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Introduction 
Consensus is a fundamental component of PDL, critical when updating ledgers with new transactions and ensuring 
ledgers are synchronized and consistent. Current studies related to PDL and consensus have not considered the network 
infrastructure (i.e. wired or wireless) and assume network communications is reliable and error-free [i.3]. However, in 
practical terms communication errors may occur during consensus process because of network infrastructure conditions 
especially when wireless networks are in use. Wireless networks are less stable and less reliable than wired networks 
due to interferences and obstacles in space. Meanwhile, compared with wired networks, wireless networks can be more 
dynamic since wireless nodes (such as mobile devices) can join or leave a network without the need for physical 
connections or disconnection of devices. Therefore, the use of Wireless Consensus Networks (WCNs) for consensus 
between nodes (which can be a mix of mobile and static devices) could pose challenges. This study provides an 
overview of wireless consensus network approaches that can offer benefits to certain services. Various factors such as 
the requirements and architectures of WCNs, consensus mechanisms, hardware, protocols used to realize WCNs are 
analysed. In addition, this study also demonstrates some use cases based on WCNs. 

A consensus network is used to achiever two primary goals:  

a) to ensure a consensus on content of data among nodes in a distributed system exists; and  

b) to reach an agreement on a proposal.  

It is expected to be fault tolerant, scalable, secure, democratic, and privacy-preserving to serve as an auditable tool in 
scenarios where data integrity should be preserved and recorded (e.g. when investigating events related to autonomous 
driving). Furthermore, a consensus network also serves as the backbone of distributed systems such as PDL. The 
present document discusses the challenges of maintaining sufficient quality of the above metrics when the consensus 
network is operated over fully or partially wireless infrastructure, hence becoming a WCN. 
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1 Scope 
The present document investigates the following aspects related to wireless consensus network: 

• Use cases of wireless consensus networks. 

• Wireless consensus network architecture. 

• Methods to construct wireless consensus networks: 

- MAC and physical layers. 

- Decentralized/Centralized communication. 

• Performance metrics of consensus mechanisms/protocols. 

• Protocols to construct wireless consensus networks. 

2 References 

2.1 Normative references 
Normative references are not applicable in the present document. 

2.2 Informative references 
References are either specific (identified by date of publication and/or edition number or version number) or 
non-specific. For specific references, only the cited version applies. For non-specific references, the latest version of the 
referenced document (including any amendments) applies. 

NOTE: While any hyperlinks included in this clause were valid at the time of publication, ETSI cannot guarantee 
their long term validity. 

The following referenced documents are not necessary for the application of the present document but they assist the 
user with regard to a particular subject area. 

[i.1] Xu H., Fan Y., Li W. & Zhang L. (2022): "Wireless Distributed Consensus for Connected 
Autonomous Systems". IEEE™ Internet of Things Journal, doi: 10.1109/JIOT.2022.3229746. 

[i.2] Sae International (2018): "Taxonomy and definitions for terms related to driving automation 
systems for on-road motor vehicles".  

[i.3] Shi Y., Zhou Y., & Shi, Y. (2021, July): "Over-the-air decentralized federated learning". In 2021 
IEEE International Symposium on Information Theory (ISIT) (pp. 455-460). IEEE™. 

[i.4] Hu Z., Shen J., Guo S., Zhang X., Zhong Z., Chen Q. A. & Li K. (2022, January): "Pass: A 
system-driven evaluation platform for autonomous driving safety and security". In NDSS 
Workshop on Automotive and Autonomous Vehicle Security (AutoSec). 

[i.5] Feng C., Xu Z., Zhu X., Klaine P. V. & Zhang L. (2023): "Wireless Distributed Consensus in 
Vehicle to Vehicle Networks for Autonomous Driving", IEEE™ Transactions on Vehicular 
Technology. 

[i.6] Sun Y., Zhang L., Feng G., Yang B., Cao B. & Imran M. A. (2019): "Blockchain-enabled wireless 
Internet of Things: Performance analysis and optimal communication node deployment", IEEE™ 
Internet of Things Journal, 6(3), 5791-5802. 

[i.7] Zhang L., Xu H., Onireti O., Imran M. A. & Cao, B. (2021): "How much communication resource 
is needed to run a wireless blockchain network?", IEEE™ network, 36(1), 128-135. 
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[i.8] Li W., Feng C., Zhang L., Xu H., Cao B. & Imran M. A. (2020): "A scalable multi-layer PBFT 
consensus for blockchain", IEEE™ Transactions on Parallel and Distributed Systems, 32(5), 
1146-1160. 

[i.9] Williamson T. & Spencer N. A. (1989): "Development and operation of the traffic alert and 
collision avoidance system (TCAS)", Proceedings of the IEEE™, 77(11), 1735-1744. 

[i.10] Isermann R., Schwarz R. & Stolzl S. (2002): "Fault-tolerant drive-by-wire systems", IEEE™ 
Control Systems Magazine, 22(5), 64-81. 

[i.11] Patterson D. A., Gibson G. & Katz R. H. (1988, June): "A case for redundant arrays of inexpensive 
disks (RAID)". In Proceedings of the 1988 ACM SIGMOD international conference on 
Management of data (pp. 109-116). 

[i.12] Vukadinovic V., Bakowski K., Marsch P., Garcia I. D., Xu H., Sybis M., ... & Thibault I. (2018): 
"3GPP C-V2X and IEEE™ 802.11 p for Vehicle-to-Vehicle communications in highway 
platooning scenarios". Ad Hoc Networks, 74, 17-29. 

[i.13] McKeen F., Alexandrovich I., Anati I., Caspi D., Johnson S., Leslie-Hurd R. & Rozas C. (2016): 
"Intel® software guard extensions (intel® sgx) support for dynamic memory management inside an 
enclave". In Proceedings of the Hardware and Architectural Support for Security and Privacy 2016 
(pp. 1-9). 

[i.14] Gervais A., Karame G. O., Wüst K., Glykantzis V., Ritzdorf H. & Capkun, S. (2016, October): 
"On the security and performance of proof of work blockchains". In Proceedings of the 2016 ACM 
SIGSAC conference on computer and communications security (pp. 3-16). 

[i.15] Menon A. A., Saranya T., Sureshbabu S. & Mahesh A. S. (2022): "A Comparatıve Analysis on 
Three Consensus Algorithms: Proof of Burn, Proof of Elapsed Time, Proof of Authority". In 
Computer Networks and Inventive Communication Technologies: Proceedings of Fourth ICCNCT 
2021 (pp. 369-383). Springer Singapore. 

[i.16] Samuel C. N., Glock S., Verdier F. & Guitton-Ouhamou P. (2021, May): "Choice of ethereum 
clients for private blockchain: Assessment from proof of authority perspective". In 2021 IEEE 
International Conference on Blockchain and Cryptocurrency (ICBC) (pp. 1-5). IEEE™. 

[i.17] IEEE 802.11p™: "IEEE Standard for Information technology -- Local and metropolitan area 
networks -- Specific requirements -- Part 11: Wireless LAN Medium Access Control (MAC) and 
Physical Layer (PHY) Specifications Amendment 6: Wireless Access in Vehicular Environments". 

[i.18] IEEE 802.15.4™: "IEEE Standard for Low-Rate Wireless Networks". 

[i.19] DSRC vs. C-V2X for Safety Applications. 

[i.20] ARINC 629: "Airlines Electronic Engineering Committee, 629 Part 2-2 Multi-Transmitter Data 
Bus, Part 2-Application Guide", February 1999. 

[i.21] ARINC 659: "Airlines Electronic Engineering Committee, 659 Backplane Data Bus", 
December 1993. 

[i.22] ARINC 664: "Airlines Electronic Engineering Committee, 664P4-2 Aircraft Data Network, 
Part 4 - Internet-Based Address Structure Assigned Numbers", December 2007.  

3 Definition of terms, symbols and abbreviations 

3.1 Terms 
Void. 

https://auto-talks.com/technology/dsrc-vs-c-v2x/
https://saemobilus.sae.org/content/ARINC629P2-2/
https://saemobilus.sae.org/content/ARINC659
https://saemobilus.sae.org/content/ARINC664P4-2
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3.2 Symbols 
Void. 

3.3 Abbreviations 
For the purposes of the present document, the following abbreviations apply: 

3GPP 3rd Generation Partnership Project 
4G 4th Generation of mobile communication technology standards 
5G 5th Generation of mobile communication technology standards 
AI Artificial Intelligence 
API Application Programming Interface 
BFT Byzantine Fault Tolerance 
CA Collision Advisory 
CAN Controller Area Network 
CFT Crash Fault Tolerance 
CM Consensus Mechanism 
CP Consensus Protocol 
CPU Central Processing Unit 
CSMA Carrier-Sense Multiple Access 
CSMA/CA Carrier-Sense Multiple Access with Collision Avoidance 
CSMA/CD Carrier-Sense Multiple Access with Collision Detection 
CSS Chirp Spread Spectrum 
DCN Distributed Consensus Network 
DDoS Distributed Deny of Service 
DSRC Dedicated Short Range Communication 
FIFO First In First Out 
GPS Global Positioning System 
ID Identity 
IIoT Industrial Internet of Things 
IoT Internet of Things 
IP Internet Protocol 
IPFS InterPlanetary File System 
ITS Intelligent Transportation Systems 
LoRa Long Range 
LTE Long Term Evolution 
MAC Medium Access Control 
MCU MicroController Unit 
NAND Not AND 
OFDM Orthogonal Frequency Division Multiplexing 
PBFT Practical Byzantine Fault Tolerance 
PCDA Perception-Collection-Decision-Action 
PDL Permissioned Distributed Ledger 
PoA Proof of Authority 
PoS Proof of Stake 
PoW Proof of Work 
PoX Proof-based Algorithms 
PSU Power Supply Unit 
QoS Quality of Service 
RAID Redundant Arrays of Independent Disks 
RAM Random Access Memory 
RF Radio Frequency 
RISC Reduced Instruction Set Computer 
ROP Return Oriented Programming 
RREP Routing Response message 
RREQ Routing Request message 
SAE Society of Automotive Engineers 
SC-FDMA Single-Carrier Frequency-Division Multiple Access 
SGX Software Guard eXtensions 
SNR Signal to Noise Ratio 
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SPOF Single Point Of Failure 
TCAS Traffic Collision Avoidance Systems 
TEE Trusted Execution Environment 
TPM Trusted Platform 
TPS Transaction Per Second 
UAF Use After Free 
URLLC Ultra-Reliable and Low Latency Communication 
V2I Vehicle to Infrastructure 
V2N Vehicle to Network 
V2P Vehicle to Pedestrian 
V2V Vehicle to Vehicle 
V2X Vehicle to Everything 
WCN Wireless Consensus Network 
WLAN Wireless Local Area Network 
WPAN Wireless Personal Area Network 
XGS intel Software Guard eXtensions 

4 Overview of Wireless Consensus Networks 

4.1 Background 
Permissioned Distributed Ledger (PDL) is built on a decentralized network that relies on frequently direct 
communications between distributed nodes. Compared with centralized data records as presented in Table 1, PDL is 
more receptive to enabling numerous participants to share data in an autonomous and uncoordinated manner. The 
Consensus Mechanisms (CMs), which play a pivotal role in PDL, are resource-demanding both in terms of computation 
and in terms of communication overheads. The CMs would often determine security requirements (i.e. fault tolerances, 
identity) and other key performance metrics such as transaction throughput, latency thresholds and scalability to achieve 
the data consistency required for proper PDL functions. 

Table 1: Comparison of centralized vs. decentralized 

Property Centralized Decentralized 
Meaning The retention of power and authority with 

respect to planning and decisions, with the top 
management, is known as centralized or 
centralization. 

The dissemination of authority, responsibility, 
and accountability to the various management 
levels, is known as decentralized or 
decentralization. 

Geographical 
Distribution 

Located at a centralized location (with possible 
mirrors/replication). 

Geographically distributed. 

Node Ownership All nodes are owned by a single entity. Each node is owned by a different entity. 
Involves Systematic and consistent preservation of 

authority. 
Disintermediation. Systematic dispersal of 
authority. 

Communication  Vertical. Open and Free. 
Decision Making Made by single entity - SPOF. 

Fast. 
Consensus by participants to prevent SPOF. 
May be slow depending on consensus 
mechanism. 

Advantage Clear coordination and leadership. Sharing of burden and responsibility. 
Power of decision 
making 

Managing authority (not necessarily the operator 
of the ledger). 

Decentralization. Disintermediation. Multiple 
participants have the power of decision making. 

Best suited for Small-sized networks/organizations. 
Data that is owned by a single entity. 

Large-sized networks/organizations. 
Data that is shared between multiple entities. 

Authority Single entity. Multiple (all) participants. 
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Most PDL systems are designed and operated in a stable wired communication network connecting advanced devices 
under the assumption of sufficient communication resource availability and quality. However, in reality a growing 
number of PDL node peers are connected through wireless networks rendering them Wireless Consensus Networks 
(WCN) [i.1]. Constrained by the unpredictable behaviour of wireless channels and frequency spectrum limitations, 
communications can significantly affect the key performance metrics of WCN. Moreover, wired communications 
systems can quickly detect transmission failure, while wireless systems may not be able to detect faults as quickly. In 
wireless systems, transmission failures are not sensed by the transmitters and receivers. Wireless nodes can only sense if 
the channel is occupied during transmissions, and back-off for a random period to avoid collisions using methods such 
as CSMA/CA. The transceiver has no knowledge if the frame has been received. On the other hand, wired systems can 
detect transmission failures easily through collision detections techniques, such as, CSMA/CD. Hence this study 
investigates consensus mechanisms and protocols that can potentially be used in WCN in the future and discusses 
characteristics, metrics, and use cases of WCN. 

4.2 Need for Wireless Consensus Networks 

4.2.1 General problem statement 

Driven by advances in 5G, industry 4.0, cloud/edge computing and artificial intelligence, the Internet of Things (IoT) is 
extending from home and work environments to critical and complex industrial systems, such as transportation, 
healthcare, utilities, communications, and e-commerce sectors. Meanwhile, an increasing number of mobile devices and 
applications are emerging to serve people in their daily tasks such as wearables and autonomous driving. These vital 
societal and industrial functions are increasingly interconnected for information exchange through communication 
networks to complete joint tasks. It is infeasible to rely on wired connectivity between such mobile devices. Thus, 
achieving consensus in open wireless channels involving mobile devices becomes a necessity and needs to be further 
investigated. 

4.2.2 Consensus for distributed automation 

Consensus for distributed automation is best demonstrated through a use case of autonomous vehicles. Considering 
Table 2, autonomous vehicles are currently at SAE L2 of Autonomy heading towards SAE L3 and further based on a 
framework defined by the Society of Automotive Engineers (SAE) [i.2], as shown in Table 2. Current autonomous 
vehicles detect other vehicles by identifying them as obstacles, which is not optimal in terms of safety and efficiency. 
One step forward is that all driver-less vehicles are connected, communicating with each other, knowing each other's 
intention in advance, and jointly reach optimal decisions in a cooperative manner. However, existing solutions are 
centralized, with limited availability and challenging trustworthiness, reliability, scalability, privacy, and security. 

Compared with centralized solutions, PDLs could be a promising technical route for a distributed scenario such as 
connected autonomous vehicles. It requires solutions that are fault-tolerant, scalable, ultra-reliable, flexible, democratic 
and privacy-preserving, operated over a wireless network. Therefore, a WCN that meets the above requirements can 
serve as an enabling technology to bring the autonomous driving to reality. 
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Table 2: SAE Automation Levels 

SAE Level Name Narrative definition Execution of 
steering and 
acceleration/ 
deceleration 

Monitoring 
of driving 

environment 

Fallback 
performance of 
dynamic driving 

task 

System capability 
(driving modes)  

Human driver monitors the driving environment 
L0 No Automation The full-time performance by the human driver of all 

aspects of the dynamic driving task, even when 
"enhanced by warning or intervention systems" 

Human driver Human driver Human driver N/A 

L1 Driver Assistance The driving mode-specific 
execution by a driver assistance 
system of either steering or 
acceleration/deceleration 

Using information 
about the driving 
environment and with 
the expectation that 
the human driver 
performs all 
remaining aspects of 
the dynamic driving 
task 

Human driver 
and system 

Some driving 
modes  

L2 Partial Automation The driving mode-specific 
execution by one or more driver 
assistance systems of both 
steering and 
acceleration/deceleration 

System  

Automated driving system monitors the driving environment 
L3 Conditional 

Automation 
The driving mode-specific 
performance by an automated 
driving system of all aspects of 
the dynamic driving task 

With the expectation 
that the human driver 
will respond 
appropriately to a 
request to intervene 

System System Human driver Some driving 
modes  

L4 High Automation Even if a human 
driver does not 
respond appropriately 
to a request to 
intervene the car can 
pull over safely by 
guiding system 

System Many driving 
modes  

L5 Full Automation Under all roadway 
and environmental 
conditions that can 
be managed by a 
human driver 

All driving modes  
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4.3 Motivations 
Compared with wireless networks, one of the significant advantages of wired networks is their reliability and stability. 
Wired networks offer faster and more reliable connectivity compared to wireless networks. Since the data is transmitted 
through physical wires, the chances of data loss or interruption are significantly lower. Wired networks are also less 
susceptible to interference from other electronic devices, making them a more stable option for industries that require 
stable and continuous connectivity, such as hospitals and data centres. However, one of the major disadvantages of 
wired networks is their lack of mobility. Wired networks require physical cabling between nodes, which restricts the 
mobility of devices connected to them. An additional disadvantage of wired networks is the time, cost, and effort 
required to physically install and connect nodes to the wired network. 

On the other hand, wireless networks provide mobility and flexibility, which are significant advantages for many users, 
and a necessity for certain types of nodes, especially those that cannot be physically connected to a wired network (e.g. 
a vehicle). Wireless network nodes are convenient and easy to set up since they do not require physical cabling between 
the nodes. Additionally, wireless networks offer users the freedom to move around while still being connected to the 
network. This feature is particularly beneficial for individuals who require mobility, such as mobile workers, students, 
and travellers. However, wireless networks are more prone to interference and signal loss, which can lead to slower and 
less reliable connectivity. Therefore, reaching consensus in wireless networks is more difficult than that in wired 
networks in terms of communication. 

It is important to note that while setting up and using a wireless node is simpler than setting up a wired node and offers 
the benefits of mobility, setting up the wireless network infrastructure that allows such wireless connectivity (e.g. 
mobile cell towers and the connectivity/backhaul between them and the mobile network core, or a home/office Wi-Fi® 
network) is in many cases more complex and expensive than setting up and operating a wired networks. This 
discussion, however, is out of scope of the present document. 

Although wireless networks have been widely deployed based on various protocols and standards to meet different 
scenarios, WCN introduces new challenges that may lead to additional requirements to both the network architecture 
and hardware, as well as the applied CMs and protocols. Therefore, the WCN paradigm should be analysed by 
stakeholders to identify its applied requirements and potential use cases in the future. The present document discusses 
possible requirements and use cases of WCN for PDL in terms of architecture, hardware, consensus mechanisms and 
protocols, defining an overall perception of how WCNs should be constructed and what the key components of WCNs 
should be. 

5 Opportunities and Use Cases of Wireless Consensus 
Network 

5.1 Opportunities 

5.1.1 Background 

Recently, there is a growing use of IoT devices in critical applications, such as industrial environments and Intelligent 
Transportation Systems (ITS) aiding these processes to make critical real-time decisions [i.1]. For example, between 60 
to 100 sensors are built into a typical car produced today that collect data and help the driver or an autonomous system 
to make decisions [i.1]. Despite their benefits in terms of driver safety and information provided, most of the devices in 
a car today only use information collected by themselves or by other locally installed sensors for their decision making.  
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The safety and operational functions of a car only react to information captured by the built-in sensors. Such systems 
can only react to the behaviour of other cars by sensing their movement and action. E.g. when the sensor measuring the 
distance from the car in front senses that the distance is diminishing it will assume it is slowing down. Another sensor 
may be looking for break-lights on the car in front which may be used to verify the assumption. The information may 
then be processed by the car's safety functions which may trigger an alarm to the driver and in certain cases may even 
activate the braking system to avoid collision. Consider a scenario where the safety functions on both cars were 
connected (wirelessly): In such case the car in front could alert the car behind it "my driver has removed the leg from 
the acceleration pedal and placed it on the brake pedal" or "there's a pothole ahead and I am about to slow down and 
circumvent it from the left". Such wireless connectivity between vehicles could increase safety by giving the vehicle in 
the back precious time to make better decisions. In addition, sensors are also prone to fail, which can lead to unintended 
actions. As such, local decision making and sensor faults may have negative impacts on driving safety, especially in 
autonomous transportation systems where decisions taken by different cars are based entirely on algorithms using 
sensory data where false sensor readings may lead to accidents. For example, in a fatal crash of an autonomous car, in 
which a car's sensor failed to recognize a large truck and trailer crossing the highway, leading the vehicle to collide with 
the truck [i.4]. In order to overcome such issues, Vehicle to Vehicle (V2V) networks, or a broader concept of Vehicle to 
Everything (V2X) networks were introduced, in which communication networks, such as cellular networks, can be used 
to exchange reliable information provided by PDL between vehicles as well as infrastructures to improve the decision 
making leading to safer driving [i.5]. In this context, V2X communications can be implemented in two distinct manners, 
either centralized or distributed. The choice between the two structures depends on the use cases and requirements as 
discussed later in this clause. 

5.1.2 Centralized 

In centralized implementations, vehicles send their sensory data to a central server, such as a base station, which is then 
responsible for making decisions. These decisions are then sent back to the vehicles, which act accordingly. The 
centralized communication and decision approach is typically deployed in industrial sectors, especially in mobile 
environments, where the connected nodes to transmit their data to a central control station where critical decisions are 
made and sent back to nodes for actions. This is named Perception-Collection-Decision-Action (PCDA) scheme [i.1]. 

With the continuous growth of IoT devices and connected vehicles, centralized approaches are expected to serve a 
growing number of autonomous cars in the near future. Although centralized systems are simpler to design and operate 
and bring more control over the decisions, they have certain disadvantages [i.6]: 

• They are based on a Single Point Of Failure (SPOF). If the central server fails or is unreachable some cars, or 
the entire fleet, become inoperable. 

• It may suffer computational/processing overhead when scaling. 

• Data pollution affects the entire system. 

• Data delivery latency in time-sensitive scenarios (such as mobility) may introduce new risks. 

• Network congestion causing data delay or loss. 

• They are intermediated by a single entity that is given full authority based on trust by all users. However, it 
may be challenging to achieve such trust and potential users may be reluctant to put their safety in the hands of 
an untrusted third party. 

Moreover, due to the critical nature of V2X communications and the vehicle's speed, Ultra-Reliable and Low Latency 
Communications (URLLC) proposed in 5G is often required in order to meet the stringent operational constraints. 
However, in centralized systems, since the vehicles need to send the information to a central authority, the performance 
in terms of a system's reliability and latency will be limited by the node with the worst connection to the server. This 
can result in parameters such as latency and reliability falling short of expected values, or even in complete link failures, 
leading to asynchronization between vehicles, yielding unpredictable behaviour potentially resulting in accidents 
leading to loss of human lives [i.4]. 
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5.1.3 Decentralized 

Another approach for V2X communications would be adopting a decentralized and distributed approach, in which 
vehicles share information with one another and then make decisions jointly, instead of relying on a central authority. 
However, despite distributed solutions solving the issues faced by centralization, they still face certain challenges. For 
example: 

• Communication link reliability, especially in wireless communication environment [i.7]. 

• Asynchronization in information sharing. 

• Trust/Authentication among participants. 

Besides, vehicles may make decisions based on incorrect sensor readings. In this situation, if asynchronization occurs in 
decentralized systems, nodes can send conflicting information to each other causing some vehicles to rethink their 
decisions while others might have already taken actions. Thus, despite decentralization being a useful approach overall, 
its performance and robustness should be further considered and improved. 

To address those challenged Distributed Consensus Networks (DCNs) can be a potential alternative to be combined 
with decentralized V2X systems. A DCNs is a variation of a centralized approach where the central server is replaced 
by a distributed ledger, which is not controlled by any single party. This disintermediation approach may resolve issues 
associated with mistrust in a centralized intermediator. Such DCNs would typically use a variant of the well-known 
types of consensus protocols: 

a) crash fault tolerance (only tolerating communication or node failure); or 

b) Byzantine tolerance (also tolerating malicious attacks) [i.8]. 

However, despite its advantages, the consensus performance can become a bottleneck in V2X systems, since it can 
significantly be affected by the performance of the wireless communication network, especially in terms of latency, 
reliability and throughput [i.7]. The well-known Practical Byzantine Fault Tolerance (PBFT) based consensus protocol, 
is very simple to implement compared with the PoW-based consensus, but only applicable to small scale consensus 
networks since it is very communication resource demanding [i.7]. In addition, unlike wired systems, wireless systems 
introduce channel uncertainty and scarcity of spectrum provisioning, thus entailing different security thresholds. In 
particular, the PBFT systems gauge node failure and would consider all associated communication links as faulty when 
such node failure is detected. However, when dynamic wireless communication channels are used, a node in good 
working order may be rendered as failed due to instable wireless links connecting that node. Moreover, traditional 
PBFT algorithms will consider a failed node as abstained from a vote thus critical objections hindered due to wireless 
communication link errors may be overlooked. Thus, there is a need to adapt existing consensus mechanisms to wireless 
environments. 

5.2 Use Case Background 
Distributed ledgers have become one of the most distinctive applications stemming from blockchain. Their ability to 
store any kind of data as consensus-based agreed upon replicated, shared, and synchronized digital records distributed 
across multiple sites, without depending on any central administrator, together with their properties regarding 
immutability (and therefore non-repudiation) and multi-party verifiability opens a wide range of applications, and new 
interaction models among those entities willing to record the transactions associated to those interactions through these 
ledgers. PDL requires nodes to be approved to validate the transactions and record them on the ledger. Therefore, PDL 
is qualified to address many of the use cases of interest to the industry and governmental institutions from both 
technical and legal aspects. The cost of transaction and consensus, and the fairness properties among participants can be 
controlled. Legal aspects, including governance support, through external legal agreements and regulatory enforcement 
in critical sectors can be effectively resolved. However, the construction of networks to achieve consensus for PDL in 
wireless environments still needs further research. Therefore, two use cases of achieving consensus for PDL in wireless 
environments are introduced hereunder to facilitate the study of WCN. 
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5.3 Use case 1: Autonomous vehicle 

5.3.1 Collision avoidance and advisory (clustering decision) 

The evolution of the automotive industry brings autonomous vehicles to public, with great risks in its early state [i.1]. 
Many catastrophic failures happened due to sensor errors, malicious attacks, and AI decision errors [i.4]. In order to 
prevent sensors from conflicting with each other and making unreliable decisions, fault tolerance methods are applied to 
reassure their consistency and reliability. Such time-sensitive information is only solvable locally due to the delay and 
the single point of failure risk in a centrally managed network. 

Modern transportation has regulated Collision Advisory (CA) to provide define the expected behaviour of traffic 
sensors and the resulting advice. For example, Traffic Collision Avoidance Systems (TCAS) [i.9] are widely used in 
aviation, and many emerging AI-based collision advisory systems are on-board new land-based vehicles for 
autonomous and semi-autonomous driving. Land-based autonomous driving is still experimental and yet to become 
commercially usable [i.1]. Recent traffic accidents caused by self-driving false alarms and missed alarms have caused 
multiple catastrophic consequences for road users across the world [i.4]. Thus, a more comprehensive solution to deal 
with the reliability of self-driving is required, in order to widely adopt autonomous driving, in particular SAE L4 and 
above (as defined in Table 2), where needs for human interventions are minimized. 

Figure 1 presents an example of using WCNs in autonomous vehicles. It is notable that the motorbike drives in the blind 
area of the truck. When the truck needs to join the right lane, a collision may occur if there is no assistance from other 
cars to check the right lane. If the truck, motorbike and three cars in Figure 1 can construct a WCN, this WCN can reach 
a consensus related to the occupation of the right lane and decline a request by the truck to move to the right lane. 
Meanwhile, such status information of road/lane occupation can be recorded in PDL for all vehicles nearby. 

 

Figure 1: Wireless distributed consensus for traffic decision 
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5.3.2 X-by-wireless (wireless communication for mission-critical control) 

Mission-critical payload users are the main drive for development of real-time high-reliability systems with fault 
tolerance capacity, such as Fly-by-wire and Drive-by-wire using internal databus (fieldbus) [i.10], e.g. ARINC 629 
[i.20], ARINC 659 [i.21] (SAFEbus), ARINC 664 Part 4 [i.22] (AFDX), CAN bus, etc. However, current wire-based 
control system suffers from limited flexibility and high implementation cost regarding its installation and dead weight 
of wires. In recent research of next generation control databus, one notable research direction, which may make use of 
WCN, is the Fly/Drive-by-wireless or simply X-by-wireless. X-by-wireless has been at the centre of next-generation 
avionics research for some years, and the reliability aspects of wireless connectivity had always been a major concern 
for system designers. In conventional deployments of Fly/Drive-By-Wire, databus is implemented using wired 
connections with dual redundancy. Reliability is guaranteed by employing duplicates in the system using First-In-First-
Out (FIFO) queue. Since the physical network is isolated from outside there is no need to use Byzantine fault tolerance 
(BFT) or other integrity assurance methods. When critical control is operated using wireless connectivity a variant of 
BFT should be considered due to the open and unstable nature of wireless communications. Therefore, WCN could be a 
possible solution enabling nodes to achieve consensus on the data transmitted in the wireless network using BFT based 
protocols. 

5.4 Use case 2: Industrial IoT 

5.4.1 Background 

Industrial Internet of Things (IIoT) refers to interconnected sensors, instruments, manufacturing and energy 
management devices networked together with computerized industrial applications. IIoT systems is typically defined as 
a layered architecture involving sensors, user devices, communication components, applications, etc. as shown in 
Table 3. The device layer refers to the physical components: cyber-physical systems, sensors, or machines. The network 
layer consists of physical network buses, cloud computing and communication protocols that aggregate and transport 
the data to the service layer, which consists of applications that manipulate and combine data into information that can 
be displayed on the user dashboard. The top of the IIoT architecture is the content layer or the user interface to provide 
users with information they require. 

Table 3: Layered Architecture of IIoT 

Content layer User interface devices e.g. computer screens, PoS stations, tablets, smart glasses and 
smart surfaces 

Service layer Applications (e.g. software to analyse data and transform it into actionable information) 
Network layer Communications protocols e.g. Wired, Wi-Fi®, Bluetooth®, LoRa and cellular network 
Device layer Hardware (e.g. cyber-physical systems, machines and sensors) 

 

This architecture enables data collection, exchange, and analysis, potentially facilitating improvements in productivity 
and efficiency as well as other economic benefits. The IIoT is an evolution of a distributed control system that allows 
for a higher degree of automation by using cloud computing to refine and optimize the process controls. 

5.4.2 Operation synchronization 

In an IIoT system, multiple machines and sensors may collaborate in manufacturing by receiving operational commands 
from the operator (user). For example, when handling hazardous chemicals, chemical plants use machines for 
automated batch processing (e.g. filling bottles with a corrosive acid) and sensors to monitor the process, monitor 
environmental metrics, detect possible leakage and trigger alarms. Allowing a machine to perform such tasks reduces 
risk to employees by keeping them physically away from possible harm. It also reduces the number of employees 
required to be present at the manufacturing areas as some, if not all, of their tasks can now be performed by an 
automated machine. Some or all the machines and sensors may be teleoperated using wireless communications, 
reducing the risk of failure of wired communications as some chemicals may be corrosive to cables. Another example is 
mining radioactive minerals underground. Drills and conveyor belts are also teleoperated and sensors can be deployed 
to monitor the temperature of drills and the running status of belts. However, radioactive minerals may affect wireless 
and even wired communications. Therefore, in such scenarios ensuring integrity of communications between operators 
and machines is critical to the IIoT system. 

https://en.wikipedia.org/wiki/Wi-Fi
https://en.wikipedia.org/wiki/Bluetooth
https://en.wikipedia.org/wiki/LoRa
https://en.wikipedia.org/wiki/Cellular_network
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Employing WCNs could be a solution to enable sensors and machines to cross-check the received commands and reach 
consensus in a distributed and autonomous manner. Sensors and machines in the same category can self-organize a 
WCN to cross-check and synchronize the commands received in case some of the devices receive distorted instructions 
due to unstable communication channels. When consensus is reached the devices that have received different (distorted) 
commands can accept the consensus-based commands from other devices. 

5.4.3 Data service 

By employing WCNs in IIoT systems, PDLs can record the consensus results of the received commands for operators to 
record and monitor. Furthermore, running status data collected by machines, sensors, and other devices can be recorded 
in the PDL by using consensus mechanisms to avoid false alarms and provide a more robust data service for operators. 
For example, when a sensor detects an abnormal status, it can organize a consensus voting with other related sensors 
and devices via the WCN. If the participating devices can achieve a consensus on the abnormal status, the organizer can 
trigger an alarm to the operator. If the detected abnormal status is false (e.g. caused by environmental factors such as 
radioactivity and vibrations only affecting a few nodes), the consensus voting process based on WCN will identify it as 
such and will not trigger an alarm. 

6 Functionalities and Considerations for Wireless 
Consensus Network Framework 

6.1 Background 
WCN can function as a backbone of a PDL to achieve consensus for the information recorded therein. However, the 
fundamental framework of WCN and the functions and considerations when constructing WCNs should be further 
discussed. Overall, there are two main points to be considered when designing WCNs: communication and consensus. 
Therefore, the following WCN framework, functions and considerations are focussed on these two points. 

6.2 WCN Framework 

6.2.1 Access network based WCN framework 

The first type of WCN framework involves an access network as shown in Figure 2. The (four in this figure) Nodes 
communicate via wireless access networks such as cellular networks (4G, 5G, etc.) and Wi-Fi® networks. When a node 
sends a consensus request to other nodes via the access network, all nodes can start executing the consensus protocol 
communicating with each other using said network. Consensus can be reached in this WCN framework according to 
protocol. Furthermore, all the nodes in the WCN can act as PDL nodes to store the consensus results (transactions) and 
maintain the PDL's integrity. For access network based WCN, the following components may be involved: 

• Consensus node (PDL node): performs consensus protocol and maintains PDL using computational and 
communication resources. 

• Access point: accepts connections from consensus nodes to allow them to join the network. 

• Wireless communication infrastructure: supports communications among consensus nodes. 

• Membership service provider: issues membership certifications to consensus nodes and verifies the 
memberships of consensus nodes when they try to connect through access points. 

• Storage: provided by each consensus node to ensure it can keep consensus status and PDL transactions. 

• Power supply: Batteries and PSU (power supply unit to obtain power from wired grids) providing power for 
computation, communication, and storage hardware. 
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Figure 2: WCN framework based on access network 

6.2.2 Self-organizing WCN framework 

The second type of WCN frame is self-organizing where all consensus nodes establish direct connections with other 
nodes to perform consensus protocol communications. Compared with the former WCN framework, there is no access 
point or wireless communication infrastructure to support the communications between consensus nodes as shown in 
Figure 3. Therefore, consensus nodes should have peer-to-peer communication capabilities that will allow them to self-
organize WCNs and perform a consensus protocol to maintain the PDL. In a self-organizing WCN, each node should 
have the following components: 

• Computational resource: Used to process consensus data and perform communication tasks. 

• Communication resource: Wireless communication hardware used to establish connections with other nodes, 
join and organize WCN with other consensus nodes. 

• Storage: Used by consensus nodes to store consensus status and PDL transactions. Should be non-volatile. 

• Power supply: Batteries and PSU (power supply unit to obtain power from wired grids) providing power for 
computation, communication, and storage hardware. 

 

Figure 3: WCN framework based on self-organizing networks 
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6.3 Functionalities and Considerations 

6.3.1 Membership management (network peer arrangement) 

6.3.1.1 Node join 

A WCN can allow new nodes to join it. All existing nodes should be made aware of newly joined nodes. After a new 
node joins the WCN, it should be included in the consensus process going forward. Thus, the governance/leader should 
update the quorum and majority settings of the PDL to accommodate the new number of nodes in the WCN in 
accordance with the consensus protocol. 

6.3.1.2 Node quit 

An existing node may leave a WCN for various reasons. All existing nodes should be made aware of the nodes that 
have left the PDL. After a node leaves the WCN it should be excluded from the consensus process going forward. Thus, 
the governance/leader should update the quorum and majority settings of the PDL to accommodate the new number of 
nodes in the WCN in accordance with the consensus protocol. 

6.3.1.3 Faulty node detection 

Node failures may be caused by failed hardware, signal loss or other reasons. Strategies should be developed to detect 
and manage faulty nodes in WCNs. When faulty nodes are detected, the governance/leader should exclude them from 
participating in consensus tasks. When faulty nodes recover, they should notify the governance/leader. When the 
governance/leader confirms these faulty nodes are in good working order, these nodes can be included in upcoming 
consensus tasks. 

6.3.1.4 Leader change 

In WCNs where the PDL type requires a leader, in the event that the leader node leaves the WCN or becomes a faulty 
node, the WCN initializes a consensus task to elect a new leader for the WCN. The ongoing consensus tasks should be 
paused during change of leadership. When the leader change is complete, the paused tasks continue (or restarted by the 
new leader). If the leader change fails, the WCN should attempt the leader change for a few times depending on the 
strategies set in the WCN. In addition, such failure should be recorded in the PDL on reachable nodes in the WCN. 

NOTE: Depending on PDL type the roles of leader and governance may be complementary or interchangeable. 
Certain types of PDLs do not require a leader to perform governance tasks. 

6.3.1.5 Access control (identity) 

6.3.1.5.1 Access network based WCN 

a) Issue: when a node applies to join a WCN, the membership service provider should issue a valid identity for a 
node to join the WCN via the access network for a certain period. The validity requirements of an identity may 
vary depending on the case. Certain implementations may require a certified identity issued by a CA. Others 
may require a less stringent identity as long as it is unique to other nodes in the WCN. 

b) Withdraw: when the identity of the node expires, the membership service provider should notify the access 
points that the identity has been withdrawn and the identity should be declined by the access points. 

c) Renew: if the node applies to renew its identity, the membership service provider may extend the validity of 
the identity.  

6.3.1.5.2 Self-organizing WCN 

Basic identity: In a self-organizing WCN, which does not have means to realize authentication or authorization, each 
node can only possess a basic identity such as a unique hash ID to represent itself in the self-organizing WCN. 
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6.3.1.5.3 Requirements of access control methods 

a) Encryption: the payloads for access control should be encrypted to mitigate sensitive data leakage. 

b) Identity verifiability: the identities used in access control should be verifiable as a single node or a group of 
nodes. 

c) Lightweight: the applied access control methods for WCNs should be lightweight enough especially for 
computational resource-constrained nodes in WCNs. Therefore, access control methods requiring complex 
cryptographic operations and interactions should be avoided. 

6.3.2 Reliability management 

6.3.2.1 Self-converged loop 

The WCN should prevent unconverging communication loops by making the communication process a self-converged 
loop. By preventing open-loop or unconverging communication outcome, the system should attempt to re-transmit 
messages within the timeout setting of the consensus. In the event of timeout, the system should trigger heartbeat 
signals and conduct leader rotations or re-elections. In the event of leader change failure, the WCN should perform 
additional attempts to change the leader and produce warning/error messages to the system control panel, the 
participants messages interfaces and store all necessary logs on any reachable nodes in a distributed manner. 

6.3.2.2 Jamming resilience 

WCN uses wireless consensus to prevent jamming attacks. The system resilience is secured by a valid quorum made by 
multiple surviving nodes with consistent replies to the governance/leader node. In the event that quorum cannot be 
reached within the consensus group, the WCN should resize the group and adjust the service area dynamically based on 
the black out area distribution. 

6.3.2.3 Firewall 

The system should have a distributed firewall configuration among all peer nodes in the consensus group. In the event 
of initialization, the governance/leader is responsible for enabling designated ports for nodes who have been previously 
accepted by registering their network identifiers to the firewall configuration. In the event of nodes joining or leaving, 
the governance/leader node should broadcast the amended configuration to the group for approval. 

6.3.2.4 Channel stability 

Wireless channels should be monitored frequently to select less busy channels for the group consensus protocol. In the 
event of reduction in channel stability, the system may increase the wireless transmission power for better SNR 
performance and make proper channel hopping decision between all nodes within the consensus group. If the channel is 
considered not stable for the majority of consensus nodes, the WCN deployment should consider employing licensed 
spectrum for its usages. 

6.3.2.5 Streaming bandwidth 

A minimum streaming bandwidth should be defined and made available to all nodes. This is to ensure the quality of 
services and constant performance among all nodes. The governance/leader node should measure and monitor nodes' 
signal strength and their live streaming bandwidth to make sure the QoS can be supported. Governance/leader nodes 
should periodically broadcast the minimum streaming bandwidth between cycles of consensus. 

6.3.2.6 Storage 

The minimum reliability of single node storage should not drop below a given criteria. Specifically, the memory 
dynamically used by CPU/MCU should be large and stable enough for general computation to process consensus tasks 
and network packets. Meanwhile, the external storage should be large and stable enough to store transactions in PDL 
and synchronize transactions with other nodes in the WCN. To improve the storage reliability, Redundant Arrays of 
Independent Disks (RAID) [i.11] settings can be considered in a node. Furthermore, when WCN nodes operate in 
certain extreme environments (e.g. extreme temperatures or vibration), cold backups can be considered to allow 
restoration of data when a node becomes physically extinct together with its local storage. 
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6.3.3 Reliability gain 

A gain of resilience can be obtained by limiting the size of the network and ranging the latency requirement. For 
instance, the overall resilience can be improved by using higher reliability products or adding nodes to the network and 
allowing a longer time for response. The reliability gain can reflect the ultimate performance of WCN, as it can be used 
as design guidelines for WCN deployment. 

7 Hardware Definition 

7.1 Hardware requirement 

7.1.1 Processing capability for consensus 

Processing capability or consensus capability means the computational capability of hardware in a consensus node to 
process consensus data and communication data packets. There are two common types of hardware in current 
embedded systems and computer systems: 

• MicroController Unit (MCU); and 

• Central Processing Unit (CPU). 

Both can support the computation functional requirements of consensus and communication and the choice between the 
two depends on the specific scenario as the volume of computations MCUs and CPUs can perform significantly differs. 
For example, if power is limited but the volume of computations is low, an MCU could be a better choice as it is more 
energy-efficient than a CPU. On the other hand, when the WCN scales, consensus nodes may require higher 
computational capabilities to process the consensus computations and the increased volume of communication data 
packets. This may render MCUs insufficient for the task and thus require a CPU. This is notable especially for 
consensus nodes in self-organizing WCNs. 

MicroController Unit (MCU) 

An MCU can be regarded as a small computer on a single chip containing one or more CPUs (processor cores) along 
with memory and programmable input/output peripherals. Program memory is also often included on a chip, but its size 
is fixed, as well as a small amount of RAM. MCUs are designed for embedded applications, in contrast to the CPUs 
used in personal computers or other general purposes applications. 

The computational power, communication speeds, and storage capabilities of MCUs are typically limited. They are 
designed to perform simple tasks in an economical and efficient manner. 

Microcontrollers are used in automatically controlled products and devices, such as automobile engine control systems, 
implantable medical devices, remote controls, office machines, appliances, power tools, toys and other embedded 
systems. By reducing the size and cost compared to a design that uses a separate microprocessor, memory, and 
input/output devices, microcontrollers make it economical to digitally control even more devices and processes. Mixed 
signal microcontrollers are common, integrating analogy components needed to control non-digital electronic systems. 
In the context of the internet of things, microcontrollers are an economical and popular means of data collection, 
sensing and actuating the physical world as edge devices. Some common MCUs for WCN are MSP430 series, 
STM32 series, AVR series and TMS. 

Central Processing Unit (CPU) 

A Central Processing Unit (CPU) is the electronic circuitry that executes instructions comprising a computer program. 
The CPU performs basic arithmetic, logic, controlling, and input/output (I/O) operations (i.e. general computation, 
specified by the instructions in the program). There are two major differences between CPUs and MCUs: 

a) the CPU typically uses external storage, which is practically unlimited in size (additional storage can always 
be added), while the MCU uses whatever limited storage is embedded therein; and 

b) CPUs apply large-scale electronic circuits which allows them to perform computations significantly faster than 
MCUs. 
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Also the power consumption of CPUs is much higher than that of MCUs and their use may also produce more heat. 
WCN scenarios where power supply and/or cooling capacity is limited but strong computation capabilities are required 
can benefit from use of RISC-based energy-efficient CPUs. 

7.1.2 Communication capability 

7.1.2.1 Common wireless communication protocols 

To achieve consensus in a WCN, each consensus node should have sufficient communication capability to 
communicate with other nodes to exchange consensus data and synchronize PDL transactions. In the access network 
based WCN framework, each node can use available cellular or Wi-Fi® modules to communicate with other nodes. 
Such modules are commercially available, and their capabilities are well known thus the communication capability of 
such nodes is not discussed in this clause. In a self-organizing WCN framework, consensus nodes communicate with 
others to organize a WCN without Wi-Fi® access points, cellular networks, or other wireless communication 
infrastructure. Hence, the communication modules in consensus node for such scenarios should support customized 
protocols of self-organizing networks such as Radio Frequency (RF) modules LoRa and Zigbee®. 

7.1.2.2 LoRa 

LoRa (Long Range) is a physical proprietary radio communication technique. It is designed on spread spectrum 
modulation techniques derived from Chirp Spread Spectrum (CSS) technology. Based on LoRa on the physical layer, 
LoRaWAN defines the software communication protocol (upper network layers). LoRaWAN is a cloud-based Medium 
Access Control (MAC) layer protocol but acts mainly as a network layer protocol for managing communication 
between end-node devices as a routing protocol. 

While the LoRa physical layer enables the long-range communication link, LoRaWAN is responsible for managing the 
communication frequencies, data rate, and power for all devices. Devices in the network are asynchronous and transmit 
when they have data available to send. Data transmitted by an end-node device can be received by multiple devices, 
which forward the data packets to the target device using the routing protocol. 

7.1.2.3 Zigbee® 

Zigbee® is an IEEE 802.15.4-based [i.18] specification for a suite of high-level communication protocols used to create 
personal area networks with small, low-power digital radios, such as for home automation, medical device data 
collection, and other low-power low-bandwidth needs, designed for small scale projects which need wireless 
connection. Hence, Zigbee® is a low-power, low data rate, and close proximity wireless ad hoc network. 

The technology defined by the Zigbee® specification is intended to be simpler and less expensive than other Wireless 
Personal Area Networks (WPANs), such as Bluetooth or more general wireless networking such as Wi-Fi®. 
Applications include wireless light switches, home energy monitors, traffic management systems, and other consumer 
and industrial equipment that requires short-range low-rate wireless data transfer. 

Its low power consumption limits transmission distances to 10 to 100 meters line-of-sight, depending on power output 
and environmental characteristics. Zigbee® has a defined rate of up to 250 kbit/s. Meanwhile, Zigbee® networks are 
secured by 128-bit symmetric encryption keys. Zigbee® devices can transmit data over long distances by passing data 
through a mesh network of intermediate devices to reach more distant ones. Zigbee® is typically used in low data rate 
applications that require long battery life and secure networking. 

7.1.2.4 Vehicle specific WCN technologies 

7.1.2.4.1 Introduction 

Furthermore, there are two types of V2X (Vehicle to Everything) communication technology depending on different 
underlying technology (WLAN and cellular) for implementing WCN in vehicles: 

a) Dedicated Short Range Communication (DSRC based on radio communication provided by 
IEEE 802.11p [i.17]); and 

b) C-V2X based on 3GPP LTE. 
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7.1.2.4.2 DSRC 

DSRC is a wireless communication technology designed to allow automobiles in the Intelligent Transportation System 
(ITS) to communicate with other automobiles or infrastructures. IEEE first published the specification of WLAN-based 
V2X (IEEE 802.11p [i.17]) in 2010. It supports direct communication between vehicles (V2V) and between Vehicles 
and Infrastructure (V2I). This technology is referred to as Dedicated Short-Range Communication (DSRC) using the 
underlying radio communication provided by IEEE 802.11p [i.17]. The original V2X communication uses WLAN 
technology and works directly between vehicles (V2V) as well as vehicles and traffic infrastructure (V2I), which form a 
vehicular ad-hoc network as two V2X senders come within each other's range. Hence, it does not require any 
communication infrastructure for vehicles to communicate, which is key to assure safety in remote or little-developed 
areas. DSRC technology operates on the 5,9 GHz band of the radio frequency spectrum and is effective over short to 
medium distances. WLAN is particularly well-suited for V2X communication due to its low latency. DSRC can support 
interoperability and receive very little interference, even in extreme weather conditions, because of the short range that 
it spans. This makes it ideal for communication to and from fast-moving vehicles. 

7.1.2.4.3 C-V2X 

In 2016, 3GPP published V2X specifications based on LTE as the underlying technology, which is generally referred to 
as "Cellular V2X" (C-V2X). Cellular V2X uses 3GPP standardized 4G LTE or 5G mobile cellular connectivity to 
exchange messages between vehicles, pedestrians, and wayside traffic control devices such as traffic signals. It 
commonly uses the 5,9 GHz frequency band, which is the officially designated ITS frequency in most countries. C-V2X 
can function without network assistance and exceeds the range of DSRC by about 25 % [i.12] but its transmission time 
and time synchronization requirement are higher than that of DSRC with an increasing energy cost for long 
communication range [i.19]. C-V2X is designed to operate in two modes: 

a) Device-to-network: communication using conventional cellular links for Vehicle to Network (V2N) 
applications such as cloud services in end-to-end solutions. 

b) Device-to-device: direct communication without the use of network scheduling for Vehicle to Vehicle (V2V), 
Vehicle to Infrastructure (V2I), and Vehicle to Pedestrian (V2P) applications such as vulnerable road user 
protection and tolling [i.12]. 

7.1.3 Storage capability 

7.1.3.1 Storage requirements 

Each WCN node requires storage space for two purposes:  

a) temporary storage for consensus and communication purposes; and  

b) permanent storage for consensus results (transactions).  

7.1.3.2 Storage for computing 

To reach consensus and communicate with other nodes, a node should possess enough storage space for computation. 
This storage may be volatile and does not need to survive a reboot. It does not need to be retained for future use. 

EXAMPLE: The internal memory of the embedded device in the WCN node should be enough to load 
consensus applications, its operating systems, communication modules, and data packets to be 
processed by the processor and so on. 

7.1.3.3 Storage for transaction persistence 

Access network based WCN nodes can use a small storage space to keep the consensus transactions temporarily before 
transmitting them to other storage nodes (e.g. clouds and IPFS) or store the transactions by themselves on directly 
connected storage. Self-organizing WCN need to keep the transactions locally as they typically would not have network 
access to remote storage nodes. Be that remote or directly connected storage, each node should be equipped with or 
have access to sufficient external storage space to store transaction data. Such storage should be non-volatile and should 
survive a reboot of the node as it may be needed for future use by the consensus algorithms or users. When a WCN 
consists of mobile or battery operated nodes, where energy efficiency and size may play a significant factor, NAND 
flash may be a desirable choice for such storage because of its small size, lightweight and energy efficiency. 
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7.2 Hardware security and threats 

7.2.1 Hardware security 

7.2.1.1 Secure booting 

The booting system of a WCN node should verify all hardware modules and operation system modules to ensure they 
are not replaced or distorted. 

7.2.1.2 Trusted computing environment 

A trusted computing environment can prevent memory exploitation (e.g. stack/heap overflow, heap spray, ROP, and 
UAF incurred by vulnerable applications). Therefore, the trusted computing environment should be supported by the 
WCN node by employing TPM modules and TEE technology such as Intel SGX [i.13]. 

7.2.1.3 Invasion detection and physical protection 

To avoid physical sabotage of hardware in the WCN node, the stationary hardware such as base-stations, servers, edge 
devices should be shielded in solid containers. Some alarms can be deployed in the container to detect physical 
invasion. Moreover, network firewall should be applied in WCN nodes to detect invasion and block malicious 
connections. 

NOTE: Physical protection of nodes applies primarily to stationary devices such as base station, server racks, 
antennas, edge devices. Mobile devices are expected to be lightweight and portable, and their physical 
protection should be designed accordingly. 

7.2.1.4 Environmentally safe and storage encryption 

Some protecting measures and material should be considered for the hardware to resist negative environmental factors 
such as water, fire and electromagnetic waves. In addition, hardware encryption (e.g. Bitlocker) should be supported for 
the storage to prevent attackers reading data from the storage chip directly. 

7.2.2 Hardware threats 

7.2.2.1 Trusted Platform (TPM) intrusion 

Intrusion into the Trusted Platform (TPM) of a node in a WCN may cause damage or access sensitive data. Such attacks 
on the TPM may void confidentiality and integrity of the code and data it contains. The sensitive data at risk of 
intrusion is user key, session key, user identity. The resulting risk may be sibyl attack, double spending, privacy 
leakage, illegal interception. 

The vulnerabilities of TPM in WCN nodes are: 

a) Hardware vulnerabilities including unprotected Debug API, hardware backdoor, etc. 

b) Software vulnerabilities including cache attack, failure in memory isolation, etc. 

7.2.2.2 WCN underlay network intrusion 

Intrusion into the WCN underlay network may cause service failure. Attacks on the WCN underlay network, which 
provides the basic communication capabilities for WCN and PDL, may cause outage of WCN. 

WCN underlay network is vulnerable to the following network threats: 

a) Node routing table. 

b) Network DDoS. 

c) Node identity. 
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d) Network routing. 

By attacking the WCN underlay network, the attackers may corrupt the inherent WCN system security and global 
consensus by abusing computing power or oversaturating bandwidth. 

7.2.2.3 Environmental factors and physical invasion 

a) Fire, water, strong electromagnetic waves may break the hardware of a WCN node resulting in a faulty 
WCN node. 

b) Physical invasions by attackers may sabotage hardware or introduce some malicious hardware modules into 
the WCN node that leads to a faulty or an evil/malicious node. 

8 Consensus Protocol for WCN 

8.1 Background 
The Consensus Protocol which ensures an unambiguous ordering of transactions and guarantees the integrity and 
consistency of blockchain across geographically distributed nodes, plays a key role in blockchain-based systems such as 
WCN and PDL. CM largely determines WCN security bounds (i.e. fault tolerances) and performance such as 
transaction throughput, delay, and node scalability. In a permissioned network like PDL, nodes should be authenticated 
to access the network whilst nodes are allowed to join/leave the network without permission and authentication in a 
permissionless public chain. 

Depending on application scenarios and performance requirements, different CMs can be used. Therefore, Proof-based 
Algorithms (PoX) such as Proof of Work (PoW), Proof of Stake (PoS) and their variants are commonly used in many 
blockchain applications (e.g. Bitcoin, and Ethereum). PoX algorithms are designed with excellent node scalability 
performance through nodes competition. However, they could be very resource demanding to restrict them to be applied 
in WCN. For instance, recent study estimates that Bitcoin's electricity consumption range between 0,1 % to 0,3 % of 
global electricity use in 2018 and rises rapidly to 0,55 % in 2021 [i.7]. Also, these CMs have other limitations such as 
long transaction confirmation latency and low throughput. 

Unlike public chains, the private and consortium blockchains prefer to adopt lighter protocols such as Raft and Practical 
Byzantine Fault Tolerance (PBFT) [i.8] to reduce computational power demand and improve the transaction 
throughput. This property is critically important to WCNs, which are typically composed of low-cost and low-power 
devices. Raft, which is used by private chains, does not protect the integrity of transactions from malicious attacks, but 
enables Crash Fault Tolerance (CFT) for the applying system [i.8]. To protect the system from malicious users, PBFT 
was proposed in as an improved and practical protocol based on original BFT. 

In the following sections, different consensus protocols that could be used in WCN are introduced briefly. Meanwhile, 
several metrics of consensus protocols which are critical to WCN performance are analysed and compared. 

8.2 Proof based consensus 

8.2.1 Proof of Work 

Proof of Work (PoW) is a form of proof in which one party (the prover) proves to others (the verifiers) that a certain 
amount of a specific computational effort has been spent. A key feature of PoW is the asymmetry, i.e. the computation 
should be moderately hard (yet feasible) on the prover or requester side but easy to check for the verifier. To get the 
consensus between all nodes about the newly added block in the distributed ledger, the PoW requires each node to solve 
a difficult puzzle with adjusted difficulty by the applied consensus network, to get the right to append a new block to 
the distributed ledger. The first node to solves the puzzle will have this right. 

Proof of work was popularized by Bitcoin as a foundation for consensus in permissionless decentralized network, in 
which nodes compete to append blocks and mint new currency, each miner experiencing a success probability 
proportional to the computational effort expended. Before solving a puzzle, all the verifying nodes would have to put 
their verified transactions into a block. Then, they start solving this puzzle, by guessing a secret value as a solution to a 
specific cryptographic problem. An example of guessing the secret value applied in Bitcoin is shown in Figure 4.  
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Some common cryptographic problems used in different PoW systems are listed as follows. Most of them are 
hash-based problems except the modulo problem and the discrete logarithm problems (Sharmir signatures and 
Diffie-Hellman puzzles) [i.14]: 

a) Hash sequences. 

b) Integer square root modulo a large prime. 

c) Weaken Fiat-Shamir signature. 

d) Ong-Schnorr-Shamir signature broken by Pollard. 

e) Partial hash inversion. 

f) Diffie-Hellman-based puzzle. 

g) Moderate. 

h) Mbound. 

i) Hokkaido. 

j) Cuckoo Cycle. 

 

Figure 4: Process of guessing a secret value in BitcoinTM 

If a miner can find the solution in a given time threshold, which is designated by the level of difficulty of said puzzle, 
the secret value can be accepted. Otherwise, the node has to make another guess of the secret value, until it gets the 
answer timely. The difficulty of the puzzle will be adjusted after a certain number of blocks are appended, so that the 
average speed for adding a new block can be stable. Because of the efforts paid for guessing the right value, this process 
is called the PoW. In addition, the node joining the PoW network can be called a miner, and the action of finding a 
suitable solution is called mining. 

PoW consensus protocol needs simple majority (> 50 %) of the total nodes to reach a consensus on a proposed solution, 
which is a relatively high fault tolerance capability as shown in Table 4. However, the PoW consumes resources such as 
computation such as energy and CPU time. Furthermore, when the total number of nodes is small, the PoW network 
may have higher possibility to incur "51 % attack" (i.e. the malicious nodes are more than half of the total nodes). In 
addition, the transaction confirmation latency and throughput of PoW systems are quite limited. For instance, recently 
published estimates of bitcoin's electricity consumption are wide-ranging, on the order of 20 TWh to 80 TWh annually, 
or about 0,1 % to 0,3 % of global electricity consumption [i.8]. Also, the Transaction Per Second (TPS) is generally 
limited to 7 in Bitcoin and about 15 in Ethereum, while the transaction confirmation delay is typically as considerable 
as 10 minutes in Bitcoin and 15 seconds in Ethereum [i.7]. Therefore, considering the resource constraints of WCN both 
in terms of number of nodes and in terms of transmission capacity, PoW may not be best suited. 
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8.2.2 Proof of Stake 

The PoW is supposed to be unfair: while some miners owning modern and powerful equipment could find the suitable 
solution easier, others with poorer condition could find it very difficult to be the first one to find a suitable solution to 
the puzzle. PoS could be a potential solution to deal with this inequality. The basic idea of PoS is using the stake to 
decide who can get the chance to mine the next block of the distributed ledger. Using stake as a proof has an advantage 
that anyone who owns much stake would be more trustful. This node would not want to perform any fraudulent actions 
to attack the distributed ledger that contains much of its profits. Furthermore, using PoS would require any attackers to 
own at least 50 % of all stakes in the network to perform a double spending attack, which is very difficult. 

However, the limitation of PoS in PDL could be the centralization caused by the stake. In a wireless network there is an 
increased risk that nodes will become faulty due to transmission errors. As a result, the number of PDL nodes in a WCN 
may be significantly less than that in wired networks. Thus, using PoS in WCN may lead to fewer nodes possessing a 
stake greater than 50 % of the whole stake. As a result, new blocks may be only appended by those few nodes, which 
beats the purpose of a decentralized design. 

8.2.3 Proof of Authority 

Proof of Authority (PoA) is a reputation-based consensus protocol that introduces a practical and efficient solution for 
distributed ledgers (especially the private ones like PDL). The PoA consensus protocol leverages the value of identities, 
which means that block validators are not staking coins like PoS but their own reputation instead. Therefore, PoA 
distributed ledgers are secured by the validating nodes that are arbitrarily selected as trustworthy entities. The Proof of 
Authority model relies on a limited number of block validators, and this is what makes it a highly scalable distributed 
system. Blocks and transactions are verified by pre-approved participants, who act as moderators of the PoA system. 

PoA consensus protocol may be applied in a variety of scenarios and is deemed a high-value option for logistical 
applications. When it comes to supply chains, for example, PoA is considered as an effective and reasonable solution 
[i.15]. Furthermore, the PoA model enables companies to maintain their privacy while availing the benefits of PDL. 
Microsoft Azure is another example where the PoA consensus protocol is being implemented [i.16]. The Azure 
platform provides solutions for private networks, with a system that does not require a native currency like the Ether or 
gas in Ethereum, since there is no need for mining. 

Although the conditions may vary from system to system, the PoA consensus protocol is usually reliant on: 

• valid and trustworthy identities: validators need to confirm their real identities; 

• difficulty to become a validator: a candidate can be willing to invest money and put the reputation at stake. A 
tough process reduces the risks of selecting questionable validators and incentivize a long-term commitment; 

• a standard for validator approval: the method for selecting validators should be equal to all candidates. 

The essence behind the reputation mechanism is the certainty behind a validator's identity. This cannot be an easy 
process nor one that would be readily given up. In a PoA system, the identity and reputation mechanisms should be 
capable of weeding out bad players. Finally, ensuring that all validators go through the same procedure ensures the PoA 
system's integrity and reliability. 

Although PoA is more suitable to WCN and PDL when compared with PoW, it still has some drawbacks. To maintain 
the reliability of the identities for the participants in PoA, extra security measures for access control may be applied to 
increase the system complexity. PoA consensus systems use reputation strategies which still cost computation 
resources. Furthermore, consensus could be out of service if the leader node (with the highest reputation) is 
compromised in a consensus process. 

Another common criticism is that the identities of PoA validators are visible to anyone. The argument against this is 
that only established players capable of holding this position would seek to become a validator (as a publicly known 
participant). Still, knowing the validators' identities could potentially lead to third-party manipulation. For instance, if a 
competitor wants to disrupt a PoA-based network, it may try to influence public known validators to act dishonestly in 
order to compromise the system from within. 

Similar to PoS, the PoA protocol is at risk of losing its decentralized nature when the number of nodes decreases, thus 
the use of PoA in a WCN is subject to the same shortcomings as PoS. 
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8.2.4 Other proof-based consensus protocols 

Proof of burn and proof of space are two other kinds of proof-based consensus protocols different to PoW, PoS and 
PoA. In proof of burn, miners have to send their coins to an address to "burn" them, which means these coins could not 
be used anymore. The miner who burns the largest amount of coin during a duration can be the one getting the right to 
mine a new block. 

With Proof of Space, miners have to invest their money on hard disk, which is much cheaper than computing devices 
for PoW. During the mining process, the proof of space algorithm generates many large datasets called plots on the hard 
disk. The more plots a node has, the more chance the miner can get to mine a new block.Proof of elapsed time is 
another consensus protocol proposed by Intel [i.15] using Trusted Execution Environment (TEE) and Intel Software 
Guard Extensions (XGS) technology to perform the consensus process. In the TEE provided by XGS, each node 
requests a (random) waiting time from the trusted leader. After receiving the wating time, each node waits until the 
received waiting time elapses. When a node waits enough time, but has found no one has finished the waiting match, it 
can broadcast to all other nodes that it is the winner, which provides it a chance to mine new block. 

Similar to protocols discussed earlier Proof of Space suffers from decentralization shortcomings in a WCN 
environment. On top of that it also suffers shortcomings related to storage space:  

a) the space itself, which may be scarce on some wireless devices; and  

b) transmission reliability when storage is accessed through the network. 

An additional aspect relevant to WCN is leadership, in protocols that require a leader. Transmission limitations/errors 
may lead to frequent change of leadership that negatively impacts the performance of the PDL. 

8.3 Voting based consensus 

8.3.1 PBFT 

There are three phases of communications that are vital in PBFT protocol for consensus, namely, pre-prepare, prepare, 
commit and a reply message. They are critical to successful operation, as shown in Figure 5, where PBFT relies on 
frequent inter-node communications. During pre-prepare, the leader node sends a message to all other nodes, and in the 
prepare phase, all other nodes duplicate and propagate prepare message to all nodes excluding itself, commit phase 
does the same communication as the previous phase, and at the reply phase, when the leader node have received enough 
commit messages, it replies to client while synchronizing the latest results with its peer nodes, as shown in Figure 5. 

NOTE: In a functional PBFT consensus group, a threshold of less than 1/3 of Byzantine nodes are required to 
yield correct decisions. 

WCN based on PBFT involves actions that may bring conflicts to the consensus parties' interests, as malicious nodes' 
presences given malicious feedback, for example, the back-up sensors (failed ones are considered as Byzantine nodes) 
are giving different readings at the same time, where the value can be different, such false information can be 
considered as Byzantine fault. 

8.3.2 Raft 

The Raft consensus model represents the network that has no conflict of interest, and all nodes are honest in the system, 
and such a mutual decision on information that fits every node's interest. The leader node is self-elected during this 
process when the node makes the call and broadcast it to the peers. The protocol of Raft started from receiving the 
message from the leader during downlink, as shown in Figure 5 lower part, any node within the range that has the ability 
to make the judgment will provide its opinion to the leader to either confirm it or deny it via uplink communications. 
Taking Figure 5 as an example, it can be seen that the truck (leader node) is about merging into the right lane, by 
requesting confirmation of obstacles in the blind zone covered in amber, the other vehicles (nodes) are able to tell the 
truck if it is clear to proceed based on the Raft protocol. The failed node marked in red is not able to give feedback to 
the situation though it is still part of the consensus group. In this illustration, the red car can only flag itself as failed 
node due to lack of visibility, which makes the failure as a crash fault. Having the following synchronization stage taken 
into account, such a crash can be mitigated and recoverable if the node is still functional. 
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Once the leader node receives enough feedback from its follower nodes, it will either note the information has been 
confirmed, or act based on the confirmed information. During the consensus process, depends on the reliability and 
latency requirement, there are security thresholds, in order to assure it has the best decision, which in the case of Raft, 
more than 50 % viable nodes during both uplink and downlink are required, compared to 33 % viable nodes required by 
PBFT, in a combination of communication and node's reliability. 

 

Figure 5: PBFT and Raft consensus protocols with synchronization stages 

In both PBFT and Raft, nodes can reach consensus by counting the received packets and checking if the number of 
received packets is over 2/3 of the number of total nodes. From the view of computation cost, such consensus protocols 
require less computational resources than proof-based consensus protocols. Therefore, voting based consensus protocols 
could be more suitable to those resource-constrained scenarios such as WCN, where nodes may have limited 
computational resources (self-organizing WCN) or power supplement (both access network based WCN and 
self-organizing WCN). 
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8.4 Performance metrics 

8.4.1 Background 

Security bound, node scalability, transaction throughput and latency are the four most important metrics to measure CM performance in WCN. These metrics are largely 
determined by the ledger data structure design and CM selection to eventually affect the actual performance of WCN, although those metrics are contradictory to each other to 
some degree. For instance, in Bitcoin, transactions packed in each block can be confirmed only if six or more blocks are generated afterward. This protocol design is to prevent 
the double-spending issues (thus maximizing the security performance), which can significantly degrade the transaction throughput and latency performance. From the CM 
perspective, each CM has its unique privileges and drawbacks, which makes it a tangled choice when building WCNs in order to balance the requirements of different prospects. 
The performance comparison of the CMs is summarized in Table 4. 

Table 4: Performance comparison of commonly used CMs 

CM Ledger type Transaction 
throughput 

Scalability Security 
bound 

Communication 
complexity 

Spectrum 
requirement 

Representative 
project 

Latency Sensitivity to 
communication 

fault 
PBFT Permissioned High Low 3� + 1 2��

+� 2� + 1 Hyperledger Fabric Medium Low 
Raft Permissioned Very high Medium 2� + 1 2� � + 1 Quorum Low Medium 
PoW Permissionless Low High 2� + 1 2� 2 Bitcoin, Ethereum High High 
PoS Permissionless Low High 2� + 1 2� 2  High High 
PoA Permissioned Medium High 2� + 1 2� 2  High High 

 

8.4.2 Security Bound 

The lifeline of CM as a security measure should be guaranteed to validate the transactions stored in blocks. In the WCN, security bound can be defined as the maximum 
number/ratio of faulty or byzantine nodes versus valid nodes supported/tolerated by the consensus protocol. Hence, CMs provide strategies of defence against malicious activities 
and byzantine attacks with security bounds. A typical security bound for PoW is considered as 2� + 1, which means the consensus will be compromised if more than 50 % of the 
WCN's resource capacity is possessed by a single party, under perfect communication and non-interruptive service. Differently, the voting-based CMs define the number of faulty 
nodes as either inactive or malicious (which sends misinformation to imperil the whole WCN). Under the assumption of perfect communications, generic PBFT allows up to a 
third of overall nodes to be either byzantine (malicious) or faulty. Raft allows up to 50 % fault tolerance capability but cannot tolerate any malicious node. However, the 
assumption of perfect communications may not be suitable for WCN and the tolerance may need to be adjusted accordingly. 
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8.4.3 Node Scalability 

This is a metric to measure the capacity of the system to handle the increasing number of nodes in WCN. As shown in 
Table 4, proof-based CMs are designed with excellent node scalability performance through nodes competition. In 
theory, PoW can hold many users within the networks without considering the communication burden. However, in 
practice, considering that all transactions and mining results should be broadcasted and received by all nodes, the 
spectrum demand in WCN can be unaffordable when the network is extremely large. When it comes to the voting based 
CMs, for instance, PBFT relies on heavy inter-node communications which then suffers greater risks when it is applied 
in WCNs. As the size of the node number grows, the required communication resource provision increases rapidly, 
resulting in low efficiency and poor scalability. Thus, from the communication resource provision perspective, the 
PBFT-based blockchain hardly scales up to 100 nodes on a wired network and likely even less than that on WCN. 

8.4.4 Transaction Throughput and Latency 

These are two important but reciprocal performance metrics. Transaction throughput is measured as Transaction Per 
Second (TPS), and transaction latency describes the time duration from transaction request to confirmation. In general, 
proof-based consensus suffers from low throughput, due to its time guarded characteristics. On the other hand, a 
vote-based CP has better liveness, and it can conclude the consensus in a rapid manner; hence it yields greater 
throughput. For instance, the TPS is normally limited to 7 in Bitcoin and 20 to 30 in Ethereum. The transaction 
confirmation delay is typically as large as 60 minutes in Bitcoin and three minutes in Ethereum. On the other hand, a 
voting-based blockchain network can achieve a transaction throughput in the range of 100 TPS to 1 000 TPS with the 
current physical communication limits. Note that the communication throughput can be a bottleneck to transaction 
throughput since a large amount of message exchanges are required for consensus to be reached. The unpredictability of 
transmission performance in WCNs then poses an additional risk and a possible bottleneck. Transaction throughput and 
latency are also dependent on the number of nodes in the WCN. 

9 Raft as a Protocol for WCN 

9.1 Background 
To illustrate how WCN works, the Raft protocol is demonstrated as an exemplar consensus protocol to be used in a 
WCN. Raft, as a distributed consensus protocol, is normally deployed in distributed computing system to tolerate node 
crash fault shown in Figure 5. This feature can also help nodes in a WCN to tolerate node crash fault or transmission 
failure when they make and execute critical decisions. In distributed consensus, a valid node that engages in the 
consensus protocol process should have the capabilities to complete the process, which includes broadcasting, multicast, 
peer-to-peer communication, and the verification of request call. Applying Raft to build a WCN should consider all 
phases including the network construction, consensus protocol and state synchronization after the consensus. 

9.2 Protocol description 

9.2.1 Number of nodes 

Since the overall number of nodes is unknown prior to network construction in the WCN, the number of nodes that 
engage in the consensus protocol process should be determined during construction. The determined group of nodes can 
start the consensus protocol process from the stage of leader election. The client node can count the number of nodes 
that want to construct a new distributed network and support a consent type of consensus protocol. 

Firstly, the client broadcasts a network construction command to other nodes in the WCN. The command includes the 
information about IP address of the client, type of consensus and sequence of network. Every node that supports the 
consensus can send an acknowledgement including its IP address and sequence of network to join the network if they 
can support the given consensus and have not join another WCN. The client can retry this procedure several times and 
count the number of acknowledges, which also refers to the number of nodes that join in the new WCN after the last 
round of broadcasting. After nodes counting, the client can multicast a permission of consensus to the IP address of 
nodes that respond their acknowledgements. The nodes can start a timer when they receive the permission and convert 
to candidate when the timer runs out. 
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9.2.2 Node state of consensus 

The state of nodes in Raft should be synchronized in a stable storage before any type of calls shown in Figure 6. The 
state on the node includes: 

a) Persistent state on all nodes: 

- T: Current Term of consensus 

- VF: Candidate ID that this node vote for 

- LOG: Log entries which contain the commands and corresponding term 

b) Volatile state on all states of nodes/candidates: 

- CI: Index of highest log entry that is committed 

- AI: Index of highest log entry applied to state 

c) Volatile state on leader (Reinitialized after the stage of election): 

- NI: Index of next log entry send to nodes 

- MI: Index of highest log entry replicated on server (matched) 

 

Figure 6: Communication topology of Raft 

9.2.3 Leader election 

The commands from candidates in leader election refers to VoteRequestCall, which includes: 

• CT: Candidate Term 

• CA: Candidate Address 

• LLI: Index of Last Log Entry from candidate 

• LLT: Term of Last Log Entry from candidates 

The commands from followers in the leader election refers to VoteRequestResponse, which includes: 

• FT: Follower Term 

• VOTE: Vote from Follower 



 

ETSI 

ETSI GR PDL 020 V1.1.1 (2023-06)36 

VOTE reply False when CT < FT. Otherwise, it will reply True and the candidate can receive the vote from this 
follower. If the candidate can receive votes from over half of the overall nodes in the network before the timeout of its 
election, it will win the election and become the leader of this consensus term. 

9.2.4 Log replication 

The commands from the leader in the stage of log replication refers to AppendEntriesCall, which includes: 

• LT: Leader Term 

• LA: Leader Address 

• NLI: Index of New Log Entry 

• NLT: Term of New Log Entry 

• NLE: New Log Entry for Storage 

• LC: Leader Commit Index 

The commands from the followers in the stage of log replication refers to AppendEntriesResponse, which includes: 

• FT: Follower Term. 

• SR: Success Response: 

a) The follower will reply false in SR if LT < FT or the log does not contain the entry at NLI whose term 
matches NLT. 

b) If existing entry conflicts with a new entry, delete the existing entry and all nodes follow the new one. 

c) Append all new entries that are not in the log. 

d) If LC < CI, set CI = min (LC, index of last new entry). 

9.2.5 Rules for node 

a) For servers: 

- If CI > AI, increase AI by 1 and apply LOG[AI] to the state. 

- If the request or response call contains the term CT, or LT is larger than the current term T, it sets 
T=CT/LT and convert to followers. 

b) For followers: 

- It can only response the call from candidates and leader. If the election timeout elapses without receiving 
any AppendEntriesCall from current leader or VOTE request from candidate, it converts to a candidate. 

c) For candidates: 

- Increase term T by 1 at the start of election. 

- Vote for itself. Reset election timer. 

- Send VOTE request to all other nodes. 

- If the candidate receives votes from majority of nodes, it becomes the leader in current term. 

- If it receives AppendEntriesCall from the new leader, it converts to follower. 

- If election timeout elapses, it starts a new election. 
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d) For leaders: 

- Send initial AppendEntriesCall to each node and repeat it to prevent election timeout. 

- Append log entry to state when it receives commands from client and respond after the command is 
synchronized to all followers. 

- If the last log index LLI is not less than the next index NI for a follower, send AppendEntriesCall with 
log entries starting at NI. When the call is successful, it can update NI and MI for follower. Otherwise, it 
decreases NI and retries the progress. 

- If there exists an index X that X > CI, the majority of followers' MI is not less than X and the term of 
LOG[X] is equal to the current term T, set CI=X. 

9.3 Routing and synchronization 
The routing protocols in the WCN are implemented in two cases: 

a) A new node that wants to join the WCN but cannot build the direct connection to the current leader. 

b) The state of a node that failed in the stage of log replication need to be synchronized after the log replication. 
The routing protocol can be implemented to connect the failed node with the leader through several hopping 
nodes as shown in Figure 7. 

In the case (a), the new node wants to join the WCN but cannot connect to the current leader directly acts as the source 
node in the routing protocol. The source node needs to broadcast Routing Request message (RREQ) to neighbour 
nodes. The RREQ message contains: 

• SA: Address of Source Node 

• PR: Permission Request 

• HN: Hopping Number 

• RID: RREQ Identity 

 

Figure 7: Routing protocol 

The node that receives the RREQ can check whether it receives the request for the first time base on the message. If it 
is, the node records corresponding routing message including SA, RID, increase HN by 1 and send this RREQ to its 
neighbour nodes. Meanwhile, this node sends back a RREP (Routing Response message) to the last node that sends the 
RREQ message to set up a temporary reverse routing path. Otherwise, the RREQ is ignored. When the destination node 
is the leader in current term, it receives the RREQ and checks out if the source node has the permission to join the 
network. If so, it registers the source node in the current distributed network for the next round of log replication and 
sends back the acknowledgement. 

The protocol of Raft ensure that a follower has a direct connection to the leader. Therefore, if any follower receives the 
RREQ message, it can send the request to the leader directly and set up the valid path. The threshold of fault tolerance 
in Raft requests the number of nodes that implemented routing protocol cannot exceed half of the overall number. 



 

ETSI 

ETSI GR PDL 020 V1.1.1 (2023-06)38 

9.4 On-boarding and withdrawal of nodes 
A WCN may encounter on-boarding and withdrawal of nodes, which may have critical influence on consensus protocol 
performance. 

When a new node wants to join an existing WCN, it needs to send the engagement request to the leader of the current 
term. If the leader replies positively to the request, the new node can participate in the next round of log replication. 
Otherwise, it should follow the routing protocol mentioned in case a) of clause 9.3. 

The procedure that nodes withdraw from the network have several cases: 

a) When a follower wants to withdraw from the WCN, it sends the withdrawal request to the leader and the 
leader will not send AppendEntriesCall to this follower anymore will delete all routing paths through this 
follower. The destination nodes on these deleted paths need to restart the routing protocol to update new 
routing paths for future state synchronization. 

b) When a leader wants to withdraw from the WCN, it needs to multicast an election command to all followers. 
The followers that receive the command can start an election timer and become candidates when the timer runs 
out. All routing paths should expire, and new routing paths can be set up after the election. 

c) When a faulty node wants to withdraw from the WCN, it needs to send the request through current routing 
path to the leader and the leader can delete the routing path and not synchronize the state of this failed node 
after the next round of log replication. 

The node engagement and withdrawal can change the ratio of followers and consensus failed nodes in the distributed 
network. Once the ratio of followers drops below 50 % of overall nodes, Raft will end the current term and start an 
election for a new leader. 

9.5 Recommendation 
Clause 9 discusses the suitability of Raft as a protocol for WCN. It is recommended that this is further studied as the 
indications are that it is more suitable than other protocols currently available. 

PBFT should also be further studied as some of its derivatives may be suitable for WCN. 

10 Conclusion and recommendation 

10.1 Conclusion 
The present document discusses wireless consensus networks. It first describes the background and two use cases of 
WCN. Then, two WCN architectures are presented with consideration to their functionalities. The hardware and 
consensus protocols that may be used in WCNs are discussed. Next, a protocol for WCN is presented. Finally, 
recommendations for the next step are included. 

10.2 Recommendations for the Next Step 
Since different consensus protocols and hardware for wireless networks with different computing and communication 
overhead are still evolving, it is out of the scope of ETSI ISG PDL to define a particular wireless consensus network 
with specific technology. More creative and lightweight approaches should be developed for PoS based consensus, such 
as Proof of Honesty (putting reputation as stake) and PBFT consensus such as PBFT with multiple layers. However, the 
following aspects could be considered for standardization by ETSI ISG PDL: 

• Specifications on the architecture of wireless consensus network could be developed. 

• Specifications on the functions and protocols of wireless consensus network could be developed. 

• Specifications on the access control of wireless consensus network could be developed. 
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