. Each NFVI tenant represents a different virtual
private network (VPN) which might be used to :
Associate VNFs to a specific end customer (e.g. vFW or vDPI for a
specific enterprise)
Administrative domains for SP VNFs (e.g. management our OOB control
networks)
Emulate the switch fabric connectivity between multiple VMs (VNFC) that
might represent components of a single Network function (e.g. if
individual line cards are represented as VMs)
In the following description the term domain will be used to describe the
networking connectivity for a tenant or VPN. For each NFVI domain,
policies might represent L2 or L3 connectivity between VNFs (including
addressing requirements, security, and forwarding graphs) as well as
how these domains will extend to MPLS VPNs in the event a VNF needs
to be exposed to enterprise customers across the existing WAN network.

ETSI

ETSI GS NFV-EVE 005 V1.1.1 (2015-12)87

The SDN Services Controller maintains the forwarding state of the
domains, for example the connectivity between the VNFs and extension
to the MPLS VPN network. Any new forwarding changes (e.g.
add/move/delete of VNFs or changes in the VPN network) are processed
by the controller and used to program the virtual network domain. The
SDN services controller uses the SDN policy manager in the event
further information on VNF connectivity or networking domains are
required. The controller uses MP-BGP to communicate network changes
with the MPLS WAN network and Openflow to program connectivity
between the VNFs.
The SDN Virtual Switch Router is an enhanced OVS that resides locally
with each Hypervisor. It is programmed by the SDN services controller to
provide connectivity between VNFs instantiated as VMs within the
hypervisor. VXLAN overlay tunnels are initiated between the hypervisors
to allow L2 or L3 connectivity between relevant VNFs in the same
domain. MPLS/GRE tunnels are initiated between the hypervisors and
MPLS network if VNF connectivity to end enterprise customers is
required. Security policies or forwarding graphs are also programmed in
the Virtual Switch Router as defined by policy requirements. Connectivity
with the MPLS WAN network is based on MP-BGP VPN-IPv4 routes and
MPLS/GRE tunnels. Connectivity between the switch routers is based on
IETF draft draft-ietf-bess-evpn-overlay.
Upon receiving requests from the NFV Portal, "Orchestrator" interacts
with VIM and "VNF Managers" (through standardized APIs across
multiple vendors) to validate (e.g. syntax, resource management, etc.)
and finally executes the requests. When needed, the NFV Orchestrator
(or the VNF Manager depending on the policy) elastically scales up/down
or in/out a given VNF.
The VNFs shown in the figure above are likely to be interworking with
some of the existing PNFs. More details on the complete list of VNFs, the
SDN controller (e.g. vendor, version, models, etc.), and whether or not
the test-bed environment includes both VNFs and PNFs will be described
in the final PoC report.
When VNFs or VNFC are instantiated by the VIM, metadata is passed
from the VIM to the HV which identifies the connectivity for interfaces of
that VNF/VNFC. Metadata might specify virtual location by naming the
relevant domain (network or subnet level), or specifically for a (virtual)
port if service chaining is required. A VNF might be part of multiple
domains (e.g. a vFW might have OOB management, public/insecure and
private/secure interfaces that exist in different domains). A VNFC might
also have an interface that represents the internal fabric to connect to
other VNFC of the distributed VNF. In this scenario metadata is passed
to represent the domains that each of the corresponding VNF/VNFC
interfaces connect to. This metadata is captured by the SDN Virtual
Switch Router and sent to the Services Controller. If the Services
Controller already has local state of the domain, the controller will:
program the local switch router on the hypervisor with connectivity to
other VNFs or MPLS VPNs in the same domain
program the other relevant VNFs already connected to the domain with
connectivity to the new VNF
program the MPLS WAN network (using MP-BGP) with connectivity
information to the new VNF
If required the SDN services controller will pull the relevant information
from the SDN policy manager before taking the above actions.
If the VIM needs to re-instantiate or move the VNF (e.g. for failure
recovery or scaling), the corresponding metadata for the VNF will be
pushed to the new HV to ensure that the connectivity for VNF at the new
location might be programmed via the SDN Service Controller.
The SDN components are highlighted in blue on the ETSI framework
(above). The SDN Policy Manager is a centralized component and might
be considered part of the MANO framework. The SDN Services
Controller is part of the NFVI and controls virtual network. Multiple SDN
services controllers might be added for scaling (i.e. as hypervisor
endpoints are added). The SDN Virtual Switch Router is part of the NFVI,
and individual instances are installed as part of the hypervisor on the
compute platforms.

ETSI

ETSI GS NFV-EVE 005 V1.1.1 (2015-12)88

Role of the NFV Orchestrator The NFV Orchestrator interacts with the SDN Policy Manager through a
standard REpresentational State Transfer (REST) API. As part of this
interaction the Orchestrator is able to create network and security
policies as well as virtual interfaces and domains within the SDN Policy
Manager. These policies and interfaces are defined within Policy
Manager logical constructs known as domains and zones and are
applied to virtual port interfaces (vport) at both layers 2 and 3. VNFs are
linked to vports within the Policy Manager through metadata that is
configured at the virtual machine level by NFV Orchestrator and
instantiated via the VIM. The metadata is read by the SDN Virtual Switch
Router as VNFs are created and will be used by the SDN Policy
Controller to determine network connectivity, how traffic is handled and
which policies are applied to the VNF virtual machine network interfaces.
Templates might also be used to apply common network policies to
multiple domains in the NFVI.

SDN Network Controller details The SDN Services Controller uses Openflow to configure L2 and L3
connectivity for each VNF at the Virtual Switch Router on the hypervisor.
Multiple network domains might be supported using separate L2 and L3
forwarding tables on the enhanced OVS and separate VXLAN Network
Identifiers (VNI) on overlay VXLAN tunnels to other VNFs on other
hypervisors. When a VNF is created:
Metadata is passed from the VIM to Virtualisation layer as part of
VM/VNF creation
This metadata is passed from the Virtual Switch Router to the Services
Controller, and used by Controller to query the defined policies on Policy
Manager. This determines connectivity requirements for the created
VNF.
Based on the required connectivity policies for the VNF, the SDN
Services Controller will use Openflow to configure connectivity between
the created VNF and existing VNFs in the same domain and zones as
required. This connectivity might include security rules and forwarding
graphs.
If WAN connectivity is required, The SDN Services Controller will use
MP-BGP to signal the MPLS WAN with the VNF information. WAN
interworking uses MP-BGP VPN-IPv4. The ability to signal VNF creation
to the MPLS WAN network supports VNF portability, e.g. VNFs might be
moved across hypervisors or between NFVI's and still be advertised to
the existing WAN network. In the POC a MPLS WAN gateway was
utilized to translate MP-BGP routes from the DC/NFVI to MPLS core, and
MPLS core to DC/NFVI, while changing the NH in both directions to the
local gateway local address. This isolated the addresses of the NFVI
from the core. Tunnels from VNF/hypervisors are created to the gateway
in the NFVI, and tunnels from the WAN are also created to the gateway
from the WAN.

SDN NC to VIM and NFV Orchestrator
interfaces and functions

The NFV Orchestrator provides the primary interface between the VIM
and the SDN Policy Manager. In both instances these interfaces are
through standard REST APIs. NFV Orchestrator will configure the VNF
virtual machines with metadata obtained from the SDN Policy Manager.
The VIM instantiates the VNF, and this metadata will be used by the
Virtual Switch Router to determine the policies to be applied to the VNF
interfaces.
The NFV Orchestrator streamlines the integration between the network
management function in VIM and SDN Policy Manager and provides
operator and user simplified overviews and management options for the
entire L2 and L3 networks. The NFV Orchestrator also ensures the
consistency between the network view in VIM and the actual network in
SDN.

Data Forwarding Plane Data plane forwarding between VNFs is based on draft-ietf-bess-evpn-
overlay and IETF RFC 7348 [i.21] Virtual eXtensible Local Area Network
(VXLAN): A Framework for Overlaying Virtualised Layer 2 Networks over
Layer 3 Networks.
Data plane between the VNFs and MPLS network is MPLS/GRE. For this
scenario the MPLS WAN gateway was responsible for terminating
tunnels from the NFVI before forwarding traffic to the MPLS core.

Data Control Plane (Programming plane) Control plane programming between the SDN Services Controller and
SDN Virtual Switch Router on the hypervisors uses Openflow.
Control plane between the SDN Services Controller and MPLS network
is MP-BGP using VPN-IPv4 address family.

ETSI

ETSI GS NFV-EVE 005 V1.1.1 (2015-12)89

Lessons learned, gaps identified and
(new) requirements

The following items are for further study.
(A) Selective service chaining
For interworking with MPLS VPNs (specifically when providing VAS
services for enterprise customers e.g. FW/NAT for Internet services for
VPN enterprise customers), a default MP-BGP route was injected into
the MPLS VPN to attract internet traffic into the FW/NAT function in the
NFVI before forwarding to the internet. This method attracts all traffic that
is not destined to VPN prefixes/sites and does not discriminate either
based on the source or type of traffic. This was done to be backwards
compatible with the existing MPLS network.
A method to create a service chain/forwarding graph from the customer
endpoint to the first VNF in a service chain provides the options to
provide VAS services for selective sites. Additionally the ability to utilize
policy based forwarding rules to selective forward only specific types of
traffic provides additional control that might help scale the VNF to support
relevant traffic. These requirements needs to be linked to the VNF
creation and needs to cater for VNF portability.
Following is an example of requirements :

• labelling each VNF with a unique tag which might be advertised
(along with VNF location) during creation time

• PBF policy at the customer site to the VNF tag
• a tunnelling mechanism to deliver customer site traffic to the

VNF
When the customer site receives an advertisement with the VNF location,
it updates its PBF policy with this information (including location) and
uses the advertised tunnelling method to steer traffic to the VNF. This
allows a service chain to be defined at the customer site that is linked to
the VNF such that when the VNF creation is signalled to the WAN
network, a service chain might be created regardless of which hypervisor
or NFVI location is utilized. An example is to label VNFs with a unique
ESI value advertised in an EVPN route with reachability information for
the VNF.
(B) Support for L2 VAS services
For interworking with MPLS VPNs (specifically when providing VAS
services for enterprise customers), layer 3 connectivity was used. This
was done to be backwards compatible with the existing MPLS network.
VNFs might also need to be deployed as L2 (bump in the wire). In this
scenario a method of extending L2 connectivity into the MPLS VPN is
required. IETF RFC 7432 [i.23] defines EVPN MP-BGP. EVPN has the
added benefit over VPN-IPv4 of supporting MAC address advertisement.
This could be used to extend L2 NFVI domains into MPLS VPNs. In
combination with VXLAN data plane, EVPN could be used to support
service chains from customer sites to VNFs. E.g. service chain policy at
the customer site to a specific VNF IP/MAC/ESI. When an EVPN MP-
BGP route is received signalling VNF creation, the advertised data plane
tunnel method in the MP-BGP route might be used to create connectivity
directly to the VNF.
(C) Portability
One of the benefits of Virtualisation is the ability to create networks
functions where they are most needed, e.g. based on geography or
resources. This portability requires a method of identifying VNFs and
corresponding connectivity requirements, regardless of where the VNF is
created.
In this POC, this was achieved by using metadata when VNFs were
created by the VIM. This metadata was utilized by the SDN solution to
identify the VNF and ensure the correct connectivity.

ETSI

ETSI GS NFV-EVE 005 V1.1.1 (2015-12)90

Gaps Identified For service chaining, a default route to the first VNF is injected into the
MPLS VPN network. In the event this first VNF fails traffic will be lost. For
redundancy 2 x FW/NAT VNFs were required, however a default route
pointing at Virtual IP address was not supported. This has been
addressed in subsequent releases of the SDN solution but not tested as
part of this POC.
Other suggestions for EVE005 :
Portability is probably covered in a different area, however the fact VNFs
might be instantiated anywhere has implication on SDN, which is
responsible for the connectivity of these portable VNFs. As such there is
a need for a linkage between portability and the SDN requirements to
carry this information. In theory when the VIM creates the VNF/C (based
on what whatever resource criteria) a method is needed to identify the
location of the VM, other relevant VM/endpoints that it needs to
communicate to, and create this connectivity. How the connectivity
occurs is dependent on the SDN resource (as per clause 4.3.3). E.g. in
our scenario this SDN resource/endpoint is really in the virtual switch in
the compute hardware (i.e. case c). So the VIM would pre-configure the
network policies in advance (via the policy manager). When the VIM
instantiates the VNF, the metadata linked to the VM creation is added to
allow identification of where this fits from a network perspective. The
metadata is captured via the virtual switch router, and forwarded to the
controller. The controller then polls the policy manager with this metadata
to identify the relevant networking policy, and then programs the
connectivity for the VNF via the virtual switch router component on the
compute node, and all other relevant endpoints that need connectivity to
the VNF. This is an automated pull model, i.e. pre-configure all policy and
then when a VNF is created pull the policy and configure the connectivity
for the VNFs automatically. The metadata here is just to correlate/identify
the VNF creation to where it fits in the network policy, so it needs to be
defined at both the policy manager and VNF creation. The controller here
then becomes a proxy to get the relevant policy information when the
VNF is created, and then program the relevant connectivity.
It is recommended that Clause 5 also mention connectivity between
VNFs and end customers
Clause 5.5.2 Virtualisation of SDN controller: when VNF connectivity
requires the SDN controller, and when the SDN controller is put into a
VNF it still requires external connectivity to other functions. This is
somewhat recursive with reliability implications, e.g. like trying to manage
a distributed network with only inband connections.

ETSI

ETSI GS NFV-EVE 005 V1.1.1 (2015-12)91

Annex B (informative):
SDN Use Cases in NFV environment

B.1 Introduction
This clause contains a number of use cases that illustrate scenario with SDN combined with NFV.

B.2 Multi-Layer Bandwidth on Demand

B.2.1 Introduction
SWA GS clause A.3 contains ETSI NFV use cases related to SDN. It currently contains one use case covering L2
Transparent Network Service Chaining with Traffic Steering. This clause adds additional uses cases. The set of use
cases focuses on expanding the coverage to include multi-layer use cases including circuit oriented networks
(e.g. optical).

B.2.2 Problem Description
Networks are constructed from elements operating in different network layers. This structure is usually not visible to the
end user and is independent of service definition for that user. A service request from the end user perspective is best
stated in terms of requirements important to the user and independent of the network instantiation of the service within a
multi-layer network. For example, a service request for connectivity between a client and storage/compute resource is
best stated in terms of requirement bandwidth, delay, reliability, etc. and not in terms of the technologies used to
provide the service.

Figure B.1: Service Request

Automation of the process to map the service request requirements into available network resources is needed. Dynamic
management of these resources might map the service into the appropriate network layer for the most efficient use of
network resources. NFV/SDN might be used to automate this mapping.

ETSI

ETSI GS NFV-EVE 005 V1.1.1 (2015-12)92

Figure B.2: Service Instantiation

B.2.3 Solution Description
The following procedure will be followed:

 A service request is made to the upper SDN Controller. It requests the bandwidth, latency, and other
constraints important to the end user application. The role of this controller is to match the service
requirements into the layer(s) of the network that will be needed to satisfy the request. This might result in one
or more layers being involved in the service instantiation.

 The upper SDN Controller maps the request into resources that best match the required service parameters
without wasting network resources ("best worst fit"). For example a very low latency requirement might
require the service to be carried over the shortest possible optical paths to lower total latency. Services not
requiring such low latency would not be routed over these paths. In the figure these two delay options are
shown. One path through the Carrier Ethernet Layer and the other path through the lower delay optical
switching layer.

 The required layer SDN Controllers are instructed by the upper SDN Controller to make the flow connections
required to satisfy the service. For instance, for services being instantiated via Carrier Ethernet, if not enough
bandwidth is available in the Carrier Ethernet network layer additional bandwidth might be requested by the
upper SDN Controller from the DWDM layer's SDN Controller; if the request is satisfied the new resource is
made available to the Carrier Ethernet layer.

B.3 Bandwidth Defragmentation

B.3.1 Problem Description
In current multi-layer networks channelized resources become fragmented as services are instantiated and removed
during network operation (see Multi-layer Bandwidth on Demand). Today operators periodically audit the circuit
oriented portions (e.g. SONET/SDH/OTN/Optical) of their networks to defragment these resources. Defragmentation
means moving services (either in service affecting or non-service affecting manner) to allow larger bandwidth service to
be instantiated when without defragmentation, such instantiation would not be possible.

ETSI

ETSI GS NFV-EVE 005 V1.1.1 (2015-12)93

B.3.2 Solution Description
Under NFV/SDN control, the upper SDN Controller or an SDN controller for a layer network is used to instantiate and
remove all services. Therefore there is continual awareness of the network topology. This allows continuous
"defragmentation" of resources. An example of this is:

1) A service request arrives at an SDN Controller. The Controller decides which layer will be used to implement
the service in the "best worst fit" solution (see above). For example, a latency requirement might force the use
of a DWDM resource rather than IP/MPLS.

2) The request is passed from the upper SDN Controller to the DWDM SDN Controller to service the request.
The SDN Controller maps the required bandwidth into the available bandwidth. It finds that there is not
enough bandwidth available to grant the request.

3) When de-fragmentation is being used, while processing the service request, the controller will move lower
bandwidth service(s) to free enough bandwidth to instantiate the service request. If enough bandwidth to
service the request is not found in this manner the layer SDN Controller might refuse the service request or
bring up another DWDM lambda to service it.

B.4 Policy Based Configuration

B.4.1 Problem Description
In a number of cases a large number of Network Services are expected to be deployed by various Tenants or Cloud
administrators, following a common set of rules specifying how the traffic between the various deployed VNFs is
supposed to flow, possibly through some rerouting of the traffic via other VNFs responsible for common tasks such as
Firewalling, NAT or DPI.

Group Based Policy projects progressing in Openstack and OpenDaylight (ODL) are addressing these use cases. They
rely on a declarative approach to define how data traffic is supposed to flow between network resources. The goal is to
facilitate the deployment of Network Services by automating the configuration of the network and leverage SDN to
apply policies dynamically

Network Intent Composition (ODL NIC) in OpenDaylight is also taking the view that a configuration of a network is a
descriptive way to get what is desired from the communication infrastructure.

B.4.2 Solution Description
Policy Based configuration separates information about connectivity requirements from information about the
underlying details of the SDN network infrastructure.

A set of components are responsible for managing the policy definition, the associated configuration and related state.

Renderer components are responsible for applying the policy as specified by the user, to the SDN network
infrastructure.

At a high level, Policies are typically expressed as a contract between two groups of Endpoints.

EndPoints might be part of the resources managed by the SDN Controllers of the concerned administrative domain.
They might also be external entities which are expected to send/receive traffic to some of the resources managed in the
domain concerned.

Some Policy Rules in the contract describing the policy are used to ensure that appropriate actions will be taken on the
traffic between the concerned Endpoint groups when some Classification criteria are met.

ETSI

ETSI GS NFV-EVE 005 V1.1.1 (2015-12)94

Policy Model

Figure B.3: Policy applying to Endpoint Groups

Architectural view

Figure B.4: VIM Based Policy implementation

GBP for example is implemented by the VIM (as for Openstack GBP, and possibly Congress). Other Policy flavour is
implemented by the SDN Network Controller (as for ODL GBP and ODL NIC).

Applying a policy might trigger some interactions with the NFVO and/or the VIM as it possibly modifies deployed
Network Services.

For example when traffic matching a policy is redirected to go through some transparent middle boxes, the renderer
might reconfigure some virtual switches to encapsulate the traffic in a corresponding service function chain, and
possibly instantiate VNFs which need to be part of it.

New repositories are needed to support GBP, to store the Abstract Policies, the Endpoints and possibly additional status
information (for example: availability of VNFs of a particular type).

ETSI

ETSI GS NFV-EVE 005 V1.1.1 (2015-12)95

Figure B.5: SDN Controller Policy Model

It is noted that Policy Based Models are seen also as an internal means to address the multiple writer problem, which
takes place when independently designed or implemented APIs need to coexists while driving a common set of network
resources. The OpenDaylight GBP API for example might be used to implement various Openstack neutron APIs
consistently.

B.4.3 Scope of Policy Based Configuration
A typical "Action" in the OpenDayLight Policy Model could allow redirecting the traffic between two VNFs on a
Service Function Chain (SFC). The chain might then be seen as a Network Service dynamically created as a result of a
policy configuration.

GBP might be applied inside a VNF or inside a Network Service. Typical usage of GBP is to insert firewall and DPI
functions in a Network Service, for security purposes.

Finally it might be used to steer external traffic, issued by component external to the administrative domain covered by
the SDN controller for example, through a Network Service.

B.4.4 Questions raised by Policy Based Configuration
Implementations differ on what type of Rules might be used to describe what type of traffic between groups is
concerned by the policy. Does the rule apply only to resources managed by the administrative domain, does it deal with
Tenant's end users, with Time of Day or various network events such as Radio Access Type change for Gi- LAN use
case?

In addition, the question is at which level is the policy repository located? Is it part of the VIM or of the SDN
Controller? Or even is it shared with the virtual or physical switches in some cases?

B.5 Virtual CPE

B.5.1 Problem Description
Nowadays, deployment of new customer services requires change to the access equipment on the customer premise, as
well as activation of configuration on Operator Service platform. This practice increases the cost of new CPE and
service delivery, as well as CPE and service maintenance, especially in complex service created by chaining existing
services or services from partners. It also decreases the ability of customer self-care, for example adding new Value
Added Services (VAS) in near real-time for users in its home network.

There are many studies about vCPE in the industry. It is about simplification of customer infrastructure to layer 2
access, shifting layer 3 functionalities from customer home network to the edge of Operator network.

ETSI

ETSI GS NFV-EVE 005 V1.1.1 (2015-12)96

Below, as example, is description of a two use cases of service provisioning.

The first is VAS - Parental control and second Anti-DDoS service.

Solution describes how Network Controller (SDN Controller), VNFO, VNFM, VIM and EMS are used in vCPE
architecture, to steer traffic to appropriate service functions to make service chain.

Use case Parental Control:

Parents want to prevent their children from visiting adult network resources and other particular internet resources.

This control is implemented per children's device basis. Parent manage this control through the customer portal.

1) Parent1 accesses the portal using credentials he was given after ordering the service.

2) Parent1 registers the terminal he uses to access the portal. The system now knows that a particular MAC
address (MAC1 from the table on Slide 2) is associated with user 'Parent1' under the main customer account.

3) After that, he registers the terminals and users for Parent2 (MAC2, laptop), Child1 (MAC3, smartphone) and
Child2 (MAC4, tablet).

4) For Parent1 and Parent2 terminals parental control is left in 'Off' state.

5) For MAC3 and MAC4 terminals, 'Parental Control - Teen' and 'Parental Control - Pre-teen' are selected,
respectively.

6) Child1 accesses his Facebook page and views his 'Friends' page.

7) He tries to open a link to adult content and is blocked from doing that.

8) Child2 tries to access Facebook to check his friend's birthday date and is blocked from doing that.

9) He asks his Parent1 to give him access.

10) Parent1 logs into the self-care portal and disables the parental control on Child2 tablet (MAC4) temporarily.

11) Child2 checks his friend's birthday successfully and Parent1 turns the parental control feature back on or waits
for the Parental Control inactivity timer to expires.

12) Child2 tries to access Facebook again and is blocked from doing that.

Use case DoS/DDoS protection:

Service provider wants to prevent outside DoS attacks to subscribers.

This function is typically preconfigured by system administrators.

1) All inbound internet traffic goes through Intelligent Firewall/Traffic Analyzer VNF.

2) System administrator makes pre-configuration for DoS detection - signatures, SYN/FIN/ACK packets number,
min/max packets per second threshold, stateful inspection, etc.

3) Subscribers protected from DoS attack and still able access resources which located in affected subnets.

B.5.2 Solution Description
Figures B.6 and B.7 are illustrative vCPE solution architecture, with MANO functional blocks, and Network Controller
for service chaining for two use cases:

Use case Parental Control:

Below is the flow of management actions to provision the parental control service, including activity of the Network
Controller:

1) Parent1 accesses the portal using credentials he was given after ordering the service.

2) Parent1 turns on Parental control service.

ETSI

ETSI GS NFV-EVE 005 V1.1.1 (2015-12)97

3) Customer portal forwards information about MAC addresses and associated policies for parental control to
OSS/BSS.

4) Forwarding Path configuration change request:

- OSS/BSS sends FP-change request to NFVO.

- NFVO forwards request to VIM.

- VIM makes changes in SDN Controller configuration.

- Network Controller changes traffic flow path for particular packets based on MAC address information.

5) VNF configuration change request:

- OSS/BSS sends VNF-change request to VNF Manager.

- VNF Manager forwards request EMS.

- EMS makes changes in DPI VNF configuration (specific internet resource filters).

- DPI VNF processed traffic filtering accordingly to customer portal requirements.

Figure B.6: vCPE Solution architecture - Parental Control use case

Use case DoS/DDoS protection:

1) DoS/DDoS attack detected from particular subnet/subnets by VNF Firewall(TA) VNF. Firewall(TA) VNF also
recognized legitimate traffic from these particular subnets because connection was initiated by internal
subscribers.

2) Forwarding Path configuration change request:

- Firewall(TA) VNF sends FP-change request to NFVO.

- NFVO forwards change request to VIM.

- VIM makes Network Controller configuration changes.

- Network Controller redirects traffic flows from particular subnet/subnets to DPI.

3) VNF configuration change request:

- Firewall(TA) VNF sends VNF-change request to NFVO.

- NFVO forwards change request to VNFM.

- VNFM forwards request to appropriate EMS.

- EMS makes DPI VNF configuration changes.

ETSI

ETSI GS NFV-EVE 005 V1.1.1 (2015-12)98

- DPI VNF renews filters and traffic might be cleaned precisely.

- DPI blocks only non-legitimate traffic and passes all legitimate traffic to subscribers.

4) After amount of time DPI engine recognized there is no DoS/DDoS traffic anymore from particular subnets.

5) Forwarding Path-configuration change request:

- DPI VNF sends FP-change request to NFVO.

- NFVO forwards change request to VIM.

- VIM makes Network Controller configuration changes.

- Network Controller redirects traffic flows from particular subnet/subnets to Firewall(TA) VNF.

6) VNF configuration change request:

- DPI VNF sends VNF-change request to NFVO.

- NFVO forwards VNF-change request to VNFM.

- VNFM forwards request to appropriate EMS.

- EMS makes DPI VNF configuration changes.

- DPI VNF removing unnecessary filters.

Figure B.7: vCPE Solution architecture - DoS/DdoS protection use case

ETSI

ETSI GS NFV-EVE 005 V1.1.1 (2015-12)99

Annex C (informative):
Comparison of Opensource SDN Controller

C.1 Introduction
As part of ETSI NFV reference architecture is NFVI+VIM, and network elements. As network evolve towards SDN,
SDN switches and SDN controllers are being integrated in this architecture. Both non-opensource and open source
software-based controllers are being developed and are available in the industry. A number of opensource software
implementations are available. The objective of this clause is to collect a list of publicly available opensource SDN
controller and perform a comparison according to a common set of criteria.

C.2 List of Opensource SDN controller

C.2.0 Introduction
There are a number of opensource controllers available today.

The 1st one was NOX opensourced in 2008.

Other controllers came along such as POX, or Beacon is 2010, Trema which is a Ruby based controller or Ryu.

Floodlight was issued out of Beacon and released under the Apache® 2.0 licence (see note).

NOTE 1: "Apache is a registered trademark of the Apache Software Foundation. This information is given for the
convenience of users of the present document and does not constitute an endorsement by ETSI of the
product named. Equivalent products may be used if they can be shown to lead to the same results".

Lately some companies joined forces to release OpenDaylight under Linux® Foundation (see note). While another
company was releasing OpenContrail in Opensource.

NOTE 2: "Linux is a registered trademark of Linus Torvalds. This information is given for the convenience of
users of the present document and does not constitute an endorsement by ETSI of the product named.
Equivalent products may be used if they can be shown to lead to the same results".

Last, as a challenger to OpenDaylight, ONOS was released in November 2014, out of a collaboration between multiple
vendors and universities.

Table C.1: list of Opensource SDN controller

 Name URL Release/Version
1 Floodlight [i.12] 1.0
2 OpenDaylight [i.13] Lithium
3 OpenContrail [i.14] 1.2
4 ONOS [i.15] Blackbird
5 Ryu [i.16] 3.2.4
6 MidoNet® [i.17] 05-2015
NOTE: "Midonet is the trade name of a collaborative open

source project from Midokura SARL Ltd. This
information is given for the convenience of users of
the present document and does not constitute an
endorsement by ETSI of the product named.
Equivalent products may be used if they can be
shown to lead to the same results".

Other opensource controllers have been developed such as: ONIX, Helios, Hyperflow, Maestro, Kandoo, NOX, Indigo,
etc.

ETSI

ETSI GS NFV-EVE 005 V1.1.1 (2015-12)100

C.2.1 Floodlight
The Floodlight [i.12] Open SDN Controller is an enterprise-class, Apache-licensed, Java®-based (see note) OpenFlow
Controller, supporting physical or virtual SDN switches as shown in figure C.1. It is supported by a community of
developers.It was forked from the Beacon controller, originally developed at Stanford.

Figure C.1: Floodlight SDN controller architecture overview

NOTE: "Java is a registered trademark of Sun Microsystems, Inc. This information is given for the convenience
of users of the present document and does not constitute an endorsement by ETSI of the product named.
Equivalent products may be used if they can be shown to lead to the same results".

C.2.2 OpenDaylight
OpenDaylight (ODL) is a highly available, modular, extensible, scalable and multi-protocol controller infrastructure
built for SDN deployments on modern heterogeneous multi-vendor networks. It provides a model-driven service
abstraction platform that allows users to write apps that easily work across a wide variety of hardware and southbound
protocols [i.13].

Lithium is the third release of OpenDaylight, the open source platform for building programmable, software-defined
networks. With Lithium, service providers and enterprises might transition to SDN with particular focus on broadening
the programmability of intelligent networks. They might compose their own service architectures or leverage an
OpenDaylight-based commercial offering to deliver dynamic network services in a cloud environment, craft dynamic
intent-based policies and begin virtualizing functions with Service Function Chaining (SFC).

ETSI

ETSI GS NFV-EVE 005 V1.1.1 (2015-12)101

The OpenDaylight platform provides a common foundation and a robust array of services to enable a wide breadth of
applications and use cases. ODL might deliver the benefits of SDN to use cases as diverse as managing cable modems,
connecting the Internet of Things, or controlling Ethernet switches using the OpenFlow protocol.

Figure C.2: OpenDaylight Lithium architecture with Example OpenStack use case

As shown in figure C.2, OpenDaylight is composed of a number of different modules that might be combined as needed
to meet the requirements of a given scenario. Users might download OpenDaylight directly to compose their own
service architecture or leverage one of the 20+ available ODL-based commercial offerings.

One common use case explored here is providing network services for cloud data center platforms such as OpenStack.
As shown in figure C.2 a standard OpenStack cloud might be paired with OpenDaylight to offload network processing
and provide enhanced services. This basic use case might be implemented after starting the core ODL controller by
enabling the AAA, Neutron and OVSDB services. These services alone might support OpenStack by automating
network Virtualisation and providing centralized control and management of distributed virtual switches and routers
across the OpenStack cloud.

With OpenStack within the SDN context, controllers and applications interact using two channels: OpenFlow and
OVSDB. OpenFlow addresses the forwarding-side of the OVS functionality. OVSDB, on the other hand, addresses the
management-plane. Open vSwitch (OVS) is generally accepted as the unofficial standard for Virtual Switching in the
Open hypervisor based solutions.

Other use cases have been defined such as Service Function Chaining and integration with OPNFV.

Some highlights of what is new in Lithium: (more on https://www.opendaylight.org/whats-new-lithium):

• Controller: For Lithium the Controller Project added key new capabilities to improve performance and
scalability including MD-SAL clustering along with additional enhancements and API Extensions.

• AAA: Key Updates for Lithium: Added support for persistent data stores, Federation and SSO with OpenStack
Keystone, and additional extensions and enhancements.

• ALTO: Application-Layer Traffic Optimization (ALTO) is an IETF protocol to provide network information
to applications. The ALTO project in OpenDayLight is an effort to implement ALTO in OpenDayLight. In
addition to implementing the ALTO base protocol (IETF RFC 7285 [i.20]), the project leverages
OpenDayLight to introduce a provisioning interface for ALTO.

https://www.opendaylight.org/whats-new-lithium

ETSI

ETSI GS NFV-EVE 005 V1.1.1 (2015-12)102

• BGP/LS/PCEP: This project is an effort to bring two south-bound plugins into the controller: one for
supporting BGP Linkstate Distribution as a source of L3 topology information, the other one to add support for
Path Computation Element Protocol (PCEP) as a way to instantiate paths into the underlying network. Key
Updates for Lithium: Added support for BGP Flowspec, graceful restart, segment routing, secure transport for
PCEP.

• GBP: The group-based policy (GBP) project defines an application-centric policy model for OpenDaylight
that separates information about application connectivity requirements from information about the underlying
details of the network infrastructure. Key Updates for Lithium: added support for integration with OpenStack
Neutron; support for Service Function Chaining; one renderer called OpenFlow Overlay Renderer (OfOverlay)
with NAT support, table offsets; overall improvements in code quality, stability and performance.

• IoT: The IoTDM project is about developing a data-centric middleware that will act as a oneM2M compliant
IoT Data Broker (IOTDM) and enable authorized applications to retrieve IoT data uploaded by any device.

• LACP: The LACP Project within OpenDaylight implements Link Aggregation Control Protocol (LACP) as an
MD-SAL service module and will be used to auto-discover and aggregate multiple links between an
OpenDaylight controlled network and LACP-enabled endpoints or switches.

• LISP flow mapping service: LISP (IETF RFC 6830 [i.19]) is a protocol that enables separation of Endpoint
Identity (EID) from Routing Location (RLOC) by defining an overlay in the EID space which is mapped to the
underlying network in the RLOC space. LISP also provides a Mapping Service that provides the [i.20] EID-to-
RLOC mapping information including forwarding policy (load balancing, traffic engineering, etc.) to LISP
routers for tunneling and forwarding purposes. The LISP Mapping Service might serve the mapping data to
dataplane nodes as well as to ODL applications. To leverage this service, a northbound API allows
OpenDaylight applications and services to define the mappings and policies in the LISP Mapping Service.
This project also includes a southbound LISP plugin that enables LISP dataplane devices to interact with the
OpenDaylight via the LISP protocol. Key Updates for Lithium: Improved ELP Processing, NB API
transitioned to MD-SAL, Continuous integration with Service Function Chaining, Neutron enhancements.

• NIC: Network Intent Composition (NIC) is an interface that allows clients to express a desired state in an
implementation-neutral form that will be enforced via modification of available resources under the control of
the OpenDaylight system.

• Neutron and OVSB plugin: Several services and plugins in opendaylight work together to provide simplified
integration with the OpenStack Neutron framework. These services enable OpenStack to offload network
processing to ODL, while also enabling ODL to provide enhanced network services to OpenStack. Key
Updates for Lithium: Transitioned API's to MD-SAL, increased feature parity with Neutron including support
for LBaaS, added Distributed Virtual Router, SNAT, External Gateway & Floating IP support, improvements
to performance and stability.

• Openflow plugin: The plugin is based on the Model Driven Service Abstraction Layer (MD-SAL) architecture.
Key Updates for Lithium: For Lithium the OpenFlow Plugin underwent a complete rearchitecture, this new
OpenFlow 1.0/1.3 MD-SAL based plugin is distinct from the old OpenFlow 1.0 plugin which was based on the
API driven SAL (AD-SAL) architecture; support for Table Type Patterns added.

• Opflex: The ODL Opflex Agent is a policy agent that works with OVS to enforce a group-based policy
networking model with locally attached virtual machines or containers.

• Reservation: Reservation is meant to provide dynamic low level resource reservation so that users might get
network as a service, connectivity or a pool of resources (ports, bandwidth) for a specific period of time. The
idea behind the reservation application is to be able to have end to end multi-layer provisioning. Assume the
two end to be two ports in a device. The link provisioning could be done based on information such as latency,
bandwidth, etc. Link reservation also might consider the period of time (duration), and taking into account the
cost of reservation.

ETSI

ETSI GS NFV-EVE 005 V1.1.1 (2015-12)103

• SFC: OpenDaylight Service Function Chaining (SFC) provides the ability to define an ordered list of a
network services (e.g. firewalls, load balancers). These service are then "stitched" together in the network to
create a service chain. This project provides the infrastructure (chaining logic, APIs) needed for ODL to
provision a service chain in the network and an end-user application for defining such chains. Key Updates for
Lithium: Added Yang models for expressing service function chains; SFC receiver for intent expressions from
REST and RPC; UI for service chain construction; LISP support; function grouping for load balancing;
Openflow renderer for NSH, MPLS and VLAN; Southbound REST interface; SFC-OVS for SFF bridges,
tunnels, and ports CRUD via OVSDB; Classifier (IP Tables based) for classifying packets into selected
Service Chains; Integration with ODL GBP project.

• SNBI: SNBI uses a zero-touch approach to bootstrapping that leverages manufacturer-installed IEEE 802.1AR
certificates to secure even the initial communications. SNBI devices and controllers automatically discover
each other, get an IP-address assigned, and establish secure IP connectivity. In addition, this discovery process
reveals the physical topology of the network, exposes each type of a device, and assigns the domain for each
device. Key Updates for Lithium: Added Linux side abstraction layer for forwarding elements along with
enhancements to feature abstraction and bootstrapping infrastructure.

• Topology Processing Service (TPS): Provides a framework for simplified aggregation and querying of
topology data which might be used to enable a unified topology view including multi-protocol, Underlay and
Overlay resources.

• VPN: Virtual Private network (VPN) key updates with Lithium: API for L3 VPN Services; Integration with
open source routing suites including Quagga & RYU; OpenStack Neutron integration.

• VTN: Virtual Tenant Network (VTN) migration to MD-SAL; Significant improvements to policy management
in VTN Manager.

• USC: The Unified Secured Channel (USC) framework provides a central server to coordinate encrypted
communications between endpoints.

OpenDaylight Lithium Deployment: deploying OpenDaylight has some pre-requisites.

The OpenDaylight Karaf container, OSGi bundles, and Java class files are portable run on any Java 7- or Java 8-
compliant JVM to run. Certain projects and certain features of some projects might have additional requirements. Those
are noted in the project-specific release notes.

Projects and features which have known additional requirements are:

• TCP-MD5 requires 64-bit Linux

• TSDR has extended requirements for external databases

• Persistence has extended requirements for external databases

• SFC requires addition features for certain configurations

• SXP depends on TCP-MD5 on thus requires 64-bit Linux

• SNBI has requirements for Linux and Docker * OpFlex requires Linux

• DLUX requires a modern web browser to view the UI

• AAA when using federation has additional requirements for external tools

• VTN has components which require Linux

Typically SNBI pre-requisites are: 64 bit Ubunutu® (see note) 14.04 LTS Especially for Docker, its required that be
deployed docker version greater than 1.0 on a 14.04 Ubuntu. 4 GB RAM 4 GB of Hard disk space, sufficient enough to
store certificates. Java Virtual Machine 1.7 or above Apache Maven 3.04 or above.

NOTE: "Ubuntu is the trade name of a product supplied by CANONICAL Ltd. This information is given for the
convenience of users of the present document and does not constitute an endorsement by ETSI of the
product named. Equivalent products may be used if they can be shown to lead to the same results".

ETSI

ETSI GS NFV-EVE 005 V1.1.1 (2015-12)104

C.2.3 OpenContrail
OpenContrail [i.14] is an Apache 2.0-licensed project that is built using standards-based protocols and provides all the
necessary components for network Virtualisation-SDN controller, virtual router, analytics engine and published
northbound APIs. As shown in the following subsections it has an extensive REST API to configure and gather
operational and analytics data from the system. Built for scale, OpenContrail might act as a fundamental network
platform for cloud infrastructure. The key aspects of the system are:

Network Virtualisation: Virtual networks are the basic building block of the OpenContrail approach. Access-control,
services and connectivity are defined via high level policies. By implementing inter-network routing in the host,
OpenContrail reduces latency for traffic crossing virtual-networks. Eliminating intermediate gateways also improves
resiliency and minimizes complexity.

Network Programmability and Automation: OpenContrail uses a well-defined data model to describe the desired
state of the network. It then translates that information into configuration needed by each control node and virtual
router. By defining the configuration of the network versus of a specific device, OpenContrail simplifies and automates
network configuration.

Big Data for Infrastructure: The analytics engine is designed for very large scale ingestion and querying of structured
and unstructured data. Real-time and historical data is available via a simple REST API, providing visibility over a wide
variety of information.

OpenContrail might forward traffic within and between virtual networks without traversing a gateway. It supports
features such as IP address management; policy-based access control; NAT and traffic monitoring. It interoperates
directly with any network platform that supports the existing BGP/MPLS L3VPN standard for network Virtualisation.

OpenContrail might use most standard router platforms as gateways to external networks and might easily fit into
legacy network environments. OpenContrail is modular and integrates into open cloud computing platforms such as
OpenStack, Cloudstack, and is currently supported across multiple Linux distributions and hypervisors.

The Contrail Controller is based on the Border Gateway Protocol (BGP) that is already embedded in widely deployed
IP infrastructures, (switches and routers from leading network vendors).

It also employs XMPP, a protocol for transmitting message-oriented middleware messages, to control the virtual
switches inside of hypervisors. It uses Multiprotocol Label Switching (MPLS), which encapsulates packets on a
network and controls their forwarding through those labels; MLPS exists between Layers 2 and 3 in the network stack.

There are a number of other protocols that the Contrail Controller uses to separate the data and control planes in the
switching stack and making them more malleable, but at the moment the OpenFlow protocols are not supported.

OpenContrail Architecture Overview

As shown below in figure C.3, the OpenContrail System consists of two parts: a logically centralized but physically
distributed controller and a set of vRouters that serve as software forwarding elements implemented in the hypervisors
of general purpose Virtualised servers.

The controller provides northbound REST APIs used by applications. These APIs are used for integration with the
cloud computing system, for example for integration with OpenStack via a neutron plugin. The REST APIs might also
be used by other applications and/or by the operator's OSS/BSS. Finally, the REST APIs are used to implement the
web-based GUI included in the OpenContrail System.

The OpenContrail System provides three interfaces: a set of north-bound REST API's that are used to talk to the
Applications, south-bound interfaces that are used to talk to virtual network elements (vRouters) or physical network
elements (gateway routers and switches), and an east-west interface used to peer with other controllers. OpenStack and
CloudStack are supported via standard BGP (the east-west interface), XMPP is the southbound interface for vRouters,
BGP and Netconf and the southbound interfaces for gateway routers and switches.

Internally, the controller consists of three main components:

• Configuration nodes which are responsible for translating the high-level data model into a lower level form
suitable for interacting with network elements.

• Control nodes which are responsible for propagating this low level state to and from network elements and
peer systems in an eventually consistent way.

ETSI

ETSI GS NFV-EVE 005 V1.1.1 (2015-12)105

• Analytics nodes which are responsible for capturing real-time data from network elements, abstracting it and
presenting it in a form suitable for applications to consume.

All of these nodes will be described in detail later in this clause.

Figure C.3: OpenContrail SDN controller system overview

The vRouters are network elements implemented entirely in software. They are responsible for forwarding packets from
one virtual machine to other virtual machines via a set of server-to-server tunnels. The tunnels form an overlay network
sitting on top of a physical IP-over-Ethernet network. Each vRouter consists of two parts: a user space agent that
implements the control plane and a kernel module that implements the forwarding engine.

The OpenContrail System implements three basic building blocks:

1) physical or virtual network services such as firewalls, Deep Packet Inspection (DPI), or load balancers. Multi-
tenancy, also known as network Virtualisation or network slicing is the ability to create Virtual Networks that
provide Closed User Groups (CUGs) to sets of VMs.

2) Gateway functions: this is the ability to connect virtual networks to physical networks via a gateway router
(e.g. the Internet), and the ability to attach a non-Virtualised server or networking service to a virtual network
via a gateway.

3) Service chaining as an NFV use case: this is the ability to steer flows of traffic through a sequence of physical
or virtual network services such as firewalls, Deep Packet Inspection (DPI) or load balancers.

OpenContrail Nodes

Looking at the internal structure of the system, as shown in figure C.4, the system is implemented as a cooperating set
of nodes running on general-purpose x86 servers. Each node might be implemented as a separate physical server or it
might be implemented as a Virtual Machine (VM).

All nodes of a given type run in an active-active configuration so no single node is a bottleneck. This scale out design
provides both redundancy and horizontal scalability.

• Configuration nodes keep a persistent copy of the intended configuration state and translate the high-level data
model into the lower level model suitable for interacting with network elements. Both these are kept in a
NoSQL database.

ETSI

ETSI GS NFV-EVE 005 V1.1.1 (2015-12)106

• Control nodes implement a logically centralized control plane that is responsible for maintaining ephemeral
network state. Control nodes interact with each other and with network elements to ensure that network state is
eventually consistent.

• Analytics nodes collect, store, correlate, and analyse information from network elements, virtual or physical.
This information includes statistics, logs, events and errors.

In addition to the node types which are part of the OpenContrail Controller, some additional nodes types have been
identified for physical servers and physical network elements performing particular roles in the overall OpenContrail
System:

• Compute nodes are general-virtualizedalised servers which host VMs. These VMs might be tenant running
general applications, or these VMs might be service VMs running network services such as a virtual load
balancer or virtual firewall. Each compute node contains a vRouter that implements the forwarding plane and
the distributed part of the control plane.

• Gateway nodes are physical gateway routers or switches that connect the tenant virtual networks to physical
networks such as the Internet, a customer VPN, another data center, or to non-Virtualised servers.

• Service nodes physical network elements providing network services such as Deep Packet Inspection (DPI),
Intrusion Detection (IDP), Intrusion Prevention (IPS), WAN optimizers, and load balancers. Service chains
might contain a mixture of virtual services (implemented as VMs on compute nodes) and physical services
(hosted on service nodes).

For clarity, the figure does not show physical routers and switches that form the underlay IP over Ethernet network.
There is also an interface from every node in the system to the analytics nodes. This interface is not shown in figure C.4
to avoid clutter.

Figure C.4: OpenContrail SDN Controller system implementation

C.2.4 Ryu
Ryu [i.16] is a component-based software defined networking framework as shown in figure C.5. Ryu provides
software components with well-defined API that make it easy for developers to create new network management and
control applications. Ryu supports various protocols for managing network devices, such as OpenFlow, Netconf, OF-
config, etc. About OpenFlow, Ryu supports fully 1.0, 1.2, 1.3, 1.4 and Nicira Extensions. All of the code is in Python
and is freely available under the Apache 2.0 license. Ryu means "flow" in Japanese. Ryu is pronounced "re"-yooh".

https://www.opennetworking.org/sdn-resources/openflow

ETSI

ETSI GS NFV-EVE 005 V1.1.1 (2015-12)107

Figure C.5: Ryu SDN Controller architecture overview

Figure C.6: Ryu SDN controller software components

Figure C.7: Ryu SDN Controller user interface and topology discovery

ETSI

ETSI GS NFV-EVE 005 V1.1.1 (2015-12)108

C.2.5 ONOS

C.2.5.1 Introduction

ONOS [i.15] release considered here is Blackbird. ONOS releases quarterly in February, May, August and November.

SDN Operating System released by on.lab, www.onlab.us. On.lab is a non-profit 501 organization.

ONOS is a multi-module project whose modules are managed as OSGi bundles. ONOS is designed with a few goals in
mind:

• Code Modularity: It is be possible to introduce new functionalities as self-contained units.

• Configurability: It is be possible to load and unload various features, whether it be at startup or at runtime.

• Separation of Concern: There are clear boundaries between subsystems to facilitate modularity.

• Protocol agnosticism: It, and its applications, are not be bound to specific protocol libraries or
implementations.

Looking at each below.

Code Modularity

The project is comprised of a set of sub-projects, each with their own source tree that might be built independently. To
do this, the ONOS source tree is organized in a hierarchical fashion that takes advantage of Maven's notion of a
hierarchical POM file organization. Each sub-project has its own pom.xml file, and intermediate directories have parent
aggregate pom.xml files. The latter contains shared dependencies and configurations for those sub-projects, enabling
them to be built independent of unrelated sub-projects. The ONOS root contains the top-level POM (Project Object
Model) file used to build the full project and all of its modules.

For implementation details of the source tree organization, refer to Appendix C of the Developer's Guide [i.24].

Configurability

ONOS is written to leverage Apache Karaf as its OSGi framework. In addition to dependency resolution at startup and
dynamic module loading at runtime, Karaf provides the following:

• Enable use of standard JAX-RS API to develop REST APIs and make them secure

• The notion of features as a set of bundles allowing assembly of custom setups

• Strict semantic versioning of code bundles, including third-party dependencies

• Local and remote ssh console with easily extensible CLI

• The notion of run-time log levels

Separation of Concern

ONOS is partitioned into:

• Protocol-aware network-facing modules that interact with the network;

• Protocol-agnostic system core that tracks and serves information about network state; and

• Applications that consume and act upon the information provided by the core.

Each of the above are tiers in a layered architecture, where network-facing modules interact with the core via a
southbound (provider) API, and the core with the applications via the northbound (consumer) API. The southbound
API defines protocol-neutral means to relay network state information to the core, and for the core to interact with the
network via the network-facing modules. The northbound API provides applications with abstractions that
describe network components and properties, so that they may define their desired actions in terms of policy instead of
mechanism.

http://www.onlab.us/

ETSI

ETSI GS NFV-EVE 005 V1.1.1 (2015-12)109

Protocol Agnosticism

If ONOS needs to support a new protocol, it is possible to build a new network-facing module against the southbound
API as a plugin that might be loaded into the system.

Figure C.8 illustrates ONOS SDN controller architecture overview.

Figure C.8: ONOS SDN Controller architecture overview

C.2.5.2 ONOS Architecture

ONOS is architected as a logically centralized but physically distributed SDN control plane. ONOS comprises a cluster
of instances that work together to manage the applications and the network. As demands on the SDN control plane
grow, either due to an increase in the size of the network or due to an increase in the number of network control
applications, ONOS might scale by adding additional instances to the cluster.
ONOS automatically offloads a portion of the work to these new instances. Architecting a distributed but logically
centralized SDN control plane such as ONOS is a true technical challenge. ONOS' ability to successfully provide and
demonstrate high performance, scale and high availability together is what differentiates it from other open source SDN
controllers available today. ONOS measurements that validate the benefits of its distributed architecture including
providing high performance and scalability are highlighted in figure C.9.

The ONOS Blackbird release defines the following set of metrics to effectively measure performance and other carrier
grade attributes of the SDN control plane.

Performance Metrics:

• Topology - Switch change latency

• Topology - Link change latency

• Flow installation throughput

• Intent (Northbound) install latency

• Intent (Northbound) withdraw latency

• Intent (Northbound) reroute latency

• Intent (Northbound) throughput

Target numbers for metrics

• Flow Throughput: 1 Million flow operations/second

• Latency: Less than 100 ms latency (ideally under 10 ms)

ETSI

ETSI GS NFV-EVE 005 V1.1.1 (2015-12)110

Figure C.9: ONOS SDN Controller software architecture

C.2.5.3 ONOS User Interface

The ONOS user interface as described in figures C.12 and C.13 enables:

• IP packet and optical view

• Topology view

The layout is automatically done based on GPS information from the network elements.

Figure C.10: ONOS IP Packet and Optical View

ETSI

ETSI GS NFV-EVE 005 V1.1.1 (2015-12)111

Figure C.11: ONOS Topology user interface

C.2.6 MidoNet

MidoNet is a distributed, de-centralized, software-defined virtual network platform for Infrastructure as a Service (IaaS)
as shown in figure C.12.

Figure C.12: Midonet SDN controller architecture overview

Midonet [i.17] was released as opensource end of 2013 by a Japanese startup company.

MidoNet virtualizes the network functionality for IaaS products, such as OpenStack, providing functionally advanced,
robust, scalable, and secure networks. MidoNet is an overlay network that runs software on standard x86 servers, and
sits on top of any scalable network underlay (for example, physical servers and switches), pushing the intelligent
network functions to the edge of the network, in software, as shown in figure C.13.

ETSI

ETSI GS NFV-EVE 005 V1.1.1 (2015-12)112

Figure C.13: Midonet SDN controller deployment model

Supports Ubuntu & RHEL® (see note).

NOTE: "RHEL is a registered trademark of Red Hat, Inc. This information is given for the convenience of users
of the present document and does not constitute an endorsement by ETSI of the product named.
Equivalent products may be used if they can be shown to lead to the same results".

These are the key features of MidoNet:

• Layer 2 through 4 networking

• VLAN-less VLANs - Virtual L2 distributed isolation and switching with virtually none of the limitations of
conventional VLANs

• Fully distributed architecture with no single points of failure

• Virtual L3 distributed routing

• Distributed load balancing and firewall services

• Stateful and stateless NAT

• Access Control Lists (ACLs)

• Restful API

• Monitoring of networking services

• VXLAN support: VXLAN tunnel zones, VXLAN L2 Gateway

• Zero-delay NAT connection tracking

Member companies: there are about 20 member companies, all vendors.

ETSI

ETSI GS NFV-EVE 005 V1.1.1 (2015-12)113

Table C.2: Midonet Versions available

Series Status Releases Date

version 2015.4 Under
development Due Apr 30, 2015

version 2015.3
Under
development Due Mar 30, 2015

version 2015.2 Under
development Due Feb 27, 2014

C.3 Comparison criteria

C.3.1 List of Comparison Criteria
Table C.3: list of comparison criteria

Criteria Answer #1 Other answer Comment
OS Linux Which Linux
Packages Debian other
Language written
in

C Python others

Protocols
Openflow
Netconf
BGP
OVSDB
LISP
VXLAN
GRE
etc.

Openflow 1.4 or prior Other List of supported southbound protocol

Openstack
integration

Yes, version, API No + comment on level of integration

Cloudstack
integration

Yes, version, API

North bound API REST Other Northbound API Protocol and other details
Licence Apache 2.0 Other Opensource licence
Virtualised Yes No
Applications Yes, which ones No
ETSI NFV POC Yes No
Docker support Yes No

NOTE: Latest Openflow release is 1.4.

• OS: most common OS is Linux

• Language written: most common language is C, C++ or Python

• Protocol: most common protocol is Openflow, but others are supported too

- Openflow: protocol between data plane and control plane defined by ONF (Open Networking
Foundation)

- OVSDB: The Open vSwitch Database Management Protocol (OVSDB) is an OpenFlow configuration
protocol that is designed to manage Open vSwitch implementations.

Open vSwitch is a virtual switch that enables network automation, while supporting standard management interfaces
and protocols, like NetFlow. Open vSwitch also supports distribution across multiple physical servers.

In an Open vSwitch implementation, a database server and a switch daemon are used. The OVSDB protocol is used in a
control cluster, along with other managers and controllers, to supply configuration information to the switch database
server. Controllers use OpenFlow to identify details of the packet flows through the switch. Each switch might receive
directions from multiple managers and controllers, and each manager and controller might direct multiple switches.

ETSI

ETSI GS NFV-EVE 005 V1.1.1 (2015-12)114

Using the OVSDB protocol, IT professionals might determine the number of individual virtual bridges within an Open
vSwitch implementation, allowing a network engineer to create, configure and delete ports and tunnels from a bridge.
Engineers might also create, configure and delete queues:

• VXLAN

• GRE

• BGP

• LISP

• etc.

Licence: most common and flexible licence is the permissive Apache 2.0 license – this essentially means that anyone
might deploy and modify the System code without any obligation to publish or release the code modifications.

C.3.2 Impact of Docker
Docker is a way to rollout applications within Linux containers and manage their configurations in a portable fashion.
While the LXC technology does not provide the resource level isolation that virtual machines (VM) had with the
hypervisor, it provides some level of isolation.

Figure C.14: Docker architecture overview

Today, Docker picks Linux bridge as the default network for each spawned container and allocates a static IP address
from a default range. The container traffic is then NAT'ed through the host network. This is similar to spawning VMs
with KVM or VirtualBox on your laptop. As container usage gets more complicated to span multiple hosts, multiple
application tiers and multiple datacenters, good underlying plumbing and well understood abstractions are needed.

It is certainly possible to use same networking principles as was used with VMs, or adopt a clean slate thinking for
container communication. In the VM world, each individual entity was addressable by a MAC/IP address combination.
In the container world, however, it is possible that the containers are not individually addressable, and share the host
network or use other means for communicating (e.g. Unix domain sockets).

While the technology and mode of plumbing is up for debate, some of the abstractions will still work in the container
space. The foremost of that is network Virtualisation, the act of decoupling the application's virtual network from the
underlying physical network. This abstraction brings in modularity in deployment, portability of groups of containers,
access control across application boundaries, and plumbing for virtual network services. This is needed in the container
world too (source ONOS wiki).

ETSI

ETSI GS NFV-EVE 005 V1.1.1 (2015-12)115

C.4 Comparison table
Table C.4

Criteria OpenDaylight
Lithium June

2015

OpenContrail 1.2 ONOS
Blackbird

Ryu Midonet
(MEM)

May 2015
OS Any operating

system and
hardware as
long as it
supports Java

Linux, centOS and
Ubuntu

Any operating system and
hardware as long as it supports
Java 8

 Linux,
Ubuntu
14.04,
RHEL

Language
written in

Java - requires
Java 7 or 8

Python Java Python

Openflow Yes 1.3 and
before

No Yes 1.3+ and prior Yes 1.4 and
prior

Netconf Yes Yes Yes with 1.2.0 Cardinal Yes
OVSDB Yes 1.3.0 Release Yes
LISP Yes
BGP Yes Yes Yes (SDN-IP, BGP Routing) Yes
XMPP Yes
MPLS Yes (VPN

Service)
Yes, MPLS over
GRE

Yes (Segment Routing)

VXLAN Yes (OVSDB) yes 1.3.0 Release Yes(OVSDB)
GRE Yes (OVSDB) Yes 1.3.0 Release
Hypervisor
support

KVM Xen, KVM kVM, Vmware,
Xen

Openstack
integration

Yes with
OpenFlow &
OVSB

Yes Icehouse,
NEUTRON API

 Yes via OVX Yes yes

CloudStack yes
Mgt tools
integration

 Chef, puppet,
cobbler, ganglia
support

CLI, REST, shell

North bound
API

REST REST + Java REST

Licence EPL-1.0 Apache 2.0 Apache 2.0 Apache 2.0 Apache
2.0

Virtualised
Applications Many, also

called services
DLUX
VTN Coordinator
OpenStack
Neutron
SDNI Wrapper
DdoS Protection

 • SDN-IP
• BGP Routing
• Segment Routing
• L2/L3 Forwarding (Ipv4

+ Ipv6)
• IP/Optical
• ProxyARP
• Mobility
• CORD (1.2.0)

ETSI NFV
POC

Yes OP-NFV Huawei PoC

Docker
support

Yes i.e. SBNI yes

Ipv6 support Yes no Yes 1.2.0 Release
TLS security Yes
SSl security Yes
Intent yes Yes

C.5 ETSI NFV POC with Opensource SDN Controller

C.5.1 List of POC and Opensource Controller used
Here is the list of ETSI NFV POC with Opensource SDN Controller.

ETSI

ETSI GS NFV-EVE 005 V1.1.1 (2015-12)116

Table C.5

ETSI POC SDN NE SDN Controller Comment
POC#1
POC#2 OpenFlow RYU
POC#8 OpenFlow OpenDaylight
POC#13 OpenFlow Vendor SDN controller
POC#15 OpenFlow OpenDaylight
POC#16 OF 1.3 RYU
POC#21 OpenFlow Floodlight (POF)
POC#23 OpenFlow Proprietary controller
POC#26 OpenFlow Ryu
POC#27 OpenFlow, OF-epc
POC#28 OpenFlow Vendor SDN controller
POC#34 OpenFlow OpenDaylight With extensions for GTP
POC#38 OpenFlow Vendor SDN controller

C.6 Lessons learnt
Following the comparison of OpenSource SDN controller and based on the experience of the POC using SDN
controllers, including some of these Opensource software, a few lessons were learnt:

• Opensource SDN controller follow the ITU model with 3 layers: a layer of resources, a layer of controllers and
a layer of applications.

• Most Opensource SDN controller provide some applications embedded inside the SDN controller , while they
support SDN applications via an open interface , generally REST or java.

• All Opensource SDN controllers studied support OpenFlow, and this happens to be the most common protocol
used between SDN controller and SDN resources within ETSI NFV POC using SDN.

• Most Opensource SDN controller support multiple protocols.

• Most Opensource SDN controller support hierarchy of SDN controller.

• Most Opensource SDN controller support federation of SDN controller.

• Some Opensource SDN controller provide a dedicated interface for federation, called East-West. This interface
is generally not supporting communication with other type of Opensource SDN controller.

• While most Opensource SDN controller agree that they support Virtualisation, deploying a given Opensource
SDN controller in an NFV architectural framework is not documented: no descriptors, no VNF lifecycle
manager, no description of lifecycle management in NFV environment etc.

• All Opensource SDN controller support integration with OpenStack Neutron, however lots of ETSI NFV POC
used direct access to the Opensource SDN controller interface because the neutron interface was not exposing
the features needed in the POC, e.g. POC#26 vMME used SDN controller for control plane and HW for data
plane, and used direct access between the two for the SDN controller to access directly information in the
packet headers for dynamic packet forwarding.

• Most Opensource SDN controller do not provide performance data: number of SDN resources supported,
latency on the interfaces, number of simultaneous access on the Application Control Interface, etc.

ETSI

ETSI GS NFV-EVE 005 V1.1.1 (2015-12)117

C.7 Other Opensource SDN components

C.7.1 Switch Software and Stand-Alone OpenFlow Stacks
Open vSwitch: (C/Python) Open vSwitch is an OpenFlow stack that is used both as a vswitch in Virtualised
environments and has been ported to multiple hardware platforms. It is now part of the Linux kernel (as of clause 3.3).

OpenFlow Reference (C): The OpenFlow reference implementation is a minimal OpenFlow stack that tracks the spec.
Indigo: (C) Indigo is a for-hardware-switching OpenFlow implementation based on the Stanford reference
implementation.

Pantou: (C) Pantou is an OpenFlow port to the OpenWRT wireless environment.

OpenFaucet: (Python) OpenFaucet is a pure Python implementation of the OpenFlow 1.0.0 protocol, based on Twisted.
OpenFaucet might be used to implement both switches and controllers in Python.

OpenFlowJ: (Java) OpenFlow stack written in Java.

Oflib-node: (Javascript) Oflib-node is an OpenFlow protocol library for Node. It converts between OpenFlow wire
protocol messages and Javascript objects.

Nettle: (Haskell) OpenFlow library written in Haskell.

C.7.2 Controller Platforms
POX: (Python) Pox as a general SDN controller that supports OpenFlow. It has a high-level SDN API including a
queriable topology graph and support for Virtualisation.

OpenIRIS: (Java) OpenIRIS is an OpenFlow-based SDN controller platform toward carrier-grade networks. It has an
elaborate I/O engine for its performance enhancement, Loxigen-based OpenFlow message processor, Floodlight-
compatible north-bound REST-API, and extensible user interface. For highly efficient packet processing, OpenIRIS I/O
engine utilizes a combination of threading and event-driven architecture with a special type of synchronous queues.
OpenIRIS supports multiple OpenFlow standards including OpenFlow 1.0.0 and 1.3.2.

MUL: (C) MūL, is an openflow (SDN) controller. It has a C based muli-threaded infrastructure at its core. It supports a
multi-level north bound interface for hooking up applications. It is designed for performance and reliability which is the
need of the hour for deployment in mission-critical networks.

NOX: (C++/Python) NOX was the first OpenFlow controller.

Jaxon: (Java) Jaxon is a NOX-dependent Java-based OpenFlow Controller.

Trema: (C/Ruby) Trema is a full-stack framework for developing OpenFlow controllers in Ruby and C.

Beacon: (Java) Beacon is a Java-based controller that supports both event-based and threaded operation.

Maestro: (Java) Maestro "s an OpenFl"w "o"erating sys"em" for orchestrating network control applications.

ND–I - OESS: OESS is an application to configure and control OpenFlow Enabled switches through a very simple and
user friendly User Interface.

NodeFlow (JavaScript) NodeFlow is an OpenFlow controller written in pure JavaScript for Node.JS.

C.7.3 Special Purpose Controllers
RouteFlow, is an open source project to provide Virtualised IP routing services over OpenFlow enabled hardware.
RouteFlow is composed by an OpenFlow Controller application, an independent RouteFlow Server, and a virtual
network environment that reproduces the connectivity of a physical infrastructure and runs IP routing engines (e.g.
Quagga).

Flowvisor (Java) FlowVisor is a special purpose OpenFlow controller that acts as a transparent proxy between
OpenFlow switches and multiple OpenFlow controllers.

ETSI

ETSI GS NFV-EVE 005 V1.1.1 (2015-12)118

SNAC (C++) SNAC is an OpenFlow controller built on NOX, which uses a web-based policy manager to manage the
network.

Resonance Resonance is a Network Access Control application built using NOX and OpenFlow.

Oflops (C) OFlops (OpenFLow Operations Per Second) is a standalone controller that benchmarks various aspects of
an OpenFlow switch.

C.7.4 Misc
Ironflow ironflow is a IF-MAP client to map the offered data from an Openflow controller into the MAP-Infrastructure.
In addition ironflow offers the possibility to react on request for Investigation requests with the blocking of network
traffic for the hosts quoted in the request.

STS SDN Troubleshooting Simulator.

FlowScale FlowScale is a project to divide and distribute traffic over multiple physical switch ports. FlowScale
replicates the functionality in load balancing appliances but using a Top of Rack (ToR) switch to distribute traffic.

NICE-OF NICE is a tool to test OpenFlow controller application for the NOX controller platform.

OFTest OFTest is a Python based OpenFlow switch test framework and collection of test cases. It is based on unittest
which is included in the standard Python distribution.

Mirage Mirage is an exokernel for constructing secure, high-performance network applications across a variety of
cloud computing and mobile platforms. Apparently, it supports OpenFlow.

Wakame VDC (Ruby) IaaS platform that uses OpenFlow for the networking portion.

ENVI ENVI is a GUI framework that was designed as an extensible platform which might provide the foundation of
many interesting OpenFlow-related networking visualizations.

NS3 (C++/Python) NS3 is a network simulator. It has openflow support built in to emulate an openflow environment
and also it might be used for real-time simulations.

ETSI

ETSI GS NFV-EVE 005 V1.1.1 (2015-12)119

Annex D (informative):
Authors & contributors
The following people have contributed to the present document:

Rapporteur:

Marie-Paule Odini, HP – marie-paule.odini@hpe.com

Other contributors:

Ajay Sahai, HP (ex Contextream) – Ajay.Sahai@hpe.com

Andrew Veitch, NetCracker - andrew.veitch@NetCracker.com

Antonio Gamela, Portugal Telecom - AGamelas@telecom.pt

Ashiq Khan, NTT Docomo – khan@nttdocomo.com

Barak Perlman HP (ex Contextream) – barak.perlman@hpe.com

Benny Rochwerger, Radware - BennyR@Radware.com

Bruno Chatras, Orange – Bruno.chatras@orange.com

Bryan Kimm SKT - bryan.kim@sk.com

Christoph Meyer, Ericsson - christoph.meyer@ericsson.com

Chu Junsheng, ZTE - chu.junsheng@zte.com.cn

Chunglae Cho, ETRI - clcho@etri.re.kr

Dave Duggal, Enterprise Web - dave@enterpriseweb.com

Dave Hood, Ericsson – dave.hood@ericsson.com

Deborah Brungard, AT&T - db3546@att.com

Diego Lopez Garcia, Telefonica - diego.r.lopez@TELEFONICA.COM

DongKee Lee, SKT - DK Lee dongkee.lee@sk.com

Elena Demaria, Telecom Italia - elena.demaria@telecomitalia.it

Evelyn Roch, Huawei - Evelyne.Roch@huawei.com

Fabricio Invernizzi, Telecom Italia - fabrizio.invernizzi@telecomitalia.it

Gerald Kunzmann, Docomo – kunzmann@docomonlab-euro.com

Gao Gongying, China Unicom - gaogy16@chinaunicom.cn

Haleplidis Evangelos, University of Patras - ehalep@ECE.UPATRAS.GR

Han Jie, HP - jie.han3@hpe.com

Hiroshi Dempo, NEC - dem@ah.jp.nec.com

Hiroyuki Kitada, NTT Lab - kitada.hiroyuki@lab.ntt.co.jp

Jaye Sauer, Coriant - jaye.sauer@coriant.com

Jeff Higgs, HP - jeff.higgs@hpe.com

Joan Triay, Docomo – triay@docomolab-euro.com

https://docbox.etsi.org/ISG/NFV/EVE/05-CONTRIBUTIONS/2015/NFVEVE(15)000361r2_CR_EVE005___remaining_recommendations_from_234.docx
http://www.openflow.org/wk/index.php/OpenFlow_1.0_for_OpenWRT
mailto:khan@nttdocomo.com
https://docbox.etsi.org/ISG/NFV/EVE/05-CONTRIBUTIONS/2015/NFVEVE(15)000324r2_EVE005_-_recommendation_from_SDN_controller.docx
http://garyberger.net/
http://searchtelecom.techtarget.com/definition/switch
http://searchsecurity.techtarget.com/definition/bridge
http://sdnhub.org/wp-content/uploads/2014/11/docker0-network.png
https://docbox.etsi.org/ISG/NFV/EVE/05-CONTRIBUTIONS/2015/NFVEVE(15)000395r1_EVE005_-_replace_should.docx
http://vswitch.org/
https://github.com/trustathsh/ironflow
http://portal.etsi.org/Help/editHelp!/Howtostart/ETSIDraftingRules.aspx
https://docbox.etsi.org/ISG/NFV/EVE/05-CONTRIBUTIONS/2015/NFVEVE(15)000377r3_Addressing_editor_note_on_VNF_to_NFVO_interface.docx
mailto:elena.demaria@telecomitalia.it
https://docbox.etsi.org/ISG/NFV/EVE/05-CONTRIBUTIONS/2015/NFVEVE(15)000392r1_EVE005_-_Clause_4_2_-_Consistency_with_the_rest_of_the_docum.docx
http://hackage.haskell.org/package/nettle-openflow-0.2.0
http://www.noxrepo.org/support/about-pox/
http://openiris.etri.re.kr/
http://sourceforge.net/projects/m�
http://www.noxrepo.org/support/about-nox/
http://www.nsnam.org/docs/release/3.13/models/html/openflow-switch.html
http://wakame.jp/
http://www.openflow.org/wp/gui/

ETSI

ETSI GS NFV-EVE 005 V1.1.1 (2015-12)120

Jonghan Park, SKT - jonghan.park@sk.com

Jorge Carapinha, Portugal Telecom - JorgeC@telecom.pt

Kazuaki Obana, NTT Docomo – kazuaki.obana.uz@nttdocomo.com

Luis M. Contreras, Telefonica - luismiguel.contrerasmurillo@telefonica.com

Misahiro Yoshida, NTT - yoshida.masahiro@lab.ntt.co.jp

Maxim Klyus, NetCracker - klyus@NetCracker.com

Mio Jie, China Unicom - miaojie9@chinaunicom.cn

Monica Lazer, AT&T - ml4535@att.com

Nabil Damouny, Netronome - nabil.damouny@netronome.com

Nicolas Bouthors, Qosmos – nicolas.bouthors@qosmos.com

Olaf Renner, Nokia - olaf.renner@nokia.com

Parviz Yegani, Juniper - pyegani@juniper.net

Reza Shahab, ALU - reza.shahab@alcatel-lucent.com

Ryosuke Kurbayashi, NTT Docomo – ryousuke.kurebayashi.pz@nttdocomo.com

Serge Manning, Sprint – serge.manning@sprint.com

Sharon Rozov, HP (ex Contextream) – Sharon.rozov@hpe.com

Takashi Shimizu, NTT - shimizu.takashi@LAB.NTT.CO.JP

Thinh Nguyenphu, Nokia - thinh.nguyenphu@nokia.com

Wang Shimao, HP - shi-mao.wang@hpe.com

Xue Miao, China Unicom - xuemiao9@chinaunicom.cn

Yang Xu, Huawei - yangxu5@huawei.com

Yohei Katayama, NTT Docomo – youhei.katayama.zr@nttdocomo.com

Zhu Lei, Huawei - lei.zhu@huawei.com

mailto:dem@ah.jp.nec.com
https://docbox.etsi.org/ISG/NFV/EVE/05-CONTRIBUTIONS/2015/NFVEVE(15)000269r3_Usage_of_SDN_in_POC_26.docx
mailto:andrew.veitch@NetCracker.com
http://searchsoa.techtarget.com/definition/daemon
mailto:yoshida.masahiro@lab.ntt.co.jp
https://github.com/TrafficLab/oflib-node
http://www.openmirage.org/
http://www.openmirage.org/blog/announcing-mirage-openflow
https://openflow.stanford.edu/display/DOCS/Flowvisor
http://www.openflow.org/wp/snac/
http://www.cc.gatech.edu/~sburnett/posts/2010-05-20-resonance-netkit.html
https://docbox.etsi.org/ISG/NFV/EVE/05-CONTRIBUTIONS/2015/NFVEVE(15)000397_EVE005_-_remove_POC_19.docx
https://docbox.etsi.org/ISG/NFV/EVE/05-CONTRIBUTIONS/2015/NFVEVE(15)000404_EVE005_-_replacing_may.zip
http://ucb-sts.github.com/sts/
https://docbox.etsi.org/ISG/NFV/EVE/05-CONTRIBUTIONS/2015/NFVEVE(15)000406r2_EVE005_-_removing_remaining_Editor_s_note.docx
mailto:shi-mao.wang@hpe.com
https://docbox.etsi.org/ISG/NFV/EVE/05-CONTRIBUTIONS/2015/NFVEVE(15)000410_EVE005_-_replacing_can.zip
http://sites.google.com/site/routeflow/
mailto:kunzmann@docomonlab-euro.com
mailto:jaye.sauer@coriant.com

ETSI

ETSI GS NFV-EVE 005 V1.1.1 (2015-12)121

Annex E (informative):
Change History

Date Version Information about changes

December 2014 0.0.1

First publication of the GS after approval by ETSI NFV EVE#1
http://docbox.etsi.org/ISG/NFV/EVE/05-
CONTRIBUTIONS/2014//NFVEVE(14)000002r3_TOC_for_SDN-NFV_WI.docx

http://docbox.etsi.org/ISG/NFV/EVE/05-
CONTRIBUTIONS/2014/NFVEVE(14)000003r1_SDN_Section_1_to_4.docx
http://docbox.etsi.org/ISG/NFV/EVE/05-
CONTRIBUTIONS/2014/NFVEVE(14)000004r1_SDN_Section_5_and_6.docx
http://docbox.etsi.org/ISG/NFV/EVE/05-
CONTRIBUTIONS/2014/NFVEVE(14)000005r1_SDN_Annex_A_to_D.docx
http://docbox.etsi.org/ISG/NFV/EVE/05-
CONTRIBUTIONS/2014/NFVEVE(14)000006r2_SDN_annex.docx

January 2015 0.0.2

Use of the latest ETSI GS Template
Some editorial changes
Approved contributions by ETSI NFV EVE#2
NFVEVE(15)000004r3
NFVEVE(15)000005r1
NFVEVE(15)000011

March 2015 0.0.3

Approved contribution by ETSI NFV EVE#3
http://docbox.etsi.org/ISG/NFV/EVE/05-
CONTRIBUTIONS/2015/NFVEVE(15)000016r1_Scope_of_EVE-005.docx
Approved contribution by ETSI NFV#9 EVE
http://docbox.etsi.org/ISG/NFV/EVE/05-
CONTRIBUTIONS/2015/NFVEVE(15)000025r4_NFVEVE-SDN_Clause_4_3.doc
http://docbox.etsi.org/ISG/NFV/EVE/05-
CONTRIBUTIONS/2015/NFVEVE(15)000026_PoC14_Contribution_on_SDN.docx
http://docbox.etsi.org/ISG/NFV/EVE/05-
CONTRIBUTIONS/2015/NFVEVE(15)000031_PoC1_CloudNFV_contribution_on_SDN_
for_NFVEVE.doc
http://docbox.etsi.org/ISG/NFV/EVE/05-
CONTRIBUTIONS/2015/NFVEVE(15)000047r1_NFVEVE_15_000010_Content_for_An
nex_B_10_-_POC_23.docx
http://docbox.etsi.org/ISG/NFV/EVE/05-
CONTRIBUTIONS/2015/NFVEVE(15)000052r1_Forwarding_Graphs_and_NFPs_in_SD
N.docx
http://docbox.etsi.org/ISG/NFV/EVE/05-
CONTRIBUTIONS/2015/NFVEVE(15)000054r1_SDN_based_NaaS_provided_by_other
_Administration_Domain.docx
http://docbox.etsi.org/ISG/NFV/EVE/05-
CONTRIBUTIONS/2015/NFVEVE(15)000055r1_Usage_of_SDN_in_POC_27.doc
http://docbox.etsi.org/ISG/NFV/EVE/05-
CONTRIBUTIONS/2015/NFVEVE(15)000063r1_Text_for_NFVEVE_-WI-
005_Section_4_1.docx
http://docbox.etsi.org/ISG/NFV/EVE/05-
CONTRIBUTIONS/2015/NFVEVE(15)000064r1_Additional_text_for_Section_4_2_of_E
TSI_GS_NFVEVE005_v_002.docx
http://docbox.etsi.org/ISG/NFV/EVE/05-
CONTRIBUTIONS/2015/NFVEVE(15)000087__SDN__Opensource_SDN_controller_co
mparison_.doc

March 2015 0.0.4

Approved contribution by ETSI NFV EVE#5
NFVEVE(15)000062r3_Discussion_of_VIM_interconnection_scenarios.docx
NFVEVE(15)000072r2_Usage_of_SDN_in_PoC_8.docx
Adding contributors name
Cleaning POC Clause by removing company names & logos

April 2015 0.0.5

Approved contribution by ETSI NFV EVE#6
https://docbox.etsi.org/ISG/NFV/EVE/05-
CONTRIBUTIONS/2015/NFVEVE(15)000036r2_PoC_16_NFVIaaS_Contribution_on_S
DN.docx
https://docbox.etsi.org/ISG/NFV/EVE/05-
CONTRIBUTIONS/2015/NFVEVE(15)000056r2_EVE005-Opensource_comparison-
Opencontrail.doc

ETSI

ETSI GS NFV-EVE 005 V1.1.1 (2015-12)122

Date Version Information about changes
https://docbox.etsi.org/ISG/NFV/EVE/05-
CONTRIBUTIONS/2015//NFVEVE(15)000066r4_Proposed_Addition_to_Discussion_of_
VIM_interconnection_scena.docx
https://docbox.etsi.org/ISG/NFV/EVE/05-
CONTRIBUTIONS/2015/NFVEVE(15)000084r3_Proposal_for_NFVEVE_-
SDN_Annex_C.doc
https://docbox.etsi.org/ISG/NFV/EVE/05-
CONTRIBUTIONS/2015/NFVEVE(15)000091r3_OpenDaylight_Licence.docx
https://docbox.etsi.org/ISG/NFV/EVE/05-
CONTRIBUTIONS/2015/NFVEVE(15)000097r2_proposal_for_Annex_D_7_-
_OpenIRIS.docx

alphabetic ordering of contributors names
update figure numbering

April 2015 0.0.6

Approved contribution by EVE NFV EVE#7

https://docbox.etsi.org/ISG/NFV/EVE/05-
CONTRIBUTIONS/2015//NFVEVE(15)000147r1_ETSI_GS_NFV-
EVE005_v005_rev_PT_AG_-_part_3__Clauses_5_and_6.docx
https://docbox.etsi.org/ISG/NFV/EVE/05-
CONTRIBUTIONS/2015//NFVEVE(15)000149r1_ETSI_GS_NFVEVE005_v005_section
52_review_by_PT.docx
https://docbox.etsi.org/ISG/NFV/EVE/05-
CONTRIBUTIONS/2015//NFVEVE(15)000156r2_ETSI_GS_NFV-
EVE005_v005_rev_PT_NSN_-_part_2__Clause_4.docx
https://docbox.etsi.org/ISG/NFV/EVE/05-
CONTRIBUTIONS/2015//NFVEVE(15)000144_ETSI_GS_NFVEVE005_v005_rev_PT_A
G_-_part_1__Clauses_1-2-3.docx
https://docbox.etsi.org/ISG/NFV/EVE/05-
CONTRIBUTIONS/2015//NFVEVE(15)000154_Remove_POC_6_from_EVE005.doc
https://docbox.etsi.org/ISG/NFV/EVE/05-
CONTRIBUTIONS/2015//NFVEVE(15)000151_A_review_contribution_for_NFV-
EVE005_draft_GS.zip
https://docbox.etsi.org/ISG/NFV/EVE/05-
CONTRIBUTIONS/2015//NFVEVE(15)000155r1_Editorial_comments_on_EVE005_Ann
ex_B.doc

April 2015 0.0.7
Approved contribution in EVE#3
NFVEVE(15)000032

May 2015 0.0.8 Minor editorial updates on pages 1 and 2 + disclaimer text added to cover page before
to send to ONF as Liaison Statement.

May 2015 0.0.9

Approved contribution in EVE#9
https://docbox.etsi.org/ISG/NFV/EVE/05-
CONTRIBUTIONS/2015//NFVEVE(15)000181_Annex_Update_-_ONOS_table.doc
https://docbox.etsi.org/ISG/NFV/EVE/05-
CONTRIBUTIONS/2015//NFVEVE(15)000049r3_SDN_Controlled_VNF_Forwarding_Po
C-28_Lessons_Learned.zip
https://docbox.etsi.org/ISG/NFV/EVE/05-
CONTRIBUTIONS/2015/NFVEVE(15)000098r6_vCPE_Parental_Control.doc
https://docbox.etsi.org/ISG/NFV/EVE/05-
CONTRIBUTIONS/2015//NFVEVE(15)000162r1_EVE005_Additions_to_SDN_for_inter-
VIM_connectivity.docx
https://docbox.etsi.org/ISG/NFV/EVE/05-
CONTRIBUTIONS/2015//NFVEVE(15)000090r3_GBP_Use_case_.zip

May 2015 0.0.10

Approved contributions in EVE#10-Sanya
https://docbox.etsi.org/ISG/NFV/EVE/05-
CONTRIBUTIONS/2015/NFVEVE(15)000200r2_clause_5_4__SDN_in_Virtualised_envi
ronment.zip
https://docbox.etsi.org/ISG/NFV/EVE/05-
CONTRIBUTIONS/2015/NFVEVE(15)000086r6_SFC_with_SDN_and_NFV.zip
https://docbox.etsi.org/ISG/NFV/EVE/05-
CONTRIBUTIONS/2015/NFVEVE(15)000203_ONOS_update.doc

June 2015 0.0.11

Approved contributions in EVE#11
https://docbox.etsi.org/ISG/NFV/TSC/05-
CONTRIBUTIONS/2015//NFVTSC(15)000041r1_Dislaimer__updated__for_NFV_drafts.
docx

ETSI

ETSI GS NFV-EVE 005 V1.1.1 (2015-12)123

Date Version Information about changes
https://docbox.etsi.org/ISG/NFV/EVE/05-
CONTRIBUTIONS/2015/NFVEVE(15)000184r4_Clause_5_3___hiearchy_of_SDN_cont
roller.doc
https://docbox.etsi.org/ISG/NFV/EVE/05-
CONTRIBUTIONS/2015//NFVEVE(15)000186r2_SDN_Hierarchy_Clause_5_3.docx
https://docbox.etsi.org/ISG/NFV/EVE/05-
CONTRIBUTIONS/2015/NFVEVE(15)000223r1_EVE005_-
_clause_5_3__Hiearchy_SDN_controller_-_combined.doc
https://docbox.etsi.org/ISG/NFV/EVE/05-
CONTRIBUTIONS/2015/NFVEVE(15)000225r1_GS_v0010_content_suggestion_and_e
ditorial_changes.docx
add last diagram of 25r4 that was dropped by the rapporteur in previous updates

June 2015 0.0.12

Approved contribution in EVE#12
https://docbox.etsi.org/ISG/NFV/EVE/05-
CONTRIBUTIONS/2015//NFVEVE(15)000231r1_EVE005_-_D_5_Lessons_learnt.doc
Replace Title of Clause 6 by "Functional Recommendations" and replaced
'requirements' by 'recommendations' in this clause

July 2015 0.0.13

Approved contribution in EVE#13
Disclaimer update: NFVTSC(15)000041r3
NFVEVE(15)000068r6
NFVEVE(15)000241

July 2015 0.0.14
Approved contribution in EVE#13
NFVEVE(15)000268

Aug, 2015 0.0.15

Approved contribution in EVE San Jose
Updating references, figures, Tables
NFVEVE(15)000269r2
NFVEVE(15)000280r5
NFVEVE(15)000292
NFVEVE(15)000296r2
NFVEVE(15)000307r1
NFVEVE(15)000320
NFVEVE(15)000324r2
NFVEVE(15)000328r1
NFVEVE(15)000329r2

Aug, 2015 0.1.0

Approved contribution in EVE#16
NFVEVE(15)000337
NFVEVE(15)000339
NFVEVE(15)000345r1
NFVEVE(15)000348
NFVEVE(15)000349

Sept 2015 0.1.1

CleanUp EditHelp
Approved contributions in EVE#17
NFVEVE(15)000358
NFVEVE(15)000359r1
NFVEVE(15)000360r1
Approved contributions in EVE#17-a
NFVEVE(15)000362r3
NFVEVE(15)000364
NFVEVE(15)000365r1
NFVEVE(15)000366r1
NFVEVE(15)000367
NFVEVE(15)000368r1
NFVEVE(15)000369r1
NFVEVE(15)000370
NFVEVE(15)000383r1

ETSI

ETSI GS NFV-EVE 005 V1.1.1 (2015-12)124

Date Version Information about changes

Sept 2015 0.1.2

Approved contributions in EVE#17-a
NFVEVE(15)000381r1
Approved contributions in EVE#18
NFVEVE(15)000269r3
NFVEVE(15)000361r2
NFVEVE(15)000377r3
NFVEVE(15)000386r1
NFVEVE(15)000392r1
NFVEVE(15)000393r1
Approved contributions in EVE#18-a
NFVEVE(15)000387r1
NFVEVE(15)000390r1
NFVEVE(15)000391r2
NFVEVE(15)000395r1
NFVEVE(15)000397
NFVEVE(15)000404
NFVEVE(15)000405r1
NFVEVE(15)000406r2
NFVEVE(15)000407
NFVEVE(15)000410

Sept 2015 0.1.3

Approved contributions in EVE#19
NFVEVE(15)000417
NFVEVE(15)000418
NFVEVE(15)000419
NFVEVE(15)000420
NFVEVE(15)000423r1

Sept 2015 0.2.0
Editorial change Figure Update
WG approved Draft

ETSI

ETSI GS NFV-EVE 005 V1.1.1 (2015-12)125

History

Document history

V1.1.1 December 2015 Publication

	Intellectual Property Rights
	Foreword
	Modal verbs terminology
	1 Scope
	2 References
	2.1 Normative references
	2.2 Informative references

	3 Definitions and abbreviations
	3.1 Definitions
	3.2 Abbreviations

	4 Overview of SDN in the NFV architectural framework
	4.1 Introduction
	4.2 SDN scope
	4.3 SDN in the NFV architectural framework
	4.3.1 General
	4.3.2 SDN management plane
	4.3.3 Position of SDN resources in an NFV architectural framework
	4.3.4 Position of the SDN controller in an NFV architectural framework
	4.3.5 Position of SDN applications in an NFV architectural framework

	4.4 SDN controller interfaces in the NFV architectural framework
	4.4.1 Introduction
	4.4.2 SDN resource control interface options
	4.4.3 SDN controller orchestration interface options
	4.4.4 SDN application control interface options

	4.5 SDN controller to controller interface in NFV
	4.5.1 SDN controller to controller interface options in NFV
	4.5.2 SDN controller federation options in NFV

	5 Design patterns of SDN in the NFV architectural framework
	5.1 Introduction
	5.2 SDN technology integration options with NFV
	5.2.0 Introduction
	5.2.1 Interconnecting VNFCs using SDN
	5.2.2 Interconnecting VNFs using SDN
	5.2.2.0 Introduction
	5.2.2.1 Chaining based on network service designed according to a VNF-FG
	5.2.2.2 Chaining based on customer policy/service
	5.2.2.3 Chaining based on VNF processing
	5.2.2.4 Load balancing across VNF's

	5.3 SDN across multiple VIM
	5.3.0 Introduction
	5.3.1 SDN controller interfaces
	5.3.2 Scenarios for SDN across multiple VIMs
	5.3.3 Challenges for SDN across multiple VIMs
	5.3.4 Analysis of SDN across multiple VIMs
	5.3.4.1 SDN across multiple VIMs located in a single NFVI-PoP
	5.3.4.2 SDN across multiple VIM in different NFVI-PoPs
	5.3.4.2.0 Introduction
	5.3.4.2.1 VNFs across multiple NFVI-PoP locations with a static bit pipe between them
	5.3.4.2.2 VNFs across multiple NFVI-PoP locations, SDN-based NaaS between them
	5.3.4.2.3 VNFs across multiple NFVI-PoP locations - NFVI-PoP and WAN in a common trust domain (Option A)
	5.3.4.2.4 VNFs across multiple NFVI-PoP locations - NFVI-PoP and WAN in different trust domains - client access to virtual WAN
	5.3.4.2.5 VNFs across multiple NFVI-PoP locations - NFVI-PoP and WAN in different trust domains - client access to physical hos
	5.3.4.2.6 SDN based NFV IaaS across multiple administration domains
	5.3.4.2.7 Multiple VIM for a mobile network

	5.4 SDN controller hierarchy
	5.4.1 Introduction
	5.4.2 Technical and business scenario
	5.4.2.1 SDN controller hierarchy scenarios overview
	5.4.2.2 SDN controller hierarchy for distributed performance, scalability and reliability for multilayer and single-layer trans
	5.4.2.3 SDN controller hierarchy for distributed, cross-SP or cross-domain services
	5.4.2.4 SDN controller hierarchy for NaaS
	5.4.2.5 SDN controller hierarchy for multi-domain, transport network fast fault recover

	5.4.3 Mapping of SDN controller to the ETSI NFV architecture
	5.4.3.1 Introduction
	5.4.3.2 Hierarchy of SDN controllers in the NFVI
	5.4.3.3 Hierarchy of SDN controllers in a VNF
	5.4.3.4 Hierarchy of SDN controller across functional blocks
	5.4.3.5 Hierarchy of SDN controllers below the WIM

	5.5 SDN controller in a Virtualised environment
	5.5.1 Introduction
	5.5.2 Virtualisation of SDN Controller
	5.5.3 SDN controller across multiple Virtualised environment

	5.6 SDN and VNF forwarding graph
	5.6.1 General
	5.6.2 Static NCT
	5.6.3 Dynamic NCT

	5.7 SDN controllers in the tenant and the infrastructure domains
	5.8 Service Function Chaining
	5.8.1 Introduction
	5.8.2 Service Function Chaining (SFC)
	5.8.3 SFC and SDN
	5.8.4 SFC, SDN and NFV with a single NFVI domain
	5.8.4.0 Introduction
	5.8.4.1 Service function chain in the NFVI
	5.8.4.2 Service function chain in the tenant domain
	5.8.4.3 Different options to control a dynamic service chain

	5.8.5 End to end carrier network with SFC, SDN and NFV
	5.8.6 SFC, SDN, NFV with multi-domain, scalability, etc.

	6 Functional recommendations
	6.1 Introduction
	6.2 Functional recommendations related to security
	6.3 Functional recommendations related to SDN controller
	6.4 Functional recommendations on connectivity and interfaces
	6.5 Functional recommendations on NFV Management and Orchestration
	6.5.1 General
	6.5.2 Inter-administrative domain connectivity coordination
	6.5.3 Support of operations to an SDN controller below the VIM
	6.5.4 Support of ordering and charging operations between multiple administrative domains

	6.6 Recommendations on operational aspects

	Annex A (informative): SDN in ETSI NFV POC
	A.0 Introduction
	A.1 POC#1: Open NFV Framework Project
	A.2 POC#2: Service Chaining for NW function selection in Carrier Networks
	A.3 POC#8: Automated Network Orchestration
	A.4 POC#13: Multi-Layered Traffic Steering for Gi-Lan
	A.5 POC#14: Forces applicability for NFV and integrated SDN
	A.6 POC#15: Subscriber Aware Sgi/Gi-lan Virtualisation
	A.7 POC#16: NFVIaaS with Secure SDN-controlled WAN Gateway
	A.8 POC#21: network intensive and compute intensive hardware acceleration
	A.9 POC#23: E2E orchestration of Virtualised LTE Core-Network functions
	A.10 POC#26: Virtual EPC with SDN functions in Mobile Backhaul Networks
	A.11 POC#27: VoLTE Service based on vEPC and vIMS architecture
	A.12 POC#28: SDN Controlled VNF Forwarding graph
	A.13 POC#34: SDN-enabled Virtual EPC Gateway
	A.14 POC#38: Full ISO-7 layer stack fulfilment, activation and orchestration of VNFs in carrier networks

	Annex B (informative): SDN Use Cases in NFV environment
	B.1 Introduction
	B.2 Multi-Layer Bandwidth on Demand
	B.2.1 Introduction
	B.2.2 Problem Description
	B.2.3 Solution Description

	B.3 Bandwidth Defragmentation
	B.3.1 Problem Description
	B.3.2 Solution Description

	B.4 Policy Based Configuration
	B.4.1 Problem Description
	B.4.2 Solution Description
	B.4.3 Scope of Policy Based Configuration
	B.4.4 Questions raised by Policy Based Configuration

	B.5 Virtual CPE
	B.5.1 Problem Description
	B.5.2 Solution Description

	Annex C (informative): Comparison of Opensource SDN Controller
	C.1 Introduction
	C.2 List of Opensource SDN controller
	C.2.0 Introduction
	C.2.1 Floodlight
	C.2.2 OpenDaylight
	C.2.3 OpenContrail
	C.2.4 Ryu
	C.2.5 ONOS
	C.2.5.1 Introduction
	C.2.5.2 ONOS Architecture
	C.2.5.3 ONOS User Interface

	C.2.6 MidoNet

	C.3 Comparison criteria
	C.3.1 List of Comparison Criteria
	C.3.2 Impact of Docker

	C.4 Comparison table
	C.5 ETSI NFV POC with Opensource SDN Controller
	C.5.1 List of POC and Opensource Controller used

	C.6 Lessons learnt
	C.7 Other Opensource SDN components
	C.7.1 Switch Software and Stand-Alone OpenFlow Stacks
	C.7.2 Controller Platforms
	C.7.3 Special Purpose Controllers
	C.7.4 Misc

	Annex D (informative): Authors & contributors
	Annex E (informative): Change History
	History

