ETSI GS AFI 001 V1.1.1 (2011-06)

Group Specification

Autonomic network engineering for the self-managing Future Internet (AFI); Scenarios, Use Cases and Requirements for Autonomic/Self-Managing Future Internet

Reference DGS/AFI-0001

Keywords

Autonomic Networking, Cognition, OAM, ontology, Self-Management

ETSI

650 Route des Lucioles F-06921 Sophia Antipolis Cedex - FRANCE

Tel.: +33 4 92 94 42 00 Fax: +33 4 93 65 47 16

Siret N° 348 623 562 00017 - NAF 742 C Association à but non lucratif enregistrée à la Sous-Préfecture de Grasse (06) N° 7803/88

Important notice

Individual copies of the present document can be downloaded from: http://www.etsi.org

The present document may be made available in more than one electronic version or in print. In any case of existing or perceived difference in contents between such versions, the reference version is the Portable Document Format (PDF). In case of dispute, the reference shall be the printing on ETSI printers of the PDF version kept on a specific network drive within ETSI Secretariat.

Users of the present document should be aware that the document may be subject to revision or change of status. Information on the current status of this and other ETSI documents is available at http://portal.etsi.org/tb/status/status.asp

If you find errors in the present document, please send your comment to one of the following services: http://portal.etsi.org/chaircor/ETSI_support.asp

Copyright Notification

No part may be reproduced except as authorized by written permission. The copyright and the foregoing restriction extend to reproduction in all media.

> © European Telecommunications Standards Institute 2011. All rights reserved.

DECT[™], **PLUGTESTS[™]**, **UMTS[™]** and the ETSI logo are Trade Marks of ETSI registered for the benefit of its Members. **3GPP[™]** and **LTE[™]** are Trade Marks of ETSI registered for the benefit of its Members and of the 3GPP Organizational Partners.

GSM® and the GSM logo are Trade Marks registered and owned by the GSM Association.

Contents

Intelle	ectual Property Rights	4					
Forew	vord	4					
1	Scone	5					
11	Global description background	5					
1.1	AFI Methodology	5 6					
13	AFI Process & Roadman	0					
131	AFI Process	7					
1.3.2	AFI Roadmap	7					
•		0					
2	References	ð					
2.1	Normative references	8					
2.2	Informative references	8					
3	Definitions and abbreviations	9					
3.1	Definitions	9					
3.2	Abbreviations	11					
4	AFI's Requirements for an Autonomic Network	12					
41	Current NGN network	12					
4.2	Future network vision						
4.3	Operator's requirements.	13					
4.4	Management requirements	14					
4.4.1	Network management driven by players	14					
4.4.2	Requirement framework for a Policy- based management	16					
4.4.3	Operator's Policy-based autonomics network vertical framework (cross-layer)	18					
4.4.4	Operator's Policy-based autonomics network horizontal framework (cross-domain)	21					
4.5	AFI Requirement template	22					
4.6	AFI high level Requirements	23					
5	Use Case & Scenarios	37					
51	Use Case & Scenario Template						
5.2	Autonomic in legacy network (NGN)	38					
53	Auto-Configuration of Routers using Routing Profiles in a Fixed Network Environment	39					
5.4	Self-Management of Coverage and Capacity in Future Internet Wireless Systems	40					
5.5	Cognitive event management (Fault/Anomaly/Intrusion Detection)	42					
5.6	Coordination of Self-* mechanisms in autonomic networks	44					
5.7	Autonomic Network Monitoring	45					
5.8	Scenarios Overlay Virtual Network Service Breakdown	47					
5.9	Scenarios Overlay Virtual Network Service Quality Degradation	50					
5.10	Monitoring in Carrier Grade Wireless Mesh Networks	53					
5.11	Network self-management based on capabilities of network behaviours as described to the overlying						
	OSS processes	55					
5.12	Scenarios, requirements and references relationship	56					
Anne	x A (informative): Authors & contributors	57					
Anne	x B (informative): Acknowledgements	58					
Anne	x C (informative): Bibliography	59					
Histor	ry	60					

Intellectual Property Rights

IPRs essential or potentially essential to the present document may have been declared to ETSI. The information pertaining to these essential IPRs, if any, is publicly available for **ETSI members and non-members**, and can be found in ETSI SR 000 314: "Intellectual Property Rights (IPRs); Essential, or potentially Essential, IPRs notified to ETSI in respect of ETSI standards", which is available from the ETSI Secretariat. Latest updates are available on the ETSI Web server (http://ipr.etsi.org).

4

Pursuant to the ETSI IPR Policy, no investigation, including IPR searches, has been carried out by ETSI. No guarantee can be given as to the existence of other IPRs not referenced in ETSI SR 000 314 (or the updates on the ETSI Web server) which are, or may be, or may become, essential to the present document.

Foreword

This Group Specification (GS) has been produced by ETSI Industry Specification Group Autonomic network engineering for the self-managing Future Internet (AFI).

1 Scope

The present document contains a description of scenarios, use cases, and definition of requirements for the autonomic/self-managing future internet based on a Top-down & Bottom-up methodology and related master templates we defined as a dedicated tool. Scenarios and use cases selected in the present document reflect real-world problems which can benefit from the application of autonomic/self-management principles. This list will be enriched and extended with new set of scenarios and use cases in the next release.

5

1.1 Global description background

As network operators need to address numerous issues such as deregulated markets, open competition, explosion of digital services, converged fixed-mobile services, converged IT-Network (Virtualisation, Clouds) and operation efficiency, they are facing new business and technical challenges. Consequently, they are striving to build a new ecosystem comprising end-to-end solutions, created through strategic alliances within the telecommunications sector including third parties MVNO/MVNEs, competitors becoming partners (Radio infrastructure sharing or "RAN Sharing" agreement, for instance), Clouds Services Providers, Virtual Network Providers, consumers becoming content producers, outsourcing partners, integrators. For this reason the networks they are operating and the associated OSS (Operations Support System) must be intelligent, agile, open, secure, flexible and autonomic (i.e. operating with minimum human intervention).

As driving forces from the network evolution perspective, we can highlight the deployment of key emerging technologies such as IP Multimedia Subsystem (IMS) / Next Generation Network (NGN), Long Term Evolution (LTE) / Evolved Packet Core (EPC), Future Internet, Internet of Things, Machine to Machine, IaaS/NaaS/CaaS (Infrastructure, Network, Communication as a Service) etc. The underlying network architectures, so called "flat architecture" will increase the amount of equipments required while at the same time the major operators' requirement is to lower operating costs (OPEX).

That means, some level of the notion of being "autonomics" should be embedded into network equipment and OSS at a first phase for the configuration purpose, but Future Network infrastructure should incorporate more and more autonomic features in order to maintain operational costs under control when it comes to a large scale deployment phase. The same should be also applicable during the "operation phase" and "optimisation phase", all lifelong of the network. This needs embedding Self-optimisation, Self-Healing features. In this context, requirements aiming at building Trust & Confidence on these Self-functions, in one hand, and the coordination of interaction of various Autonomics functions in the other hand, must be implemented in order to ensure a global optimum while targeting a local optimum per Autonomics function activated through the same optimisation of one Autonomics function while at the same time, it negatively impacts another Autonomics function. This results in an unstable behaviour of the network. That means, the coordination of interaction of Autonomics functions functions function of an Autonomics function, a process must be specified and designed to allow the operator to keep control of the management of the network through its OSS and related tools by desactivating a given autonomics function as long as a solid Trust & confidence has not being built.

Currently, there is a lot of work being carried out on autonomics, mostly conducted by the research community but from the operational point of view there is little common understanding on how autonomic technologies can help and how they will impact current operation models of the operators. There is a need to build a new management environment that can definitely contribute to the efficiency of business units and reduce OPEX. Autonomics and Self-Management related technologies are envisioned as the solution for a player to control its own environment and at the same time assuring the end to end view, which emerges from the individual behaviors of all the players.

Work Item 1 focuses on the set of requirements for Autonomic and Self-Managing Future Networks to efficiently help the operator to face new market realities and on the definition of the operational requirements for operators to take advantage of such advanced infrastructure. The Operational Model is far beyond the classical centralized management approaches, looking for innovative methods for controlling and managing distributed decision making functions embedded in an autonomous and intelligent infrastructures.

Work Item 1 establishes a framework for "Scenarios, Use Cases and Requirements for the Self-Managing Future Networks" contributed by Network Operators and other players such as content providers, etc into this AFI Specifications. This framework is based on Templates and Tables.

1.2 AFI Methodology

Figure 1 depicts the AFI Top-Down & Bottom-up Methodology. This methodology is composed of two horizontal layers, high level "operators' requirements, use cases and scenarios" at the bottom and "Generic Autonomic Network Architecture" (GANA), interconnected at the top, with each other to show that some input flows from one process to the other.

A vertical layer provides inputs and enablers in terms of "Use Cases" for the bottom layer and "GANA" for the top layer. In this vertical layer we gather outcome provided by the AFI's stakeholders (research community, operators' experience, vendors' experience, customer quality of experience, etc.

The outcome will be the definition of an "Implementable Autonomic Network Architecture" (IANA) composed of Autonomic functional blocks, reference points, Info Models/Data Models and associated implementation neutral specifications.

Figure 1: AFI Top-Down & Bottom-up Methodology

In order to meet the operators requirements will be defined, we need to instantiate this "Generic Autonomic Network Architecture" by applying its prescribing "generic autonomicity and self-management concepts and principles" into an existing network architecture such as the NGN architecture. The result of this instantiation of GANA is an "Implementable Autonomic Network Architecture" (IANA) as a production network in the short-term, and evolves into the mid-term and then long-term.

To achieve this goal, the inclusion of operators' operation requirements in this "GANA" is required. That means, which reference point should or shall be translated into interface. And which Information Models and Policy Frameworks should be translated into related rules, data models and protocols (syntax, semantic) from implementation point of view. This is linked to the choice of the right and cost effective ones from integration point of view in the OA&M/OSS systems.

This results in the "AFI pre-standard" based in what we named "Implementable Autonomic Network Architecture" as the major AFI deliverable.

Besides, this instantiation will map the "GANA" on to the hierarchical management architecture at network level, service level and policy management level of an existing architecture, will result in an "Autonomic architecture" when the "generic autonomicity and self-management concepts and principles" prescribed by the GANA are applied by fusion with an existing architecture in use by the industry.

These instantiations or mappings must be driven by operators' use cases. The industry (Equipment suppliers, the OSS vendors) will play a major role as well.

In this context, end to end inter-domain issues are also treated when it comes to deliver end to end service through numerous networks or sub-networks (in the case of partioning). Besides, building trust and confidence on the "Implementable Autonomic Network Architecture" by designing test and validation framework is a major topic of this AFI Methodology.

1.3 AFI Process & Roadmap

1.3.1 AFI Process

Figure 2 depicts the different steps of the AFI process. It shows strong relationship between the three work items structuring the AFI work so far. AFI WI#1 specification describes high level operators Requirements, Use Cases and Scenarios. These requirements are used as input toWI#2 which is in charge of specifying the "Generic Autonomic Network Architecture".

WI#3 will map and instanciate the GANA to current networks based on scenarios described in WI#1 and by refining the high level requirements and including operation requirements. The outcome is transforming an existing architecture into an "Autonomic architecture" or "Autonomic-Aware architecture".

Figure 2: AFI process

In order to consolidate this transformed architecture, conformance tests and validation framework is specified in order to build trust and confidence in the AFI specification. This validation process is used for improvement purpose of the AFI specification and could also be used as basis to creating a kind of "AFI logo label/Certification" if needed.

1.3.2 AFI Roadmap

Figure 3 depicts AFI structure, process, roadmap, and deliverables. In this process, AFI stakeholders provide the input to the WIs (Work Item) on the one hand, and feedback and adjustment, on the other hand, in order to help bridging the gap or to create new WIs. Maintenance and updating activity is included in this process as well.

Figure 3: Depicts AFI structure, process, methodology, roadmap, and deliverables

2 References

References are either specific (identified by date of publication and/or edition number or version number) or non-specific. For specific references, only the cited version applies. For non-specific references, the latest version of the reference document (including any amendments) applies.

Referenced documents which are not found to be publicly available in the expected location might be found at http://docbox.etsi.org/Reference.

NOTE: While any hyperlinks included in this clause were valid at the time of publication ETSI cannot guarantee their long term validity.

2.1 Normative references

Not applicable.

2.2 Informative references

The following referenced documents are not necessary for the application of the present document but they assist the user with regard to a particular subject area.

[i.1]	P. Horn. Autonomic Computing: "IBM's perspective on the State of Information Technology" <u>http://www.research.ibm.com/autonomic/</u> , Oct 2001, IBM Corp.
[i.2]	IBM: "An architectural blueprint for autonomic computing". Technical report, IBM White paper (June 2005).
[i.3]	J.L. Crowley, D. Hall, R. Emonet: "Autonomic computer vision systems" in J. Blanc-Talon (Ed.), IE EE Advanced Concepts for Intelligent Vision Systems ICIVS 2007.
[i.4]	ITU-T Recommendation M.3060/Y.2401 (03/2006): "Principles for the Management of Next Generation Networks".
[i.5]	ETSI TS 188 001 (V1.1.1): "Telecommunications and Internet Converged Services and Protocols for Advanced Networking (TISPAN); NGN management; Operations Support Systems Architecture".
[i.6]	TeleManagement Forum TR133-REQ V1.2: "NGN Management Strategy: Policy Paper".

8

9

- [i.10] A Requirement Specification by the NGMN Alliance NGMN Recommendation on SON and O&M Requirements, NGMN alliance, (2008) http://www.ngmn.org/uploads/media/NGMN-Recommendation-on-SON-and-O-M-Requirements.pdf.
- [i.11] EC Funded Autonomic Computing and Networking: "The operators' vision on technologies, opportunities, risks and adoption roadmap" P1855 Eurescom.
- [i.12] Next Generation Mobile Networks Use Cases related to Self Organising Network, Overall Description, NGMN alliance, 2007.
- [i.13] Autonomic Communication, White Paper, Fraunhofer FOKUS November 2004.
- [i.14]IEEE 802.11: "IEEE Standard for Information technology Telecommunications and information
exchange between systems Local and metropolitan area networks Specific requirements -
Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY)
Specifications".
- [i.15] ETSI GS AFI 002: "Autonomic network engineering for the self-managing Future Internet (AFI); Generic Autonomic Network Architecture".

3 Definitions and abbreviations

3.1 Definitions

[i.7]

[i.8]

[i.9]

For the purposes of the present document, the following terms and definitions apply:

Autonomic Behaviour (AB): It is linked to understanding how desired element's behaviours are learned, influenced or changed, and how, in turn, these affect other elements, groups and network [i.13].

autonomic manager element: functional entity that drives a control-loop meant to configure and adapt (i.e. regulate) the behaviour of a managed resource e.g. a protocol module or some other type of a managed entity such as a component, by processing sensory information from the managed resource and from other types of required information sources and reacting to observed conditions by effecting a change in the behaviour of the managed resource to achieve some goal

autonomic networking: "new networking paradigm" that involves the design of network devices and the overall network architecture in such a way as to embed "control-loops and feedback mechanisms" that enable the individual devices and the networked systems as a whole, to exhibit the so-called self-managing properties, namely: auto-discovery, self-configuration(auto-configration), self-diagnosing, self-repair (self-healing), self-optimization, etc.

NOTE: The term autonomic comes from the autonomic nervous system, which controls many organs and muscles in the human body. Usually, we are unaware of its workings because it functions in an involuntary, reflexive manner - for example, we do not notice when our heart beats faster or our blood vessels change size in response to temperature, posture, food intake, stressful experiences and other changes to which we are exposed. And our autonomic nervous system is always working [i.2] Alan Ganek, VP Autonomic Computing, IBM.

context awareness: property of an autonomic application/system that enables it to be aware of its execution environment and be able to react to changes in the environment [i.1]

Decision Element (DE): ETSI GS AFI 002 [i.15] produced by WI#2 defines in more detail so-called Decision-Making-Elements (DMEs) referred in short as Decision Elements (DEs) that fulfil the role of Autonomic Manager Elements, each of which is designed and assigned to autonomically manage and control some Managed Entities (MEs) assigned to be managed and controlled by a concrete DE. An ME is a protocol or a mechanism implemented by some functional entity. A Decision Element (DE) in an "Autonomic Manager Element" implements the logic that drives a control-loop over the "management interfaces" of its assigned Managed Entities (MEs). Therefore, in AFI, self-* functionalities are functionalities implemented by Decision Element(s).

10

GANA (Generic Autonomic Network Architecture): Conceptual Architectural Reference Model for Autonomic Network Engineering, Cognition and Self-Management, whose purpose is to serve as a "blueprint model" that prescribes design and operational principles of "autonomic decision-making manager elements" responsible for "autonomic" and "cognitive" management and control of resources (e.g. individual protocols, stacks and mechanisms)

NOTE: It is not an implementation architecture per se. Refer to ETSI GS AFI 002 [i.15] produced by WI#2 for more details.

Managed Entity (**ME**): protocol or mechanism implemented by some functional entity that does a specific job for which it is designed to perform and can be managed by an Autonomic Manager Element (i.e. a Decision Element) in terms its orchestration, configuration and re-configuration through parameter settings

overlay: logical network that runs on top of another network

EXAMPLE: Peer-to-peer networks are overlay networks on the Internet. They use their own addressing system for determining how files are distributed and accessed, which provides a layer on top of the Internet's IP addressing.

self-advertise: An autonomic entity should be able to advertise its self-model, capability description model, or some information signalling message (such as IPv6 routing advertisement) to the network in order to allow communication with it or to allow other entities to know whatever is being advertised.

self awareness: autonomic application/system which "knows itself" and is aware of its state and its behaviors [i.1]

NOTE: Knowledge about "self" is described by a "self-model".

self configuration: autonomic application/system should be able to configure and reconfigure itself under varying and unpredictable conditions [i.1]

self-descriptive: ability of a component or system to provide a description of its self-model, capabilities and internal state [i.3]

self healing: autonomic application/system should be able to detect and recover from potential problems and continue to function smoothly [i.1]

self-monitoring: ability of a component or system to observe its internal state, for example, including such quality-of-service metrics as reliability, precision, rapidity, or throughput [i.3]

self optimisation: autonomic application/system should be able to detect suboptimal behaviors and optimize itself to improve its execution [i.1]

self organizing: self-organising function in network includes processes which require minimum manual intervention [i.12]

self partioning: introducing level of automation within the partioning process

self protecting: autonomic application/system should be capable of detecting and protecting its resources from both internal and external attack and maintaining overall system security and integrity [i.1]

self-regulation: ability of a component or system to regulate its internal parameters so as to assure a quality-of-service metric such as reliability, precision, rapidity, or throughput [i.3]

3.2 Abbreviations

For the purposes of the present document, the following abbreviations apply:

A HOHOLOUC DELIXVIOUE
Available Bandwidth Gat
Admission Control Monogod Entity
Autonemic Eurotice
Autonomic Function
Autonomic network engineering for the self-managing Future Internet
Access Point
Application Protocol Interface
Application Decision Element
Base Station
Business Support System
Command-Line Interface
Decision Element
Distributed Hash Tables
Decision Making Element
End to End
Element Management System
Evolved Packet Core
Generic Autonomic Network Architecture
Home Area Network
Infrastructure as a Service
Implementable Autonomic Network Architecture
Intrusion Detection Systems
IP Multimedia SubSystem
Internet Protocol version 4 or 6
Internet Service Provider
Knowledge Plane Information
Long Term Evolution
Mobile Ad-hoc NFTworks
Managed Entity
Network Element
Next Generation Network
New Concration Operations System and Software
Network Menagement System
Network Management System
Operating and Maintenance
Operating and Maintenance
OPeration Expediture
Operation Support System
Over The Top
Overlay Virtual Network
Peer to Peer
Quality of Experience
Quality of Services
Quality of Service Decision Element
Service as a service
Service Level Agreement
Short Message Service
Small Office Home Office
Self Organising Network
Traffic Specification
Virtual Network Operator
Work Item

4 AFI's Requirements for an Autonomic Network

Figure 4 depicts the global diagram describing the process and tools used by AFI Work Item 1 for designing "AFI requirements".

The starting point is capturing autonomic issues and global context from top level in order to shape the current and Future network vision. This serves as input to formulate operators' requirements from operation view point. The result is shaping AFI high level requirements thanks to a dedicated template as tool.

From the bottom level, this AFI requirement template is refined by inputs coming from AFI Use Cases & Scenarios structured within appropriate template as tool.

Figure 4: AFI process and tools for designing requirements & scenarios

4.1 Current NGN network

Next Generation Network (NGN) is a network architecture that almost all operators are deploying. Within NGN, the core network is based on IP and multiple access technologies and devices that may coexist alongside this IP core network. IP connectivity among users is a must. IP Multimedia subsystem (IMS) is the first distributed control service architecture for fixed/wired and mobile access network. It is deployed to facilitate service convergence.

NGN is the current network architecture for operators to fulfil the requirements that arise from new market realities:

- Open competition (especially in terms of new services deployment, to provide the best QoS, to reduce prices/costs/OPEX)
- Deregulation of markets (e.g. separation between network and service planes)
- Explosion of digital traffic
- Convergence (fixed/mobile)
- Mobility (inside converged networks, between several networks (Web services))

Next Generation Network (NGN) is defined by ITU-T as a layered network and services architecture using a packetbased transport network and a unified control layer that is able to provide telecommunication services with QoS over different broadband access networks [i.4]. NGN supports generalized mobility/nomadic functions allowing consistent and ubiquitous access to services.

Figure 5: NGN Architecture overview

Network and service decoupling is one of the main NGN concepts. Such decoupling is reflected in the NGN architecture. As it can be viewed in figure 5, there is a clear separation between Service and Transport layers. NGN covers different access networks through a common IP core. For NGN, it is necessary to have IP connectivity among users.

4.2 Future network vision

In the future, processing, storage and communication services will be highly pervasive, intertwined and strongly related to each other. What we expect is that people, smart objects, machines and the surrounding space will all be embedded with devices such as sensors, RFID tags, etc., defining highly decentralized dynamic network environments of virtual resources interconnected by wired and wireless connectivity. Overlay networks will be the major means to organize and aggregate these highly dynamic communication environments.

Virtualization of resources (from networking to processing to storage, etc) will be a key characteristic of future networks. As a consequence, autonomic features should support functions such as the creation and maintenance of overlay networks of virtual resources (for instance autonomic features might be integrated with hypervisors'/VMM's capabilities).

Networks will evolve towards a broader perspective to include not only connectivity resources but also other types of resources such as processing, storage and things (e.g. terminals, sensors, actuators, etc.). This is a more holistic and future proof vision of the network environment (useful for analysing various scenarios/use-cases: from zero-configuration Home to Cloud Computing, to Content Delivery Networks, etc.).

4.3 Operator's requirements

The scope in this clause is mainly focused on end to end services management from user perspective within an evolved network. Besides, some operators have to deal with the legacy network that is why we need to seek how to adapt TISPAN, 3GPP, IMS architectures in order to make the introduction of autonomic functions easier and smoother in physical, virtualized, distributed centralized resources. Therefore, in addition to user's requirements, a set of technical and management requirements for operators to deal with an autonomic network have also been captured.

The first step is to introduce a "knowledge plane" in the network taking into account the legacy network on the one hand, and services (IMS), access (TISPAN, 3GPP,) and home access networks (Broadband Forum reference architecture, "Authone: Autonomic Home Networking" project, for instance), on the other hand. This knowledge plane must take into account the constraints of all the actors and security concerns. Data in the knowledge plane must be up to date and granted. Information from different actors could be shared by context defined by an ontology.

Autonomic features would decide locally based on knowledge retrieved from analysed information of the global network. Based on such knowledge, local decisions would be taken in respect of end to end or global views, e.g. configuration of network elements from end to end constraints actors view point, mobility control between different heterogeneous access network (WiFi, Wimax, 2G/3G/LTE), services adapted to user context.

The following set of requirements defines a set of operational requirements for an operator to control an Autonomic and Self-Managing Future Network. The requirements have implications on the operational principles of autonomic components of an autonomic network e.g. federation requirements, information sharing, and other types of desired behaviours in networks (as described later with figure 7) which illustrate a Policy Management framework.

In this context two views need to be highlighted: "cross layers autonomic views" within an operator's network in one hand, and "cross domain autonomic view" through various domains in this other hand. (By domain, we mean here "players" as described later with figure 6).

Indeed, from "cross layers autonomic views", an upper layer "cognition function" is able to retrieve from local views a situated view of its environment. At a lower layer which embeds an Autonomic Function it becomes possible to retrieve objectives from upper layers in order to make a decision locally with a global objective, to different layers (as described later with figure 8).

Regarding "cross domain autonomic view", the cognition functions are used here with the goal to disseminate the knowledge through various domains (as described later with figure 9). Indeed, each "Autonomic Function" will use this "cognition function" to react locally with a **common** objective, to different domains. This horizontal autonomics architecture is required in order to manage end to end services autonomously if needed (players' agreements, regulation constraints, etc.).

4.4 Management requirements

This clause gathers the set of operational and management requirements for an operator to deal with an autonomic network. Starting from users' requirements, a set of operational and maintenance requirements are captured for an operator to fulfil the quality expectations of users. This work is aligned with the NGN management requirements that can be found in [i.6] and [i.5] where a first level of requirements (level 0) is composed by:

- Customer centric requirements
- Business vision requirements
- Technology requirements
- Operational requirements
- Regulatory requirements

These requirements were studied in order to understand what is needed for the operation of NGN infrastructures and how an autonomic network can help to simplify such operation. In fact only the Technology and Operational requirements are covered here.

The first set of requirements in table 2 is user oriented. Users want to have access to adapted services that they choose with a guarantee of security & quality. This implies requirements from operators' perspective: OAM requirements.

4.4.1 Network management driven by players

In order to translate end user requirements into technical requirements within the operators' networks, the following template is used as a guideline. It contains the following fields:

- Players
- Network environment

- Scenario
- What is the requirement
- What need to be automated (this field is more linked to WI 2. It is here only to better understand the technical requirement)

In order to better capture operators' requirements and map them to the relevant scenarios, the methodology used here is the partioning of the network of operator we named "Network Environment".

Following is an instantiation of this Network environment concept:

- home area network (SOHO network)
- access network
- regional network
- service platform
- content platform
- ad hoc
- IT platform
- User Network
- Other, etc.

Some of the definitions related to the "player" in the present document are derived from the "Muse" project.

Following is an instantiation of this "Player" concept:

- User Network
- User Service
- Subscriber [i.7]
- Application service provider [i.7]
- Multimedia content provider [i.7]
- Multimedia service provider
- Network connectivity provider [i.7]
- Access network provider [i.7]
- Regional network provider [i.7]
- Network service provider [i.7]
- Internet service provider [i.7]
- Packager [i.7] (operators with different players or make the link with different players (VNO))
- Third party
- Identity provider
- Government (regulator)
- Application developer
- OTT: Over The Top (e.g. Google, Apple, Microsoft, etc.)

- Network outsource actor
- Service outsource actor
- User content provider
- Community service provider
- Network community stakeholder
- Social network stakeholder, etc.

Figure 6 shows player dependencies from a network environment point of view. Network environment management is driven by the different players of the network. There is no longer one operator that owns the whole network, but a web of players that offer service and network interfaces to others [i.7]. Autonomic technologies must guarantee that a player to control their own environment and at the same time assure the end to end view, which emerges from the individual behaviors of all the players.

Figure 6: Network environment management driven by players

4.4.2 Requirement framework for a Policy-based management

This framework illustrates the evolution of the network management in order to become intelligent, open, flexible, Autonomous, secure, Context-Aware, Policy-based, Business-driven and SLA-driven. It is structured through the 4 following requirements from an operator perspective. In order to better understand the description of this requirement, alongside describing these requirements themselves, we mapped them with regards to a high level operator's network.

Strategic requirements

This requirement is focusing on business intelligence and associated partnerships necessary to implement this strategy.

- Minimize OPEX/CAPEX
- Maximize user satisfaction

- Minimize carbon footprint
- Maximize revenues

•

In this context, we illustrated this partnership from stakeholders and partners' viewpoint by a high level (abstraction) layered architecture composed of two main domains, Operator's domain and Vendors' domain.

17

At the top level, we depicted the operator's domain which includes 3 layers: Business Policy, Service objective, Operator's OSS. At the bottom level, we can see vendors' domain which includes the network and its associated Management System.

Governance requirements

For the purpose of this network governance, an interface is needed to allow the operator to adjust the features of the demanded service/infrastructure. The reason why, a business level language is required to help the operator to express what it is needed from the network. Such business language must be semantics-oriented and may be modelled by the use of ontology to add semantics and enable machine reasoning on the goals.

Indeed, the operators and services providers are expecting benefits & usability of ontologies in their service strategies within highly competitive and fast moving Internet market environment with strong Time-To-Market constraints. Ontologies capture the semantics of information from various sources is a powerful tool in services design, service composition (service logic) and service personalization through specific user profiles in a dynamic way. At the same time, current oriented-object information models specified by various SDOs (SID from TMF and CIM from DMTF or IRP from 3GPP F, etc.) are less flexible to meet this objective. This requirement has a direct impact on existing BSS/OSS information models. The immediate integration path of the legacy can be achieved by encapsulating.

Such a Business Policy level description eases the automation of "Edition - Translation - Execution" of Policies. This leads to the translation into "Service Profiles" at Service level and into "Network Profiles" at Network level.

Finally, after translation phase the distribution process of Service Profiles & Network Profiles is performed in order to prepare the execution and enforcement. The last phase of this process is the "Policy & Rule Enforcement & Execution" by the Network part (NEs) in the vendor's domain as depicted in figure 7.

This approach for network governance gives the operator a mechanism for controlling the network.

Operational requirements

This requirement aims at improving operation efficiency (reduce OPEX). One way to achieve this goal is to harmonize BSS/OSS, Data Models and deploy of a standardized northbound management interface. Such a harmonization is vital in the context of fixed-Mobile network & services management.

From management architecture perspective, figure 7 maps these "Operational requirements" to the real operator architecture which will handle the implementation. The network environment (Vendors' domain in the figure) will be managed by business objective which will drive the service objective. The service objective will be then translated into policy rules which will be enforced in the operator's network through the operator's Network Management System (NMS). The policy enforcement will be then executed by the different vendor's Element Management System (EMS) and the Network Elements (NE) forming the operator's network. Each layer of the whole architecture will take into account its intrinsic constraints.

Autonomous & Cognition requirements

This requirement aims at taken advantage from introducing Self-Awareness, Learning, and Reasoning capabilities and mechanisms. It also includes gathering information, transforming it into knowledge & distributing it to various needs. There is also a need to building and ensuring Trust & Confidence as well as Stability in Autonomics loops and in the network.

From management architecture perspective, figure 7 maps these "Autonomous & Cognition requirements" to the real management architecture.

The cognition aspect is shown by "cognition module" (purple boxes) in the right part of the figure. These cognition modules are used to retrieve relevant knowledge from data/information and it allows the cross-control loop interactions accordingly. These cognition modules can also be seen as "brokers" where various knowledge sources store the knowledge in a controlled and secured way, while, the users of these knowledge retrieve required and relevant knowledge through a subscription model. In this context, a dissemination plane is used to disseminate knowledge and decision.

The Autonomic capabilities are introduced in this management architecture thanks to Autonomic Functions (AF) (pink boxes) which includes the Decision Making Element (DME) at different layers. This implementation of these AFs in the autonomic network architecture is driven by operator's policy. In this perspective, we represented the 3 autonomic network architectures schemas symbolized by red circles as specified by 3GPP/SA5 for SON related OA&M:

18

- Distributed manner: the AFs are embedded in the NE only
- EMS-Centralized manner: the AFs are embedded in EMSs and NEs
- NMS-Centralized manner: the AFs are embedded in the operators' OSS and NEs

Figure 7: Requirement framework for a Policy- based management of an Autonomics Network

4.4.3 Operator's Policy-based autonomics network vertical framework (cross-layer)

Figure 8 as an insanitation of figure 7 depicts a framework that addresses the relationship between high-level specification of client performance objectives and existing resource management infrastructures with integration of autonomous features and cognition mechanisms in the context of cross-layering. Thus providing operators with means for decision oriented operational tasks based on the use of policies rather than low level command execution. We just highlight the related requirements.

- Business Intelligence & Partnerships with E2E view
- Minimize OPEX/CAPEX
- Maximize user satisfaction (QoE)
- Minimize carbon footprint
- Maximize revenues

Governance requirements

- Cross-layer User / Governance interface (Semantic-centric)
- Ease Automation of "Edition, Translation, Execution" of Policies
- Shared reference for service composition (service logic) in a dynamic way (Ontology language)

Operation requirements

- Improve operation efficiency
- Harmonize BSS/OSS & Data models & interfaces in cross-layer model
- Support of legacy

Autonomous & Cognition requirements

- Introduce Self Awareness & Learning & Reasoning & Semantic capabilities
- Use ontologies to gather, integrate information from various sources, transform it into knowledge & distribute it in cross-domain model
- Ensure Trust & Stability in Autonomics

Figure 8: Operator's Policy-based autonomics network vertical framework

From cognition perspective, an upper layer "cognition module" (purple boxes) is able to retrieve from local views a situated view of its environment. From autonomous point of view, these layers are connected through the red loops. Indeed, an Autonomous Function (AF) (pink boxes) located in bottom layer can retrieve objectives from upper layers in order to make a decision locally with a global objective.

The cognition interaction is required in order to gather and disseminate the knowledge produced at a knowledge/ dissemination plane through "cognition function" for the red loop process purpose and it allows the cross-control loop interactions accordingly.

4.4.4 Operator's Policy-based autonomics network horizontal framework (cross-domain)

The aim of **Operator's Policy-based autonomics network horizontal framework** is to describe the cross-domain interaction from autonomics and cognition perspective. It is also an instantiation of figure 7. We just highlight the related requirements.

Strategic requirements

- Business Intelligence
- Common business goal (creation of new business before sharing) Operators' agreement
- Minimize OPEX/CAPEX
- Maximize user satisfaction (QoE)
- Minimize carbon footprint
- Maximize revenues

Governance requirements

- Cross-domain User / Governance interface (Semantic-centric)
- Ease Automation of "Edition, Translation, Execution" of Policies
- Shared reference for service composition (service logic) in a dynamic way (Ontological language)

Operation requirements

- Improve operation efficiencY
- Common Management Framework
- Harmonize BSS/OSS & Data models & interfaces in cross-domain model
- Support of legacy

Autonomous & Cognition requirements

- Introduce Self-Awareness & Learning & Reasoning & Semantic capabilities
- Use ontology to gather, integrate information from various sources, transform it into knowledge & distribute it in cross-domain model
- Ensure Trust & Stability in Autonomics

The cognition modules (purple boxes) are used here with the goal to disseminate the knowledge through various domains. By domain, we mean here an operator network or an administrative view of a global operator network (Access or Backhaul or Core). It corresponds to a partitioning of a global network. These cognition modules as "brokers" where various knowledge from various operators store their knowledge in a controlled and secured way, while, the users (belonging to various players) of these knowledge retrieve required and relevant knowledge they need through a subscription model This approach gives the operators a mechanism for controlling the knowledge they provide in this cross-domain autonomic management.

Figure 9: Operator's Policy-based autonomics network horizontal framework

Indeed, each Autonomous Function (AF) (pink boxes) will use this "cognition module" to react locally with a common objective (to different domains). This horizontal autonomics architecture is required in order to manage end to end services autonomously if needed (operators' agreements, regulation constraints, etc.).

4.5 AFI Requirement template

Table 1 depicts the template defined in order to capture relevant data related to the requirements with respect to the given scenarios. It is composed of the following fields:

- Player
- Network Environment
- Requirement Identity (RQ ID). An arbitrary sequential number (without any normative meaning) allocated to each requirement to ease it location in the table
- Autonomic Functionality within the Self* range
- What is the requirement
- What need to be automated (This field is an input to the technical translation)

Table 1: Requirement template

Players	Network environment	Scenarios from clause 5	RQ ID	Autonomic Functionality	What is the requirement	What need to be automated

4.6 AFI high level Requirements

Categorization of the requirements

Based on the master template of the table 1, tables 2 to 7 are the instantiations of this template to relevant scenarios identified in the present document. This list will be enriched and extended with new set of scenarios and use cases in the next release.

This classification is Players-oriented:

- User player requirement (table 2)
- Manufacturer requirement (table 3)
- Access Network requirement (table 4)
- Access and Core Network players requirements (table 5)
- Services players requirements (table 6)
- Access network / core network / Services players requirements (table 7)
- Content player requirement (table 8)
- Cross-players requirements (table 9)

Each of the following tables below contains set of requirements organized primarily by the player involved in the requirement. Furthermore, from a management point of view, the requirements can be classified by the autonomic functionality needed. Namely:

- Self-configuration
- Self-optimization
- Self-monitoring
- Self-diagnose
- Self-healing
- Self-protection
- Self-management

Table 2	2: User	player	requirement
---------	---------	--------	-------------

Players	Network environ- ment	Scenarios from clause 5	RQ ID	Autonomic Functionality	What is the requirement	What need to be automated with less human intervention
User	Ad hoc	Scenario 5.7	1	Self-organising	User equipment must be able to attach itself to the ad-hoc network and participate in self organizing of the network in a given context	Network organising process through network element (Each network node may be able to connect to the ad-hoc network and establish communication with neighbouring nodes as well as other network nodes without the need for any centralized element.)
User as network operator and developer	Ad hoc	Scenarios 5.4, 5.7	2	Auto-Discovery and Self configuration	Autonomic establishment of communicatio n with each node in the network.	Network discovery process through network element (A node joins the network and is able to recognize its neighbours and communicate with them. Through the application of a proper routing protocol, it is also able to communicate with any other node. Multi-hop communication must be established autonomically).
User	Ad hoc	Scenario 5.7	3	Self- configuration	Zero configuration in order to connect to the existing infrastructure	Network configuration process through network element (<i>The node, upon identification</i> of its neighbours, is able to join the network and self-configure itself and connect to the "gateway". There is no need for existence of a centralized or predefined entity in order to provide specific configuration files or guidelines to each new participant node).
User	Ad hoc	Scenario 5.7	4	Self-awareness	Ability to gather knowledge in order to be available	Process of gathering knowledge form the network (The overlay network plays the role of a distributed repository for all network nodes. According to the stored information, virtual communities may be created in the overlay network by sharing specific data on it and permitting access to part of its members).
User	Home area network	Scenario 5.2	5	Self- Configuration	The user must be able to configure, add equipment and services, control and optimise the home network	Home Area network configuration Process under the control of the human (Zero configuration: Home Area Network configuration should take into account user context (user equipment, profile subscription, preferences, user services, etc.) regardless of the access network)

Players	Network environ- ment	Scenarios from clause 5	RQ ID	Autonomic Functionality	What is the requirement	What need to be automated with less human intervention
User as network, developer	Ad hoc	Scenario 5.7	6	Self- configuration	Autonomic bootstrapping of devices in the network and Autonomic bootstrapping of networks as well	Bootstrapping process of network element and the network (<i>The network must be</i> <i>established automatically</i> <i>without the need of any existing</i> <i>infrastructure</i>).
User as network, , developer	Ad hoc	Scenario 5.7	7	Self- configuration	To build a registration knowledge plane without human intervention (Decentralized registration for special data. Specific nodes in the network can be selected as registration entities. Registration related roles can be allocated dynamically according to predefined criteria).	Process to build a knowledge plane (The network must be established automatically with knowledge without the need of any existing infrastructure).
User as network administrator	Ad hoc	Scenario 5.7	8	Self- configuration	Retrieve, analyse, process (reason, learn) data and transforming it into knowledge to be used by authorised requesters	Process to organise knowledge.
User	All	Scenario 5.2	9	Self- provisioning	Provision services with users context	Process to provision services according to the information authorised by users.
User	Ad hoc	Scenario 5.2	10	Self-protection	Player (e.g. user enterprise, residential user, etc.) could provide, add and create services	-Mechanisms to Select the needed functionality to provide advanced and secure services on user requirement basis. -Process to propose/publish services to authorised users. -Process to build services. (to create, publish, access, control, bill, QoS manage the services provided by the players (e.g. user))
User	all	Scenario 5.7	11	Self discovery	Protection of User data.	Process to access user data in secure manner

Players	Network environ-	Scenarios from clause 5	RQ ID	Autonomic Functionality	What is the requirement	What need to be automated with less human intervention
	ment			,,		
User	Fixed, Ad hoc	Scenario 5.7	12	Self-protection	Ability to adapt and scale the network and services in a coherent manner.	Processes to create user services, to change services related to the network changes (e.g. network size) and to adapt service to the desired usages according to contexts (e.g. routing, data dissemination techniques, service provision)
User	Ad hoc	Scenario 5.7	13	Self-healing	To ensure service continuity	Process to access data and services in reliable and non interruptive manner.
User as Service provider	Ad hoc	Scenario 5.7	14	Self-healing	Reliability of data	Process of data replication and optimisation (Storage, efficient usage of storage resources according to network characteristics.).
User Network administrator	Ad hoc	Scenario 5.7	15	Self-healing	Repair fault occurring in the network	Processes to identify faults in the network and to perform corrective actions.
User	Ad hoc	Scenario 5.7	16	Self-awareness	Context awareness	Mechanisms & processes of extraction of meaningful events in the network according to the acquired data and management of the events. (For example, different actions may be undertaken according to the user profile, the volatility of data and the access rights).
User as developer	Ad hoc	Scenario 5.7	17	Self optimising	Autonomic establishment of communicatio n with each node in the network.	Mechanism for using multiple interfaces for establishing concurrent communication channels with neighbouring heterogeneous devices.
User as developer, Administrator	Ad hoc	Scenario 5.7	18	Self discovery	Physical and Overlay network proximity	Correlation mechanisms among the overlay network nodes and the physical network nodes.

Table 3: Manufacturer	requirement
-----------------------	-------------

Players	Network environ- ment	Scenarios from clause 5	RQID	Autonomic Functionality	What is the requirement	What need to be automated
Manufacturer	Ad hoc, Sensor Network	Scenario 5.7	19	Self- optimisation	Energy efficient communication	Mechanisms for improving energy saving. (Energy-efficient routing shall require a limited number of message exchanges.)
Manufacturer	Ad hoc	Scenario 5.7	20	Self- awareness	Network Context awareness	Mechanism for retrieving network context in order to build optimised network.
Manufacturer	Access, Edge, Core network	Scenario 5.3	21	Self- Configuration and associated Self- Discovery	Governance (Provide a user interface to allow the operator to adjust the features of the demanded service/infrastruc ture.(Tools and GUI for: Policy Edition Policy Validation (conflict detection and resolution) Policy Encapsulation into Configuration Profiles)	Tools to Translate Business Goals specified by the Network Operator using a High Level. (<i>Language, into Policies and</i> <i>Configuration Profiles that</i> <i>can then be stored into</i> <i>Network Repositories,</i> <i>making them ready for being</i> <i>communicated or fetched by</i> <i>network devices for their</i> <i>Self-Configuration process).</i>
Manufacturer of a network element (Network Element Vendor)	Access, Edge, Core network	Scenario 5.3	22	Self-Discovery and associated self- Configuration	More advanced Plug & play of devices in the network through Self-discovery <i>(Existing mechanisms such as those found in IPv6 are still limited. To enhance discovery with capabilities and need to be augmented towards more advanced self- Discovery, to include even discovery of Capabilities vital knowledge of devices that plug into the network.)</i>	Mechanisms of describing device capabilities and advertising process of such capabilities. (Description Model to the entities that need such vital knowledge. This required knowledge is used to assign a role for the newly attached Network Element and to give it a Configuration Profile which helps it to self- configure)
Manufacturer of a network element (Network Element Vendor)	Access, Edge, Core network	Scenario 5.3	23	Self- Partitioning of a network)	Network resources optimisation while the network changes	Process for taking care of network partitioning as the network size changes for the resource optimisation purpose

Players	Network environ- ment	Scenarios from clause 5	RQ ID	Autonomic Functionality	What is the requirement	What need to be automated
Access network provider	Home area network	Scenarios 5.2, 5.4	24	Self- configuration	Zero configuration for Home Area Network	-Authentication, attachment, configuration, security processes of devices according to users subscription within a multi- player agreement. (for IP and non IP devices, for services and for users devices (home or nomadic) within the Home Area Network).
Access network provider	HAN, access network	Scenario 5.2	25	Self- configuration	User online subscription	Provisioning and configuration processes of user equipment to implement new services. with notification to the different players with the new subscription.
Access network provider	Home area network	Scenario 5.2	26	Self-diagnose	Access network provider must diagnose home network. in order to reduce human intervention	Processes to diagnose HAN and to notify the necessary result to the access network player (-to retrieve data from sensors (statistics event) necessary to fault qualification, based not only on local view alone but also through neighbours. -to Analyze data to identify the fault cause (for already known fault type). -to define the test to identify the fault. - to continuously discover new faults. (i.e. learning method, data analysis in order to identify new fault cause) - to define the test to identify and validate new faults. - to elaborate an end to end diagnosis chain. (identification of neighbours, players or equipment involved in this global diagnose including the agreement between those actors)

Table 4: Access Network requirement

Players	Network	Scenarios	RQ	Autonomic	What is the	What need to be
	environ- ment	from clause 5	ID	Functionality	requirement	automated
Access network provider	Home area network/ Access network	Scenarios 5.2, 5.4	27	Self-healing	Each failure happening must be repaired in order to guarantee service delivery	Healing process Based on the diagnose report received from the different players. - Notify the player administrator (owner) the method used and the equipment healed - if it is not self-heal notify in case the system could not be repaired remotely - the player, owner (administrator) must be able to validate the method used to repair each fault. -Define methods for protection and restoration - Identification of new path for services. - Protection mechanism in real time.
Access Network provider	Home area network	Scenarios 5.2, 5.4	28	Self-Monitoring Self- Optimisation	The home area network needs to be monitored on a service level and network level	Monitoring process of HAN services (HAN must examine its own traffic load/type parameters (available bandwidth, packet loss, QoS) in order to ensure a reliable and efficient network. - Mechanisms achieving this goal must be done through multi player environment requirements and allow players retrieving monitoring information)
Access network provider	Wireless Mesh Network	Scenario 5.10	29	Self- configuration	Mesh nodes must automatically connect to the network	Mechanisms of recognition of physical network topology (neighbour identification, and utilization of heterogeneous network technologies)
Access network provider	Wireless Mesh Network	Scenario 5.10	30	Self- optimization	to ensure availability of maximum capacity	Process of selecting radio technologies and their configuration according to current radio/traffic conditions (channel, rate selection)
Access network provider	Wireless Mesh Network	Scenario 5.10	31	Self-healing	Network must be robust to changes of topology and radio conditions	Monitoring presence of neighbouring nodes and reaction to network events (e.g. link failure)

	Table 5: Access and Network players requirements								
Network environ- ment	Scenarios from clause 5	RQ ID	Autonomic Functionality	What is the requirement	What need to be automated				
Access and Core Networks	Scenario 5.2	32	Self- configuration	Perform network configuration according to user context	Overall network configuration process according to the user context / player context and current local and global context (The overall network configuration including the last mile, regardless of the access technology (wired or wireless), equipment, user and services)				
Access and Core Networks	Scenarios 5.2, 5.3	33	Self- configuration	Configuration of the network elements in a multiplayers / multiservices	Management and control process of access, core network and services in a multiplayer, multiservice context				

30

Players

Access and Core

Networks provider

Access and	Access:	Seconorica	22	Solf	Configuration of	context (The overall network configuration including the last mile, regardless of the access technology (wired or wireless), equipment, user and services)
Core Networks provider	and Core Networks	5.2, 5.3	33	configuration	the network elements in a multiplayers / multiservices context	network and services in a multiplayer, multiservice context
Access and Core networks provider	Access and Core Networks	Scenarios 5.2, 5.4, 5.5	34	Self-monitoring	Ensure an efficient node monitoring: with less impact on the performance of the network.	Monitoring process of network fitting the needs requested
Access and Core Networks provider	Access and Core Networks	Scenarios 5.2, 5.4	35	Self-healing	Improve fault management	Healing process (Locating the root cause of a fault, which has occurred in the network, correcting this fault and testing the resources of network, regardless of the last mile technology, the services used and the home access. (Detects and repairs IP connectivity). Advertise services and network (end 2 end management))
Access and Core networks provider	Access and Core Networks	Scenarios 5.2, 5.4	36	Self- optimization	Improve Performance	End to end network Node performance process (Network Node must be able to adapt and tune its own performance parameters in order to make proper decisions (self-optimization) with a user, network and services context. Decision must be sent to the player for decision)
Access and Core Networks provider	Access, Core Networks, services (IMS), content server (Applicatio n server)	Scenarios 5.2, 5.4	37	Self-healing	Improve Performance	Process of detecting and eliminating congestion. (Define resources element that are under-utilised. Define the functionality needed to be added in the network. Add new functionality in the network with no services disruptions.)

Players	Network environ- ment	Scenarios from clause 5	RQ ID	Autonomic Functionality	What is the requirement	What need to be automated
Access network and network provider	Access and Core Networks	Scenario 5.2	38	Self-protection	Secure network & services	Security mechanisms to protect services and data with appropriate mechanisms from malicious attacks and unauthorized terminals/users. (It can anticipate problems within the network. Functionality distributed in the Home network access and for services layer control
Network provider	All	Scenarios 5.2, 5.3	39	Self -Discovery	A new device on the network must be able to Discover its neighbours Inherit routing tables and other information (as today) Inherit Policies Learn its context and enhance Initialise its configuration settings	Discovery mechanisms
Network provider	All	Scenario 5.2	40	Self-adaptation	Backward compatibility (An autonomic network must be able to perform all of the functionality currently available in today's networks)	Integration process of legacy network & services
Network provider	All	Scenario 5.2	41	Self- provisioning	-Authorised user(s) must be able to create/edit/activat e/deactivate business policies. -Activated business policies must be communicated to all relevant network devices. -All network devices should adapt their configurations and operations to meet these business policies as best they can	User interface towards Business Policy Manager

Players	Network environ- ment	Scenarios from clause 5	RQ ID	Autonomic Functionality	What is the requirement	What need to be automated
Network operator	All	Scenario 5.2	42	Self- configuration	Authorised user(s) must be able to override the configuration of a device that has been autonomically set.	User interface towards configuration process
Network provider	AII	Scenario 5.2	43	Self-Monitoring	The autonomic system must have the ability to report all activity including: Currently active policies Current devices configurations and the reasons for those configurations. The reasons should include the relevant policy and the relevant context parameters. Recent autonomic configuration changes and the reasons for these changes.	Monitoring process related to policy, resource configuration and context

Players	Network environ- ment	Scenarios from clause 5	RQ ID	Autonomic Functionality	What is the requirement	What need to be automated
Service provider	IMS applicatio n server Content server	Scenario 5.2	44	Self-protection	Protect user privacy and ensure security	Mechanisms of accessing and controlling user data (user data must be sent under user agreement).
Service provider	IMS applicatio n server Content server User	Scenario 5.2	45	Self-protection	Provide secure services access	Secure negotiation process to access services (User must always be authenticated. -An authorised user is able to access to the services under player's control. -Authentication server must be distributed and duplicated. (in case of authentication server falls down) - Third party authentication to be granted by previous authentication in a secure way. - An authorised user is able to negotiate access to services.)
Service Provider	Ad hoc, Sensor Network	Scenario 5.7	46	Self- optimization	Service support in mobility context	Mechanism to access user services in case of mobility (Common services are provided to authorise mobile user and any other authorised user).

Table 6: Services players requirements

Table 7: Access network / core network / Services players requirements

Players	Network environ-	Scenarios from	RQ ID	Autonomic Functionality	What is the requirement	What need to be automated
	ment	clause 5				
Access network/ core network Services provider	Access network/ core network Services	Scenario 5.2	47	Self- optimization	Provide service for mobile user	Mechanism to select the best access network for mobile user with associated services in use.
Access network / core network Services provider	Access network / core network	Scenario 5.2	48	Self- optimization	Adapt service to user context	Mechanisms to select the best way to deliver services with user context. (change access, prioritised services, etc.)
Service Provider, Network Operator	Ad hoc	Scenarios 5.7, 5.4	49	Self- optimisation	Stability	Mechanisms to adapt network changes. (The designed mechanisms must not cause inconsistencies in the network or possible deadlocks.)
Service provider Network Operator	Ad hoc	Scenario 5.7	50	Self care	Provision, authentication and authorization of private and public services	Provisioning, authorization and authentication mechanisms of public & private services (The network infrastructure has to support the provision of private services, in addition to the public ones).

Players	Network environ- ment	Scenarios from clause 5	RQ ID	Autonomic Functionality	What is the requirement	What need to be automated
Content provider	Application server	Scenario 5.2	51	Self- optimization	SLA guarantee with regard to the provisioning & configuration	Translation mechanisms of user requirements (SLA user profile service profile) into technical requirements within the network (QoS). (Define the resources needed and the functionality needed to provide the (new) services).
Content provider Services	Service provider (IMS, ISP), content provider Home area network	Scenario 5.2	52	Self- optimization	Prevent the drawbacks of interaction between services	Mechanism of selecting a given service without impacting another active one (Interaction between services for advanced services. Adapt services with new services activated or closed by user. Identified the prioritised services. Identify the adaptations needed).

Table 8: Content player requirement

In order to operate Future Networks, knowledge and information are key issue. Table 9 contains a set of requirements on the information and knowledge model needed to build and operate future networks. It is indeed, cross-layer and cross-network environment oriented.

Players	Network	Scenarios	RQ	Autonomic	What is the	What need to be
	environment	from clause 5	ID	Functionality	requirement	automated
All	All	Scenarios 5.2, 5.4, 5.5	53	Self-monitoring	Agreements monitoring	Monitoring mechanisms towards assuring SLA agreements between different players (deployed at the borders in order to identify responsibilities and provide network interoperability)
All	All	Scenarios 5.2, 5.4, 5.5	54	Self awareness	Provide needed knowledge to players or network elements without human support	-Process to describe, to retrieve and to learn knowledge -Process to adapt, to evolve) to the evolution of the network. (Cognitive (function) information could be used to retrieve context.) -Process to translate high level business goals into specific orders on the infrastructure. -Process to retrieve control/secure/authenticate and encrypt. information to be sent to another player. -Process to retrieve knowledge from statistics, estimation and information.
All	All	Scenarios 5.2, 5.4, 5.5	55	Self awareness	Information exchange must be done upon an agreement in secured manner and adapted to the requester	Process of exchanging information within agreement in secured manner and adapted to the requester. (Information exchanges are ruled by specific agreements in secured manner and up to date, certified by the sender Information exchange must be adapted to the requester)
All	All	Scenario 5.2	56	Self awareness	The knowledge must be described in such a way to be understood by the community	Mechanisms and process to describe and specify knowledge. (Context information must be defined in standardized way)
All	All	Scenario 5.2	57	Self management	To manage virtualised resources, allocated to players	Process to manage virtualised resource (communication, processing, storage, etc.) (supervision, creation, maintenance, allocation, optimization of (overlays) virtual resources)
All	All	Scenarios 5.2, 5.4, 5.5	58	Self- management	Administrator must control close loop (decision entity)	The management process in the shared decision schema involving administrator. (Mapping between classical management architecture and autonomic management)

Table 9: All players requirements

Players	Network environment	Scenarios from clause 5	RQ ID	Autonomic Functionality	What is the requirement	What need to be automated
All	All	Scenario 5.2	59	Self-monitoring	Operator need to build trust and confidence on the autonomic function (Administrator must trust, validate autonomic loop)	Monitoring process of control loop in the network
All	All	Scenarios 5.2, 5.4, 5.5	60	Self-awareness	Administrator should be able to configure the network with business objective (Operator's policy)	Instantiation, enforcement and execution processes of operator policy in the network
All	All	Scenario 5.2	61	Self- management	Backward compatibility of network management (The legacy management process should be integrated)	-Process of integrating legacy management and autonomic management -Process of mapping legacy management and autonomic management
All	All	Scenarios 5.2, 5.4	62	Self testing	Level of compliancy to the standard of a given solution (<i>To assess the</i> <i>implementation</i> <i>with regards to</i> <i>the standard</i>)	The conformance tooling
All	All	Scenarios 5.2, 5.4, 5.5	63	Self configuration (plug and play)	Autonomic functions shall be designed in a way to ensure multi player implementation support (open interface)	Interface design process
all	all	Scenario 5.2	64	Self- configuration	Provide universal services (Emergency services, lawful interception)	Universal services integration process (Up to date granted location data must be provided to the service. It is used to control nomadic user, and geo-localised services like emergency services and Universal services Lawful interception must be applied in an efficient way by the different players in charge of services or connectivity)

5 Use Case & Scenarios

5.1 Use Case & Scenario Template

Template

Table 10 depicts the template defined in order to capture relevant data related to the AFI Use Case & Scenarios. It is composed of the following fields:

- Title
- Description/Story
- Network Environment(s)
- Problems
- Functions Impacted
- Systems Involved
- Indicators / Evaluation criteria /Metrics
- Players
- Beneficiaries and the Benefits

This Use Case & Scenario Template is linked to the Requirements Template (table 1 column "Scenarios"). Indeed, both share two fields "Player" and "Network Environment".

Title	<scenario title=""></scenario>
Description/Story	<steps scenes=""></steps>
Use Case	
Network	
Environment(s)	
Problems	
Functions Impacted	<system view=""></system>
Systems Involved	
Indicators / Evaluation	
criteria / Metrics	
Players	Network Operator:
	Content Provider:
	Vendors/ Manufacturers:
	Application Developers:
	End User:
Beneficiaries and the	
Benefits	

Table 10: Use case & Scenarios Template

Categorization of the Use Cases & Scenarios

Based on the master Template of table 10, the following tables are the instantiations of this template to relevant Use Cases and Scenarios. Ten Use Case and Scenarios (one per sub-section) are selected in order to illustrate this AFI approach. These Use Cases and Scenarios are listed without any consideration of categorisation or classification.

This list could be extended to other Use Cases & Scenarios within the AFI scope.

5.2 Autonomic in legacy network (NGN)

Table 11: Autonomic in legacy network (NGN)

Title	Autonomic in legacy network
Description/Story	The legacy network is composed of a panel of players which need to cooperate in order to
Use Case	provide user services with associated QoS and security as prerequisite for launching a service.
	The number of equipment and players is continuously increasing in order to cope with the
	development of new services and to satisfy new demands/customers, while the manageability
	of this legacy infrastructure and cooperation among these players is reaching the limits of
	human capacity.
	Adding new service needs is challenging. Indeed, more and more strong cooperation between
	all the players even the user is required in order to provide these new services. This
	multilateral cooperation is handled manually without automatic process, because the case by
	case manner needed to address the particular constraints of each player. Information
	exchange provides the context, of the user, network and service
	The Service Provider is expecting a service delivery through an ubiquitous infrastructure as
	well as a transparent management through this multi-player infrastructure, such as overlays of
	virtualised resources (communication, processing, storage, etc.). The major shift here is the
	dynamic provisioning whatever the underlying physical resources.
	Users are not techno aware. They just want plug & play services with no configuration and
	they want to select/use services existing in the marketolace [i.11]. [i.10].
Network	All
Environment(s)	
Problems	Current Management practices:
	Within the current network management practices, a network administrator needs to manually
	interact with infrastructure and players.
	Incoherence in the management could happen between the different agreements:
	Services interactions conflict are manually resolved
	Equipment must be manually configured by users/administrators in order to connect to the
	infrastructure.
	Infrastructure is not updatable, optimisable, etc.
	End to end management needs the involvement of numerous experts at each level of the
	operation organisation (vertical layers and horizontal domains) because monitoring information
	is provided with no coherence and no consistency. Detect congestion or adapt the
	performance node is difficult to realise between players.
	Seamless continuity of services is difficult to deliver, because services are statistically
	configured for a type of access network and for a set of users. Service continuity needs to
	analyse the user environment in real time (whatever the state of network is) in order to
	reconfigure the network and provide adaptable services continuity.
Functions Impacted	Management, control, transport, Applications
Systems Involved	Management system
-	Control system
	Media transport system
Indicators / Evaluation	Zero configuration for users' equipments connected to the Home area network with IP
criteria / Metrics	connectivity through Self configuration mechanisms
	SLA agreements for commercial services and universal services must be met within multi-
	player environment thanks to network interoperability and monitoring mechanisms. These
	mechanisms must be able to identify responsibilities of each player in case of degradation or
	deviation from the SLA agreement. It can be achieved through Self monitoring mechanisms.
	Level of human involvement in the network management: A control plane and the
	management plane must orchestrate self-optimisation of different resources (nodes, virtualised
	nodes, overlay functions, last mile, etc.) of the network belonging to different players with
	coherence, consistency, security in order to provide service continuity adapted to user
	environment with less human intervention under confidence and trust conditions. It can be
	achieved through Self organising mechanisms.
	Improvement of processes: delivery time, level of security quantity and relevance of alarms
	reported with less human intervention.
	These 4 indicators need a decision provided in global coherence with situated and appropriate
	view.
	Indeed, information exchanged between players should provide knowledge with guarantee of
	security, integrity, privacy and described within a common language. This knowledge must be
	adaptable, up to date, consistent, etc.
Players	Network operator

39

5.3 Auto-Configuration of Routers using Routing Profiles in a Fixed Network Environment

Table 12: Auto-Configuration of Routers using Routing Profiles in a Fixed Network Environment

Title	Auto-Configuration of Routers using Routing Profiles in a Fixed Network Environment
Title Description/Story Use Case	 Auto-Configuration of Routers using Routing Profiles in a Fixed Network Environment The network operator, network provider, or an enterprise, an ISP or simply a actor/player who wants to build a network from scratch, has just purchased routers designed following GANA principles (see ETSI GS AFI 002 [i.15]) and has been advised by the manufacturer (consults the device manual) as to what minimal manual settings user (the player purchasing the equipment e.g. operator) needs to configure on the new router before initializing the router on a link. What he/she has learnt also, is that user needs not worry anymore about the following (as it is the case today): Thinking of dividing and when to divide his/her network into Routing Areas while taking into account the Capabilities of routing devices. Sitting in front of each router, configuring the router by activating a Configuration Profile via the Command-Line Interface (CLI). User (the player purchasing the equipment) has been told that from the moment user builds the network from scratch, provided that user deploys first the following systems required for
	 supporting the plug&play of the "autonomic" routers: A System that supports publish/subscribe, query and find type of services for Information/Knowledge such as Capabilities of network elements, Profiles, Goals and Policies of the autonomic network, pointers to resources and Data, and other types of Information/Knowledge. Network-Level Autonomic Manager Elements (referred to as Network-Level-Decision- Elements in GANA (see ETSI GS AFI 002 [i.15])). The "User" only needs to do the minimal manual settings to initialize a router on a link, since the GANA based network would start automatically taking care of performing full configuration the routers into service as well as network partitioning as the network grows.
Network	Access, Edge & core network
Environment(s)	
Problems	 Current Configuration practices: With the current network management practices, a network administrator needs to initialize a router on a link after the purchase, and manually create a configuration profile for the router while at the same time think how to assign the router to a routing area (talking about large ISPs) when taking care of network expansion and the benefits of dividing a network into areas. Current Configuration technology: (A): With current technology that comes with a router (as manufactured by the manufacturer), the device can only activate factory settings upon initialization on a link(s) while requiring the operator to manually configure its interfaces and routing protocols. (B): On the other hand, with current network management technologies, though some limited remote configuration management commands/data can be issued/communicated to a router, this can only be done after a human has done some initial configured. The configuration commands or data do not cover complete or partially complete configuration profiles for the device.
	Current Discovery Capabilities and technology: The current technology that comes with a router does not enable the router to discover entities such as Autonomic Manager Elements (i.e. Network-Level-DEs in the GANA Model) in the network that are tasked with providing each routing node/device with a Configuration Profile that tells it the role the router should play (whether to play the role of an access/edge, core or area-border router, etc) as well as the interfaces for which it should configure some routing protocols and their parameters. Though IPv6 brings some aspects of neighbour discovery allowing on-link neighbouring nodes to discover each other and some basic parameters for auto-configuration, these enabling IPv6 mechanisms are still limited and need to be augmented towards more advanced Auto-Discovery, to include even discovery of Capabilities of devices that plug into the network.

4	n	
۰	υ	

Title	Auto-Configuration of Routers using Routing Profiles in a Fixed Network Environment
	Current Capabilities in relation to Device Description & Advertisement technology:
	The current technology that comes with a router does not enable the router to self-describe
	its Capabilities as a device in order to then self-advertise the Capabilities Description Model
	to the entities that need such vital knowledge such as the Network-Level-DEs (Decision
	Element) that require such knowledge in order to assign a role for the newly attached router
	and to give it a Configuration Profile which must be used by the router to self-configure .
Functions Impacted	<system view=""></system>
Systems Involved	Core Routers
	Edge Routers
	Access Routers
Indicators / Evaluation	
criteria / Metrics	
Players	Network operator
Beneficiaries, and the	Operator: Reduces OPEX by minimizing the time and effort requirements needed for
Benefits	configuring network devices by the network management personnel (i.e. administrators).
	Manufacturer: Need not explicitly provide own management software tools for configuration of
	each type of the network devices, and by designing GANA conformant devices, interoperability
	with other GANA conformant devices is guaranteed.

5.4 Self-Management of Coverage and Capacity in Future Internet Wireless Systems

Table 13: Self-Management of Coverage and Capacity in Future Internet Wireless Systems

Title	Self-Management of Coverage and Capacity in Future Internet Wireless Systems
Description/Story	In a wireless infrastructure, network management and, in particular network planning,
Use Case	becomes a challenging task because of the volatile and unpredictable nature of the wireless
	medium and the mobility patterns of terminal devices. Due to the strong demand for efficient
	wireless resources utilization, wireless network planning and management is a sophisticated
	task, which, more often than not, requires expert knowledge, especially in a dense urban
	environment. In cases where homogeneous and heterogeneous wireless networks operating
	under different administrations reside in the same geographical area, the complex problem of
	efficient wireless resource management arises, under several constraints. Network nodes
	(i.e. access points) that have several configuration capabilities and observe their local
	operational status should coordinate for network management. A centralized approach is not
	effective due to scalability and complexity issues. Thus, a more localised and distributed
	architecture is necessary for the orchestration of various heterogeneous or homogenous
	access points (APs) or base stations (BSs).
	This use case presents the steps taken by self-manageable APs or BSsin a wireless network:
	a) to make deductions about its operational status b) to proactively react to internal/external
	triggers and c) implement the necessary actions based on its decision mechanism, thus
	seizing the need for human intervention.
Network Environment(s)	Wireless Access Network
Problems	Autonomic and localised management of variable capacity and coverage requirements as well
	as of the configuration actions for the identified symptoms in the wireless medium
	e.g. high load, interference. Some, management problems that will be addressed:
	a) Efficient channel allocation among homogeneous Radio access technologies (RATS
	(e.g. IEEE 802.11 [i.14]) by making better use of the channel allocation conflicts,
	b) Activation or de-activation of access points/base stations (e.g. IEEE 802.11 [i.14])
	assessing the specific characteristics of the specific network area,
	c) Base stations-assisted user equipment handover (vertical, horizontal)

Title	Self-Management of Coverage and Capacity in Future Internet Wireless Systems	
Functions Impacted	The following autonomic functionalities are provided:	
	• Self-optimisation of APs/BSs capacity and coverage features during their operational state	
	in order to proactively and autonomously configure them according to local and global	
	requirements.	
	• Self-configuration of APs/BSs in the context of their pre-operational state and autonomous	
	selection of execution options during their operational state.	
	• Self-organisation: In a distributed and collaborative way the network nodes (APs/BSs)	
	decide the optimal formations according to their knowledge models and policy rules/SLAs	
	that are locally stored and updated or provided by the respective network operators.	
	Self-awareness: Access points by sensing the wireless medium and communicating with paidbhauring network padea avalages (newladge data. KDIa servel) as policy rules in	
	neighbouring network hodes exchange knowledge data, KPIs as well as policy rules in order to develop their situation everypass for the payt nodes. Here devices are also used	
	as monitoring points from the respective APs/RSs	
Systems Involved	Wireless access points or base stations as well as user devices (e.g. mobile devices) are the	
	main systems of this use case	
Indicators / Evaluation	Measure wireless resources (or capacity) usage improvement (cells load, cell throughput)	
criteria / Metrics	iuxtaposed with communicational or computational load (e.g. transmission overhead) due	
	to the introduced mechanisms.	
	• Pattern recognition and knowledge extraction processes will be evaluated with respect to	
	their classification ability, i.e. how well they can identify a problematic situation and its	
	corresponding solution.	
	• The applicability of the dynamic combination of rules will be evaluated with respect to the	
	computational resources it will require and compared against the baseline approach	
	(application of static rules)	
	Optimise the induced solutions and minimise delay.	
Players	Network Operator	
	Manufacturer	
Banaficiaria	End user	
Beneficiaries	(OPEX), while having the ability to identify antimization apportunities and handle proactively.	
	alarms. More efficient usage of the available resources means less energy cost and better	
	Quality of Service	
	Manufacturer: will develop and update the software for self-manageable APs/BSs_Improved	
	product portfolio with optimised performance status.	
	End user: will be benefited by receiving better QoS features as well as fewer disruptions.	

5.5 Cognitive event management (Fault/Anomaly/Intrusion Detection)

Table 14: Cognitive event management (Fault/Anomaly/Intrusion Detection)

Title	Cognitive event management	
	(Fault/Anomaly/Intrusion Detection)	
Description/Story	Advantages in telecommunication networks have fuelled the rapid growth of new services.	
Use case	User mobility has become an important racio in the quarty of service provision for every	
	network operator. Current network management requires specific numan intervention to	
	oversee network behavior and ensure that they deliver services requested. Every day running	
	tasks include the ongoing detection of unusual or undesirable behaviors in order to address	
	issues like fault diagnosis and problem resolution. The achievement of these goals is	
	extremely difficult in distributed wireless environments where it is necessary to correlate	
	Information from different network levels and network elements. Typical problems like anomaly	
	detection, fault prediction or intrusion detection can be addressed through the identification of	
	unusual behaviors. The idea is based on the fact that the occurrence of faults notification and	
	alarms should follows patterns, which, upon recognition, can be used to predict the fault's	
	occurrence. The last one ensures the remedial actions that can be taken beforehand in order	
	to achieve the system functioning without interruptions. The above processes should be	
	automated by an autonomic core network and human intervention should be minimised, thus	
	providing a viable solution for self-healing in wireless networks. Thus, when an anomaly is	
	discovered, the involved network elements can use alternative setting profiles or	
	Conligurations.	
	1) Continuous manitoring of colocted features in the prediction model will provide at each	
	diventions a view of the elements internal functions as well as its approximations.	
	given time a view of the elements internal inductions as well as its environment. This is internation will solve as the current situation input to the fault prediction model (a model)	
	which is able to reactively detect fault and instability in the network, this model could	
	learn on the fault which could happen according to within the prediction model	
	 Monitoring data is classified into three categories based on the source: network sources 	
	system sources and application sources (e.g. IP packets, syslogs, application logs, MIBs).	
	3) Appropriate mechanisms take part to associate the current situation with the patterns recognised and depicted in the prediction model.	
	4) In case the association results point to an imminent fault or anomaly preventive	
	measures are undertaken and selected by a pool, where symptoms and measures are	
	paired The measures might point to an alternative configuration traffic reporting load	
	balancing, node isolation, etc.	
	5) A faadback loop with the knowledge base is also any isgged to undate and improve the	
	prediction model on a regular basis.	
	6) Moreover, artificial intelligence methods (e.g. unsupervised) will contribute to the training	
	process by identified unknown alarms or attacks. This enables the cognitive capability of	
	detecting previously "unseen" attacks or faults. This enables the network to assess the	
	threat earlier than traditional mechanisms.	
	7) In addition, the decision mechanisms ensure that an event based on monitoring data and	
	existing knowledge can be characterized as an alert or possible alert.	
	8) In execution step, the actual reconfiguration takes place. Parameters are tweaked or	
	alternative preventive measures are taken in order to avoid the imminent fault or attack.	
	9) The execution process is realized in activation of planned processes or information	
	dissemination about the current status of intrusion detection or anomaly detection to other	
	nodes.	
Network Environment(s)	Wireless access Environment	

Title	Cognitive event management
Problems	(Fault/Anomaly/Initiasion Detection)
Toblems	problems that increase the network management complexity. The emergence of common
	problems can affect a much larger number of users and services. Therefore, the cognitive
	deduction for event management can improve current network management procedures and
	some problems that will be addressed include:
	Anomaly detection, as the realization of unusual or undesirable situations. For example,
	detection of the nature of traffic anomalies in a wireless network is a vital problem, because of
	the volatile and unpredictable nature of the wireless medium and the resource constraints of
	mobile devices. Available TCP mechanisms cannot discern timeouts caused by short scale
	fluctuations in the wireless medium status from delays due to congestion or any other cause
	e.g. environmental factors, interference. Usually, traffic anomalies can create congestion in the
	wireless links and stress resource utilization, which makes early detection crucial from an
	operational standpoint. Of course, a non detectable anomaly event at one network level could
	be easy to detect using monitoring data from different networking levels. In a real distributed
	the pool of these at the regional level to detect these patterns following a bi-directional
	reasoning. Moreover, the task of anomaly detection can be useful for fault isolation and
	identification.
	Another problem that can be addressed is the enhancement of the existing intrusion detection
	mechanisms. Most current network "intrusion detection systems" (IDS) make use of
	techniques which rely on labelled training data (e.g. data mining-based or signature-based).
	This approach has shortcomings, such as the expensive production of training data or the
	difficulty in detecting new types of attack. Moreover, the cognitive mechanisms of anomaly
	detection, which rely on unsupervised methods, can help the network be trained with
	unlabelled data. This enables the cognitive capability of detecting previously "unseen" attacks.
Eunctions Impacted	In this way, the network assesses the threat earlier than traditional IDS mechanisms.
Functions impacted	healing.
	 self-awareness as continuous knowledge building process to assess operational status
	and finding of patterns
	self-protection, proactively compensating/overcoming foreseen events
	 self-healing, reactively responding to unplanned events (e.g. failures) and providing
	corrective actions
Systems Involved	Wireless Access Points, Routes, Firewalls, IDS
Indicators / Evaluation	• Precision (as the ratio of correctly identified failures to the number of all predicted failures).
criteria / Metrics	This ratio refers to the number of true positives prediction to the total number of predicted
	positives analysed by the prediction model, against the detection rate which are predicted,
	i.e. the proportion of total true anomalies that are detected
	Recall (as the ratio of correctly predicted failures to the number of true failures)
	Precision/Recall-Curve (as mechanism to precision over recall for various threshold levels
	In case of statistical approaches, the performance of the statistical algorithms can be averaged in terms of the prediction time and the mean time between false elerme.
Plavers	End user
i layers	Network operator
	Manufacturer
	Service Provider
Beneficiaries	End user: satisfied users (enjoy better services), thus they assess positively the network and
	services
	Network Operator: reducing human intervention
	Manufacturer: feedback from specific network management events may lead to better
	product development
	Service Provider: convergence to achieve the desired QoS

5.6 Coordination of Self-* mechanisms in autonomic networks

Table 15: Coordination of Self-* mechanisms in autonomic networks

Title	Coordination of Self-* mechanisms in objectives autonomic networks
Description/Story	The goal of this scenario is to capture the requirements stemming from the introduction of
Use Case	various Self-* mechanisms in to the network elements. In particular, it highlights the need for
	proper coordination among the Self-* functions and control loops of each individual network
	element, which may have the same or different objectives.
Network	Any network element (fixed/wireless) equipped with one or more Self-* mechanisms
Environment(s)	Network Operator (NO)
	Mobile devices (in case of mobile networks, assisting role)
Problems	Each autonomic element performs a self management in a selfish manner, by executing its
	own control loop independently of the others. Will provide Performance deterioration (due to
	uncontrollable behaviour of Self-* mechanisms) as perceived by the monitored, preset KPIs.
	Interactions between controls loops could redefine the action of an equipment with no
	coherence and crash the system.
Functions Impacted	<system view=""></system>
Systems Involved	
Indicators / Evaluation	The performance of the network converges at a desirable operating point e.g. in terms of
criteria / Metrics	achieved throughput: The network converges to a desirable and stabilized operating point.
	Functionality in management/control planes for coordinating simultaneously running Self-*
	functions/control loops.
	Advanced knowledge sharing mechanisms.
	Efficient KPI management.
	Proper selection of speed, convergence and stability criteria.
	Interactions of control loop involved in the reaction of an equipment must be analysed.
	A control loop not stable must be deactivated.
Players	Network Operator:
	Content Provider:
	Vendors/ Manufacturers:
	End Users:
Beneficiaries	Manufacturer: provide a manageable autonomic system
	- Could control loops and deactivate it (them) if they do not reach the stability objective.
	- Could control Interaction between control loops of different manufacturers could be managed.

5.7 Autonomic Network Monitoring

Table 16: Autonomic Network Monitoring

Title	Autonomic Network Monitoring Scenario
Description/Story Use Case	The scenario refers to autonomic network monitoring in a dynamic environment. Other services may also be deployed following similar principles, as discussed below
	In the following scenario, the network administrator desires to have a complete view of the network topology and to be able to assess network conditions, e.g. calculate various performance metrics. An overlay network is automatically set up by participating nodes, which (overlay network) hide any details of the underlying infrastructure, such as links established or torn down, failure of nodes, mobility of nodes, etc. Any (monitoring) service may now be built on top of a small set of well-defined abstract APIs, which allow interactions between nodes and the rest of the overlay network. There is no need for centralised control or infrastructure in order to set up new services. All the necessary functionality is shared by peers in the network. Some functions are delegated to more than one node for higher reliability. Moreover, the overlay network is designed to be established autonomously with minimal end-host configuration and human intervention. Thus, it could be argued that rapid deployment of new functionality may be achieved in the network.
	 2) After being able to communicate with neighbours at the physical layer, it participates in a peer-to-peer overlay network by using pre-installed software. An overlay topology (e.g. ring) is formulated by all participating nodes in the ad-hoc network. While nodes join or leave the network, the overlay ring is autonomously updated by applying specific ring maintenance protocols.
	3) Any nodes connected to the p2p network are able to store or retrieve information related to the services using a small set of functions that are based on Distributed Hash Tables (DHT). Autonomicity is derived by the fact that nodes do not need to address network topology changes, e.g. due to node failures.
	4) When an autonomic node wants to provide a new service to its peers, it should retrieve the necessary data from the network. Data is stored beforehand by peering nodes in the overlay network using predefined keys, as discussed in the following examples. Therefore, each service is implemented through the cooperation of a large number of autonomic entities that interact by storing and retrieving meaningful keys across the overlay topology. In this way, we can achieve autonomic functionality that emerges in a decentralized manner without explicit action or control.
	EXAMPLE A: The provision of a visualisation service for an (ad-hoc) network requires knowledge of all the operational nodes/links/functions in the network. In an autonomic scenario, all the network nodes store topology data to one location which may be a network node. This storage location may be dynamically chosen. A common key, included in the pre-installed p2p software, is used for this operation. If necessary, data redundancy is achieved automatically by the selected peer to peer protocols without any intervention from the administrator or the network nodes. Consequently, all topology information is available to any node aiming to provide a new service.
	EXAMPLE B: The provision of a performance monitoring service for all the links in an (ad-hoc) network is based on similar techniques as in the previous example. The difference in this example compared to the previous one is that multiple keys are now necessary for storing monitoring information for each operational link in the overlay network. A simple function on the IP addresses of the nodes terminating a link may be used for generating necessary keys. This function is included in the pre-installed software of each node.
Network	Mobile Ad-hoc Networks –MANETs (dynamic topology, unreliable operation of nodes and
Environment(s)	links, lose control of nodes) The scenario may also be applied in other environments such as fixed/wireless networks.
Problems	In a dynamic environment with frequent topology changes and link failures, centralized approaches suffer from low service operational quality –e.g. performance is reduced when connectivity is not feasible to the central node-, have limited scalability (e.g. data is stored in a single node and service degradation is expected by increasing the incoming requests)), and resilience (e.g. the central node is a single point of failure).

Title	Autonomic Network Monitoring Scenario
	The creation of overlay networks is proposed as a decentralized solution for designing and
	providing (monitoring) services. These overlay networks are based on p2p protocols and
	provide storage and retrieval functionalities. Resources may be combined in a distributed
	manner and the following characteristics may be supported: scalability, decentralization, high
	availability of the provided services, fault-tolerance.
	However, p2p protocols are capable of handling dynamic incoming / outgoing nodes and
	registration / deregistration of resources but still under the assumption of a fixed topology and
	minimum uncertainty. Thus, specific mechanisms for topology formulation and maintenance
	have to be applied. These mechanisms have to be able to converge after network changes
	and not to impose high operational burden to the overlay network.
Functions Impacted	The following autonomic functionalities are provided:
	 Self-configuration of the autonomic node. Each autonomic node recognizes its neighbours.
	ions the overlay network and is able to store and retrieve data autonomously
	• Salf-organization of the network – establishment of the network and the communication
	links loin and leave node requests are handled autonomously
	• Salf-ontimisation – data and services are distributed uniformly among the participating
	 Self-optimisation – data and services are distributed united united after changes in the nodes. The established overlay topology is maintained and undated after changes in the
	notes. The established overlay topology is maintained and updated after changes in the
Systems Involved	Core/Edge Pouters
Systems involved	End Systems connected in a wireless infrastructure
Indicators / Evaluation	Litu Systems connected in a wretess infrastructure
critoria / Motrice	
	 How many messages are exchanged in order to achieve stabilization in conjunction with the network size & the network density?
	Storage and Querying:
	1) What is the average cost (in messages) order to store specific amount of data in conjunction with the network size and the network density?
	2) What is the average querying cost of a key?
	Reaction to topology changes:
	1) How many messages are exchanged in order to achieve stabilization in conjunction with the network size and the network density?
	2) How many messages are exchanged in order to achieve DHT stabilization in conjunction with the network size and the network density?
	One node chooses to query all Z keys. How many keys are unreachable? How is the
	redundancy ratio connected to the failure percentage?
Players	End users
	Network operator
	Manufacturer
	Service provider
Beneficiaries, and the	System Administrators: Responsible for network monitoring and management. Monitoring
Benefits	services are automatically adapted to network changes.
	Vendors: Implement necessary functionality to core/edge routers. Network infrastructure has
	to support necessary functionality for supporting autonomic services.
	Application Developers: Build new services without addressing any challenges regarding the
	underlying network infrastructure.
	Manufacturers: Design personal devices able to connect to any autonomic network with
	minimum software pre-installed.
	End Users: Accessing services provided by other peers with minimum user intervention and
	any support from (centralized) infrastructure.

Table 17: Scenarios Overlay Virtual Network (OVN) Service Breakdown

Title	Overlay Virtual Network (OVN) Service Breakdown
Description/Story	This scene focuses on how a network can react to problems disrupting the consumption of a
Use Case	given OVN service, for example photo sharing (an OVN is a virtual network allowing users to
	access services and content and located on top of the physical network). The OVN targets
	connectivity problems or equipment failures that can result in a full service outage. Once this
	situation has taken place, the OVN will first try to diagnose the root cause and eventually
	re-establish the service by automatically performing some configuration actions. In case
	automatic recovery is not feasible, the problem will be communicated to the customer and/or
	the service operator so manual interventions can be performed.
	The following paragraphs describe in detail the different scene steps, considering a photo
	sharing service. Note that the same concepts can be applied to other OVN services like video
	streaming.
	Bob, or an agent acting on behalf of him (hosted on the management device on Bob's side),
	detects connectivity problems. The agent will try to diagnose the cause of the problem locally
	with the information it has, which can be enlarged by conducting available tests. If the problem
	is not local, agents in Alan's HAN or in the ISP's access network will be contacted for further
	diagnosis. In the latter case the agent may, if necessary, use services provided by the OSS
	belonging to the ISP to perform a set of additional tests to retrieve relevant information about
	network configuration and status.
	Once the diagnosis results are available, the agent will try to solve the problem by executing the
	appropriate actions based on the diagnosis results and corresponding management policies.
	For example, it may try to reset the residential Home Gateway, re-establish its configuration
	parameters, or assign a free wireless channel to a disconnected device, etc.
	In the case where self healing is not possible, the agent may request some action from Bob,
	such as manually resetting his router. This will require some means of communication with him,
	like the PC or TV screen, an SMS message sent to his mobile, etc. Such a communication
	would also be useful in the case where the root problem lies outside the HAN, and the operator
	/ service provider is already working to resolve it ("OVN service temporarily down due to XYZ.
	Your service will be available again in 15 minutes"). Note that for some types of problems a
	smart communication concept will be required, e.g. sending an SMS message in case of a
	complete outage of the xDSL line.
	Eventually Bob may need to call the helpdesk. In this case, the diagnosis report generated
	automatically will guide the technician and reduce the time needed to solve the problem. A
	trouble ticket will be also automatically opened and passed on to the relevant OSS in case it is
	required to solve the problem.
	Since, sometimes, the same problem may be affecting different HANs, the OVN will temporarily
	store diagnosis results, including local HAN diagnosis, to aggregate problems and detect
	common causes. Feedback from the results of corrective actions taken would also enable self
	learning and tuning of the diagnosis process.
Network	Wired and wireless:
Environment(s)	Home Area Networks (HAN)
	Small Office Home Office (SOHO)

Title	Overlay Virtual Network (OVN) Service Breakdown
Problems	 Distributed diagnosis. Different mechanisms to perform distributed diagnosis should be analysed. These mechanisms should be flexible enough to smoothly include new diagnosis cases. It must also be possible to share diagnosis information between different HANs and ISP networks.
	2) Accessing all relevant events and context information. In addition to the above, it should be ensured that all relevant information for the diagnosis is accessible. This includes the intelligent processing of events issued from any devices inside the home environment, from the OSS/BSS infrastructure of the operator, and from a variety of other possible sources.
	3) Interaction with the user. Although autonomics prefers to foster a zero touch approach, sometimes it may be necessary to request the user to perform simple actions himself. User friendly ways to communicate with the customer should therefore be studied. Depending on the type of the problem being diagnosed, the proper channel for information and interaction must be selected.
	4) Self learning. Being able to automatically improve the diagnosis algorithms by incorporating the experience from past corrective actions, even from unsuccessful ones, is a very interesting challenge since it would allow the network to automatically adapt to changing situations and shares this knowledge among multiple HANs.
	5) Self healing. Automatic problem correction should follow operator's policies and lead the system to a stable state.
	With reference to the "Service Breakdown" diagram below (figure 10), once the node has detected (1) a violation of some monitored function or (2) a fault on the network and / or device, then the Fault-Detection-ME (see definition of Managed Entity (ME) in ETSI GS AFI 002 [i.15]) will liaise with the Fault-Diagnosing-DE (see definition of a Decision Element (DE) in ETSI GS AFI 002 [i.15]) to determine the root cause.
	Where a root cause and solution are deduced, the network will try to conclude the next step in terms of healing itself. If a solution is not known or cannot be calculated, then it is possible that some manual intervention is required. In such instances, then management agents should learn the resolution of this fault for future reference (figure 10).
Functions Impacted	 The following autonomic functionalities are impacted: Self-configuration of the autonomic agent. Each node recognises its neighbours, joins the overlay network and is able to store and retrieve data autonomously. Self-organisation of the network – establishment of the network and the communication links. Join and leave node requests are handled autonomously. Self-healing – reactively responding to unplanned events (e.g. failures) and providing corrective actions.
Systems Involved	Operators ISP Source and Destination access networks Core/Edge Routers
Indicators / Evaluation	HAN devices – Home Gateway, End User Devices
criteria / Metrics	 How to connect the components deployed in different IP addressing spaces? How to send configuration commands to the different HAN devices and retrieve management information from them? How does this fit into existing device management solutions currently used by operators (mainly based on TR-069 and related standards)?
	3) Initial modelling of the probabilistic network (decision trees) for each possible use case.
	4) How the agents will identify and authenticate in the OVN?
	5) How to handle problems that have been resolved either automatically or by interaction with the end-user only? What amount of information is relevant for the administrator?
Players	Network Operator; Vendors/ Manufacturers; End Users

Title	Overlay Virtual Network (OVN) Service Breakdown
Beneficiaries and the	Operator's perspective: automatically solving problems in the HAN has two main advantages
benefits	for the operator: it saves resources (both human and computing) needed and improves the
	customer experience. However, the autonomic agent has to ensure that these automatic
	actions strictly follow the operator policies.
	As part of the autonomic concept, self-healing processes are intended to automatically recover
	the status of a system after a deviation from its normal working conditions. Self-healing actions
	are normally expressed in the form of management policies that instruct the systems what to do
	under certain circumstances.
	To implement these actions, the system must first be able to know itself and its context. This is
	a fundamental requirement for any autonomic framework. The system must be able to monitor
	the service, the devices involved, etc., to analyse (diagnose) these data, to take a decision
	according to the analysis and to execute an action to try to solve the cause of the problem.
	However it is very important to remark that self-healing actions must make the system converge
	to a stable state. This is an important challenge that has to be taken into account and requires a
	detailed knowledge of the consequences derived from previous self-healing actions.
	System Administrators: Responsible for network monitoring and management. Monitoring
	services are automatically adapted to network changes.
	Vendors: Implement necessary functionality to core/edge routers. Network infrastructure has to
	support necessary functionality for supporting autonomic services.
	Application Developers: Build new services without addressing any challenges regarding the
	underlying network infrastructure.
	Manufacturers: Design personal devices able to connect to any autonomic network with
	minimum software pre-installed.
	End Users: Accessing services provided by other peers with minimum user intervention and
	any support from (centralised) infrastructure.

Figure 10: Service breakdown

5.9 Scenarios Overlay Virtual Network Service Quality Degradation

Title	Overlay Virtual Network Service Quality Degradation
Description/Story	As Alan travels, he wants to access content from his HAN, for example video content from his
Use Case	video database. He typically wants to see this content at a particular quality level. This quality level is set in the management policy in the HAN/SOHO Management Device and can be made known to each of the devices in the HAN.
	When Alan attempts to download information from his HAN to his laptop, the admission control (AC) mechanism (see "Problems" section below for further issues relating to AC) will either prompt Alan or try to enforce conditions predefined in the management policy set up on Alan's HAN
	The quality of the end-to-end communication will be iteratively monitored on the source side (period to be configured) and QoS parameters including packet delay, packets dropped, jitter (and others) will be monitored.
	It is envisaged that an intelligent management application will be deployed in the HAN. The functionality of this application will be responsible for deciding what action to take if/when the communication parameters drop below predetermined thresholds. Note that initial admission control will use only bandwidth as a determining fact; however, iterative monitoring of the link will use available bandwidth along with other QoS connection parameters such as the ones given above. As part of its context aware nature, the autonomic application should sample these parameters more frequently when the QoS is close to one of its thresholds. As well as solving the problem for the viewer at that moment, the management application should try to solve the underlying problem and report any bigger issues to the user. The following cases can be diagnosed:
	 Congestion in the OVN user HAN, i.e. destination hotel network. In this case, the management application detects any errors within the hotel network caused by interference between incoming video traffic and other traffic sources (mainly Internet and intra-hotel traffic).
	 Congestion in the content source HAN i.e. Alan's HAN. In this case, the management application detects errors within Alan's network due to excessive outgoing traffic caused by the interference between video and other types of traffic.
	• The impact on the source HAN of multiple subscriptions to OVN services and the consequent increase in HAN traffic should be taken into account. At the content source HAN, there should be a mechanism to detect if poor QoS within the HAN is caused by the fact that the OVN service is being used. If that was the case, a proper action should be taken (for instance, stopping temporarily the OVN service). This is a very important issue because, it may impact the quality of experience related to the OVN service. Therefore, it may be convenient to split this case into a different scene on its own.
	 QoS degradation at the access network. This use case is meant to detect QoS deficiencies in the access network caused by excessive traffic or access network malfunctioning. Lack of sufficient available end to end bandwidth. Since several ISP networks can be
	 involved in delivering the OVN service, it might happen that, due to problems in any of these ISPs, the available end to end bandwidth drops below the required threshold. Degraded video signal received from the video server. In this case the management application will detect that the video server is delivering a low quality video signal.
Network	Home Area Networks (HAN)
Environment(s)	ISmall Office Home Office (SOHO)

Table 18: Scenarios Overlay Virtual Network Service Quality Degradation

Title	Overlay Virtual Network Service Quality Degradation		
Problems	Admission Control will primarily be used as a decision making component, which the main role		
	is to admit or reject a new session trying to access content in the HAN.		
	The Admission Control Managed Entity (AC_ME) (see definition of Managed Entity(ME)) will		
	receive input from the QoS decision element (QoS_DE) (see definition of Decision Element		
	(DE)), which exchanges information with the Application Decision Element (App_DE) in order to		
	define the requirements for a particular session. A failored AC mechanism decides whether or		
	two issues:		
	(we issues.		
	a) Short-term issue. Can the TIAN galeway device and the host allold a new session and its respective requested OoS2 is there enough initial end-to-end (E2E) available bandwidth for		
	transporting a new session? (figure 11)		
	b) Long term issue: Will the new session affect the current OoS levels already being held and		
	committed by the HAN gateway? (figure 12)		
	Information exchange will be kept simple between the AC_ME and its correlated components.		
	Fundamentally, AC_ME needs to receive a traffic specification (TSPEC) for the requested		
	session and will return a reply informing whether such session will be allowed to be initiated, an		
	offer for an alternative QoS level (normally, with less strict QoS requirements), or a direct		
	rejection. ISPECs may follow any standard format, such as ISPECs for Integrated Services or		
	nor IEEE 802.11e [I. 14]. AC_IVIE may also follow an interactive negotilation strategy of different		
	sessions and the AC. MF will admit only the traffic that satisfies the TSPECs offer a different		
	TSPEC or reject the connection.		
	AC_ME will be then a mix of traffic descriptor-based and measurement-based AC. After a		
	TSPEC is provided by the QoS_DE for each new session prior to its establishment, a fast E2E		
	available bandwidth technique must be launched in order to have a current view of the network		
	path condition between the content provider host in the HAN and a user device that joined the		
	UVN. Particularly AC ME will rely on accurate techniques for estimating the current E2E available		
	handwidth such as Pathload ABGet or IMR-Pathload. This information is then disseminated to		
	the AC ME where it can make AC decisions to allow the service to proceed as requested.		
	Additional attention may be given to bandwidth fluctuation over multiple time scales (i.e. when		
	the traffic profile shows long-range dependency) in order to avoid overestimation or		
	underestimation of TSPECs, which could lead to QoS degradation, poor HAN resources		
	utilization, or high rate of refused session admission.		
Functions Impacted	The following autonomic functions are impacted:		
	 Self-optimisation – data and services are distributed uniformly among the participating podes. The established overlay topology is maintained and updated after changes in the 		
	network		
Systems Involved	Operators ISP		
	Source and Destination access networks		
	Core/Edge Routers		
la dia stana / Esselvation	HAN devices – Home Gateway, End User Devices		
Indicators / Evaluation	1) How is the autonomic application installed and updated on the HAN Management Device?		
	2) How are the control mechanisms installed and updated on the other HAN Devices such as		
	the travelling laptop?		
	3) Will content providers be willing to provide available bandwidth information to end-user		
	applications in their networks? What agreement needs to be set up to allow the user to get		
	this information?		
	4) Availability and cost of probes inside the HAN.		
	5) Performance of QoS monitoring components deployed in HAN devices.		
	6) Privacy issues when accessing customers' traffic.		
Players Repeticienties and the	Network Operator; Vendors/ Manufacturers; End Users		
benefits	Uperator's perspective: Being able to proactively diagnose and solve QoS problems in the HAN would be a very good way to increase customer satisfaction. This has to be balanced with		
NUTICITIES	the cost of deploying QoS monitoring components inside the HAN		
	This scene directly involves the operator. The admission control mechanism extends from the		
	HAN/SOHO Management Device to the User device. The operator is required to carry the		
	bandwidth determination criteria and the control packets (as well as the content). The control		
	packets will allow the user device (in this case, the laptop) to inform the HAN/SOHO		
	Management Device in an ongoing manner of the video quality being received.		

Figure 12: Active services

52

5.10 Monitoring in Carrier Grade Wireless Mesh Networks

Table 19: Monitoring in Carrier Grade Wireless Mesh Networks

53

Title	Monitoring in Carrier Grade Wireless Mesh Networks (CARMEN)		
Description/Story	Mesh networking technology provides a cost effective and efficient alternative for realising		
Use Case	backhaul networks to provide mobile users with high quality services. Wireless mesh networks		
	are dynamically self-organised and self-configured, which ultimately results in reduced		
	aepioyment costs and lower network maintenance costs for the operator.		
	Ive focus on mesh networks which provide carrier grade services with low operational		
	maintenance, low cost and high nexibility in deployment. Furthermore, we focus on continuous		
	maintenance cost of the infrastructure		
	The monitoring system plays a critical role in supporting the self-* functionality. The main role		
	of the monitoring system is to supply other modules with accurate and timely information		
	regarding the status of the network in both a technology-dependent and technology-		
	independent manner. Specifically this requires measurement, aggregation, correlation and		
	statistical analysis of the raw data. The reports from the monitoring system are not only crucial		
	for self-configuration and planning functions, but also important for dynamic resource		
	management, such as routing updates or admission control decisions.		
	1) After a mesh node is activated the node starts discovering its radio neighbourhood as		
	seen by each of its multiple radio interfaces of different technologies. This is based on		
	passive scanning by the monitoring function and facilitates the discovery of the mesh		
	gateway node.		
	2) The monitoring function supplies the necessary information to create a view of the		
	physical network topology. This view describes which radio interfaces can be used by two		
	neighbouring mesh nodes to communicate with each other.		
	3) The monitoring function gathers information on the level of potential interference between radio links as well as interference regulting from external sources.		
	 I his information drives other mesh network functionalities, such as network planning, radio resource management, routing, mobility management, etc. 		
	5) During the operation of the network, the monitoring function continuously measures network performance characteristics and reports any deviation so that corrective action		
	can be taken.		
	EXAMPLE: City coverage scenario – a wireless mesh network is deployed in		
	selected areas of a city centre to provide users access to the operator's		
	connected into the operator's wired infrastructure and a larger number of		
	wireless nodes. The self-configuration functionality allows easy network		
	deployment and extendibility. Constant monitoring assures an accurate		
	view of the physical network topology and aids in radio management,		
	especially in dense urban environments.		
Network	Wireless mesh network (heterogeneous, multi-hop, robust topology with dedicated mesh		
Environment(s)	routers), support for carrier grade services		
r i obiellis	1) Determining network capacity (e.g. available radio channels)		
	2) Determining link quality (e.g. bandwidth, delay)		
	3) Detecting neighbouring nodes (passively)		
	4) Allowing prompt reaction to network events (e.g. link failure)		
	5) Utilizing heterogeneous network technologies		
Functions Impacted	The following autonomic functionalities are provided:		
	1) Self-configuration of the mesh nodes. Each mesh node recognizes the physical network		
	topology, identifies its neighbours, and utilizes neterogeneous network technologies. This		
	is performed in particular during the initial bootstrapping phase.		
	 Self-organization of the network. The whole network and all communication links between mesh nodes are established. 		
	3) Self-healing. The network is robust to changes of topology and radio conditions.		
Systems Involved	Core/edge wireless mesh routers		

Title	Monitoring in Carrier Grade Wireless Mesh Networks (CARMEN)		
Indicators / Evaluation criteria / Metrics	1) How much resource (in terms of memory, interfaces, computational power) does monitoring require?		
	2) How long should monitoring data be stored at a node?		
	3) How long does it take to notice link changes?		
	4) What is the accuracy of a link failure prediction?		
	5) How long does it take to detect neighbouring nodes?		
Players	Network Operators: deploy wireless mesh networks Vendors/Manufacturers: provide equipment supporting carrier grade services in wireless mesh networks		
Beneficiaries	Network Operators: can easily deploy new networks, extend existing networks, and assure QoS to meet users' expectations at a reduced cost End-users: gain access to triple-play services (with a required level of QoS) through a ubiquitous wireless network		

5.11 Network self-management based on capabilities of network behaviours as described to the overlying OSS processes

Table 20: Network self-management based on capabilities of network behavioursas described to the overlying OSS processes

Title	Network self-management based on capabilities of network behaviours as described to the overlying OSS processes	
Description/Story	Nowadays, the technologies often run far ahead of the ability to manage them. This may result	
Use Case	in complex networked systems requiring manual configuration and dedicated management	
	provided by very expensive experts. Such a model is obviously cost ineffective and it cannot	
	scale.	
	For this reason there is an urgent need for automation in terms of planning, configuring and	
	assuring network behaviours. Next generation Operations Support Systems (OSS) need to be	
	able to manage a diverse set of network devices offering different capabilities and exposing	
	various behaviours. In particular some of the devices might be equipped with capabilities	
	allowing for certain cooperative and non-cooperative behaviours.	
	Currently developed next generation networks often assume the possibility of having devices	
	able to route data in a cooperative manner to increase the QoS offered by the system. Such	
	devices are preliminarily to be deployed by network operators as fixed, movable and mobile	
	ones, while the mobile relay nodes may be also user devices on a longer perspective. It puts	
	then certain requirements on the system to be able to discover the capabilities of distinct	
	devices and use the acquired information for the purposes of exploiting these behaviours	
	whenever beneficiary for the overall performance. This task involves other OSS level routines	
	such as inventory management and service assurance.	
Network	Wireless mobile networks	
Environment(s)		
Problems	One of the aspects that seems to be missing in terms of the desirable behaviours is any	
	consideration of what is the cost of ownership of a given behaviour in the context of planning.	
	fulfilling/configuring and assuring this behaviour in the end to end system.	
	It is very easy to create a network feature that is bespoke and therefore difficult to integrate	
	and from an OSS point of view the need would be to understand how the capabilities of	
	network behaviours can be described in a common standardised way that makes them easy to	
	integrate and describe to the overlying OSS processes.	
	The aforementioned cooperative behaviour can be highly beneficial from the system	
	performance perspective, however, it comes at a certain cost. This cost may result from the	
	fact that either:	
	additional network operator devices may need to be deployed so they can be	
	automatically configured to expose cooperative behaviours when there is a need.	
	user devices may be needed to instantiate cooperation and in that case users may want to	
	trade what they can offer for some other privileges or benefits.	
	There is then a need for a logic that would be able to analyse applicability of such a behaviour	
	for specific deployment and in given circumstances (longer term perspective) and	
	consequently make use of them by imposing certain policies. It might turn out that in some	
	cases cooperative behaviours can be translated into revenue, as well as they can add to	
	service assurance.	
	In different circumstances different cooperative behaviours may be exposed:	
	- Base Station/Access Point can instantiate cooperation with Relay Node(s),	
	- Relay Nodes can instantiate cooperation among themselves.	
	Otherwise non-cooperative behaviour may be advantageous.	
Functions Impacted	Service assurance	
-	Inventory management	
Systems Involved	OSS	
Indicators / Evaluation	Cost of ownership of a behaviour – how capabilities of network behaviours can be described in	
criteria / Metrics	a common standardised way that makes them easy to integrate and describe to the overlying	
	OSS processes.	
Players	Software solutions providers	
	Service providers	
Beneficiaries	Network operators (in terms of service provision)	
	End users (in terms of the QoS offered)	

5.12 Scenarios, requirements and references relationship

To sum up, table 21 lists the relationships between Scenarios and derived requirements. It also mentions the references (European Research projects, SDOs) if any.

Scenarios	Requirement Identifier: RQ ID	Reference	Agreed AFI #04 meeting
Scenario 5.2 Autonomics in NGN	5, 9, 10, 24, 25, 26, 27, 28, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 47, 48, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64	[i.11], [i.10], [i.12]	3 operators
Scenario 5.3 Auto-configuration of Routers	21, 22, 23, 33, 39	[i.8]	
Scenario 5.4 Self-Management of Coverage/Capacity in Wireless systems	2, 24, 27, 28, 34, 35, 36, 37, 49, 53, 54, 55, 58, 60, 62, 63		
Scenario 5.5 Cognitive event management	34, 53, 54, 55, 58, 59, 60, 61, 63		
Scenario 5.6 Coordination of Self *			
Scenario 5.7 Autonomic network monitoring	1, 2, 3, 4, 6, 7, 8, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 46, 49, 50 21, 22, 23, 25, 26, 27, 28, 29, 30, 34, 35, 36, 64, 67, 68, 69		
Scenario 5.8 Overlay Virtual Network (Service Breakdown)		[i.8]	
Scenario 5.9 Overlay Virtual Network (Service quality degradation)		[i.8]	
Scenario 5.10 Monitoring in Carrier Grade Wireless Mesh networks	29, 30, 31	[i.9]	
Scenario 5.11 Network Self-management by Overlying OSS processes			

Table 21: Use cases, Scenarios and references relationships

Annex A (informative): Authors & contributors

The following people have contributed to the present document.

Rapporteur: Tayeb Ben Meriem, Orange / France Telecom **Other contributors**:

First Name	Last Name	Company
Benoit	Radier	Orange / France Telecom
José Antonio	Lozano López	Telefonica
Juan Manuel	González Muñoz	Telefonica
Ranganai	Chaparadza	Fokus, Fraunhofer
Antonio	Manzalini	Telecom Italia (TI)
Corrado	Moiso	Telecom Italia (TI)
Michał	Wódczak	Telcordia Technologies
Szymon	Szott	AGH University of Science and Technology
Katarzyna	Kosek-Szott	AGH University of Science and Technology
Marek	Natkaniec	AGH University of Science and Technology
Brian	Lee	Athlone Institute of Technology
Kevin	Quinn	Waterford Institute of Technology
Laurent	Ciavaglia	Alcatel-Lucent
Jesse	Kielthy	Waterford Institute of Technology
Maurice	Duault	Cisco systems
Athanassios	Liakopoulos	GRNET
Anastasios	Zafeiropoulos	GRNET
Panagiotis	Gouvas	GRNET/ UBITECH
Nancy	Alonistioti	NKUA, University of Athens
Apostolos	Kousaridas	NKUA, University of Athens, University of Athens
Tilemachos	Raptis	NKUA, University of Athens
Vangelis	Gazis	NKUA, University of Athens
Panagiotis	Demestichas	UPRC
Kostas	Tsagkaris	UPRC
Maria	Akezidou	UPRC
Marios	Logothetis	UPRC

Annex B (informative): Acknowledgements

The AFI very much acknowledges the European Commission (EC), which is funding a number of FP7 projects under the umbrella "Network of the Future" like EFIPSANS <u>http://www.efipsans.org</u> (some partners of which founded AFI together with some non-EFIPSANS partners), and many other FP7 projects that are represented in AFI and are making contributions to AFI, such as Self-NET <u>http://www.ict-selfnet.eu/</u>, E3 <u>https://www.ict-e3.eu</u>, CARMEN project (<u>http://www.ist-carmen.eu/</u>, UNIVERSELF project. <u>http://www.ict-univerself.eu</u>). Also, non-EC funded projects contributing to AFI are acknowledged.

58

Annex C (informative): Bibliography

Heylighen F. (2009): "Complexity and Self-organization", in Encyclopaedia of Library and Information Sciences, eds. M. J. Bates & M. N. Maack (CRC Press).

V. Poladian et al,: "Dynamic Configuration of Resource-Aware Services" Proc. 24th Int. Conf. Software Engineering, pp. 604-613, May 2004.

http://en.wikipedia.org/wiki/Autonomic-Networking.

J. O. Kephart, D. M. Chess: "The Vision of Autonomic Computing", January 2003 http://www.research.ibm.com/autonomic/research/papers/AC-Vision-Computer-Jan-2003.pdf.

ETSI TS 188 003 (V1.1.1): "Telecommunications and Internet Converged Services and Protocols for Advanced Networking (TISPAN); OSS requirements; OSS definition of requirements and priorities for further network management specifications for NGNOSS definition of requirements and priorities for further network management specifications for NGN.

EC Funded Self-NET Project: "Self-Management of Cognitive Future InterNET Elements" <u>https://www.ict-selfnet.eu/</u> <u>http://cordis.europa.eu/fetch?CALLER=PROJ-ICT&ACTION=D&CAT=PROJ&RCN=86636</u>.

EC funded FP7 E3 Project: "End-to-End Efficiency" https://ict-e3.eu/.

EC funded FP7 SOCRATES Project: "Self-Optimisation and self-ConfiguRATion in wirelEss network" <u>http://www.fp7-socrates.org/</u>.

EC funded FP7 4WARD Project http://www.4ward-project.eu/.

EC Funded FP7 ANA Project: "Autonomic Network Architecture" http://www.ana-project.org/.

ETSI TS 132 500 (V10.1.0): "Universal Mobile Telecommunications System (UMTS); LTE; Telecommunication management; Self-Organizing Networks (SON); Concepts and requirements (3GPP TS 32.500 version 10.1.0 Release 10)".

History

Document history		
V1.1.1	June 2011	Publication

60