New presentation - see History box

ETSI AN
ETSI(C

ETSI ETR 071
TECHNICAL June 1993

REPORT

Source: ETSI TC-MTS Reference: DTR/MTS-01005
ICS: 34.040.40

Key words: TTCN, SDL, common semantics representation

Methods for Testing and Specification (MTS);
Semantical relationship between SDL and TTCN
A common semantics representation

ETSI

European Telecommunications Standards Institute
ETSI Secretariat

Postal address: F-06921 Sophia Antipolis CEDEX - FRANCE
Office address: 650 Route des Lucioles - Sophia Antipolis - Valbonne - FRANCE
X.400: c=fr, a=atlas, p=etsi, s=secretariat - Internet: secretariat@etsi.fr

Tel.: +33 92 94 42 00 - Fax: +33 93 65 47 16

Copyright Notification: No part may be reproduced except as authorized by written permission. The copyright and the
foregoing restriction extend to reproduction in all media.

© European Telecommunications Standards Institute 1993. All rights reserved.

Page 2
ETR 071: June 1993

Whilst every care has been taken in the preparation and publication of this document, errors in content,
typographical or otherwise, may occur. If you have comments concerning its accuracy, please write to
"ETSI Editing and Committee Support Dept." at the address shown on the title page.

Page 3
ETR 071: June 1993

Contents
o=, o] o SRR 7
[a1 g0 [0 ex i o] o H PP PP PP PPPPPPPI 7
1 S Tolo] oSO UPP PR PPTPPPPPP 9
2 =] (=TT g (o =L OO PSP PUPT PP 10
3 Domains, notation, abbreViatioNSoo i 11
3.1 (Do) ¢ F=Y] o IS SO TP PPPT TR PPPPPP 11
3.2 FUNCHONS N0 OPEIALOISeeiiiiiiee ettt et e et e e et e e e nebe e e e eneee 13
3.3 [N (o] €= 1o ¢ O PP PO PUPT R TPPPP 14
3.4 Labelled transition SYStEMS (LTS)vvviiiiiieeeiiiiee ettt e 15
35 ADBDIEVIALIONS ...ttt e e e e st e e e e e e e s et r e e e e e e e s e annbenreees 16
4 Conceptual models for SDL and TTCN.....oiuuiiiiiiiiiiie ittt e e seneeee s 17
4.1 Conceptual Model fOr SDL........oovvviiiiiiiie . 17
4.2 Conceptual MOAEl fOr TTCN ...ciiiiiii ittt e et e e e s sibeeeeeanes 18
421 T T CIN B S O ..ttt e e nrsn s e e nenennees 19
4211 THE tre@ PrOCESS. ... ittt 19
4212 The INPUL PrOCESS ..o oo 19
4213 The tIMer PrOCESS.....ciiiiiiiiiie it 19
4.2.2 TTCN SYSEEIM ..ttt ettt et e sttt e e st e e s nte e e e snbe e e e snseeee s 20
5 Common Semantics Representation (CSRY)coiiiiiiiiiiiiiie ettt sbaeee e 21
51 Ta oo [e i o] o NPT PO PP PUT T PPPPPPP 21
5.2 [0 1= 1 1o 22
5.2.1 [N\ (o] 2= 11 o] ¢ TP UT TR ST 22
5.2.2 1o 10 = V1 o 1SS 23
5.2.3 Data terms and Signal teIMSuuuiiiiieiiieie e e 24
5.2.3.1 Data tEIMS ...eiee e e 24
5.2.3.2 SIgNAl tBIMIS .. 25
5.2.3.3 Interpretation of data terms and signal terms...................... 25
5.2.4 S [0 4 1= TR PRPPT 26
5.25 TIME AN LIMEIS ..o et saaeee s 27
5.2.6 ROULES ...ttt et e st s s s s e e bnbnnes 27
5.3 2T Y (ol o] 0ol =] SRS 28
53.1 States 0f @ DASIC PrOCESSuuieiiiie e 28
5.3.2 Events of @ DASIC PrOCESSuviiieiii it e e 29
5.3.3 Operators iNthe BPA ... it 29
5.3.4 =11] o] =SSP 30
5.3.5 Semantics Of & DASIC PrOCESSc.vveiiiiiiiieeiit e 31
5.35.1 INference rule B Locueeiiiiiiiee i 31
5.3.5.2 Inferencerule B2 and B 3.........ooooiiiiiiiiiiiiee e 31
5.3.5.3 Inferencerule B4 and B 5. 32
5.4 THMIEE PIOCESS ...ttt ettt ettt e ekt e e ekt e e e kb e e e e aabb e e e e aabe e e e e aabeeeeeanbeeeaenas 32
5.4.1 States Of @ tIMEI PrOCESSvvvviiieiiiiieeiiiiieee ettt e e e e e e e eeereeereereee e eereees 32
54.2 Events Of @ tIMEr PrOCESS.ccoiiiiii i 32
5.4.3 Semantics Of @ tIMEI PrOCESSuuuiuiueiiiiiirc s a e e aeaaaaaaas 33
5431 INference rule T L ..o 33
5.4.3.2 Inference rule T 2 ..o 34
5433 INference rule T 3 .o 34
5434 Inference rule T 4 ..o 34
5435 INference rule TS5 .o 35
55 [o] 10 oo g o] oo 3] PP URPPPN 35
55.1 States of an INPUL POIT PrOCESS.vviiiiiiiiie it 35

5.5.2 Events of an input POIt PrOCESS.......ccuuiiiiiieaieiiieeeee e 35

Page 4

ETR 071: June 1993

5.6

5.7

5.8

59

5.5.3 Semantics of an INPUL POIT PrOCESScoeviuiieieiiiiiie ettt 35
55.3.1 INfFEreNCEe rUlE | L.....ieeeee e 36
5.5.3.2 INFErENCE TUIE | 2 e 36
5.,5.3.3 INfErenNCe rule | 3 ... 36
55.34 INFErENCE TUIE 1 4 ... 37
5.5.35 INFErENCE TUIE 1 5 .ceeeieeee e 37
5.5.3.6 INFEIrENCE TUIE | B ..o 37
(ol (1o ST oI | 1Y €= 1 Lo < T 37
5.6.1 States Of & ProCeSS INSLANCEceiiiiiiiieiiiiie e 37
5.6.2 Events of @ ProCeSsS INSLANCE.........coiiiuiiiiiiiee e 38
5.6.3 Semantics Of & ProCeSsS INSANCE.........ccoiiiiiiiiiiiie e 38
5.6.3.1 INfErence rule ProC L.......cooouuiiiiiiii e 40
5.6.3.2 INFEIrEeNCE rUIE PIrOC 2..coeeeeeeeeeeeeeee e 40
5.6.3.3 INference rule ProC 3.t 41
5.6.3.4 INfErence rule ProC 4.........ooueuveiiiieiiieeeee e 41
5.6.3.5 INfErence rule ProC 5.......ooiiveiiiieee e 41
5.6.3.6 INFErence rule ProC B.........couevveeiiiiiiiiieiee e 42
5.6.3.7 INFErENCE TUIE PrOC 7..coveeeiieee e 42
5.6.3.8 INfErence rule ProC 8..........ouuuveiiiiiiiiiicee e 42
5.6.3.9 INference rule ProC ... 43
5.6.3.10 Inference rule ProC 10..........uueeiiiiiiiiiiiicee e 43
5.6.3.11 Inference rule ProC 11........covieiieiiiiiieeeeeee et 43
5.6.3.12 Inference rule ProC 12..........eeeeiiiiiiiiiiiiiee e 44
5.6.3.13 Inference rule ProC 13........cou it 44
5.6.3.14 Inference rule ProC 14..........eueeiiiieiiiieeee e 44
5.6.3.15 Inference rule ProC 15.......oouiiiieeiieieeeeeeee e 45
5.6.3.16 INference rule ProC 16..........oooevveeiiiiiieeeeieeeee e 45
5.6.3.17 INfErence rule ProC 17ooeueieeieee e 45
5.6.3.18 Inference rule ProC 18.........oovvveeeiiiiiiieeeeeeeee e 46
5.6.3.19 Inference rule ProC 19.........uviiiieiiiieieeee et 46
5.6.3.20 Inference rule ProC 20..........ooveiieiiiiiiieeeeeeeeee e 46
5.6.3.21 INference rule ProC 21........ouieeeeeeiieieeeee e 47
Y Lol [U1 T o] {0 o] == SRS 47
57.1 States of @ MOAUIE PrOCESSciiiiiiiiiiiiiie e 47
5.7.2 Events of @ MOAUIE PrOCESSvvviiiiiiiiiiiiiieeeeeeeeeeeeeeeeee e 47
5.7.3 Semantics of & MOAUIE PrOCESScoeeiiiiiiiiiiiie e 47
5.7.3.1 Inference rule M L. 48
5.7.3.2 INFEIrENCE TUIE M 2 ..t 49
5.7.3.3 INference rule M 3. ..o 49
5.7.3.4 INfErenNCe rule M 4o 49
5.7.35 INfErenCe rule M 5 ... 50
5.7.3.6 INFEIrENCE TUIE M B ..o e 50
5.7.3.7 INFErENCE TUIE M 7 ..o 50
5.7.3.8 INFErenCe rule M 8coiiiieeeee e 51
5.7.3.9 INfEerenCe rule M O ... e 51
5.7.3.10 Inference rule M L0ooovevvieeii e 51
5.7.3.11 Inference rule M 11 ... 52
5.7.3.12 INference rule M 12ooooveeieeeeii e 53
PaAth PrOCESS ...ttt e e ettt e e e e e st e e e e e e e e annbenaeees 53
5.8.1 States of @ Path PrOCESSccuiiiiiiie e 53
5.8.2 Events of @ path ProCeSSvviiiiiiiieii e 53
5.8.3 Semantics of a path ProCess ..o 53
5.8.3.1 Inference rule Path L..........ooiiiieeiiiiiee e, 54
5.8.3.2 Inference rule Path 2...........eeeeiiiiiiiiiiie e 54
03T (] 1 1 TP PP PP PPPPPPPPRTP 54
5.9.1 States Of SYSEIM ..o —————— 54
59.2 EVENLS Of @ SYSTEM ...oiiiiiiiii e 55
5.9.3 SemantiCS Of @ SYSIEMuuiiiii e rrrernrnrnrnreee 55
5.9.3.1 INFErENCE TUIE S L...oiieeeeeeee e 55
5.9.3.2 INFErENCE TUIE S 2. 55
5.9.3.3 INFErENCE TUIE S S.oeiieeeeeeee e e 56
5.9.34 INFErENCE TUIE S 4. 56

5.9.35 INFEIrENCE TUIE S 5..eiieeeeeeee e 56

Page 5
ETR 071: June 1993

5.9.3.6 INFEreNCe rule S 6 ..cooveeiiiieee e 57

594 Derivation of the initial System State............ccccccuiiiiiiiiiiiiiie s 57

Annex A: INtroduction t0 the CSR.......ceeiiiiiii e e e e e e e sar e eeaeeeeeeanneees 58
A1l Labelled TransSition SYSIEMIScccc i 58
A2 USE OF INFEIENCE TUIBS ...ttt e e e e sttt e e e e e e st e e e e e e e e e e annnneeeeaens 60
A3 USAge Of the CSR ... ————————————— 66
A3.1 THE INRES PIrOTOCOL ...ttt e b e e e e 66

A.3.2 An SDL process and a TTCN test case for the INRES protocol...........cccceeeeeeiiiiiiiiiiinnnennn, 66

A.3.3 Evaluation of the behaviour of & Process INStANCEccccovvviie i 68
Annex B: Definition of the transSforMatioNSooiiiiiiiiiii e 72
B.1 The identification Of the FANGEeii i 72
B.1.1 Ta oo [ei i o] o NPT PPPT TR PPPRP 72

B.1.2 THE TANGE. ..ttt s ettt e s sb bt e e st e e e ab e e e e abe e e e nees 72

B.2 TranSfOrmMation Of SDL........ooiiuuiiiiiii ettt e e st e e e e e e s e aab e e e e e e e e e e s snnbreeeeaaens 72
B.2.1 LCT=T o= = 1o g {1 o 1 o] o S SRS 81

B.2.2 CONVEISION TUNCHIONS ...t e e e e e e e e e e e e anbnnee e 81

B.2.3 AUXITANY FUNCLIONS ..ttt e et e e e st e e e s sabeeeee e 81

B.3 Transformation Of TTONcooiiiiiiiiiiii ettt ettt e e e e e bbb e e e e e e e s s e e bbb e e e e e e e e e e annbnbbrneeeeeeas 82
B.3.1 ASSUMPLIONS ON TTCNiiiiiiiiie ittt e e et e e st et e e sbb e e e s snneee s 82
B.3.1.1 Assumptions on referencing parts of messages........cccceevveeveiiiiiiieie e, 82

B.3.1.2 ASSUMPLIONS ON CONSEFAINTSeeiiiiiiiiii it 83

B.3.2 Transformation of TTCN data types and ValUES.............uuuuuueiiiiiiiiiiiiiiieises e 87
B.3.2.1 BaSe ata tYPES ... 87

B.3.2.2 TTCON LA TYPES ittt e e e e s e e e e e e s nneeees 88

B.3.2.2.1 ASN.1 data type definitionsccccveviiiiiiiii e, 88

B.3.2.2.2 Test suite type definitionscceeeevieiiiiiiieen 94

B.3.2.3 An example - The VerdiCt tyPeoooueeiiiiiiiee e 98

B.3.3 THhe range fOr TTON. ...ttt e e e e e e et e et e e e e e s e nbbbeeeeaaeeeannbeeeees 99
B.3.3.1 SetS Of IdENTIFIEIS ... e 99

B.3.3.2 Transformation of values, expressions, timers, and constraints................. 102

B.3.3.3 Sy (ol = Vo (SR =T 1Y/ (o] o1 o= o | SRS 104

B.3.4 Transformation of TTCN behaviour desCriptionS..........c..uveeieiieiiiniiiii e 104
B.3.4.1 Abstract Evaluation Trees (AET)uueeeiicciieiiee e e e e 105

B.3.4.2 Identification of the subset of the Basic Process Algebra (BPA)................. 105

B.3.4.3 Definition of the transformation of AETScoviiiiiiiiiiiie e 105

ANNEX C: EXAMPIES ...ttt e e e e ettt e e e e e e aabe e et e e e e e s nbbeeeeeeeeae e e nnrnneeeaans 109
(@30 R | 1 o o [FTox 1o o PSPPSR 109
(O3 ST | I (o J O3] = SRR 109
c21 A SIMPIE SDL EXAMPIE .oee ettt e e e e e s e e e e e e s e e 109

C.2.2 [OS] R =T o (=TT =T g1 = LT o R T T SRPPRR 114

(O T I 1OV (o 0251 o PP PUPURROPPPRN 115
c.31 A SIMPIE TTCN EXAMPIE ..ttt e e e e e e e e e et eeeeeaae e an 115

C.3.2 LS O3] = =T 01 (=TT =T g1 7= L] o TSP 119

[1T 0] 2R RSP 123

Page 6
ETR 071: June 1993

Blank page

Page 7
ETR 071: June 1993

Foreword

ETSI Technical Reports (ETRs) are informative documents resulting from studies carried out by the
European Telecommunications Standards Institute (ETSI) which are not appropriate for European
Telecommunication Standard (ETS) or Interim European Telecommunication Standard (I-ETS) status. An
ETR may be used to publish material which is either of an informative nature, relating to the use or
application of ETSs or I-ETSs, or which is immature and not yet suitable for formal adoption as an ETS or
I-ETS.

This ETR was produced by the Methods for Testing and Specification (MTS) Technical Committee of
ETSI. It gives a Common Semantics Representation (CSR) for Specification and Description Language
(SDL) and Tree and Tabular Combined Notation (TTCN) language.

Introduction

Within the communications research community much effort has been spent to investigate the applicability
of formal methods for the specification of protocols and telecommunication systems and the specification
of tests. The results of these efforts are manifold. In the context of this ETR, the results of importance are
the definition of Specification and Description Language (SDL) (CCITT Recommendation Z.100 [1]), a
functional specification and description language for protocols and telecommunication systems, and the
definition of Tree and Tabular Combined Notation (TTCN) (ISO 9646 [2], Part 3), a test notation applicable
in the context of OSI (ISO 7498 [3]). The use of these formal methods is recommended by the
standardisation organisations, e.g. ISO, CCITT and ETSI.

Over recent years, it has been recognised that an integrated methodology has to be established covering
all aspects of protocol engineering. As part of this broader context, it seems to be reasonable to
investigate a semantical relationship between SDL and TTCN. The work on a semantical relationship is
motivated by the following aspects:

- computer aided test generation:

experiences with manual test case derivation in terms of required resources, both for definition and
maintenance of test suites, have shown that it seems reasonable to look for a generally applicable
method to semi-automatically generate test cases from formal protocol specifications. As a
prerequisite, the semantical equivalencies or in-equivalencies of SDL and TTCN have to be
investigated,;

- test suite validation:

in close relation with the specification of Open Systems Interconnection (OSI) services and
protocols, the development of abstract test suites is carried out. Test suites for protocols already
exist, and it is an open problem on how to validate these against their specifications.

In order to contribute to these problems, ETSI has decided to define a Common Semantics
Representation (CSR) for SDL and TTCN. The term CSR refers to a representation, able to represent the
semantics of objects from different domains in a common model. Such a common model enables the
investigation of semantical relations between objects of the different domains. Hence, a common
semantics representation for SDL and TTCN enables the definition of formal semantical relations between
SDL and TTCN specifications. Such relations could then act as a basis when developing tools for test
generation, test validation, etc...

The CSR described in this ETR is an operational model, consistent with the semantics defined in CCITT
Recommendation Z.100 [1] and ISO 9646 [2], Part 3, and is based on an existing operational model for
SDL (see TFL RR 1991-2, "An operational semantic model for basic SDL" by J. Godskesen [4]). It is
defined as a compositional hierarchical model, which enables reasoning about the dynamic behaviour of
SDL and TTCN specifications at different levels of observability.

Related work includes the SPECS project, RACE ref. 1046: "Specification and Programming Environment
for Communication Software" [5], where a common representation language (CRL) for LOTOS and SDL
has been defined, and in "Translation of test specifications in TTCN to LOTOS" [6], where a direct
mapping from TTCN to LOTOS is described.

Page 8
ETR 071: June 1993

Blank page

Page 9
ETR 071:1993

1 Scope

This ETR specifies a Common Semantics Representation (CSR) for SDL (see CCITT
Recommendation Z.100 [1]) and TTCN. The CSR is defined as a model for basic SDL and TTCN
abstract evaluation trees. The CSR defines an operational semantics in terms of Labelled Transition
Systems (LTS). The handling of data is on an abstract level and does not deal with coding and
representation information as e.g. Abstract Syntax Notation no. 1 (ASN.1).

This ETR gives guidance on the transformation of basic SDL and TTCN abstract evaluation trees to
the CSR model. The validation of the CSR with respect to the semantics defined for SDL and TTCN
is given in-line with the definition of the CSR.

The following general restriction applies:

- The concurrent behaviour of SDL systems and TTCN systems is approximated by interleaving
of events.

For TTCN, the restrictions below apply:

- a discrete time model is assumed;

- a send event makes no assignments to Abstract Service Primitive (ASP} parameters or
Protocol Data Unit (PDU) fields from within the assignment list;

- constraints for receive events use only a subset of all matching constructs.

Basic SDL, as defined in CCITT Recommendation Z.100 [11, is covered by the model except for the
following concepts:

- channels with no delay;
- service definitions which have become a concept in basic SDL.

The technical contents of this ETR are presented in Clauses 4 and b:

- in Clause 4, conceptual models for SDL and TTCN are introduced to motivate the structure of
the CSR;

- in Clause 5, the CSR is defined. The main characteristic of the CSR is that it has a
compositional and hierarchical structure.

Annexes are provided as a guide to the understanding of the approach.

- Annex A informally introduces the basic modelling concepts of the CSR and gives some
intuition how the CSR can be used.

- Annex B defines the range for the transformations of basic SDL and TTCN abstract evaluation
trees and gives guidance on how to transform basic SDL and TTCN abstract evaluation trees
to the CSR;

- Annex C discusses an example. The discussion is intended to provide guidance on how to
perform a transformation from SDL or TTCN to the CSR.

The CSR defined in this ETR is applicable as a basis for further work on computer aided test
generation and test suite validation.

2 References

For the purposes of this ETR, the following references apply.

[11 CCITT Recommendation Z.100 (1992): "Functional specification and
description language SDL".

Page 10
ETR 071:1993

2] ISO 9646-1 {1991): "Conformance testing methodology and framework -
Part 1: General conecpts”..
ISO 9646-2 (1991): "Conformance testing methodology and framework -
Part 2: Abstract Test Suite”.
ISO 9646-3 (1991-11-22): "Conformance testing methodology and
framewark - Part 3: The Tree and Tabular Combined Notation”.

[3] 1ISO 7498 (1984): "Information processing systems - Open Systems
Interconnection - Basic Reference Model”.

[4] J. Godskesen (1991) TFL RR 1991-2: "An operational semantic model for
basic SDL".

[5] SPECS consortium (1990) RACE Ref. 1046: "Specification and
Programming Environment for Communication Software".

{61 B. Sarikaya, Q. Gao (1988) Proceedings of PSTV VIil, North-Holland:
"Translation of test specifications in TTCN to LOTOS".

{71 H. Ehrig, B. Mahr (1985) Springer-Verlag: "Fundamentals of algebraic
specifications 1".

[8] ISO 8807 (1989): "LOTOS - A formal description technique based on the
temporal ordering of observational behaviour"”.

[9] ISO 8824 {1990): "Specification of Abstract Syntax Notation 1 (ASN.1)".

[10] ISO 8825 (1990): "Specification of Basic Encoding Rules for Abstract
Syntax Notation One (ASN.1)".

[11] G. v. Bochmann, M. Deslauriers (1989) Proceedings of PSTV IX, North-
Holland: "Combining ASN.1 support with the LOTOS language".

[12] D. Pitt, A. Boshier, B. Szczygiel (1990) NPL: "System Documentation for
the One20ne translator and user guide".

[13] D. Hogrefe (1991) IAM-91-012: "OSI formal specification case study: the
Inres protocol and service".

3 Domains, notation, abbreviations

The following subclauses, except for subclause 3.5, summarise terms defined in Clause 5.

3.1 Domains

A

BPIld

BPId,y,

BPPId y,

>-algebra over X =(Sort U SigSort, OP U SigOP) (subclause 5.2).

The set of all basic process identifiers (subclause 5.2). This set is ranged
over by X, Y.

The set of basic process identifiers of module m (subclause 5.2). This set is
ranged over by X, Y.

The set of process instance identifiers of the basic process identified by X.
{subclause 5.2) This set is ranged over by pid, pid’, pidy, pid,.

BProc

Env

{Proc
Modld

ModPld,,,

ModPld,,,,

ModStor

ModStor,

Loc

OP
Pathid
PathProc

PId

Pld

Pld spec

Proc

Routes

Routesy,

Sig

Sig

Page 11
ETR 071:1993

The set of all basic processes (subclause 5.3.1). This set is ranged over by
P, Q, R.

The set of functions from variables to locations (subclause 5.2). This set is
ranged over by ¢, ¢’.

The set of states of an input port process {subclause 5.5.1).
The set of module identifiers (subclause 5.2}. This set is ranged over by m.

The set of process instance identifiers of module m {subclause 5.2). This
set is ranged over by pid, pid’, pid;, pid,

The set of process instance identifiers in the environment of a system
(subclause 5.2}.

The set of all module storages (subclause 5.6.3). This set is ranged over by
ms, ms’,ms”,

The set of all module storages of module m {subclause 5.6.3). This set is
ranged over by ms, ms’, ms”.

The set of all storage locations {subclause 5.2). This set is ranged over by
L1017, ...

The set of all operations (of a signature) (subclause 5.2). This set is ranged
over by op.

The set of path identifiers (subclause 5.2). This set is ranged over by pth,

The set of states of a path process (subclause 5.8.1).

The set of all process instance identifiers in all modules of the system and
in the enviroment (subclause 5.2). This set is ranged over by
pid, pid’, pid,, pid,.

The set of all process instance identifiers including the undefined process
instance identifier (subclause 5.2). This set is ranged over by
pid, pid’, pidy, pid,

The set of process instance identifiers in the specification {subclause 5.2).

The set of states of a process instance (subclause 5.6.1). This set is ranged
over by p,p’, q,q’, py,P2-

The of set all routes in a system (subclause 5.2.6). Each element being
either a pair of process identifiers or a pair consisting of a process identifier
and a path identifier. This set is ranged over by r.

The set of routes in the module m (subclause 5.2.6). This set is ranged
over by r,,.

The set of all signals {subclause 5.2). This set is ranged over by sig, sig’.

The set of all finite sequences of signals (subclause 5.2).

Page 12

ETR 071:1993

Sig |
Sig’,
SigOP’

SigSort

SigTerm

SigTerm
Sig Term”

Sig Term:l

SigTerm{Var)

SigTermy (Var)

Sort

Sto

Sys

Term

Term{Var)

Termg

Term, (Var)

Time”™

Timers

Timers”

Var

The set of all signals including the undefined signal (subclause 5.2). This
set is ranged over by sig, sig’.

The set of all finite sequences of signals including the undefined signal
{subclause 5.2).

The set of all operations (of a signature) for signal declarations (subclause
5.2). This set is ranged over by op’.

The set of all signal sorts (subclause 5.2). This set is ranged over by s’, ss.

The set of all signal ground terms (subclause 5.2). This set is ranged over
by st, ...

The set of signal ground terms of sort s (subclause 5.2). This set is ranged
over by st, ...

The set of interpretation of signal terms (subclause 5.2). This set is ranged
over by si, ...

The set of interpretations of signal terms of sort s (subclause 5.2). This set
is ranged over by s/, ...

The set of all signal terms with respect to the set of variables Var
{subclause 5.2). This set is ranged over by st, ...

The set of signal terms of sort s with respect to the set of variables Var
(subclause 5.2). This set is ranged over by st, ...

The set of all data sorts (subclause 5.2). This set is ranged over by s, ...

The set of functions from locations to values (subclause 5.2). This set is
ranged over by p, p’

The set of states of a system (subclause 5.9.1).

The set of all data ground terms (subclause 5.2). This set is ranged over by
bt, dt, ...

The set of all data terms with respect to the set of variables Var (subclause
5.2). This set is ranged over by st, ...

The set of data ground terms of sort s (subclause 5.2). This set is ranged
over by st, ...

The set of data terms of sort s with respect to the set of variables Var
(subclause 5.2). This set is ranged over by st, ...

The set of time values (subclause 5.2).

The set of timers (subclause 5.2).

The set of all finite sequences of timers (subclause 5.2).

The set of all variables (subclause 5.2).

Page 13
ETR 071:1993

Var, The set of all variables of sort s {subclause 5.2). For example, Varg,yean:
Varsime Varp, .

E£g The set of system events {subclause 5.9.2).

Epath The éet of path process events (subclause 5.8.2).

Epm The set of module process events. (subclause 5.7.2)

Epy The set of process instance events (subclause 5.6.2).

£g The set of basic process events (subclause 5.3.2).

er The set of timer process events {subclause 5.4.2).

€ The set of input port process events {subclause 5.5.2).

—s The system transtion relation {subclause 5.9.3).

——Path The path process transition relation (subclause 5.8.3).

— The module process transition relation {subclause 5.7.3).

—p The process instance transition relation {subclause 5.6.3).

—5 The basic process transition relation (subclause 5.3.5).

—7 The timer process transition relation (subclause 5.4.3).

— The input port process transition relation (subclause 5.5.3).

3.2 Functions and operators

e(®) A predicate over timer sequences (subclause 5.4.3).

From A function from signals to pid-values {of the sending process instances)
(subclause 5.2).

Inst A function from signals to explicit signals (insténtiation) {subclause 5.2}.

Intr A function from signais to interpretations of signal ground terms (subclause
5.2).

Path A function from signals to path identifiers (subclause 5.2).

To A function from signals to pid-values (of the receiving process instances)
(subclause 5.2).

filters A function from timers and timer sequences to timer sequences (subclause
5.4.3). fiftery removes timer entries from a timer sequence.

filter A function from signal terms and signal sequences to signal sequences

(subclause 5.5.3). filter; removes signal term entries from a signal
sequence.

Page 14
ETR 071:1993

inserty

msl...)

msenv

mssto

#S

3.3 Notation

A function from timers and timer sequences to timer sequences (subclause
5.4.3). inserty inserts a timer in a timer sequence.

A partial function from pid-values to process instances in module storage
ms (subclause 5.6.3).

A partial function from pid-values to partial functions from variables to
locations (Env) {subclause 5.6.3).

A partial function from pid-values to partial functions from locations to
values (Sto) (subclause 5.6.3).

A mapping of module storages to module storages (subclause 5.6.3).

A function from routes to subsets of signal interpretations (subclause
5.2.6). This function is called route function.

A mapping from system states to system states (subclause 5.9.1).

The set of finite sequences of elements from S (subclause 5.2).

A partial function from variables to locations (environment) {subclause 5.2).
A mapping from environments to environments (subclause 5.6.1).

A partial function from locations to values (storage) (subclause 5.2).

A mapping from storages to storages (subclause 5.6.1).

The concatenation of finite sequences (subclause 5.2).

The cardinality of the set S {subclause 5.2).

D : BPid — BProc x Inst x Par x(Var x Term(Var))"

op:Sy,...8, =S

op’:Sy,...,8, »>S’

process and procedure declaration (subclause 5.3.1).

operation definition (subclause 5.2).

signal definition (subclause 5.2).

(¢, pid, pid’, p) € (SigTermA u{ist}) xPld x Pld | x(Pathld . {1,,,,, })

> =(Sort, OP)
€
Py
ipi

-Lpid

signal (subclause 5.2).

signature (subclause 5.2).

undefined environment (subclause 5.6.1).
undefined storage (subclause 5.6.1).
undefined process instance (subclause 5.6.1).

undefined process instance identifier (subclause 5.2).

ipth

-Lst

Lt

Us;

i=1,...n

Y S;

i=1,...n

Sy x... xS,

I

A
I,

A
| s, e, o

Page 15
ETR 071:1993

undefined path identifier (subclause 5.2).
undefined signal {subclause 5.2).

undefined (data or signal) term (subclause 5.2).

generalised union (subclause 5.2).

disjoint union (subclause 5.2}.

cartesian product (subclause 5.2).
interpretation of ground terms in algebra A {subclause 5.2).

interpretation of terms in algebra A with respect to € and p (subclause
5.2).

interpretation of terms in algebra A with respect to module storage ms, €

and p (subclause 5.2).

empty sequence {subclause 5.2).

inference rule {(generic form) {subclause 5.1).

function definition (subclauses 5.4 and 5.5).

3.4 Labelled transition systems (LTS)

System

Path process

Module process

Process instance

Basic process

Timer process

Input port process

3.5 Abbreviations

S= (Sys, €g, -—Hs,so) (subclause 5.9.3).

Path = (PathProc, Epath - —)Path) (subclause 5.8.3}.
m =(ModStor, eM,m—aM) (subclause 5.7.3).

Pl = (Proc, SPI,%P/,MOdStO,‘) (subclause 5.6.3).
B =(BProc, €g, ———)3) (subclause 5.3.5).

T =(Timers*, €7, —-———97) (subclause 5.4.3).

/= (/Proc, £, —-—)/) (subclause 5.5.3).

For the purposes of this ETR, the following abbreviations apply:

ADT

Abstract Data Type

Page 16
ETR 071:1993

ASP Abstract Service Primitive

BPA Basic Process Algebra

CRL Common Representation Language
CSR Common Semantics Representation
FIFO First In, First Out

T Implementation Under Test

LTS Labelled Transition System

PCO Point of Control and Observation
PDU Protocol Data Unit

SDL CCITT Specification and Description Language
SuUT System Under Test

TTCN Tree and Tabular Combined Notation

4 Conceptual models for SDL and TTCN

This Clause introduces two models whose purpose is to identify the main concepts of SDL and
TTCN. The models are intended as an aid to motivate the structure of the CSR model. The CSR is
introduced in Clause b.

4.1 Conceptual model for SDL

The definition of a conceptual model for SDL is straightforward. On a high level of abstraction the
CCITT Recommendation Z.100 [1] defines an SDL system as an entity which may receive signals
from the environment and may send signals to the environment via channels. On a more detailed
level an SDL system is substructured in blocks connected by channels. Blocks are refined in process
instances and signal routes. Block partitioning and channel partitioning are not considered as the
CSR is only defined for basic SDOL. An information item communicated by a process instance to
another process instance or to the environment is called a signal instance.

It is assumed that, in the environment of an SDL system, at least one process instance exists which
behaves obeying the rules defined for an SDL system.

Channels are either uni- or bi-directional. Channels introduce an arbitrary but finite delay on signal
instances conveyed from sender to receiver. At any instance in time more than one signal instance
can be conveyed by a channel in either direction of communication. The signal instances are
delivered in the order they are put on the channel. A channel can be regarded as a First-In, First Out
{FIFO)-queue or a pair of two FIFO-queues if the channel is uni- or bi-directional.

The dynamic semantics of a block is determined by the process instances of the block. From an
engineering point of view, blocks can be interpreted as modules or even indicate the distribution of
parts of a system over different locations.

Communication in SDL is asynchronous, thus the sending and the consumption of a signal instance
do not coincide. Process instances are equipped with an /nput port for the temporary storage of
signal instances not yet processed.

Process instances are the only parts of an SDL system whose behaviour are totally determined by
the specifier. Even timing constraints are expressible. Therefore, every process instance may use
timers as it has access to a mechanism which counts, in terms of ticks, global time.

Page 17
ETR 071:1993

Referring to CCITT Recommendation Z.100 [1] the behaviour of channels and input ports is not
explicitly specified. For example, for channels only their main characteristic (FIFO-queue) is noted.
The idea to define an operational semantics for an SDL system is to explicitly define the operational
semantics of all components of an SDL system {(figure 1): channels, blocks, process instances, input
ports, and timers. The details are described in Clause 5.

SDL system

— Process

— Instance
Channel

Process
Instance

Input Process .

port Instance Signalroute
Block |

Block Channel
U Channel UH ok
| tick@ick
/"//
S - _) 1/’/

Environment
Process
instance

Input
Port

Figure 1: Conceptual model for SDL
4.2 Conceptual model for TTCN

A model for TTCN is not as well established as the one for SDL. The international standard
ISO 9646 [2], Parts 1 to 3, provides an implicit description of the model introduced hereafter and
which is called TTCN tester (figure 2). A TTCN tester executes a test case. The model described in
the following is invented to aid the understanding of TTCN concepts and TTCN semantics, and is
not intended as an implementation description.

Page 18
ETR 071:1993

TTCN tester

Timeout

(o

Figure 2: Conceptual model for a TTCN tester
4.2.1 TTCN tester
A TTCN tester consists of three communicating processes:

- the tree process executes a transformation (see below) of a TTCN behaviour tree of a test
case;

- the input process deals with all incoming Abstract Service Primitives (ASPs) or Protocol Data
Units (PDUs) and time-out signals. This process maintains a data structure referred to as input
stream which contains all ASPs or PDUs of all Points of Contro/ and Observation (PCO)
interleaved with time-out indications in the order of arrival. Only if a signal is in the input
stream can it be processed by the TTCN tester.

The PCO queues for incoming ASPs or PDUs and the time-out list mentioned in ISO 9646 [2],
Part 3, are modelled by the input stream;
- the timer process keeps track of all running timers.

It is important to note that the tree process is the variant part of the model which changes from test
case to test case. Associated with the three processes is a storage environment for values of
variables and constants.

The internal structure of a TTCN tester and the communication relations between the three
processes are shown in figure 2 above. In the sequel each of the processes is discussed on a more
detailed level. The description also indicates how to relate these processes to concepts of ISO 9646
[2], Part 3.

4.21.1 The tree process

The tree process executes the events as indicated by an abstract evaluation tree {ISO 9646 [2],
Part 3, Annex B). The abstract evaluation tree is the behaviour tree with all defaults attached and
repeats eliminated. Furthermore, all GOTOs and tree attachments are assumed to be eliminated.
This may result in a potentially infinite tree.

The tree process evaluates a set of alternatives with respect to the current contents of the input
stream. The contents of the input stream represents a snapshot. In this model a snapshot is not
explicitly taken. If a signal is received from a PCO or the timer process, the input stream is updated
and thus may represent a new snapshot. While a set of alternatives is evaluated the contents of the
input stream do not change. In case no matching signal can be found in the input stream the tree

Page 19
ETR 071:1993

process has to waits until a signal arrives from one of the PCOs or a timer expires and a time-out
signal is put in the input stream.

4.2.1.2 The input process

The tree process need not immediately deal with an incoming message, but may delay this until it
has finished its current task(s). This applies to ASPs or PDUs received from the PCOs and time-out
signals emitted by the timer process. All inputs are temporarily stored by the input process in the
input stream. The stored messages are in the possession of the TTCN tester. The tree process takes
into account only a subset of all stored messages when evaluating a set of alternatives. This subset
includes all ASPs or PDUs which have arrived first for each PCO and all time-out signals (which
comprises the time-out list ISO 9646 [2], Part 3.

If the reception of more messages (ASPs, PDUs or time-out signals) is possible then these messages
are put in the input stream in an arbitrary order.

4.2.1.3 The timer process

In TTCN (ISO 9446 [2], Part 3} time is counted as integer multiples of fixed (real) time units. In the
conceptual model this is interpreted as discrete time counted in ticks. A tick represents a (fixed)
duration of time. It is assumed that there is a mechanism that provides the update of the global
time.

If a timer expires the timer process sends a signal, which identifies the expired timer, to the input
process. If the tree process requests the elapsed time since a timer was started, the timer process
returns the number of ticks that have been counted from the time the timer was started.

4.2.2 TTCN system

As a conceptual model for TTCN the TTCN tester is sufficient. However, in defining a common
semantics representation for TTCN and SDL there obviously are some significant differences. A
TTCN tester can be related to a process instance in SDL, thus no equivalent concepts for system,
channel and block exist for TTCN. To overcome these differences the concepts TTCN system and
abstract tester are introduced and the concept of PCO is modified. These changes are motivated in
the following paragraphs.

A TTCN system (figure 3) is an entity which may receive ASPs or PDUs from the environment and
send ASPs or PDUs to the environment via Points of Control and Observation (PCO). The
environment of a TTCN system is formed by a service provider and an Implementation Under Test
(fUT) (see ISO 9646 [2], Part 1) which may be embedded in a System Under Test (SUT).

A PCO, as indicated in figure 3, provides a TTCN system with an interface to the environment.
Communication between a TTCN tester and the environment is asynchronous. The following
temporal relation between sending (by a TTCN tester) of an ASP or PDU and receiving (by the
environment) of an ASP or PDU and vice versa can be established:

tsending = treceiving

In general, a PCO can arbitrarily delay an ASP or PDU. Conceptually, each PCO has associated two
queues: one for intermediate storage of incoming ASPs or PDUs and one for intermediate storage of
outgoing ASPs or PDUs.

The concept of an Abstract tester is introduced to provide, in the conceptual model for TTCN, a
concept similar to blocks in SDL. Mapping TTCN to the CSR presupposes the existence of exactly
one abstract tester.

Page 20
ETR 071:1993

TTCN system

Abstract tester

TTCN tester

PCO PCO
System under test
Service
Provider T

Figure 3: Conceptual model for a TTCN system

Page 21
ETR 071:1993

5 Common Semantics Representation (CSR)
5.1 Introduction

The CSR enables the representation of the dynamic behaviour of syntactically well-formed
specifications in basic SDL and TTCN in a common model. To make the representation useful for
reasoning about properties of such systems at different levels of abstraction, it is defined as a
compositional hierarchical model. The structure of the CSR (figure 4) is defined to reflect the
conceptual models as described in the previous Clause.

System

Module
Path processes

rocesses .
P Process instances

Basic Timer Input port
process process process

Figure 4: The structure of the CSR

The behaviour of each higher level entity can be derived from the behaviour of the entities at the
next lower level. This property allows for an analysis of the behaviour of a system at different levels
of observability. Observability is determined with respect to where an observer is placed. An
observer in the environment of a system (figures 1 and 3) can only observe signals received from or
sent to the system. If the observer is placed in the system, then the signals received from or sent to
the environment and the signals exchanged between the components (blocks in case of SDL and the
abstract tester in case of TTCN) can be observed.

The entities in the CSR are:

. Basic process

A basic process results from a syntactical transformation of an SDL process graph or TTCN
abstract evaluation tree. The range of this transformation is defined over a Basic Process
Algebra (BPA). The BPA identifies a set of events and a set of operators. The set of events is
the union of a set of events common to SDL and TTCN, a set of SDL specific events, and a
set of TTCN specific events. The events are considered to be atomic. The operators in the
BPA are prefixing and choice. Prefixing and choice are used to combine events to compound
behaviour descriptions.

. Timer process
A timer process models the handling of SDL active timers and TTCN running timers. Expired
timers are modelled as signals, which are transferred from the timer process to the input port
process.

] Input port process
An Jinput port process models the reception and removal of signals to and from an input
gueue. For SDL this process models the behaviour of the /nput port, and for TTCN the input
port process is equivalent to the input process in the conceptual model for TTCN.

. Process instance
A process instance is composed of a basic process, a timer process, an input port process
and a storage environment for variables and values. Hence, the behaviour of a process
instance is based on the behaviour of these entities. Furthermore, the behaviour of a process
instance can also depend on the value of variables in other process instances in the same

Page 22
ETR 071:1993

module. A Process instance is used to model the behaviour of an SDL process instance or the
behaviour of the TTCN tester.

. Module process
The behaviour of a module process is derived from the behaviour of the process instances

residing in the module process. Module processes are used to model the behaviour of SDL
blocks and the behaviour of a TTCN abstract tester.

. Path process
A path process models the behaviour of an SDL channel and the behaviour of a TTCN PCO.

. System
The behaviour of a system is derived from the behaviour of its path processes and its module
processes. A system is used to model the behaviour of an SDL system and a TTCN system.

For each entity in the model the operational semantics is defined by Labelled Transition Systems
(LTS). This approach is convenient for the definition of compositional structures and allows for
formal reasoning on temporal properties. The transition relation of each LTS is determined by a set
of inference rules of the following form:

c

where t7, ..., t, and t are transitions. The set of premises of an inference rule, t4, ..., t, or the
empty set, are transitions possible by the components of the entity or the entity itself. For example,
in an inference rule for a process instance the premises are transitions of a basic process, a timer
process and an input port process. The conclusion, transition ¢, is the inferred behaviour of the
entity under consideration. The compositional structure of the model is expressed in terms of such
inference rules. C defines side-conditions on the applicability of the inference rule: the inference rule
can be applied only if all side-conditions hold.

Using Labelled Transition Systems implies that the concurrency of an SDL system and TTCN system
is represented by interleaving of events. True concurrency is not part of the model. The discrete
time model of SDL is preserved in the CSR. As outlined in subclause 4.4.2.3, on a certain level of
abstraction the discrete time model is sufficient to model timing requirements specified in TTCN test
cases.

As data influences the behaviour of a system, a model for data is also implicitly part of the CSR.
The data model is a many-sorted Z-algebra in which data terms are evaluated. The differences in
both languages with respect to data typing become obvious if the common representation of data is
investigated. The abstract model of a X-algebra is close to the data model defined for SDL. TTCN
makes use of a concrete implementation-oriented data model known from many programming
languages.

Each of the entities of the CSR model are defined in the following subclauses.
5.2 Definitions

Throughout the rest of this Clause, a fixed SDL specification or TTCN test suite specification Spec
is assumed.

5.2.1 Notation

If Sis a set, then S™ denotes the set of all finite sequences, including the empty sequence () of

elements of S. If ww'eS", w=a,a, .4 and W =b,b,_;...-b;, n,m>0, then
WeiW' =8,8p, 1...a10mb,, 1...by denotes the concatenation of w and w’, and ()::w =w::() =w the
concatenation of w and the empty sequence. In the sequence w::w', b, is called the first element of

the sequence, and a, is called the /ast element of the sequence. The cardinality operation #S
denotes the number of elements of the set S.

Page 23
ETR 071:1993

Given the sets Sy,...,S,, then S; x... xS,, denotes the cartesian product.

Given the sets S;,...,S,, then S;u...US,, is denotedby U S;

i=1,.,n

Given the sets Sy, ..., S,, the disjoint union 4 S;is definedas U {i}xS;

i=1,.,n i=1,.,n
5.2.2 Domains

In the CSR, a module process is identified by a module identifier, and a path process is identified by
a path identifier.

Definition: Mod/d is the set of all module identifiers in Spec. O
Definition: Pathld is the set of all path identifiers in Spec. O

Since a module is related to a block in SDL, a module identifier is related to a block name. In TTCN,
a module is related to an abstract tester, hence, in this case, there exists always only one module.
Since the concept of an abstract tester is not explicitly represented in a TTCN test suite, there is no
relation between any object in a TTCN test suite to a module identifier. However, an abstract tester
in the CSR shall be identified by the module identifier m. Two path processes are related to a bi-
directional channel in SDL, hence a path identifier is determined from a channel name. In case of
TTCN, two path processes are related to a PCO and a path identifier is determined from a PCO
identifier.

For each module process there exists a set of related basic processes. Each basic process is
identified by a basic process identifier.

Definition: BPId,, is the set of basic process identifiers related to a module m. O
It is assumed that the sets BPI/d,, for all modules m are disjoint.
Definition: the set of all basic process identifiers in Spec is then given by

BPld = UBPld,,

m e Modld
O

For SDL, a basic process is related to a process graph and a basic process identifier is related to a
process name. For TTCN, a basic process is related to an abstract evaluation tree, in the conceptual
model represented by the tree process. Hence, a basic process identifier is related to a test case
identifier.

In the CSR, the behaviour of a process instance is determined by its related basic process and there
may exist more than one process instance related to the same basic process. Each process instance

is identified by a process instance identifier, and there exists disjoint infinite sets of process
instance identifiers for each basic process identifier, denoted by BPPIldy where X € BPId .

Definition: ModPld,, is the set of process instance identifiers for a module m defined by

ModPlid,, = BPPldy
XeBPld,,

Definition: Pld,,. is the set of process instance identifiers in the system Spec defined by

Pldspee = UModPld,,
meModld

Page 24
ETR 071:1993

Definition: let ModPld,,,, denote the set of process instance identifiers in the environment of a
system, to which any signal communicated out of the system is sent and from which any signal to
the system is sent. Then

Pid = Pld g g, U ModPId

is the set of all process instance identifiers in all modules of the system together with all process
instance identifiers in the environment of the system. O

Definition: Let L, be an element not in Pld. L, denotes the undefined process instance
identifier, i.e. it does not identify any process instance in the system or in the environment. Then

Pld |, = Pld U {14}
0

A process instance identifier is related to a pid-value in SDL. In the case of TTCN, it is assumed that
there exist unique identifiers for the tester, the IUT or SUT and the service provider.

5.2.3 Data terms and signal terms

Data is handled in the CSR on an abstract level. Data types are specified algebraically. An algebraic
specification of a data type defines a syntax for the denotation of data terms and an interpretation
of data terms in an algebra. This subclause introduces only parts of the theory of algebraic
specification necessary for the understanding of the subsequent subclauses. More detailed
introductions to algebraic specifications of abstract data types {ADT) are given in "Fundamentals of
algebraic specifications 1" [7], ISO 8807 [8] and CCITT Recommendation Z.100 [11.

5.2.3.1 Data terms

It is assumed that a signature 2=<Sort, OP) is given with Sort a set of sorts and OP a set of
operations. If s is a sort in Sort then this is denoted by s € Sort. If op : s4,...,5, — s is an operation
definition in OP then this is denoted by op : sy,...,5,, s €OP.

Definition: Term_ is the set of data ground terms of sort s, inductively defined by:

a) op : — s € OP implies op € Term
b) op:sy,...,.S, >Se0P,t e Termsi foralli =1,...,n
implies op(ty,...,t,) € Termg
O

For each sort s a set of variables Var, exists. Whenever x is an element of Var this is denoted by
xs €Var,.

Definition: Var is the set of all variables so Var is the union of the sets Var:
Var = |Var,
s & Sort

O

Every variable keeps its sort which makes them unique in the set Var. In SDL and TTCN, variables
are used for the storage of values. The set Var is the set of all variables and constants in Spec.

Definition: Term (Var) is the set of data terms of sort s over the set of variables Var, inductively
defined by:

a) xg € Varg implies x5 € Termg(Var)
b) op : — s € OP implies op € Termg (Var)

Page 25
ETR 071:1993

c) op :S7,...,S, >SS €0P, tj € Terms, (Var) for all i =1,...,n
implies op(t;,...,t,) € Term (Var)
O
In SDL a variable may be owned by another SDL process instance in the same block. These
variables are called revealed variables. If xg is a variable in Varg and t a term which denotes a
process instance identifier, then the set of data terms is supposed to additionally contain the
following terms:

Xs €Varg, t € Termpyy(Var) implies x; ¢ € Termg(Var)

Definition: 7erm(Var) is the set of all data terms over Var, defined by

Term(Var) = UTerm (Var)

s € Sort
and Term is the set of all data ground terms, defined by
Term = UTerm,.
s € Sort
O
5.2.3.2 Signal terms

Signal ground terms and signal terms are defined similarly to data ground terms and data terms. Let
SigSort and SigOP be the set of sorts and operations, disjoint from Sort and OP, to be used for
signal declarations.

Definition: SigTerm,- is the set of signal ground terms of sort s’ € SigSort, inductively defined by:

a) op’: — s’ €SigOP implies op’ € SigTerm,-
b) op’:sy,...,Sp =8’ €SigOP, t; e Termg, for alli =1,...,n
implies op(t;,...,t,) € SigTermg-
O

Definition: SigTerm.(Var) is the set of signal terms of sort s’ over the set of variables Var,
inductively defined by:

a) op’:— s’ eSigOP implies op” € SigTermsz(Var)
b) op’:sy,-..,Sp =" €SigOP, t; € Terms, (Var) for all i =1,...,n
implies op ’(t,,...,t,,) € SigTermsr(Var)
0

Definition: SigTerm is the set of all signal ground terms and SigTerm(Var) is the set of all signal
terms and they are defined like the sets Term and Term(Var) respectively. O

For SDL, a signal term is related to an SDL signal identifier followed by a sequence of actual
parameters. For TTCN, a signal term is related to a constraint.

5.2.3.3 Interpretation of data terms and signal terms

Let X/ =<Sort v SigSort, OP uSigOP). The interpretation of data terms and signal terms is given in
an X’ —algebra, denoted by A, relative to a storage and environment where the values assigned to
variables can be found. For each sort of the signature a carrier set exists in the algebra. The algebra
A is assumed to contain an error element error for each carrier set. The derivation of a X'-algebra
from a signature X' is described in ISO 8807 [8] and CCITT Recommendation Z.100 [1].

Page 26
ETR 071:1993

Definition: the storage environment is defined for every process instance {refer to subclause 5.6)
and is comprised of a set Env of partial functions £ from variables Var to locations Loc and a set
Sto of partial functions p from locations Loc to A:

Env ={ele : Var - Loc}
Sto = {p |p :Loc — A}
O

Definition: the interpretation of a data term t in the algebra A is given by the following inductive
definition relative to functions € and p

a) ”X“is, e p =ple(x)) forx e Var
b) lon(ty. ...,)stl oo =opA(||t1||2s’€,p,..., t, ||:s,g,p) forn>0

op” denotes the interpretation of operation op in algebra A. The index ms refers to a module
storage where the values of revealed variables are stored. a

Definition: in order to resolve references to revealed variables, the interpretation of a revealed
variable x; is defined by:

A

|x s
s, t slims, ¢’, p’

ms, g, p

. , A
where ¢’, p’ are the environment and storage of the process instance referred to by [¢_ . . O

If the process instance has stopped then

=1, where L; denotes the undefined term.
ms, €, p

Xs,t

For signal terms the following condition applies:

A A
Isl =[st1

ms, €, p
The condition assures that the interpretation of signal term st in algebra A with respect to a storage

and environment equals the interpretation of some signal ground term st’. This means, that all
variables used in the signal term st are bound to values.

Definition: SigTermﬁ, is the set of interpretations of signal ground terms of sort s”. O

Definition: SigTerm? is the set of interpretations of signal ground terms. O

Whenever it is clear from the context A, ms, € and p may be omitted when denoting
interpretations.

5.2.4 Signals

Definition: a signal is a tuple (¢, pid, pid’, p) € (SigTermA u{_Lst}) X Pld x Pld x(Pathld u{_Lpﬂ, }) O

In the tuple t is the interpretation of a signal ground term, i.e. t € SigTerm” or t =Lg ESigTermA.
A signal where ¢t = L, will be called an undefined signal, and is introduced in order to model an
unforeseen message of TTCN. Moreover pid is the process instance identifier of the process
instance which has sent the signal, pid’ is the process instance identifier of the process instance

Page 27
ETR 071:1993

that is to receive the signal. p denotes the path on which the signal has been conveyed where L,
denotes the undefined path. L, is used to indicate that the signal has not been conveyed by any
path.

Definition: Sig is the set of all signals except for undefined signals. Sig* denotes the set of all finite
sequences of signals of Sig. (|

Definition: Sig; (Sig; D Sig) is the set of all signals including the undefined signal, and Sigi
denotes the set of all finite sequences of such signals. O

in order to have a more convenient way of referring to the components of a signal, the following
shorthands are introduced: whenever sig =(t, pid,pid’,p) then Intr(sig) =t, From(sig) =pid,

To(sig) = pid’, and Path(sig) =p.

Definition: if To(sig) #J.p,-d then sig is called an explicit signal. Otherwise sig is called an /implicit
signal. O

Definition: an instantiation of a signal is an explicit signal. The set of instantiations, /nst{sig), of a
signal s/g, is defined as:

{sig} if sig is an explicit signal ,
Inst(sig) = si |Intr(sig") = Intr(sig),From(sig') = From(sig), ‘
To(sig') € Pld,Path(sig') = Path(sig)

} if sig is an implicit signal .

a

Intuitively, /nstfsig) denotes the set of all possible explicit signals of signal sig, i.e. Inst(sig) is the
set of all signals sig’ equal to sig except for that Tofsig’] € Pld. Hence, Inst(sig) where sig is an
explicit signal is the set consisting of only sig.

A signal is related to a signal instance in SDL and a message in TTCN.
5.2.5 Time and timers

Definition: the time domain 7ime? is associated with a total ordering <, /.e.
A

Va;, a, € Time a; Saz) v(a2 Sa,)

There also exists a strict ordering <, /.e.

Vay,a, € Time? :a; <a, < (a; <ay) Ala; #ay)
O

There also exists a global clock with some time origin ap € Time” and some positive time unit. The
global clock can be read at any time and its value is referred to by time.

Definition: 7imers is the set of all timer descriptions defined by

Timers = {@‘ O e Time” x Time” xSigTermA}

O

Then a timer is a tuple (t,,tz,si) € Timers, where t, is the time when the timer was started, t, is the
time when the timer is to expire and s/ =[|st|| is the interpretation of some signal ground term st

identifying the timer. s/ is the signal term interpretation to be put into the input port process when
the timer expires.

Page 28
ETR 071:1993

Definition: Timers” is the set of all sequences of elements of the set Timers. O
A timer is related to an active timer in SDL and a running timer in TTCN.
5.2.6 Routes

Definition: the routes inside a module m is defined by the set:

Routes,,, = {(x,y) x, y €(BPId,, U Pathld) and there is a connection leading from x to y}

Definition: there also exists a set:

Routes,,, = {(pth, TOENV)[pth € Pathld and the path pth leads to the env/ronment} U
{(FROMENV, pth)|pth € Pathid and the path pth leads from the environment)}

representing the routes between a system and its environment. a
Definition: the set

Routes = | JRoutes,, U Routes,,,
m € Modld

is the set of all routes in the system. O

If there is a route leading from basic process X to basic process Y in the module m, then the pair
(X,Y) is in the set Routes,, (and by definition also in the set Routes). Similarly, if there is a route
leading from basic process X in module m to the path p (or in the opposite direction) then the pair
(X,p) (or (p,X)) is in the set Routes,,. In terms of SDL, the set Routes,, represents the SDL signal
routes in a module m. In terms of TTCN, the set Routes,, represents the relation between an
abstract tester and its environment expressed in terms of PCOs.

Definition: route function, to each module identified by m € Mod/d there is also associated a route
function r,, such that

r.. : Routes,, — 259Term’ U{le)
O

If (X,Y) eRoutes,,, then |s|er,(X,Y) means that a signal sig with Intr(sig) =|s| may be
conveyed by the route (X, Y). The route function r,,,(X, Y) for a module m, defines the signals that

may be conveyed from X to Y. This models the SDL signal identifier set associated to signal routes,
which specifies the sorts of the signals that may be conveyed by the signal route. In TTCN, a route
function models the relation between an ASP or PDU and a PCO type.

NOTE: Every route may always convey an undefined signal in case of TTCN.
5.3 Basic process

A basic process results from the syntactical transformation of an SDL process, an SDL procedure or
a TTCN abstract evaluation tree. A basic process is defined over a Basic Process Algebra (BPA) that
consists of a set of events and a set of operators. The events are used to represent SDL actions and
TTCN statements. For example, the SDL action setft, s/ and the TTCN operation START T (S) are
represented in the BPA by the event setft, s/. In some cases an SDL action or a TTCN statement is
represented as a sequence of events in the BPA. The operators in the BPA are event prefixing and
choice. The operators are used to reflect the structure of SDL process graphs and TTCN abstract
evaluation trees as a basic process.

Page 29
ETR 071:1993

5.3.1 States of a basic process

The set of states of a basic process, denoted by BProc, consists of all basic process expressions
which can be derived from the following grammar:

Pi=nil|eP|P+P|PBP

where P is a basic process, e is an event, and ";", "+" and "®" are operators of the BPA. The
terminal symbol ni/ is used to denote a basic process that cannot perform any actions.

A declaration D of a basic process is defined as:

D : BPid — BProc x Inst X Par x (Var X Term(Var))*
where:
Inst=NxN,,
Par =Var" xVar"
and \7’(x, t) € (Var X Term(Var)):x eVar, =t e Term, (Var) At #error

If the declaration D of a basic process X is:
D(X) = (P, (init, max), (%1, s X)s V1s over v) (21, 1), s (20)

then, in the case of SDL, P € BProc is the representation of an SDL process graph. init is the initial
number of process instances and max is the maximal number of simultaneously existing process
instances. If X is an SDL procedure, /nit is always zero and max is always ©as an SDL procedure
can be called an infinite number of times. The parameters x; are call-by-reference parameters, y; are
call-by-value parameters, and (z,-,t,-) are tuples of local variables and data terms. Data term ¢; is the
initial value of local variable z;. For an SDL process declaration the tuple (x,,‘..,xk) is empty as call-
by-reference parameters cannot be used in SDL process declaration.

In the case of TTCN, P € BProc is the representation of a TTCN abstract evaluation tree. /nit and
max are always 1. The tuples (xy,...,x;) and (yy,...,y,,) are empty because for the test case root
tree no parameters are defined and all attached trees have been expanded. The tuple
((z,,t,),...,(z,,,t,,)) are local variables e.g., the pre-defined variable R which holds the preliminary
verdict.

5.3.2 Events of a basic process

The events in the BPA are of three categories: SDL specific events, TTCN specific events and
events that are common to SDL and TTCN. The SDL events, €gp;, are events that are used to

represent SDL specific operations, /.e. represent operations that occur only in SDL. Similarly, the
TTCN events, €77¢y, are events that are used to represent TTCN specific statements. Operations
and statements that occur in both SDL and TTCN are represented as common events, £cymmon- 1he
events £z a basic process can perform are defined as:

£p =€gp; YETTCN Y ECommon
where

espy = {input(s), save(ss), create X(ty,...,t,), output(s) tolpid), output(s) tolpid) via r,
call Xtvy,...,v)M(ty,...,t,), return }
erreny = {input(s) [btl, input(s) via p [bt], read(v, s}, otherwise p [bt]}
Ecommon = {Stop, v :=t, [bt], set(t, s), reset(s), output(s) via r}
and
s € SigTerm(Var)
ss € SigSort
V,Vy,..., v, €Var
t,ty,....t, € Term(Var)

Page 30
ETR 071:1993

bt e TermBOO/ean(Var)
pid € Varp/d

r € Routes
p € Pathld

X € BPld

The names of the events indicate to which operations or statements they correspond. For example,
the event input(s) in egp,; is used to represent the SDL action /nput s. The event input(s) via p [bt]
in errey is used to represent the TTCN Receive event p?s [btl.

5.3.3 Operators in the BPA

There exists three operators in the BPA: ”;”, "+ " and "®". The operator ",;" denotes sequential
composition, e.g. if P = e;; P’, the basic process P performs event e, before it can behave as
specified by P’. The operators + and @ respectively denote a choice and a priority choice in a basic
process. If P = e;; Q + e, R then process P may perform event e; or event e, and then behaves
like either Q or R. If both events are possible, then the selection of either e, or e, is made non-
deterministic. If P =e;;Q @e,;R then process P may perform event e, or event e, and then
behave like either Q or R. If both events are possible, then P performs e,, i.e. e, takes priority over
e,.

The reason for having two different choice operators in the BPA, is that there is a difference in how
choices are resolved in SDL and TTCN. The +-operator is used to represent the SDL decision action
and the selection of an input in an SDL state, while the @-operator is used to represent the
selection of an event line in a set of alternatives in TTCN.

5.3.4 Example

This example illustrates the transformation of an SDL process and a TTCN behaviour tree into a
basic process definition. The SDL process graph in figure 6 is represented in the CSR as

p(sav) = (P, (1,700), ((), O), (G, L))

where

P::=i:= 1, outputfal) via C; S71
S7 ::= Unputlb); i ;=7 + 1); ST} + linputfc); output(d(i}) via C; stop; nil)

Page 31
ETR 071:1993

Process SRV(1, 100) <——>
DCL i integer;

i = i+1: d(i)

R

Figure 6: An example of an SDL process graph

As another example, the TTCN test case in table 1 is represented in the CSR as:

p(rree _£x) =(p, (1,7),((), O), ((finat, 1,)))
where

P .= outputfcr?) via L;
linputfcc1) via L [truel;
output(dtr1} via L;
(input(dti1) via L [true];
output(dscri) via L; final : = pass; stop; nil)
@ (inputldsci1) via L [truel; final : = inconc; stop; nil)))
@ (input(dscil) via L [true]; final : = inconc; stop; nil)

Table 1: An example of a TTCN Test Case

Test Case Dynamic Behaviour

Test Case Name: TREE_EX

Group: group

Purpose:

Default:

Comments:

Nr | Label Behaviour Description Constraints Ref Verdict Comments
1 L | CONNECTrequest CR1
2 L ? CONNECTconfirm CcC1
3 L | DATArequest DTR1
4 L ? DATAindication DTI1
5 L ! DISCONNECTrequest DSCR1 Pass
6 L ? DISCONNECTindication DSCi1 Inconc
7 L ? DISCONNECTindication DSCI Inconc
Detailed Comments:

Page 32
ETR 071:1993

5.3.6 Semantics of a basic process

The semantics of a basic process is given by a labelled transition system

B =(BProc,£B,————>B)

where ——pg is the transition relation associated with the set of inference rules given below.

’

Each rule is of the form % C stating that if b’ is a transition in B then b is a transition in B

provided that side-condition C holds.
5.3.5.1 Inference rule B 1

A basic process consisting of a sequence of events can always perform the first event in the
sequence.

Let e eeg and P € BProc and e; P a basic process

e;P—=—gP
A transition inferred from this rule models the behaviour when an SDL process instance executes an
action of a transition, or a TTCN tester executes a statement of an event line, or performs an
assignment of a verdict.

5.3.5.2 Inferencerule B2 and B 3

If it can be inferred that a basic process in a choice expression can execute an event then the
choice expression may also be resolved by execution of this event.

Lete eegand P,P’,Q,Q" € BProc

P—2—spP’

P+Q—2—pP’
and
Q—2—pQ’

P+Q—25pQ’
The +-operator is used to model the structuring of an SDL process graph when using the decision
or the state construct. A transition inferred from these rules models the behaviour when a decision
is made or an input is performed.

5.3.5.3 Inference rule B4 and B 5

In a priority choice expression if it can be inferred that a basic process can execute an event then
this event can also be executed in the choice expression.

Let e eeg and P, P/, Q,Q" € BProc

P—2—pP’
P®Q—2—pP’

and

Page 33
ETR 071:1993

O—E—HBO,
P®Q—25Q7

The @-operator is used to model the structuring of a TTCN behaviour tree at the different levels of
indentation.

At the basic process level the behaviour of a basic process is the same with respect to the +- and
@-operator as the prioritising of events is dependent on information in the environment of a basic
process. The full semantics for the @-operator is defined at the process instance level.

54 Timer process
A timer process is used to model the handling of SDL active timers and TTCN running timers.

5.4.1 States of a timer process

A state of a timer process consists of an ordered finite sequence of active timers, Timers™. The first
timer in the sequence is the timer that is to expire next. Timers are identified by the interpretation of
a signal ground term specified when the timer was activated.

5.4.2 Events of a timer process

The set of events ¢ a timer process can perform is defined by:

e7=Start Y Slisop W Sloxpired 3 Request |4 {notexpired'}
where

Start = (Time’4 xSigTermA)

Shistop = SigTerm*™

Slexp,,ed = Sig Term*

Request = (Time A x SigTermA)

An event (t,s)eStart is denoted tstart(t, s). The event models the start of a timer. An event
si € Slystop 1 denoted tstop(si) and represents the stopping of the specified timer. An event
Si € Sloxpireg 1S denoted expired(si) and models the expiration of the specified timer. An event
(t,si) € Request is denoted requestlt, si). request(t, si) models the request of the elapsed time since
the specified timer was started. Finally the set {notexpired} represents the event that no timer is to
expire, and is denoted notexpired.

5.4.3 Semantics of a timer process

The semantics of a timer process is given by a labelled transition system:
T = (Timers*,er,——n)

where ———7 is defined by the inference rules given below. Each rule is of the form ? C stating

that t is a transition in T provided that condition C holds. © € Timers™ will be used to denote the
state of a timer process, and whenever (8,e,0’) e ——7, the notation ®—2—57 @’ is used. In

the definition of the rules the function /nsert is used to insert a timer in a sequence of timers. The
function is defined such that the list is always sorted with the timer to expire next as the first
element of the list and is defined as:

insert : Timers x Timers "™ — Timers ™

Page 34
ETR 071:1993

insert(t, ()) i (t)

insert((ty, to, si)(ts, tg, 5i")::0) ;-
ty <ty — (3, tg, si")::insert{(ty, ty, si), O)
ty 2ty = (t7, to, Si).'.'(fg, ty, si /)@

The function fifter; is used to remove all occurrences of timers, identified by the interpretation
si =||st| of some signal ground term st, within a sequence of timers and is defined as:

filtery : SigTerm® x Timers™ — Timers*

fitterr(z, () :— ()

filterr(s/, (1’1, t, SI'/).'.' @) e
si =si"— ﬁ/terT(si, (~))
si #si’ —(ty, tp, si’): :filtery(si, ©)

NOTE: Even if this function is defined such that every occurrence of a specific timer is
removed in the current model it is the case that there is at most one occurrence
of a timer in the list.

Finally, the predicate e :Timers™ is used to determine if a timer is to expire and is defined as:

e(()) = false .

(() (4, 1 s)) true if time 2 t,
e\’ 4 4 / = . .
1-°2 false if time <ty

where time is the current time.
5.4.3.1 Inference rule T 1

A timer process may always start a timer. The result of the event is that all occurrences of active
timers of the specified timer are removed from the timer list and then the timer instance is inserted
in the list.

Let ¢ € Time” and si ESigTermA

o tstertltsi) o,

where @’ = insert((t/'me, t, si), fi/ter;—(si, @)) .

A transition inferred from this rule models the behaviour of a set timer action performed in SDL or a
start timer event performed in TTCN.

5.4.3.2 Inference rule T 2

An active timer may be removed from the sequence of active timers. This occurs when the timer
process perform the event tstop(si). The result of the stop timer event is that all occurrences of
timers identified by s/, are removed from the list of timers.

Let si e SigTermA

Page 35
ETR 071:1993

e tstop(si) e
where O’ = filtery(si, ©).

A transition inferred from this rule models the behaviour when a reset timer action is performed in
SDL or a cancel timer event is performed in TTCN.

5.4.3.3 Inference rule T 3

A timer process may provide information about the amount of time elapsed for an active timer.
When the requested timer is not active the elapsed time value is O.

Let t € Time” and si eS/'gTerm'4

e request(t,si)

76
~ {t/’me ~t, if 3tim =(t;, ty, 51):0 = @::tim: : ©”
where 0 otherwise

A transition inferred from this rule models the behaviour of a timer process when a TTCN tester
performs a read timer event.

5.4.3.4 Inferencerule T 4
A timer process may perform the event expired(si) when the first timer in the timer list is to expire,
i.e. the predicate e is true. The result of the event is that the expired timer is removed from the list

of active timers.

Let s/ € SigTerm” and (4,5, si) € Timers

e(0::(t1,12.5/))

expired! (si)

0::(ty,t2,5i) 7O

A transition inferred from this rule models the behaviour of the timer process when a timer in SDL
or TTCN expires.

5.4.3.6 inference rule T b

A timer process may perform the event notexpired when the first timer of the timer list is not to
. expire, i.e. the predicate e is false.

—,e(@)

e notexpired 7O

A transition inferred from this rule models the behaviour of the timer process when the local time of
a process instance is updated.

Page 36
ETR 071:1993

5.5 Input port process

The input port process models the behaviour of an SDL input port and the behaviour of the input
queue of a TTCN tester.

5.5.1 States of an input port process

An input port process consists of two queues of signals, denoted by 0 and ¢’. The queue O is
termed /nput queue and the queue o’ is termed saved signals queue. The latter queue is used to
hold all saved signals.

The state of an input port process is an element in the set

IProc = {(U, oo, 0" € Sigl}

5.5.2 Events of an input port process

The set of events an input port process can perform is defined by:

A

& =AU SiGdeliver, p Sig timeout “ SigSor Lpreserve w SigTerm filter

where
A = Sig eceive Y Sildeliver
Sigreceive = Sig 1
Si9detiver = Sitimeout =519 1
Sigde/,-ve,,p = (Sigl xPath/d) ,
Sig preserve = SigSort

An event sig € Sig,...ive IS denoted by receive(sig). receive(sig) models the reception of a signal by
an input port process. An event sig € Sig .o, 1S denoted by deliver(sig). deliver(sig) models the
delivery of a signal to a process instance. An event (sig, p) € Siggeliver, p 1S denoted by deliver(sig,

p). deliver(sig, p) models the delivery of a signal conveyed by a particular path process to a process
instance. An event Sig € Sigmeour 1S denoted by timeout(sig). timeout(sig) models the delivery of a

time-out signal to a process instance. An event s’ & SigSort,qsoye iS denoted by preservefs’).
preserve(s') models the saving of a signal of sort s’ in the saved signals queue. Finally, an event

sf eSigTerm‘f‘}/te , is denoted by filter/fsi). filterfsi) models the deletion of signals from either the

input gqueue or the saved signals queue.
5.5.3 Semantics of an input port process

The semantics of an input port process is given by a labelled transition system
/= (/Proc, £, ———)/)
where ——; is the transition relation associated with the set of inference rules given below. Each
inference rule is of the form — C stating that 7 is a transition in | provided that side-condition C
/

holds. (o, cr’)e/Proc shall be used to denote a state of an input port process, and whenever

((0, 6%, e,(67, 67)) e —/ this is stated as (g, 67) —2=—/(c”, 7).

In the definition of the rules the function fifter; is used to remove every occurrence of entries
identified by si € SigTerm™ from a queue. fifter, is defined as:

filter, : SigTerm” xSig’, — Sig’,

Page 37
ETR 071:1993

fitter(si, ()): ()
filter,(si, (si’, pid, pid’, p)::):—
si=si"— f/'/ter,(si, O’)
si #si’ = (si’, pid, pid’,p): : filter;(si,)

In the following inference rules let (0', a’) € /Proc.

5.5.3.1 Inference rule | 1

An input port process can always receive a signal. The reception causes the signal to be appended
to the input queue.

Let sig € Sig

receive(sig)

(0', o") /(sig:: o, o")

A transition inferred from this rule models the behaviour of an SDL input port or a TTCN input
queue when a signal instance or a message is enqueued.

5.5.3.2 Inference rule | 2

An input port process can always deliver the first signal from the input queue. After removal of the
delivered signal the saved signals queue is inserted in front of the input queue.

Let sig € Sig

(o sig, o) —2eerls) , (5..67, ()

A transition inferred from this rule models the behaviour of an SDL input port when a signal
instance is consumed.

5.56.3.3 Inference rule 1 3

An input port process can always deliver a signal from the input queue which has been received
from a particular path process. The first such signal from the input queue is delivered.

Let sig € Sig | and p € Pathld

Path(sig) =p
detiver(sig, p) (0::0%::07, () Vsig” € o’: Path(sig’) # p

(0::sig::0%, 6”)

A transition inferred from this rule models the behaviour of a TTCN tester when a message is
consumed from a PCO queue.

5.56.3.4 Inference rule | 4

An input port process can always deliver a time-out signal. A signal from the input queue with the
undefined path identifier is delivered.

Let sig € Sig

timeout{ sig) (o::0%::07, <>) Path(sig) = Ly,

(0::sig::07,67)

Page 38
ETR 071:1993

A transition inferred from this rule models the behaviour of a TTCN input queue when a time-out
message is consumed.

5.5.3.5 Inference rule | 5
An input port process can always move a signal from the input queue to the saved signals queue.

Let sig € Sig and s’ € SigSort,

- Intr(sig) € SigTerm”
(o::sig,0”’) lef&e(s—)——)/ (o,sig::0") °

A transition inferred from this rule models the behaviour of an SDL input port when a signal
instance is saved.

5.56.3.6 Inference rule | 6

A signal can always be removed from the input queue and saved signals queue.

Let si € SigTerm’4

filter(si)

(0', o./) /(O-”I O.///)

”r

where ¢” = filter;(si, 6) and o = filter,(si, ¢”).

A transition inferred from this rule models the behaviour of an SDL input port when a reset timer
action is performed or of a TTCN input queue when a cancel timer event is performed.

5.6 Process instance
A process instance models the behaviour of an SDL process instance or a TTCN tester.
5.6.1 States of a process instance

A state of a process instance is an element of the set

Proc = {(n, (0,0, @>}n e (BProc x Env x Sto)", (6, 6”) € IProc, © € Timers*} u{_Lp,-}

A process instance is modelled as a tuple <7r,(a, o), @>, where 7 is a sequence of basic processes,

each associated with an environment and a storage. (0', o") is an input port process state and @ is a
timer process state. Lpi denotes the undefined process instance.

The sequence of basic processes is introduced to model the procedure call mechanism in SDL.

The environment and the storage of a basic process is comprised of the functions € € Env and
p eSto. The domain of € for a process instance pi € Proc is comprised of the set of variables
declared for the SDL process or TTCN test case in Spec together with the following set of
predefined variables:

self contains the process instance identifier of p;

parent contains the process instance identifier of the process instance that created
p;

offspring contains the process instance identifier of the most recently created

process instance;

Page 39
ETR 071:1993

sender contains the process instance identifier of the sender of the signal most
recently consumed by p;

now contains the local time of the process retrieved from the global clock time;

active; for each signal instance si € SigTerm” a variable active,; contains the value

true if there exists an active timer identified by s/ and fa/se otherwise.

The variables are defined over the domains: seff, parent, offspring, sender € Varp,y, now € Varg,,
and activey; € Varg,,joan-

The notation ¢ [x - Joc] is used to denote the environment equal to £ except for the mapping of
variable x to location foc. ¢, denotes the undefined environment. The notation p [/oc - a] denotes
the storage equal to storage p except for the mapping of location /oc to the value a. The undefined
storage is denoted by p,. The notation m::P., is used to denote a sequence of basic processes

where basic process P associated with environment € and storage p is the first element in the
sequence.

5.6.2 Events of a process instance

The set of events £p, a process instance can perform is defined by:

gp) = AUCreate U{t}

where
A = Receive Y Output W Output,,
Create = 4 Create x
X &BPId
and

Receive = Sig |
Output = Sig
Output,;, = Sig x Routes

Createx = ({X} x(TermA\)*J

An event sig € Receive is denoted by receive(sig). receive(sig) models the reception of a signal by
the process instance. An event sig € Output is denoted output(sig). output(sig) models the sending
of an explicit signal. An event (sig, r) € Output,;, is denoted by output(sig) via r. output(sig) via r
models the sending of an explicit or implicit signal via a specific route. An event
(X,ay::...::a,) € Createy is denoted by create Xla,, ..., a,). create X{a;, ..., a,) models the
creation of a process instance. Finally, T denotes an internal event not observable in the
environment of the process instance.

5.6.3 Semantics of a process instance

The behaviour of a process instance cannot generally be defined independently of other process
instances in the same module process due to the possibility of revealed variables. Information about
the values of revealed variables are needed to determine the transition relation of a process
instance. Therefore the concept of module storage is introduced.

A module storage of a module process m is a tuple <Pp,~d1,...,Pp,-d" > Ppid, € Proc. A module storage

is indexed by process instance identifiers pid; € ModPid,,. Intuitively, a module storage determines

the state of all process instances in the same module process. The set of all module storages
ModStor,, of a module process m is defined as:

ModStor,, ={(Pp,-d7, e +Poid, V|Poia, € Proc, pid; eModPid,,,}

Page 40
ETR 071:1993

The set of all module storages is defined as:

ModStor = 4 ModStor,,
m & Modld

The following notation is introduced to deal with module storages. For ms € ModStor,
pid € Pldg, ., pi € Proc,€ € Env, and p € Sto.

ms[pidl——> pi] denotes the module storage equal to ms except for the process instance
indexed by pid which has been updated by process instance pi.

ms(pid) denotes the process instance indexed by p/id in module storage ms. If there

is no process instance p/ with process instance identifier pid in ms then
ms(pid) is undefined.

mse,,v(pid) denotes the environment &€ of the process instance indexed by pid in
module storage ms.

mssto(p/'d) denotes the storage p of the process instance indexed by pid in module
storage ms.

ms,, (pid) and msg,(pid) are undefined if ms(pid) is undefined.

The semantics of a process instance is then defined by the extended labelled transition system

Pl = (Proc, Epj, —P1, ModStor)

The transition relation ———-ap/g(ModStorxProc)xeP,x(ModStorxProc) ranges over tuples
composed of a module storage and a state of a process instance, and events. Whenever

((ms, p),e,(ms, p’)) € ——p; this is denoted by msi«p —2 5pp’. This notation is used to stress

the fact that the behaviour of a process instance is determined with respect to a fixed module
storage. Assuming a fixed module storage is reasonable as:

. process instance p does only change its local variables, and hence module storage ms does
not change with respect to values of revealed variables;

. no other process instance in the module storage concurrently performs an event. The
concurrent execution of process instances in a module is modelled by interleaving of their
events;

. ———pf does not define how a module storage change due to events performed by process
instance p;

. finally, the behaviour of a process instance can be determined in every module storage

context even if knowledge about the other processes in the module makes it possible to
exclude some of these module storage contexts. At the module level the behaviour is
restricted to include only the behaviour possible taking into account the restrictions due to
mutual dependencies of processes within the module.

The generic structure of an inference rule is given as:

P—2 5P (0,0)—2—/(0"0") O— 10

c
ms 1— <n'_- P, (0,07, @> L/ TN <”-’-’Pg",p', (a7, 67), @,>

Page 41
ETR 071:1993

stating that <7r::P8,p,(cr, o), @> Jﬁ—)p/<7c::P£’f,pz,(o”, a”), (~)’> is a transition in Pl derivable from

module storage ms € ModStor, provided that P—S 5 P’ is a transition of the basic process P
and (o, 0)—2—/(c” o
that the condition C holds.

777

} is a transition in | and O®—2+ 576’ is a transition in T, and provided

In a basic process the priority choice operator @ is used to define the selection among a set of
TTCN events. The full semantics of this operator can be defined only at the process instance level.
So the following meta rule applies for all inference rules defined below which includes a transition of
the basic process as part of the premise. Let the structure of a basic process be P =Q @(eb;P’)

and ey,,e; €€g and e, e,

p €Epr

P—2 ppP’ (0,0)—2—(070") 6—sr0’

ms % <71:: :Pep, (0,07, @> —%0 p <7t.'.‘P£’/,pr, (67, 067), @’>
where
e, #[bt] = —.(O — % 550" A(0, 0)—2—/(07, 6") A O—C 1 @’)

[b1]

C=Vej:
’ e, =[bt] = ﬁ(0—>3 Q’ Ay =true)

Q—2t 55 Q" is a transition of the basic process Q (part of P). The transitions of the input port
process and the timer process are optional.

Intuitively this rule defines that a process instance can only perform the event &, if it cannot
perform an event derived from Q.

Throughout the rest of this subclause let P, P’ e BProc, (o, o7), (07, 67) € IProc, ©, ®’ € Timers",

£, e’ €Env, p,p’ € Sto, now € Varg,,, and time € Time”.

5.6.3.1 Inference rule Proc 1

A process instance performs an internal event when the local time now is updated because its value
is less than the current time value of the global clock and no timer has expired.

) notexpired O

no < time
ms |_<”""Pe,p' (o, 07, @> L>/=/<7r::P£,p', (0,0, @> vl

where p’ = p[e(now) > time].

5.6.3.2 Inference rule Proc 2

A process instance performs an internal event if a timer has expired and the value of variable now is
less than the value time of the global clock.

Let sig eSig with sig =(si, pid, pid, ipth) where si € SigTerm”, pid :p(e(self)) where
self € Varpyy, and L, denotes the undefined path.

receive(sig) expired(si) e’

(O-, O-’) /(O,//,O.///) @

ms |—<7r::P8,p, (0', o"), @> —T——>p/<7z::Pe,p,

no < time
(0'”, O'”’), @/> " VV”EI P

A transition inferred from this rule models the behaviour when an SDL active timer expires and a
signal instance is put into the input port or when a TTCN running timer expires and is added to the
time-out list.

Page 42
ETR 071:1993

5.6.3.3 Inference rule Proc 3

A process instance performs an internal event when a timer is started.

A and st eSigTerm(Var), and let ti =|dt] where

Let si=[st|, . where sicSigTerm ms, £, p

ti € Time* and dt € TermT,-me(Var), and activey; € Varg,pioan

set(dt, st) ﬁlter(si) tstart(ti,si)

p 5P (0,0) (0,67 ©

ms |—<”""P8,p' (0, 0), @> —T—>P/<7l-'-'Pe',p', (67, 07), @’>

TO

/
lnowf ., p =time

where p’ :p[e(actives,-) - true].

A transition inferred from this rule models the behaviour when an SDL process instance sets a timer
or a TTCN tester STARTs a timer.

5.6.3.4 Inference rule Proc 4

A process instance performs an internal event when a timer is reset.

Let s/ =|st] where si € SigTerm™ and st e SigTerm(Var) and let actives; € Vargopjean

ms, &, p

reset(st) filter (si) tstop (si)

P sP’ (0,0 (6”7, 67) ©

ms l><n'.'.P£,p/ (O‘, O"), @> —T>p/<7z:::P£’, o’ (o"’, 0'”’), @’>

70’

[now],. , =time

where p’ = p[e(actives,-) > fa/se] .

A transition inferred from this rule models the behaviour when an SDL process instance performs a
reset of a timer, or a TTCN tester CANCELs a timer.

5.6.3.6 Inference rule Proc 5

The process instance performs an internal event when the elapsed time of a running timer is
retrieved.

Let x € Vargjy,e, t € Time?, and s/ =|st| where si € SigTerm” and st € SigTerm(Var)

ms,&g,p

read(x, st) request(t, si)

P P’ 6 >g O
ms[—<n: :Pg, 5, (0, 07), (.~)> —T>p/<7t::Pg’, s (0,07), (~)’>

lnowf,. , =time

where p’ =p[e(x) - t].
A transition inferred from this rule models the behaviour when a TTCN tester READs a timer value.
5.6.3.6 Inference rule Proc 6

A process instance can always receive a signal that is addressed to the process instance. The
receive event is an observable event.

Let sig € Sig, and self € Varpy,

Page 43
ETR 071:1993

(0., 0./) receIVE(siy) /(0.”, o.///) ”nOMIHE, , = time

ms[—< P p.(0,07), @>__M_9 <7; Py, 5, (67, 057), @> 70(sig) = p(e (selr))

A transition inferred from this rule models the behaviour when an SDL process instance receives a
signal instance, or when a TTCN tester receives a message.

5.6.3.7 Inference rule Proc 7

A process instance performs an internal event when a signal is consumed from the input port
process. The condition for this event to occur is that the interpretation of the received signal and
the input signal corresponds.

Let st =op{xy,..., xm) € SigTermg,(Var) where op’:sy,...,s,, — ss € SigOp, s; € Sort,i =1,...,m,
ss € SigSort and x; €Var, ,i =1,...,m. Let sender € Varpy, activeg; €Vargyyjea, and sig € Sig

P /nput(st) P, (O’, 0") dellver(S/g) I(O' P

ms|—< P, p. (0, 07), @> ——L>p/<n.-.- P . (67, 67), (~)>

4

lnow, , = time

C= 31; e Term,, (Var),i =1,...,m: Hop (PP)“ms’ = Intr(sig)
(sender) > From(sig)
where p” =p| e(x;) - |],

(act/ves,-) — false

A transition inferred from this rule models the behaviour when an SDL process instance performs an
input.

5.6.3.8 Inference rule Proc 8

A process instance performs an internal event when a signal is consumed. The conditions for the
event to take place are that the signal instance to be consumed from the input port process and the
signal term in the basic process corresponds w.r.t. every requirement specified for each parameter
and the Boolean guard shall evaluate to true.

Let st=0p ’(t,, ...,tm) eSigTermss(Var) where op’:sy,....s,, - ss €SigOp, s; €Sort,i=1,....m,
ss € SigSort, t; € Termg, (Var),i=1,....m, sig= (si, pid, pid’, pth) € Sig where sie SigTermA,

pid, pid” € Pld, pth € Pathld, and let sender eVarpy, actives; €Varg,plean, bt € TermBoo,ea,,(Var)
x € Varg,

|now| ., p =time
=true

input(st) via pth [bt] deliver(siy, pth)

BP/ (o. o./) \/(C'”, 0.///)

ms%(ﬂ €, pr (O’ O') O> __9P/<”_-_.ng' s (O'”, 0"”), @>

P

“bt”ms, g, p’
si= “op ’(t1, cer by)“

ms, g, p

E(sender) > From(sig)
where p’ = p| e(x) > si

e(active S,~) > false

Page 44
ETR 071:1993

A transition inferred from this rule models the behaviour when the TTCN tester performs a receive
event guarded by a Boolean expression. The constraint is coded in the signal term of the basic
process.

5.6.3.9 Inference rule Proc 9

A process instance performs an internal event when a signal from a specified path is delivered by
the input port process, provided an optional Boolean term evaluates to true.

Let sig = (si, pid, pid’,pth) € Sig; where si e SigTermA or si =1, pid, pid’ € Pld, pth e Pathld
and bt € Termgeojean(Var)

p otherwise pth [bt] g P’ (0_’ O") deliver(sig,pth) >/ (O'”, O’”’) ||I70WHEIP — time
ms’_<ﬂ:::PE,pl (0,07), @> ——IHP/<7£::P£’Ip, (67, 67), @> 162] s ., , = true

A transition inferred from this rule models the behaviour when a TTCN tester performs an otherwise
event guarded by a Boolean expression.

5.6.3.10 Inference rule Proc 10

A process instance performs an internal event when a time-out signal is requested.

Let st=op ’(t,, ...,tm) ESigTermss(Var) with op”sy,...,s,, »ss€SigOp, s;€Sort,i=1,....m,
ss € SigSort, t; € Terms, (Var),i =1,...,m, bte TermBoa,ea,,(Var). Let sig € Sig and sender € Varpy,
actives,- € VarBoolea,,

input(st) [bt] timeout(sig)

P >B P’ (O-, O./) /(0'”, o.”/) c

ms}— <7'c_~ . PS' P (O-, o"), (9) —T)P/<7t.'.' Pe/, ps (0.//’ 0.///), @>

|no ML, , =time

C=led,, ., =true

Intr(sig) = HOP (GO tm)HmS, £,p

h , ¢(sender) — From(sig)
ere p’ =
v p=p e(actives,-) — false

A transition inferred from this rule models the behaviour when a TTCN tester performs a time-out
event guarded by a Boolean expression.

5.6.3.11 Inference rule Proc 11

A process instance can perform an internal event when the basic process performs a save event
and the input port process preserves the signal.

Let ss € SigSort

p save(ss) Y (O’, O") preserve(ss) \/ (O'”, 0_,,,)

man“ Pe,p, (0, 07, @> —1:'“"9Pl<75-'-'Pg,,p, (67, 067), @>

lnowd, , = time

A transition inferred from this rule models the behaviour when an SDL process instance performs a
save action.

Page 45
ETR 071:1993

5.6.3.12 Inference rule Proc 12

A process instance performs an internal event when the basic process performs an assignment
event.

Let x eVar,, te Terms(Var) for some s € Sort

P X =t 8 P ’
msk< Pe,p. (0,07, (~)> —Tﬁp/<7z::P£’,p', (o, 07), @>

where p’ = p{b ”ths,S p]

[nowd, , =time

A transition inferred from this rule models the behaviour when an SDL process instance performs an
assignment action or a TTCN tester performs an assignment (from an assignment list}.

5.6.3.13 Inference rule Proc 13
A process instance may perform an internal event when a Boolean term evaluates to true.
Let bt € TermBoo,ea,,(Var)

[1]

P10 sp lnow, , = cime

ms|—< Pe,p. (0,07, @> ——>p/<7z P . (0, 07), @> |62], s, ., = true

A transition inferred from this rule models the evaluation of a decision construct in SDL and the
evaluation of a qualifier in TTCN except in the case of qualifiers used as guards in send, receive,
otherwise, and time-out events.

5.6.3.14 Inference rule Proc 14

A process instance can perform an internal event and become the undefined process instance,
denoted L,; when the basic process performs a stop event.

P ——>s"”’ 8 nil

no =time
ms|—< Pe,p. (0,09, @>—T‘—)P/-Lpi vl

A transition inferred from this rule models the behaviour when an SDL process instance performs a
stop action or the behaviour when a TTCN tester stops execution after assignment of a final verdict.

5.6.3.15 Inference rule Proc 15
A process instance can perform a create event when the basic process performs a create event and

there are less than the declared maximum number of existing process instances with basic process
X in the module storage ms.

Let D(X) =(O, (init, max), ((),(y,,..., v) (27, 87), .. (2,0, 8,)))) be the declaration of basic process

X. Let t/eTerm(Var),i=1,...,m and & €Ai=1..,.m where a =t _. , and
y; €Varg =t/ e Termg(Var), i =1,...,m for s € Sort
P create X(t,’, ver t,;,) Y “nov‘/“glp =time

ms|_< Pe. ps 0. o./), @> create X(a;, ..., a,) PI<7'7-' "Ps,, s (O’, 0"), @> #priy < max

Page 46
ETR 071:1993

where p’ p[(offspr/ng)|—> unique /A()} with unique!A() an operation generating a unique unused
pid value and priy = {p/'d € BPP/DX'ms(pid) =p=2p# _Lp,-}.

A transition inferred from this rule models the behaviour when an SDL process instance successfully
creates another SDL process instance.

5.6.3.16 Inference rule Proc 16

A process instance can perform a create event when the basic process performs a create event and
the declared maximum number of process instances with basic process X exists in the module
storage ms.

Let D(X) =(O, (init, max),((),(y,, vees ym),((27,t1),...,(z,,,t,,)))) be the declaration of basic process
X. let t/eTerm(Var)i=1,...m and @& e€Ai=1...m with &=[, . and

y; eVarg >t/ € Terms(Var),i =1,...,m for s € Sort

p create X(I,’, e t,;,) sg P’ ”no Wﬂs, p =time

ms|‘< Pe,p. (0, 07), @> create Xa,s o) ‘P/<7t:.-P€’,p»,(0', ¢’), @> #prix =max

where p’ p[(offspring) — NuI/A()] with Nul() an operation generating a specific pid value and

prix :{pld EBPPIDx|mS(pid) =p=p# ‘Lpi}'

A transition inferred from this rule models the behaviour when an SDL process instance performs an
unsuccessful attempt to create another SDL process instance.

5.6.3.17 Inference rule Proc 17

A process instance performs an internal event when the basic process performs a call event.

Let D(X) = (O,(O, 00), ((x,, e X) (V1reer vy) (21, 7), s (2t)))) be the declaration of procedure

X. Let x{ €Var,i =1,...,k and t/ € Term(Var),i =1,...,m with x; € Var, = x/ €Var;,i =1,...,k and
y; €Var, = t; € Termy(Var),i =1, ..., m for s € Sort

call X(x,’, veer Xg)(t,’, ey t,’n)

P T 8 P’ |now, , =time
ms]—(P: . (0,07, @> ——>p/<7r::P€’,p::O€,, (0, 07), @> ’

where

X, elxf)i=1,..,k
g’ =¢ Y H/j,j:I,...,m

Zp |—>lh,h :7,...,n

/;H

/

¥

’
, ms,£,p

In & it h=1,..n

ms, g, p’

This transition causes the insertion of the called basic process as the new first element of the
sequence of basic processes. The environment ¢’ for the called procedure maps call-by-reference
parameters, call-by-value parameters, and local variables to locations. The storage p” maps locations
assigned to call-by-value parameters and local variables to values.

Page 47
ETR 071:1993

A transition inferred from this rule models the behaviour when an SDL process instance calls a
procedure.

5.6.3.18 Inference rule Proc 18

A process instance can perform an internal event when the basic process performs a return event.

P return B P ’

ms|—<7r::O€,p::P£f, (0,09, @> —T—>m<n: :Qg, . (0, 67), @>

lnow,, , =time

The storage p’ is preserved such that value assignments to call-by-reference parameters are
preserved.

A transition inferred from this rule models the behaviour when an SDL process instance returns
from a procedure.

5.6.3.19 Inference rule Proc 19

A process instance can send an implicit signal via a specified route when the basic process
performs an output-via event. Sending an implicit signal is an observable event.

Let st e SigTerm(Var), r eRoutes, sig €Sig with sig =(||st” (e(seff)), Lpias J_pt,,) and

ms, g, p' !
self e Valp/d

outputist via r
P () 38 P 4

P S
(0', 0"), @> output(sig) via r ‘PI<7C-' PL

ms|—<7r::P > H”OWHS,,) = time

€, pr (0', O'/), e

A transition inferred from this rule models the behaviour when an SDL process instance performs an
output-via action or when a TTCN tester performs a send event.

5.6.3.20 inference rule Proc 20

A process instance can send an explicit signal to a specified process instance when the basic
process performs an output-to event. Sending an explicit signal is an observable event.

Let st € SigTerm(Var), p € Termpy(Var), sig € Sig with sig =(||st||ms . p,p(s(self)), p||ms e p’ _Lpt,,)

and self Eval'p/d

output(st) to (p)

P >g P’

(O', O./), @> ___D.M(ig__)__)Pl<n: :Ps’, p,

mS|><7t.'.'P > ”nowﬂa,p =tume

e, (0,07, 0

A transition inferred from this rule models the behaviour when an SDL process instance performs an
output-to action.

5.6.3.21 Inference rule Proc 21
A process instance can send an explicit signal to a specified process instance via a specific route
when the basic process performs an output-to-via event. Sending an explicit signal is an observable

event.

Let ste SigTerm(Var), pE Termp,d(Var) . r € Routes, sig € Sig with

sig = (||st||ms’ e’ ple(sefr)),

Plims, o, pr Loth) and self & Varp

Page 48
ETR 071:1993

p output(st) to (p) via r 58P

ms[__ <7‘E: . Ps, » (0., O"), @> output(sig) via r ‘P/<7t-' -'Pe/, pr (0., 0./)’ @>

”nowﬂslp = time

A transition inferred from this rule models the behaviour when an SDL process instance performs an
output-to-via action. In CCITT Recommendation Z.100 [1] no requirement exists on the existence of
a receiving process instance at time of sending.

Page 49
ETR 071:1993

5.7 Module process

A module consists of a number of process instances which perform events in an interleaved order
and communicate asynchronously. A module is used to model the behaviour of a block in SDL or an
abstract tester. In the case of TTCN there is always only one process instance, the TTCN tester,
and there exists only one module, the abstract tester. The interleaving of events is used to model
the concurrent behaviour of process instances in the module, and asynchronous communication is
due to the fact that process instances do not consume received signals instantaneously.

571 States of a module process

The set of states of a module process is defined over the set of module storages as defined in
subclause 5.6.3.

5.7.2 Events of a module process

The set of events a module may perform is defined by the set:

EM = Siinput S S/goutput & {T}
where

Siginput =(Sig . x Pathid)

Sigoutput = (Sig 4 X Path/d)

An event (sig, pth) € Siginput Models that the signal sig may be sent to a module via the path pth
and is denoted input(sig) via pth. An event (sig, pth) € Sig,,spu: Models that the signal sig may be

sent from a module via the path pth and the event is denoted output(sig) via pth. The event T
denotes an event that is not observable in the environment of a module.

5.7.3 Semantics of a module process

The semantics of a module is given by a labelled transition system.

M = (ModStor, £, ———)M)

where ModStor is the set of states, ¢y, is the set of events and —>wm is the transition relation

associated with the set of inference rules given below. ms € ModStor shall be used to denote the
state of a module, and each inference rule is of one of the following two forms:

mstp—"—pp’

(a) C

ms —2— sy ms’

stating that ms—2 yyms’ is a transition in M provided that condition C holds and
mskp—2—pp’ is a transition of process instance p, derivable from the module storage
ms € ModStor,, of a module m. When this transition is performed, the module changes its state
from ms to ms’ while performing the event e’.

The second form of rule is used to model communication between two process instances residing
inside the same module. Such rules are of the form:

(b) msl-p—=—pp’” ms'tq——-pq’ c
ms —2— sy ms”

where ms, ms’, ms” € ModStor,, are module storages of a module m, related such that
ms’=ms[pidp+—>p’] and ms”=ms’[pidqr—>q’] where pid, and pid, are process instance

identifiers of p and g respectively. This rule states that ms —%——yms” is a transition in M,

Page 50
ETR 071:1993

provided condition C holds, ms}p —e—>P/p’ and ms’}—q—e»p/q’ are transitions of process
instances derivable from the module storages ms, ms’ respectively. When these transitions are

performed, the module m performs the event e” changing its module storage from ms to ms”. ms’
is an intermediate state of module m while performing the event e”. However, an observer of
module process m does not notify this intermediate state, because the event e” is considered to be
atomic.

NOTE: An analogy to the world of micro-processors may be of help to understand the
intuition behind the second form of rule. Assume that /oadfad, reg) is an
assembler operation in the micro-processor M, which loads the contents of the
memory at address ad into the register reg of M. The load operation is defined as
the two micro-code operations enablefad}, which sets up the address bus, and
the micro-code operation readfreg, ad), which copies the contents of memory
address ad into register reg. Before M has started to perform the assembly
operation /oad(ad, reg), it is in state m, and when M has completed the /oad(ad,
reg) operation it is in state m”. Obviously, when M has performed the micro-code
operation enablefad) but before it has performed the micro-code operation
read(reg, ad), it is in a state m” which is not m and which is not m”. However,
since it is not possible to interrupt M while performing the assembly operation
load, the state m’ is not possible to observe as a user of M. This could be
modelled with the rule:

m }_ p enable(ad) o’ m ,l_ q read(reg,ad) g’

load(ad, reg) sm”

where p, p' are the states of the address bus, g, ¢’ are the states of the register
reg, and m, m” and m” are states of M.

5.7.3.1 Inference rule M 1

A module performs an internal transition when communication of an explicit signal between two
process instances {or from and to one process instance) within the module takes place. In order for
the communication to be performed a route capable of conveying the signal has to exist. The
transitions of the involved process instances are performed in different but related module storages.

Let ms, ms’,ms” € ModStor,, where meModld, X,Y €BPld,,, pid; € BPPldy such that
ms(pid,) =py, and pid, € BPPldy, such that ms(pidz) =p, and sig,sig’eSig such that
sig’ e Inst(sig)

uutput(sig) , , receive(sig ’) ,
msl-py ———————pp; ms’kp >PI P .
L 17 n i 2 Intr(S/g) erm(X, Y)
ms ———pyms
where ms’ = ms[pid; — p;] and ms” =ms{pid, - p5].
NOTE: If the communication involves only a single process instance (X = Y) then

po = pf.

A transition inferred from this rule models the behaviour of an SDL block when a process instance
inside the block sends a signal instance using output or output-to to another process instance inside
the same block.

5.7.3.2 Inference rule M 2
A module performs an internal event when a process instance in the module performs an output of

an explicit signal via a specified route but the specified process instance has ceased to exist. The
result of the transition is that the signal is discarded.

Page 51
ETR 071:1993

Let ms, ms’ e ModStor,,, where m € Modld, X,Y € BPId,,, pid € BPPld, such that ms(pid) =p,
and (X, Y) € Routes,,. Let sig € Sig with To(sig) = pid”

output(sig) via (X, Y)

mst-p >prp’ pid’ € BPPldy

ms ——yms’ ms(pid”) = Lp;
where ms’ = ms[pid — p’].

A transition inferred from this rule models the behaviour of an SDL block when a signal instance is
discarded inside the block.

5.7.3.3 Inference rule M 3

A module performs an internal event when a process instance performs an output of an explicit
signal for which no receiving process instance exists.

Let ms, ms’ € ModStor,,, where m € Modl/d, ms(pid) =p and let sig € Sig with To(sig) = pid’

output(sig) ,
—_—
mstp PLP_ To(sig) = pid” = ms(pid’) = L,;

T s
ms ———p ms
where ms’ = ms[pid - p’].

A transition inferred from this rule models the behaviour of an SDL block when a signal instance is
discarded inside the block due to the non-existence of the specified receiving process instance.

5.7.3.4 Inference rule M 4

A module performs an internal event when two process instances communicate via a specified
route.

Let ms, ms’, ms” € ModStor,, where m e Modld, X,Y € BPld,,, pid; € BPPldy, pid, € BPPld, such
that ms(pid,) = py and ms(pidz) =po, and sig, sig’ € Sig such that sig’ e Inst(sig)

output(sig) via(X , Y) receive(sig ’)

spIp{ ms’kpo >PI P23

T
ms ———>pmms”

ms|- py

Intr(sig) € r,,(X, Y)

where ms’ = ms|pid; + p7] and ms” =ms{pids - p3].

A transition inferred from this rule models the behaviour of an SDL block when a process instance
inside the block sends a signal instance using output-via or output-to-via to another process
instance inside the block.

5.7.3.b inference rule M 5
A module performs an internal event when a process instance performs an output of an implicit
signal via a specified route in the module and there exists no process instance of the specified basic

process that can receive the signal.

Let ms, ms’ € ModStor,,, where m € Modid, X,Y € BPId,,, pid € BPPIdy such that ms(pid) =p
and let sig € Sig with To(sig) =Ly

output(sig) via (X, Y)

—Spp’ Intr(sig) erm(X, Y)
ms —"—>ps ms’ Vpid’ € BPPIdy : ms(pid’) =q = q =_L,;

mskp

Page 52
ETR 071:1993

where ms’ = ms{pid — p’].

A transition inferred from this rule models the behaviour of an SDL block when an implicit signal is
discarded for which no receiving process instance exists within the SDL block .

5.7.3.6 Inference rule M 6

A module performs an internal event when a process instance sends an explicit signal to a process
instance in the same module via a specific route, but the route does not lead to the specified
process instance. The result is that the signal is discarded.

Let ms, ms’ € ModStor,,, where m € Modld, X,Y € BPId,,, pid € BPPldy such that ms(pid) =p
and let sig € Sig with To(sig) = pid”’

output(sig) via (X, Y) . , lntr(sig) €Elm (X' Y)
ms{ p - PP i’ ¢ BPPIdy
ms ———pm ms pid’ € ModPld,,

where ms” = ms[pid + p’].

A transition inferred from this rule models the behaviour of an SDL block when an explicit signal
instance is discarded inside the block due to sending the signal via a specific signal route not
leading to the specified process instance.

5.7.3.7 Inference rule M 7

A module performs an output event via a specific path when a process instance sends an explicit
signal to a process instance not within the module. Another condition for this event to take place is
that the signal can be conveyed from the process instance to an associated path capable of
conveying the signal.

Let ms, ms’ e ModStor,,, where m e ModIld, X € BPIld,,,, pid € BPPIdy such that ms(pid) =
pth € Pathld and sig € Sig

mskp M}p/p Intr(sig) € rp,(X, pth)
. Tofsig) £ ModPld,,

output{sig) via pth
ms put(sig) via p -

where ms’ = ms[pid = p’].

NOTE: There may be several paths capable of conveying signal sig, ie.
#{pth' Intr(sig) erm(x,pth)}>7. In this case, the rule states that the path is
arbitrarily chosen.

A transition inferred from this rule models the behaviour of an SDL block when a process instance
inside the block sends a signal instance out of the block using output or output-to.

5.7.3.8 Inference rule M 8

A module performs an output via a specific path when a process instance within the module
performs an output via the path. The condition for the event to take place is that the path specified
can convey the signal to be sent.

Let ms, ms’ € ModStor,,, where m e Modld, X € BPld,,, pid € BPPldy such that ms(pid) =
pth € Pathld such that (X,pth) € Routes and let sig € Sig

Page 53
ETR 071:1993

output(sig) via (X, pth)

>pIp’

mstp
ms output(sig) via pth s ms”

Intr(sig) e r,,(X, pth)

where ms’ = ms|pid - p”].

A transition inferred from this rule models the behaviour of an SDL block when a process instance
inside the block sends a signal instance out of the block using output-via or output-to-via. In the
case of TTCN, the transition models the behaviour of an abstract tester when a TTCN tester
performs a send event.

5.7.3.9 Inference rule M 9

A module may receive a signal from a path if there is process instance capable of receiving the
signal and there exists a route from the path to the process instance.

Let ms, ms’ € ModStor,,, where m € Modld, X € BPId,,,, pid € BPPldy such that ms(pid) =p, let
sig € Sig ; and pth € Pathld

ms I_ p receive(sig) o1 p’
____._.___H R
input(sig) via pth , lntr(S/g) €lm (pth' X)
ms — >M MSs
where ms’' = mslpid — p’l.
NOTE: The signal sig may be an undefined signal, which corresponds to a TTCN

"unforeseen message".
In the case of SDL, a transition inferred from this rule models the behaviour of an SDL block when a
process instance inside the block receives a signal instance from the environment of the block. In
the case of TTCN, the transition models the behaviour of an abstract tester when a TTCN tester
receives a message.
5.7.3.10 Inference rule M 10

When a process instance in a module performs an internal event so does the module.

Let ms, ms’ € ModStor,,, where m € Modld, X € BPIld,,, pid € BPPldy such that ms(pid) = p

mskp——>pp’

ms ———y ms’
where ms’ = ms[pid - p’].

A transition inferred from this rule models the behaviour of an SDL block or an abstract tester when
an internal event is performed by a process instance or a TTCN tester.

5.7.3.11 Inference rule M 11

A process instance in a module may create a new process instance defined over a basic process
which is defined in the module. When the create action is performed the formal parameters of the
created process instance are substituted by the actual parameters. Furthermore, local variables are
created and initialised. The condition for the create to be performed is that the number of existing
process instances over the same basic process in the module is less than the maximal number that
may exist simultaneously.

Page 54
ETR 071:1993

Let ms, ms’,ms” € ModStor,,, where m eModld, X,Y €BPld,,, pid < BPPld, such that
ms(pid):p. If the declaration D of a basic process identified by X is assumed to be

D(x) = (@, (init, max), O, (V1. Vi) (21, 11)se- (2)

create X\ay,...,a
mskp (0 sp1 p’

7 ”
ms ———o>p ms

#priy <max

where ms”=ms {mss’,o (pid) (msé,,v(pid)(offspring)) - (ng,p/, (), ())] , ms’=ms[pid— p’] and
prix = {p/d' € BPP/dX' ms(pid’) =q = q # i,,,-}.

The intuition with the expression ms ”:ms{mss’to(pid) (msg,, (pidYoffspring)) — (Og',p',<>,<>)] is

that the process instance identified by the value of offspring is replaced by the newly created
process instance (Og/lp',(),Q)eProc. The storage p’ and environment & mappings associated

with the newly created process instance (Os',pf, (), ()) are defined as
[self = I]
parent = |,
offspring — /3
sender = I,
now /g

. . . A
activeg; &> I;, si € SigTerm
yi = 1,i=1,..,n

z; 1, j=1,...,m

[1; > msie, (pid)(ms,,, (pid) offspring))]
I2 = msg, (pid){msg,, (pid)fself))
I5 — time

Isj = false, si € SigTerm”

/,"I—>a,',l. =71,..,n

_//f’}—> “t/- ,j=1,....m

where £, denotes the undefined environment and p; denotes the undefined storage mapping.

A transition inferred from this rule models the behaviour of an SDL block when a process instance
inside the block performs a create action, and the create action is successful.

5.7.3.12 Inference rule M 12

A module performs an internal event when a process instance within the module performs a create
action but fails to create a new process instance because the number of currently existing process
instances of the specified basic process equals the maximal number that may exist simultaneously.

Let ms, ms’ € ModStor,,, where m € Modld, X,Y € BPId,,, pid € BPPId, such that ms(pid) =p. If
the declaration D of a Dbasic process identified by X is assumed to be
p(X) =(@, (init, max), (), (V1. Von) (21,11) 2 1))

create X(a,, ...,am)

mstp >p1p’

#prix =max

Page bb
ETR 071:1993

where ms’ =ms[pid — p’] and priy = {pid' € BPPIdX| ms(pid’) =g = g # 1,,,-}.

A transition inferred from this rule models the behaviour of an SDL block when a process instance
inside the block performs a create action and the create action is unsuccessful.

5.8 Path process

A path process is a means to inter-connect two module processes or a module process with the
environment. Two path processes, one for each directi on of communication, models the behaviour
of a bi-directional SDL channel or a TTCN PCO. A uni-directional SDL channel is represented by a
single path process.

5.8.1 States of a path process

A state of a path process is an element of the set:

PathProc = {(pth,) ‘ pth € Pathld, 6 € Sigi}

The intuition is that 6 contains the signals that are currently conveyed by the path process
identified by pth. The reason that a path process may convey an undefined signal is that TTCN
PCOs may convey unforeseen messages.

5.8.2 Events of a path process

The set of events a path process can perform is defined by:

Epath = Siginput ¥ Sigoutput
where
S/ginput = S’gautput =Sig

An event sig € Sigj,,,; is denoted by input(sig). input(sig) models the reception of a signal from a
module process or the environment. An event sig € Sig,,yy: 1S denoted by output(sig). output(sig)
models the sending of a signal to a module process or the environment.

5.8.3 Semantics of a path process

The semantics of a path process is given by a labelled transition system:

Path = (PathProc, Epath s ———Hpath)

where ———pap is the transition relation associated with the set of inference rules given below.
Each inference rule is of the form ? C stating that t is a transition in Path provided that condition

C holds.
Throughout the rest of this subclause let pth € Pathld and 0 € Sigl.

5.8.3.1 Inference rule Path 1

A path process can always receive a signal.

Let sig =(si, pid, pid’, Ly,) with si € SigTerm™, pid,pid” < Pid , and sig” = (si, pid, pid’, pth)

Page 56
ETR 071:1993

(th 9) input{sig) (b si 9) (Spec € SpecSDL) = (lntr(Sig) # -Lsz‘)
pth, 8) ——————patn\pth, sig’: :

The side-condition of the inference rule states that in case of an SDL specification the received
signal s/g cannot be an undefined signal.

The result of the receive event is that the signal is appended as the last element to the sequence of
signals currently conveyed by the path process and that the path process identifier is made part of
the signal.

A transition inferred from this rule models the behaviour when an SDL channel receives a signal
instance or when a TTCN PCO receives an ASP or PDU.

5.8.3.2 Inference rule Path 2

A path process can always emit a signal provided that the sequence of conveyed signals is not
empty.

Let sig = (si, pid, pid”’, pth) with s/ € SigTermA and pid,pid’ € Pld

(nth, 6::sig) —2u2usia) . (pth, 6)

A transition inferred from this rule models the behaviour when an SDL channel delivers a signal
instance or when a TTCN PCO delivers an ASP or PDU.

5.9 System

The system level is the top level of the CSR and is used to model an SDL system and a TTCN test
system.

59.1 States of system
A state of a system is an element of the set:

Sys =Papy, X ... XPapy, XMy X... XMy,

n

where Pay, € PathProc for pth; € Pathld,i =1, ..., k, and Mmj € ModStor for

m; eModld, j=1,...,n. Thatis, a state of a system is a tuple of the states of the path processes

and the states of the module processes in the system. Each state of a path process is indexed with
its path identifier and each state of a module process is indexed with its module identifier. In the
case of TTCN, there is always only one module.

The following notation is introduced for the description of a system state:

s[pth = Pa,m— M] denotes the system state which is equal to s except for the state of the path

indexed by pth which has been replaced by the state Pa and the state of the module indexed by m
which has been replaced by M. Either of pth — Pa or m— M may be omitted.

5.9.2 Events of a system
The set of events a system may perform is defined by:
£s = Siginput W Sigoutput C {T}

where
Siginput = Sig ;

Page 57
ETR 071:1993

Sig output = Sig

An event sig € Sig;,,, models the reception of a signal in the system from the environment. This
event is denoted input(sig). An event sig € Sigoutpyr Models the sending of a signal from the
system to the environment and is denoted output(sig). Events not visible in the environment are
denoted by T

5.9.3 Semantics of a system

The semantics of a system is given by a labelled transition system:

S= (Sys, s, ——93,30)

where Sys is the set of states of a system, g5 is the set of events and ——s is the transition
relation associated with the set of inference rules given below, and s, is the initial system state.
Each rule is of the form:

e e
Papt, —2—spath Pajy, My —m—sp M},

e ’ C
§—=2—g8S8

where either of the premises may be omitted. The rule states that s —2=—»gs’ is a transition of the
system if Pa,, —22 S path Pa,., is a transition of the path process identified by pth € Pathld, and

M,, —Cm 5 My, is a transition of the module process identified by m € Mod/d and the condition C
holds.

5.9.3.1 Inference rule S 1

A system performs an internal event whenever a module process within the system performs an
internal event.

Let M,,, M;,, € ModStor where m € ModId and s,s’ € Sys

M, ———sp M},

T ,
S—8 S
’ _ ’
where s’ =s[m > M},].

A transition inferred from this rule models the behaviour of an SDL system when a block within the
system performs an internal event, or a TTCN system when the abstract tester performs an internal
event.

5.9.3.2 Inference rule S 2
A system performs an internal event when a signal is sent from a module process to a path process.

Let Pa,y,, Payy, € PathProc where pth € Pathld, M, My, € ModStor where m € Modld, s, s’ € Sys
and let sig € Sig

input(sig) output(sig) via pth

Papih —2"" s path Pafe, M

\MMr’n

T
§ ——>3g8’

where s’ = s[pth = Pagy,, me M,;].

Page 58
ETR 071:1993

A transition inferred from this rule models the behaviour of an SDL system when a signal instance is
delivered from a block to a channel, or when a message in a TTCN system is submitted to a PCO
from the abstract tester.

5.9.3.3 Inference rule S 3

A system performs an internal event when a signal is delivered from a path process to a module
process.

Let Payy,, Payy, € PathProc where pth € Pathld, My, , M, € ModStor where m € Modld, s,s’ € Sys
and let sig € Sig |

output(sig) input(sig) via pth

s—"5ss’
where s” = s[pth = Pajy,, m > My,].

A transition inferred from this rule models the behaviour of an SDL system when a signal instance is
delivered to a block from a channel, or when a message in a TTCN system is delivered to the
abstract tester from a PCO.

5.9.3.4 Inference rule S 4

A system performs an internal event discarding a signal when an explicit signal cannot be received
by any module process in the system and the specified receiving process instance is neither a
process instance in the environment.

Let Pa,y,, Pagy € PathProc where pth € Pathld, s, s’ € Sys, and sig € Sig

Papn outpullsio) . n Pa b Tolsig) € ModPld,,,

input(sig) via pth ,
7

s— 3558’ Vm € Modld:M,,, >M

where s’ =s[pth - Pa,’,th].

The condition Vm e Modld: M,, input(sig) via pth/ >p1 states that there is no module process in the

system that may receive signal sig. The result of the event is that signal sig is discarded.

A transition inferred from this rule models the behaviour of an SDL system when a signal instance is
discarded inside the system.

NOTE: The discarding of signals for which no receiving process exists reflects the
semantics of SDL in CCITT Recommendation Z.100 [1].

5.9.3.56 Inference rule S 5
A system performs an input action when a path process receives a signal from the environment.
The condition for the event to occur is that the signal is sent from a process instance in the

environment and that there exists a route leading from an environment process to the path process.

Let Papy,, Pajy € PathProc where pth € Pathld, s, s’ € Sys and let sig € Sig |

Papi M%th Pajmn From(sig) e ModPId,,,,
input(sig) , (FROMENV, pth) € Routes

S—— 8 S

where s’ :s[pth — Pa;,,h].

Page 59
ETR 071:1993

NOTE: An undefined signal lntr(sig) =1 may be sent from the environment.

A transition inferred from this rule models the behaviour of an SDL system when signal instance is
sent to the system from the environment, or when in a TTCN system a (unforeseen) message is
sent to the TTCN system from the environment.

5.9.3.6 Inference rule S 6

A system performs an output action when a signal is delivered from a path process to the
environment. The condition for this event to occur is that the specified path is connected to the
environment.

Let Pa,y,, Pajy, € PathProc where pth € Pathld, s, s’ € Sys and let sig € Sig

output(sig)

Pay, Path Pag,
output{si

s put(sig) os’

(pth, TOENV) € Routes

where s’ =s[pth - Pa,’,th].

A transition inferred from this rule models the behaviour of an SDL system when a signal instance is
delivered to the environment from a channel, or when a message in a TTCN system is delivered to
the environment from a PCO.

59.4 Derivation of the initial system state

In order to derive the behaviour of a system, the initial system state shall be established. The initial
system state is a state where the initial number of process instances for each basic process exist,
the sequence of timers of each timer process is empty, the signal queues of each input port process
are empty, all variables are assigned their initial value and the sequence of signals of each path
process is empty.

Page 60
ETR 071:1993

Annex A: Introduction to the CSR

In this annex basic information on the modelling technique of the CSR is provided. The intention is
to explain, informally, how the rules that make up the model are to be interpreted and how the
compositional structure of the model supports reasoning about the behaviour of SDL systems and
TTCN test cases. This means that only the first Clause of the annex is self-contained. However, the
explanation of the derivation of transitions and the use of the CSR to compare behaviour of
specifications to some extent relies on information provided in the CSR definition {Clause 5).

The annex is organised as follows. Clause A.1 presents the basic modelling concept Labelled
Transition Systems. In the following Clauses examples are used to illustrate how the execution of
an SDL specification or TTCN test case is modelled in the CSR and how the compositional structure
of the model supports comparison of system behaviour given different interpretations of behaviour,
i.e. observable behaviour or internal behaviour. Before reading Clauses A.2 and A.3 it is
recommended to read the CSR definition. Furthermore, the presentation is to some extent relying on
knowledge of the conceptual models of SDL and TTCN defined in Clause 4.

A.1 Labelled Transition Systems

The concept of Labelled Transition Systems (LTS] is the basis on which the CSR is defined. A LTS
consists of a set of states, a set of actions, a transition relation and an initial state. This can be
written as:

LTS =(S,A T, sp)

where S is a set of states, A is a set of actions (or events), T is a transition relation, and sg is the

initial state. The transition relation defines which pairs of states are related by an action. Thus the
transition relation is defined as:

TCcSxAxS.

If s; and s, denote states in S and a is an action in A then (s,,a, s,) € T means that if in state s;
an action g is performed the system evolve to state s,. A tuple (s,,a, sz) is termed transition. The
terms pre- and post-state are used later when referring to the initial and terminal state of a
transition. An alternative notation to denote (s;,a, sz) is s; —2—»s,. The latter notation is used in

the CSR. The notation s; —2>— means that there exists at least one post-state such that if in
pre-state s; action a is performed the system can transform to a post-state.

An LTS can be used to model the behaviour of systems when the set of states, actions and
elements of the transition relation are defined. The basic assumption is that every state of a system
is represented as a state in the set of states of the LTS. From this assumption and the definition of
the transition relation, it follows that only a single transition is applied even if more than one
transition are possible. The behaviour of a system is defined as the set of sequences of actions
starting from an initial state.

EXAMPLE 1: Let a system be represented as the LTS (S,A,T,s,) where S ={s7,...,s5},
A={a,b}, T={(s;.a,55),(s7,a,53),(s1,b,54),(s3,a,55)}, and s, is the

initial state. The behaviour of the system can be represented graphically as
shown in figure A.1. g

Page 61
ETR 071:1993

85.

Figure A.1: Graphical representation of the complete behaviour

In this system there are two resulting states possible when in state s; the action a is performed.

Such a system is said to be non-deterministic, as the resulting state is not uniquely determined by
information of the current state and the performed action.

In the CSR model the term process is used to refer to the entity whose behaviour is modelled in
terms of an LTS. The presentation often does not make an explicit distinction between the process
and the state of an LTS representing the current process state.

When the behaviour of systems are defined by LTSs usually the states are structured values.

EXAMPLE 2: In the CSR there is a process for the handling of active timers. A state of
this process is defined as an ordered sequence of timer descriptors. Each
timer description is a structure containing a timer identifier, a start time
value, and an expiration time value. O

The set of actions consists of actions that represents all events that may cause the system to
perform a transition. The CSR also reflects the observability of events. The internal event, denoted
7, models when a change of state may occur without the environment being able to observe
whether this change of state has taken place or not.

EXAMPLE 3: If a TTCN tester or SDL process instance are considered to be black boxes,
then the start timer operation or set timer action are internal events not
observable in the environment as they do not require any action in the
environment to be performed. O

As the CSR is a model covering all basic SDL systems and TTCN test cases the definition of the
state set, actions set, and transition relation of the transition systems are implicitly defined. For
instance, the state set of the timer process is every sequence of timer description instances that are
possible for any specific SDL or TTCN specification. Even if the CSR model is restricted to a single
TTCN test case {or SDL system) it may not be possible to define the sets explicitly, e.g. by
enumerating all states, as some may still be infinite. Also the set of actions of the timer process is
defined implicitly in the sense that the actions are defined using parameters.

EXAMPLE 4: The action expired(si) modelling the expiration of a timer represents the set
{or class) of actions which can be derived by substitution of an actual timer
identifier for the parameter s/ in a particular SDL or TTCN specification. [

As for the set of states and actions the set of transitions is also defined implicitly. The set of
transitions for each LTS in the CSR is defined in terms of inference rules. For each class of actions
an inference rule is defined that specifies the conditions which have to be fulfilled by the pre-state
and the action. Furthermore, the inference rule specifies the properties of the post-state. The
inference rules are defined in accordance with the following schema:

Page 62
ETR 071:1993

a ’ a ’
Py ___7___>p1 - Py _."%pn

- C
g——q’

This inference rule specifies the conditions which are to be fulfilled in order to enable the transition

from state g to ¢ by action b. The conditions are the list of transitions

p; —1—pi,,p, —2—>p/, which shall all be possible and the predicate C that shall hold. The
conditions are denoted the premises of the inference rule. Then the inference rule can be read as: "If
action a; may be performed changing state p; into p; and ... and action a, may be performed
changing state p,, into p,; and the predicate C is fulfilled then action b may be performed changing
state g into g’". When the premises of an inference rule are fulfilled this enables the derived
transition. However, it does not mean that an enabled transition is actually executed. In a state
there may be more inference rules whose premises are all satisfied and among those only a single
transition is executed. The choice which transition to execute is made either internally by the
process itself or externally due to an interaction with another process or the environment.

It should also be noted that the shown inference rule schema is the most general form. In the CSR
there are inference rules defined with no premises or associated predicate. In such cases the

transition may always be performed.

EXAMPLE 5: In the CSR the following inference rule models the behaviour of the process
handling active timers when a time-out occurs.

e(0::(t,t5,5i))

Q- (1’7 s ,Si) expired(si) e

This inference rule states that there are no requirements on other transitions to be enabled in order
to perform the action expired(si). There is, however, the predicate e on the pre-state @.'.'(t,,tz,si)
that requires that the pre-state is such that the timer identified by s/ is actually to expire. If
predicate e is fulfilled for the pre-state the action expired(si) can be performed changing the state of
the timer process into the post-state ©&. From the inference rule also the relationship between the
pre- and post-state can be derived. In this rule the states are related such that the post-state can be
derived from the pre-state by removing the timer descriptor of the first timer from the list of active
timers. O

EXAMPLE 6: The assignment action of an SDL process instance or a TTCN test case
defined on the level of a process instance is modelled by the inference rule

P x:=t BP,

msl—(n::Ps,p, (0,0, @> —T>p/<7r::P£’,p», (o, 07), @>

lnow ., p = time

For the internal transition T to be enabled at the process instance level the premise transition of the
basic process must be possible and the predicate must be satisfied. In this case it means that the
internal transition may be applied only if the value of the local time variable now is consistent with
the global time and the pre-state of the basic process is such that it may perform the assignment
action "x := t". The inference rule also indicates how the pre-state changes when the transition is
performed. For the assignment action the state changes include the post-state P’ of the basic
process and the new value to be associated to the variable x. To be more specific, it is the value of
the variable substituted for the parameter x that is updated. Remember that the event x := t is a
generic action representing any assignment action. For further details on the other elements of the
state of the process instance please refer to the CSR definition Clause {Clause 5). O

A.2 Use of inference rules

This Clause explains, on a detailed technical level, how the derivation of transitions is performed in
the CSR. Therefore some knowledge of the CSR is required, particularly knowledge of the structure
and the entities is of importance (subclause 5.1). The following description is not a definition of the

Page 63
ETR 071:1993

theory of transition relation derivation, rather it is a step-by-step explanation on how the theory is
applied.

Alternatively, this Clause can be very well read in parallel with Clause 5. As an informal introduction
to the use of inference rules this Clause can link theory and application. In order to make the
presentation more feasible an example is used to explain the basic concepts.

EXAMPLE: This example shows how to derive a sequence of two transitions from a
given state using the inference rules of the CSR. More specifically the
transition sequence models a possible behaviour of a TTCN tester that
receives a message which is subsequently consumed. Then the part of the
test case of concern may look like:

U ? IConReq (counter :=1)

with a constraint reference denoted iconReq.

It should be noted that the behaviour description is simplified as for instance possible intermediate
internal transitions due to update of the local time are not taken into account. Furthermore, not the
complete set of variable mappings are present in the state descriptions.

The starting state of the TTCN tester is modelled as the following state of a process instance:

DC::=input(iconReq) via U [true);DC’

p(e (self))=piid, p(& (now))=time, , ((); ())I <>
p((counter))=1, p(& (verdict))=preP

From left to right the state of the basic process is made up from a state of a basic process and its
environment and storage ([DC,¢,p]), a state of an input process ({),()), and a state of a timer

process (()) Particularly:

- the basic process defines a state where an input of a message iconReqg (connect request)
from a PCO named U is expected;

- the environment and storage maps variable seff to the value piid, now to time, the value of
variable counter is undefined, and variable verdict is assigned value preP;

- the input process has an empty sequence of received signals and an empty sequence of saved
signals; and, finally,

- the timer process is in a state with no active timers represented by the empty sequence.

How to derive the next event that may be performed by the process instance in the state described
is now to be explained. Intuitively it is expected that after reception of a connect request in its input
process, the process instance may consume the connect request and then proceed to its next state
denoted by DC".

In terms of the CSR model, the following two transitions should be possible for the process
instance:

Page 64
ETR 071:1993

- Transition 1 (receive):

DC::=input(iconRe q) via U [true];DC’
pre —state: r (e (seif))=piid, r (e (now))=time, , ((>, < >), < >
r(e (counter))=1,r (e (verdict))=preP

event: receive((iconReq, piid’, piid, U))

DC: := input{icon Re q) via U [true];DC’
post —state: (| r(e (self))=piid, r (e (now))=time, , ((iconReq, piid’, piid, U), (), {)
r(e (counter)=, r (e (verdict))=preP

- Transition 2 (input):

DC::=inputliconReq) via U [true];DC”
pre —state: p(& (self))=piid, p(£ (now))=time, , ((iconReq, piid’, piid, U), {). ()
p(e(counter))=L1, p(e (verdict))=preP

event: 7T

DC’::=counter:=1; DC1
p(e(self))=piid, p(e (sender))=piid’,
post — state: p(e(now))=time, p(s(active,.m,,ﬁeq))zfalse, , (<), <)), < >

p (& (counter))=1, p(e (verdict))=preP,
p(e(x))=iconReq

The following inference rules are needed to derive these two transitions and cited from Clause b.
To establish that the receive event is possible in the initial state it shall be verified that the input

process may perform a receive action. To derive that this is possible inference rule | 1 of the input
process transition system is used.

(amn

(o, 07) ﬂe—(fig—)——»/(sig: 0, 0)

Inference rule | 1 states that an input process may always perform a receive event with parameter
sig. The result of performing the receive event is that the received signal sig is added to the
sequence of received signals. In this inference rule, the pre-state of an input process is represented
as a tuple of two sequences of signals: ¢ and ¢’, and the post-state is given by the sequences of
signals sig::o and o’ reflecting the state change caused by the receive action.

Like every inference rule defined in Clause b, the pre- and post-states are given in a format using
parameters. This means that pre- and post-states are represented in a generic form which, when the
inference rule has to be evaluated, shall be instantiated by actual states. For the rule considered
(cr, o") is only a place holder. This property applies to events also. For example, in an instance of a

receive event a specific signal is substituted for the parameter sig.

in order to establish that in the pre-state of transition 1 the receive event jconReq from the PCO
named U may be performed it shall be derived that

pre —state: ((),())
event: receive((iconReq, piid’, piid, U))
post — state : ((iconReq, piid’, piid, U), ())

Page 65
ETR 071:1993

is a transition of an input process. This can be done by using the following substitutions in | 1: the
empty signal list () is substituted for 0 and o’ and (iconReg, piid’, piid, U) is substituted for sig. By

definition the concatenation of a sequence with an empty sequence results in the same sequence:
(iconReq, piid’, piid, U): () = ((iconReq, piid’, piid, U)).
Based on these substitutions the above transition can be inferred from 1 1.

To further elaborate on the application of inference rules to verify that the two transitions are
possible, inference rule | 3 is considered next.

Path(sig) =p

{13
) (a::sig::cr’, G,,) deliver(sig, p) ‘/(O’.'.'O".'.' f’<>) Vsig’ea’:Path(sig’);f p

There is an obvious difference compared to | 1: the use of a side-condition. A side-condition
restricts the applicability of an inference rule.

Inference rule 1 3 is to be interpreted as follows: an input process can deliver a message received
from a specific PCO. However, it is not any message received on PCO that can be delivered. The
side-condition states that only the first signal from the sequence of stored signals from the specified
PCO can be delivered. The first part of the side-condition Path(sig) = p assures that a signal sig is

delivered which actually has been received from the specified PCO. This condition, however, would
not prevent an input process to deliver a signal which although received from the specified PCO, is
not the first signal in the sequence of stored signals for that PCO. For example, in the sequence of
received signals:

((s, piid, piid”, p), (s, piidy, piid{,), {s", piid ", piid ", p))

two signals are received from PCO p and the third signal (counted from right to left) might be
delivered. However, the second condition Vsig’e G’.'Path(sig’) # p prevents that the third signal is

delivered as there is a signal to the right in the sequence for which the condition does not hold.

Then for | 3 it should be validated that:

pre —state: ((iconReq, piid’, piid, U}, ()
event: deliver((iconReq, piid’, piid, U), U)
post —state: ((),())

is a transition of an input process. In order to verify this transition a substitution shall be performed
based on the inference rule 1 3. For the state parameters ¢, ¢’ and ¢” the empty sequence () is
substituted, for the signal parameter sig the signal instance (iconReq, piid’, piid, U) is substituted

and for the path identifier the PCO identifier U/ is substituted. With these substitutions an instance
of the inference rule | 3 is given as:

((): {iconReq, piid, piid, U)::(), <>) deliver({iconReq, piid’, piid, U), U) o O, <>)
where the side-conditions are trivially fulfilled:

Path({iconReq, piid’, piid, U)) = U and
Vsig” € ():Path(sig”) # p because there is no signal in the empty sequence.

Page 66
ETR 071:1993

Now it has been proved that the transition is possible based on the inference rule 1 3 with the above
substitutions.

Up to now only inference rules with no premises have been considered. However most of the
inference rules in Clause 5 do have premises, such as the following two inference rules Proc 6 and
Proc 8. Both inference rules, and those just discussed, are used in proving that the sequence of the
receive and input action is possible.

4 _ﬁ% ” 2/ :t
{Proc 6) (0,07) 1(c”,0”) ”"0"".”s,p me
ms|- <7r Pe i (0,0, @> mp/(” P, . (07, 07), @> To(sig) = p(e(selr))
input(st) via pth [bt] g P’ (O', O") deliver(sig, pth) 4/(0'”, O"”) ”nowﬂs,p = time
(Proc 8) , 7 ; P ”bt“ms’ £, = true
ms[—(n: g Pg,p: (O', c), @> ————)P/(ﬂ?::Pg’p, (o' o) @> “st“ms’ . s
where

S(sender) > From(sig)
p’=p|le(x) > si
elactiveg;) > false

The basic principle of substitution which was elaborated in the previous paragraphs remains valid
for the rest of this Clause. Thus, in order to apply a specific inference rule, a substitution requires
definition. The new ingredient is that usually more than one step is necessary to establish the
desired result. In the following this is exemplified.

To verify the receive action, the inference rule Proc 6 is used with the following substitutions based
on the pre-state of Transition 1:

p(e(self))—pl/d p(&(now))=time, for IC.'.'Pg,p,

= input(iconReq) via U [true];DC’
p(s(counter)) 1, p(e (verdict))=preP

(), () for (o, 0,
() for ©®, and
(iconReq, piid’, piid, U) for sig

Then inference rule Proc 6 gives the following instance:

(<) (>) receive((iconﬁeq, piid’, piid, U)) , (((iconReq, piid”, piid, U)), <)>

DC::=input... DC::=input...
p(e(self))=piid, . I p(e(self))=piid,
ms p(e(now))=time, () ()), () receivel(iconReq. piid’, pitd, U) il | p(e(now))=time, |, ((icanReq, piid’, piid, U), ()), ()
p{e(counter))=1, p{e(counter))=1,
ple(verdict))=prep p(e (verdict))=preP

provided that it can be proven that the input process can perform the receive event and the side-
conditions are fulfilled.

The proof is straightforward as it has already been verified that the input process is able to receive
signal (icon/-?eq, piid’, piid, U) and thus, the input process can perform the receive event. To check
the validity of the side-conditions is not as straightforward.

Side-condition [now{, , =time is to assure that the local clock of the process instance is consistent

with the global time. As stated previously, the events that may be performed to ensure this

Page 67
ETR 071:1993

condition are not considered in this example. However, the value of the variable now is the value of
the global clock and thus this predicate is fulfilled. The second side-condition, To(sig) =p(z—:(se/f)),

guarantees that the process instance consumes only signals sent to that process instance. Every
process instance is unambiguously determined by its process instance identifier stored in variable
self and every signal carries a destination address in term of a process instance identifier. If signal
parameter sig is substituted by (iconReq, piid’, piid, U) and variables now and self are interpreted

with respect to the actual environment and storage then it can be deduced that:

lnowd, , =p(e(now)) = time
To(sig) = piid = p(e(self))

and thus the side-condition holds.

To summarise, it has been proven that Transition 1 (the receive action) is a possible transition of the
process instance by proving that the input process can perform the receive event and by verifying
that the side-conditions hold.

It shall now be proven that Transition 2 is a possible subsequent transition of the process instance.
The procedure is the same as for Transition 1. In order to apply inference rule Proc 8 the following
substitutions are applied based on the pre-state of Transition 2:

DC::=input(iconReq) via U [true];DC"

p(e(seif))=piid, p(& (now))=time, for m::P; ,, and thus DC, DC’ for P, P’ respectively,
p(e(counter))=1, p(& (verdict))=preP

((iconReq, piid’, piid, U), ()) for (o, 0),

() for © and

(iconReq, piid’, piid, U) for sig

When these substitutions are performed then rule Proc 8 becomes:

input(st) via pih [1] deliver({iconReq. piid”, piid, U}, pth) 5/ (<) ())

DC 55 DC’ ((iconReq, piid’, piid, U), ())
[DC’]
D(Cé:z)/'/)'7put... ﬁgig,s,zl:v))))z::e
ple(self))=piid, counter))=1,
msl-{ | ple(now)=time, |, (iconReq, piid”, piid, UY (), ()) ——sps 5gigve,di:t)§?—_pfeP, A0 0
ple(counter D)=L, p(e(sender))=piid’,
p(e(verdict))=preP ple(x))=si,
p(e(actives,-))=false

However, it can be seen that this substitution is not all that is necessary to replace all parameters
by actual terms or values. For example no substitution for path identifier pth has been defined. The
missing substitutions can easily be derived, U for pth, iconReq for signal parameter st, and, finally,
true for Boolean term bt. Then the completely instantiated transition rule is:

input{iconReq) via U [true] deliver({iconReq, piid’, piid, U), U) /((> (>)

pC 56 DC” ({iconReq, piid", piid, U), {))

’

. p((self))=piid,
DC::=input... p(e(now))=time,

p(e(self))=piid, ¢ (counter))=

ms| pgs(now))=time, , ((iconReq, piid’, piid, U >, <>), <> — p gg e gve,d/:t)glp_,:p, , ((>, ()), <)
p
o(

£(counter))=_L, e
e (verdict))=preP ll; Eigx)) :s,,)) piid’,

_p(s (actives,-))=falseJ

Applying inference rule | 3 to the second transition of the premise it is proven that the input process
can perform the deliver event. This proof has previously been outlined in detail. What still needs to

Page 68
ETR 071:1993

be proved is that the basic process is capable to perform the specified input event and that the side-
condition of inference rule Proc 8 is fulfilled.

To prove the first transition of the premise the inference rule B 1 of the transition system for basic
processes is used:

(B 1)
e;P—2—gP

The rule states that a basic process can always performs the first event of a sequence of events.
Thus from the substitution of pre-state and event of B 1:

pre —state: input(iconReq) via U [true];DC’
event: input(iconReq) via U [true]
post —state: DC’

it can be concluded that it is a transition of the basic process. To finalise the proof of Transition 2
the side-condition is to be checked:

”nowﬂslp =p(e(now)) = time

truel, s . o =lltrue],,, . , =true, and
|liconReq|,,,, . , =iconReq
NOTE: Inference rule Proc 8 specifies an update to the environment and storage of the

process instance due to the transition. Also, the value of variables sender, x, and
active; are updated with the values piid’, si, and false.

A.3 Usage of the CSR

This Clause illustrates how the CSR can be used to compare two specifications of a system one in
SDL and the other one in TTCN.

This Clause is structured as follows: The next subclause introduces the example that will be used to
illustrate the usage of the CSR. The Clause continues to present an SDL process graph and a TTCN
test case for this sample specification along with their representations in the CSR. The main part is
devoted to a discussion of a notion of behaviour of a (part of) system and how to relate SDL system
behaviour {or to be more precise SDL process behaviour) and TTCN test case behaviour.

A.3.1 The INRES protocol

The example given is based on a small part of the INRES protocol Hogrefe [13]1. More specifically,
the specifications are for parts of the initiator process. The SDL specification is taken from "OSI
formal specification case study: the INRES protocol and service” [13]. The TTCN specification is
made for this ETR. The usage of TTCN as a system specification language does not correspond with
it's intended use as a test specification notation. This has only been done to illustrate the
capabilities of the CSR to compare two descriptions of the same object. A TTCN specification of the
initiator process is given to allow for a comparison of the two descriptions with respect to the
defined behaviour.

The INRES protocol gives two users, called Initiator and Responder, the ability to exchange Protocol
Data Units {PDU). The INRES protocol is a connection-oriented protocol.

The connection establishment procedure is activated when the Initiator receives a connect request
(ICONreq) from its Initiator-user. The Initiator sends a connect request PDU (CR PDU) to the
Responder. If within a predefined duration of time no connect confirmation PDU (CC PDU) is
received, the sending of a CR PDU is repeated. If four attempts are unsuccessful to set-up a
connection to the Responder or a disconnect request is received the connection establishment

Page 69
ETR 071:1993

procedure is terminated. In this case the Initiator sends a disconnect indication (IDISind) to the
Initiator-user.

A.3.2 An SDL process and a TTCN test case for the INRES protocol

An SDL process graph for the connection establishment procedure is shown in figure A.2. For the
purpose of this Clause it is sufficient to concentrate on the behaviour, thus the precise definition of
e.g. signal symbols.is not considered.

A TTCN test case for the connection establishment procedure is given in table A.2. The test
purpose could be stated as whether the Responder IUT is capable to accept a connect request
within a given time limit. Again, the emphasis is on test case behaviour, thus all constraints, timer,
and variable declarations are omitted. In table A.2 a transformed version of the TTCN test case is
given which results from applying the transformation for a TTCN test case as described in Annex B,
subclauses B.3.3 and B.3.4. In terms of the CSR model what is shown in table A.2 is a basic
process.

A similar transformation can be applied to the SDL process graph. The transformation rules are
defined in Annex B, subclause B.6.2.

Page 70
ETR 071:1993

process Initiator

DCL

COUNGT%& INTEGER,

D ISDUTYPE, ICON

NUM, NUMBER SEQUENCENUMBER; CONREQ -
TIMER T,

SYNONYM P DURATION = 5;

COUNTER := 1 IDISIND

C élSCONNECTED

SET(NOW+P,T)

{.}

WAIT

0

cc T % DR
TRUE T FALSE
RESET(T) < COUNTER<A>
| CR IDISIND
NUMBER := 1
COUNTER :=
COUNTER + 1 élSCONNECTED)
ICONCONF |
SET(NOW+P,T)
< WAIT

Figure A.2: Part of the Initiator process of the INRES connection establishment procedure

Page 71
ETR 071:1993

Table A.1: TTCN test case for the INRES connection establishment procedure

Test Case Dynamic Behaviour
Test Case Name: Initiator
Group: Initiator_Group
Purpose:
Default:
Comments: This is not a "real” test case for the INRES connection establishment procedure.
Rather, it is a description of the procedure in TTCN. This description is further used in later
subclauses of this annex when reasoning about behaviour.
Nr Lab Behaviour Description Constr. Verdi C
el Ref ct

1 U ? ICONreq {(counter : = 1) iconReq
2 LICRSTARTT, t cr
3 L1 L ?CC (number :=1) CANCEL T cc
4 U ! ICONconf iconConf Pass
5 2timeout T
6 [counter < 4]
7 L ! CR (counter : = counter + 1) START T,t cr
8 -> L1
9 fcounter > = 4]
10 U ! IDISind idisInd Fail
11 L? DR CANCELT dr
12 U ! IDISind idisInd Fail
13 L? DR dr

U ! IDISind idisind Fail
Detailed Comments:

Table A.2: Transformed TTCN test case

DC :: = inputliconReq) via U [truel ; counter := 1 ; DC1 @ input(dr) via L [truel ; DC2
DC1 ::= output{cr) via L ; set(t, T) ; DC11
DC11 ::= input{cc) via L [truel ; number : = 1 ; reset{T) ; DC111
@ input(T) [true]l ; DC112
@ input(dr) via L [true] ; reset{T} ; DC113
DC111 :: = output{iconConf) via U ; verdict : = pass ; stop ; nil
DC112 :: = [counter < 4] ; DC1121
® [counter > = 4] ; DC1122
DC113 :: = outputlidisind) via U ; verdict : = fail ; stop ; nil

DC 1121 ::= output(cr) via L ; counter : = counter + 1 ; set(t, T) ; DC11
DC1122 :: = output{idisind) via U ; verdict : = fail ; stop ; nil
DC2 :: = outputlidisind) via U ; verdict : = fail ; stop ; nil

Page 72
ETR 071:1993

A.3.3 Evaluation of the behaviour of a process instance

For the basic process shown in table A.2 the sequences of events the process is able to perform are
easily derived. The only thing to be done is to apply the defined inference rules for basic processes
(subclause 5.3). How to apply these rules has been demonstrated in the previous subclause. Step-
by-step the behaviour of the basic process can be determined. Figure A.3 is a graphical
representation of the behaviour as a tree.

In this example the nodes of the tree are labelled by basic processes states (see also table A.2) and
the edges are labelled by events. A tree is a general structure that can be used for the
representation of the behaviour of any other entity, e.g. process instances, modules, etc. How the
behaviour of a basic process evolves can be determined by following the edges from the root
towards the leaves.

Referring to figure A.3, one leaf (the second from the left) is labelled with a basic process different
from ni/, namely DC7171. The meaning is that the leaf is to be substituted by the sub-tree starting at
the node labelled DC77. This way it is possible to represent infinite behaviour.

DC

input{iconReq)
via U [true]

input(dr)
via L [true]

counter : = output(idisind) via U
DC1
output(cr) via L verdict : = fail
®
set(t, T) stop
input(cc) DC1 nil input{dr)
via L [true] via L [true]

input(T) [truel

number ;= 1 reset(T)

output(idisind)

reset(T) o
DC111 [counter< 4 [counter > = 4], Via
output{iconConf) verdict : = fail

output(cr)
via L

output(idisind)

via U via U

verdict : = pass|

counter :=
counter + 1

verdict : = fai

stop

set{t, T)
nil

DC11

stop
nil

Figure A.3: Behaviour tree for basic process

Equally well, the behaviour of a basic process representing the SDL process graph can be
generated.

Proceeding towards the next level in the CSR model, the process instance level, the possible
behaviour of a process instance can also be graphically represented as a tree. Figure A.4 shows two
trees: part a) of the figure depicts the behaviour of a process instance resulting from the
transformation of the TTCN test case (table A.1 and figure A.3) and part b) shows the behaviour of
a process instance resulting from the transformation of the SDL process (figure A.1). Certain details
of a process instance and in the behaviour of process instance are not shown. Particularly the nodes
are not labelled with a state of a process instance. This information has been left out in order to
simplify the graphical representation. Furthermore, no transitions are shown which are concerned
with the update of the local time or the update of the sequence of running timers. Again this is done
to simplify the presentation.

Page 73
ETR 071:1993

receive(sig) receive(sig)

output(sig1} via

receive(sif)’)

T T
. . ’ []
output{sig1) output(sig3) output{sig3) output{sig3)
via U via U via ISAP

, ()]
output(sig2)

via U g T

] L]

T [t

] ®

Figure A.4: Behaviour of a process instance a) TTCN b) SDL

Compéring figures A.3 and A.4 a) it is seen that the trees are different. For the following two
reasons the tree shown in figure A.4 a) has changed compared to figure A.3.

1) Before a process instance can consume a signal, it shall have received a signal in its input
process. This behaviour is reflected only at the process instance level.

2) The labels of edges have changed. Some events of a basic process, e.g. incrementing the
counter variable, have been made internal events in figure A.4 a) and other events, e.g. the
sending of a message, has been renamed, or, to be more precise, the identity of the message
sent has changed: for instance in the output event outputfcr) via L the data term c¢r has been

substituted by a signal sig?7 = <cr, piid, Lpiq, ipt,,>.

The mapping of events to internal events at hierarchical higher levels in the CSR model is referred to
as abstraction from behaviour. It can be motivated by assuming that an observer looks at a process
instance as a black box. Whether an internal events corresponds to an update of a variable or the
start of a timer cannot be distinguished by the observer. On the other hand, if a process instance
interacts with its environment, e.g. by sending a signal, this can very well be observed.

Before comparing the TTCN test case behaviour and the SDL behaviour shown in figure A.4 it
should be noted that the behaviour of the SDL process instance is only partially represented in the
graph. More specifically, the infinite behaviour of the SDL process due to the return to the initial
state disconnected (figure A.1} is not part of the graphical representation.

Comparing the TTCN and SDL graphs of figure A.4 it is obvious that they are structurally
equivalent, What can be investigated is whether the process instances are also behaviourally

equivalent.

If all internal actions are removed from the sequences of events derived form the trees then the
complete sequences of observable events for the TTCN test case and the SDL process are:

al) receive(sig) ; output(sig3) via U

Page 74
ETR 071:1993

a2) receive(sig) ; output(sig1) via L ; receivelsig') ; output(sig2) via U
a3) receive(sig) ; output(sig1) via L ; receive(sig') ; output({sig1) via L
a4) receivel(sig) ; output(sig1) via L ; receive(sig") ; output({sig3) via U
ab) receivel(sig) ; output(sig1) via L ; receive(sig') ; output(sig3) via U

b1) receive(sig) ; output(sig3) via ISAP

b2) receive(sig) ; output(sig1) via IPDU ; receive(sig’) ; output(sig2) via ISAP
b3) receive(sig) ; output(sig1) via IPDU ; receive(sig’) ; output(sig1) via IPDU
b4) receive(sig) ; output(sig1) via IPDU ; receive(sig’) ; output(sig3) via ISAP
bb) receivelsig) ; output{sig1) via IPDU ; receive(sig') ; outputlsig3) via ISAP

A strong argument in favour of a positive answer to the above question is that the sets of
sequences of these process instances {al ... bb) are equal if the differences in denoting output
ports, e.g. L and U versus ISAP and IPDU, are neglected.

This example illustrates how the CSR can be used to compare behaviour of different systems and
how the model reflects abstraction of behaviour for different levels of observation.

Annex B: Definition of the transformations

This annex provides information on the relation between TTCN and SDL constructs and the domains
of the CSR. However, this annex does not define a complete mapping from TTCN and SDL into the
CSR.

B.1 The identification of the range
B.1.1 Introduction

In the description of the CSR a number of entities have been identified and used without further
specification of their contents. The contents of these entities is dependent on a specific instance of
an SDL specification or a TTCN test suite. In the following subclause an overview of these entities
from the CSR is provided. The transformations of an SDL system and a TTCN test suite provide the
contents of these domains.

B.1.2 The range

The set of path identifiers: Path/d.
The set of module identifiers: Mod/d.
The set of basic process identifiers: BP/d.
The set of process instance identifiers: P/d.
For each module identifier: m € Modld:
the set of basic process identifiers for that module identifier: BP/d,.
For each process identifier: X € BP/d:
the set of process instance identifiers for that basic process identifier: BPP/d .
For each module identifier: m € Modld:
the set of process instance identifiers for the basic process identifiers of the processes in the
module m.
identified by the module identifier: ModPID .
For each basic process identifier: X € BPId:
a process expression P € BProc
For each basic process identifier: X € BP/d:
a declaration DfX],

where: D : BPId — BProcx N x N.. xVar™ xVar* x(Var x Term(Var))"

For each module identifier: m € Modld:
the routes inside the module identified by the module identifier: Routes,y,
For each module identifier: m € Modld:
the route function r,, that identifies the set of signals that a route in the module
identified by the module identifier may convey.
The signature X = <Sort, OP)

Page 75
ETR 071:1993

The variables of each sort s: s € Sort, Var,.

B.2 Transformation of SDL

In this Clause the transformation from a basic SDL specification into the CSR is sketched. The
transformation description is based on the abstract grammar AS.1 of SDL CCITT Recommendation
Z.100 [1]. The concept of service which has become part of basic SDL in 1992 is not considered in
the mapping. Neither are channels with no delay considered. The following assertions apply to the
AS.1 grammar

- Implicit transitions have been replaced by explicit transitions;
- Join/label constructs are eliminated;
- Shorthand's have been substituted.

The range of the transformation is based on Clause B.1. The following structured domain is defined
as the range of the mapping.

Table B.1: A refined range definition

Range :: Modld Pathld Moddec/-set Routes SigmaAlg
Moddec/ i1 BPid,, Route BpDec/
Routes :: (Routeld Routeld)-set
SigmaAlg :: Sort Operators
Route :: Routeld Routeld — 259 Term’* U Lt}
Routeld = (BPid U Pathld)
BpDec/ :: Identifier — BpExpr Inst Par (Var Term(Var))* BpMap
BpExpr = PrefixExpr | ChoiceExpr | PrioChoiceExpr | BpNm | NIL
PrefixExpr :: BpEvent BpExpr
ChoiceExpr :: PrefixExpr BpExpr
PrioChoiceExpr :: PrefixExpr BpExpr
BpNm :: Token
BpMap :: BoNm — BpExpr
Par :: Refparml Valparm!
Refparm/ :: Var*
Varparm/ i Var*
Var it Term
Modld :: Identifier-set
Pathld i1 Identifier-set
BPid :: Identifier-set
Identifier ;. Token
NOTE: The domain of the basic process has been refined to allow finite representation of

a process graph. The mapping BpMap relates identifiers of process expression
with the basic process expression.

Transformation from a basic SDL system definition based on the AS.1 definition:

def trf-system(sys) =
pre: {(mk-System-definition(snm,blset,chset,sigs,dt,syntset) = sys)
{modidset = {id | for all bidef € blset,
id = mk-/dentifier(s-Block-name(bldef}}}),
(pathidset = {pthid,pthid'| for all ¢ € chset, (pthid,pthid) = trf-chanid(c)}),
{moddscrset = trf-blockdefset(blset)),
{routes = trf-routes(biset,chset)),
(sigalg = trf-datasigs(blset,sigs,dt,syntset))
post: mk-Range(modidset,pathidset,modscrset,routes, sigalg)
type: trf-system: System-definition — Range

Page 76
ETR 071:1993

The transformation of an SDL system results in a CSR representation Range of the object of the
SDL specification.

def trf-chanid{cd) =

pre: {(mk-Channel-definition{chnm,,cp,nil) = cd)

post: mk-/dentifier(chnm) nil

pre: (mk-Channel-definition(chnm,,cp,cpn) = cd)

post: mk-/dentifier(unique(chnm)) mk-/dentifier(unique{chnm))
type: trf-chanid: Channel-definition — Identifier [Identifier]

The generation of path identifiers are derived from the channels. In case of bi-directional channels
two unique path identifiers are derived.

def trf-blockdefset(blset) =

pre: blset

post: {moddcl | For all bldef € biset, moddcl = trf-blockdef(bldef)}
type: trf-blockdefset: Block-definition-set — Moddec/-set

The transformation of the set of block definitions.

def trf-blockdef(bldef} =
pre: (mk-Bl/ock-definition(
binm, prdefset,sigdefset,chrouset,sigrset,dtset,syntdefset) = bldef)
post: mk-Moddec/(
{id, id"| for all prd € prdefset, id = s-Process-name{prd),
for all prod € s-Procedure-definition-set(prd),
id' € gen-bpnameset(prod)},
trf-sigchanrouteset(chrouset, sigrset),
trf-prdefset{prdefset))
type: trf-blockdef: Block-definition — Moddec/

Transform a block definition into a module declaration.

def gen-bpnameset(prod) =
pre: (mk-Procedure-definition(prdnm,,{},,,,) = prod)
post: {mk-/dentifier{prdnm)}
pre: (mk-Procedure-definition{prdnm,,prddef,,,,} = prod)

post: {mk-/dentifier(prdnm)} v U gen-bpnameset(p)
peprddef

type: gen-bpnameset: Procedure-definition — Identifier-set

Generate the set of basic process identifiers from a procedure definition and every embedded
procedure definition.

def trf-routes{biset,chset} = (...}
type: Block-definition-set Channel-definition-set — Routes

Transform a set of block definitions and a set of channel definitions into the set of routes. This
contains the pairs of connected processes and pairs of connected paths and processes in the
system.

def trf-datasigs(sigs,dt,syntset) = (...)
type: Block-definition-set Data-type-definition Syntype-definition-set — SigmaAlg

Transform the data type definition of the SDL system to a many sorted algebra. The information is
derived from the partial data type definitions at the system level and the definitions in the set of
blocks.

def trf-prdefset{prset) =
pre: (prset ={})

Page 77
ETR 071:1993

post: mk-BpDec/{[1)

pre: prdef € prset

post: mk-BpDecl(trf-prdefset(prset\{prdef}) + [trf-prdef(prdef)]
type: trf-prdefset: Process-definition-set — BpDec/

Transform a set of process definitions into a set of basic process declarations.

def trf-prdef{pd) =
pre: (mk-Process-definition(
pnm,inst,parml,prodset, sigset,dts, sts,srds,srrcs,vars,views,tms,pg) = pd),
(bpid = mk-/dentifier(pnm)),
(bpe,bpm = trf-processgraph(pg){bpid))
post: bpid
bpe,
trf-inst{inst),
trf-parameters(parml),
trf-localvars{vars),
bpm
type: trf-prdef: Process-definition — (l/dentifier — BpExpr Inst Par (Var Term(Var))*)

Transform a process definition into a basic process declaration and a basic process map bpm.

def trf-sigchanrouteset{chrcset,sigrset) =
pre: sigrset = {}
post: mk-Routelll)
pre: sigr € sigrset
post: (trf-sigchanrouteset(chrcset, sigrset\{sigr}) + trf-sigroute(chrcset,sigr))
type: trf-sigchanrouteset: Channel-to-route-connection-set Signal-route-definition-set — Route

Transform a signal route definition set to a route function which identifies the signals that may be
conveyed between two processes or a process and a path.

def trf-sigroute(chrc,sigroute) =
pre: (mk-Signal-route-definition(rnm,sp1,nil) = sigroute),
{mk-Signal-route-pathl(orig,dest,sigset) = sp1),
(origid = gen-proc-or-path-id{orig,rnm,chrc)),
(destid = gen-proc-or-path-id{dest,rnm,chrc))
post: [origid destid > gen-sigterm(sigset)]
pre: (mk-Signal-route-definition(irnm,sp1,sp2) =sigroute),
(mk-Signal-route-path{orig1,dest1,sigsetl) = sp1)},
{origid1 = gen-proc-or-path-id{orig1,rnm,chrc}},
(destid1 = gen-proc-or-path-id{dest1,rnm,chrc)),
(mk-Signal-route-pathlorig2,dest2,sigset1) = sp2),
{origid2 = gen-proc-or-path-id{orig2,rnm,chrc)),
{destid2 = gen-proc-or-path-id(dest2,rnm,chrc)),
post: [origid1 destid1 — gen-sigterm(sigset1),
origid2 destid2 — gen-sigterm(sigset2)]
type: trf-sigroute: Channel-to-route-connection-set Signal-route-definition —
Udentifier Identifier — SigTerm?1

Transform a signal route definition into one or two maps from a pair of process identifiers or a
process identifier and a path identifier into a set of interpretations of signal terms.

Process graph transformation

def trf-processgraph{pg){bpid} =
pre: (mk-Process-graph(psn,stset}) = pg),
{mk-Transition(tr) = psn)
post: tri-transition(tr,stset,bpid)([])
type: trf-processgraph: Process-graph Identifier — BpExpr BoMap

Page 78
ETR 071:1993

Transform a process graph to a basic process expression. The second parameter is the basic
process identifier of the process or procedure being transformed.

def trf-transition(tr,stset,bpid)(bpm) =
pre: (mk-Transition{grnl,tord) = tr),
{act = hd(grnl)),
(notlis-Output-nodelact))),
(bpe,bpm’ = trf-transition{mk-Transition{(tl{grnl},tord),stset,bpid)(bpm))
post: mk-PrefixExpr{trf-action{act),bpe),bpm’
pre: (mk-Transition{grnl,tord) = tr),
{act = hdigrnl)},
(is-Output-node(act)),
post: trf-output{act,mk-Transition(tl{grnl),tord),stset,bpid){bpe)
pre: (mk-Transition{< > ,tord) = tr)
(mk-Terminator(tn) = tord))
post: trf-terminator(tn, stset,bpid){bpm)
pre: (mk-Transition{< > ,tord) = tr)
{mk-Decision-nodel,,) = tord))
post: trf-decision{tord,stset,bpid)(bpm)
type: trf-transition: Transition State-node-set ldentifier BoMap — BpExpr BoMap

Transform a transition to a basic process expression. Note that due to that, the output statement
may cause a choice in the basic process to be generated this action is handled separately.

def trf-action{gn) =
pre: (mk-Task-node(tn) = gn)
post: trf-task{tn})
pre: (mk-Create-request-node{cn) = gn)
post: trf-create(cn)
pre: (mk-Cal/l-node(cn) = gn}
post: trf-call{cn)
pre: (mk-Set-node(sn) = gn)
post: trf-set(sn)
pre: (mk-Reset(rn) = gn)
post: trf-reset(rn)

type: trf-action: Graph-node — BpEvent

Transform a graph node to a basic process event.

def trf-task(tn) =
pre: (mk-Task-nodelas) = tn)
mk-Assignment-statement{varid,expr) = as)
post: (mk-BpEvent("varid : = expr"))
type: tri-task: Task-node — BpEvent

Transform a task node. In this mapping only complete SDL specifications are considered so the use
of informal text in a task construct is not considered.

def trf-output{on,tr,stset,bpid)(bpm) =

pre: (mk-Output-nodelsigid,exprl,nil,{}} = on),
(st = mk-Term(sigid,exprl)),
(bpe,bpm' = trf-transition(tr,stset,bpid)(bpm))
{outev = mk-BpEvent("output{st)"))

post: mk-PrefixExpr{outev,bpe) bpm'

pre: {mk-Output-node(sigid,exprl,dest,{}) = on),
(st = mk-Terml(sigid,exprl)),
{bpe,bpm' = trf-transition(tr,stset,bpid){bpm}),
{mk-Expression{expr) = dest),
(outev = mk-BpEvent("output(st) to dest"))

Page 79
ETR 071:1993

post: mk-PrefixExprioutev,bpe} bpm'
pre: (mk-Output-nodel(sigid,exprl,dest,{}) = on),
{st = mk-Term(sigid,exprl}},
{bpe,bpm' = trf-transition(tr,stset,bpid){bpm)),
{mk-Process-identifier(expr) = dest),
{outev = mk-BpEvent{"output{st) via {bpid,dest)")
post: mk-PrefixExpr(outev,bpe} bpm'
pre: (mk-Output-nodelsigid,exprl,nil,viaset) = on),
(st = mk-Term(sigid,exprl)),
{rset = derive-routes{viaset)),
{bpe,bpm' = trf-transition(tr,stset,bpid){bpm)),
(pfel = trf-outputvia(rset,st,bpej})
post: merge-pfix(pfel} bpm'
pre: (mk-Output-nodelsigid,exprl,dest,viaset) = on),
(st = mk-Term(sigid,exprl)),
(bpe,bpm' = trf-transition(tr,stset,bpid){bpm)),
{mk-Expression{expr) = dest),
(rset = derive-routes(viaset)),
{pfel = trf-outputtovia(rset,dest,st,bpe))
post: merge-pfix(pfel) bpm’
pre: (mk-Output-node(sigid,exprl,dest,{}) = on),
(st = mk-Term(sigid,exprl)),
{bpe,bpm' = trf-transition(tr,stset,bpid){bpm)),
{mk-Process-identifier(expr) = dest),
{outev = mk-BpEvent{"output(st) via (bpid,dest)")
post: mk-PrefixExprioutev,bpe) bpm'
type: trf-output: OQutput-node Transition State-node-set ldentifier BpMap —
BpExpr BoMap

Transform an output action with the following transition into a basic process expression. This way
of handling the output action is due to as there may be more routes specified in the via construct
the receiver of the signal may not be statically determined.

def derive-routes(viaset} = (...)
type: Direct-via — (Routeld Routeld)-set

Derive from a via specification in an output action the route by which the signal may be conveyed.
Note that for two process instances connected by more signal routes there is only a single element
generated in the route descriptor set. For signal routes in the via specification connected to the
environment in such a way that more channels may convey the signal from the block more elements
may be generated in the route set.

def trf-outputvial(rset,st,bpe) =
pre: (rset = {}),
post: <>
pre: {r € rset),
{oev = mk-BpEvent("output(st) via r")),
(pfe = mk-PrefixExpr(oev,bpe))
post: (pfe :: trf-outputvia(rset\{r},st,bpe))
type: trf-outputvia: (Routeld Routeld)-set SignalTerm BpExpr — PrefixExpr*

Transform an output action with a via construct into a list of basic process output via events. This
list is to be structured into a list of alternative output events.

def trf-outputtovia(rset,p,st,bpe) =
pre: rset = {}
post: <>
pre: (r € rset),
{oev = mk-BpEvent("output{st) to p via r")),
(pfe = mk-PrefixExprioev,bpe)),

Page 80
ETR 071:1993

post: (pfe :: trf-outputtovia(rset\{r},p,st,bpe))
type: trf-outputtovia: (Routeld Routeld)-set Expression SignalTerm BpExpr —
PrefixExpr*

Transform an output action to a specific process instance with a via construct. As the destination is
known only at execution time every route which may be derived from the via specification forms an
alternative event even though it may at execution time turn out that the route does connect to the
specified process instance. The result is a list of basic process prefix expressions which is to be
structured as alternatives.

def trf-create(cn) =
pre: mk-Create-request-node(procid,exprl) = cn)
post: mk-BpEvent("create procid(exprl)")

type: trf-create: Create-request-node — BpEvent

Transform a create action into a basic process create event.

def trf-call{cn) =
pre: (mk-Call-nodel(prid,exprl),
{rpl,vpl = conv-prodexprlist{exprl))
post: mk-BpEvent("call prid(rpl}{vpl)")
type: trf-call: Call-node — BpEvent

Transform a procedure call node into a basic process call event. The parameters of the procedure
call are distinguished whether they are call by reference parameters or call-by-value parameters.

def trf-set(sn) =
pre: (mk-Set-node(timeexpr,tid,exprl) = sn),
(timid = conv-timeridentifier(tid,exprl})
post: mk-BpEvent("set{timeexpr,timid)")
type: trf-set(sn): Set-node — BpEvent

Transform a set timer action to a basic process set timer event.

def trf-reset{rn) =
pre: (mk-Reset-node(tid,exprl) = rn),
(timid = conv-timeridentifier(tid,exprl))
post: mk-BpEvent("reset(timid)”)
type: trf-reset: Reset-node — BpEvent*

Transform a reset action to a basic process reset timer event.

def trf-terminator(tn,stset,bpid){bpm) =
pre: (mk-Nextstate-node(snm) = tn)
post: trf-nextstate(snm,stset,bpid)(bpm)
pre: (mk-Stop() = tn)
post: mk-PrefixExprimk-BpEvent("stop”), NIL) bpm
pre: {(mk-Return{) = tn)
post: mk-PrefixExprimk-BpEvent("return”), NIL) bpm
type: trf-terminator: Terminator State-node-set Identifier BoMap — BpExpr BoMap

Transform a terminator action.

def trf-nextstate(snm,stset,bpid)(bpm) =
pre: (stset = {}},
(bpnm = mk-BpNm{snm))
post: bpnm bpm
pre: {(snode € stset),
(mk-State-node(snm,,,) = snode),
(bpnm = mk-BpNm{snm))

Page 81
ETR 071:1993

post: bpnm (bpm + [bpnm — trf-statenode(snode,stset\{snode}}(bpm)])
pre: (snode € stset),
(snode(snm’,,,) = snode},
{snm # snm’),
(bpnm = mk-BpNm({snm})}
post: bpnm bpm
type: trf-nextstate: State-name State-node-set /dentifier BoMap — BpExpr BpMap

Transform a nextstate node.

def trf-statenode(sn,stset,bpid){bpm) =
pre: (mk-State-node(snm,saveset,inpset,spset} = sn}},
{sapfel = trf-saveset(snm,saveset)),
(sppfel stset',bpm’ = trf-spontaneousset(spset,stset,bpid){bpm)),
{ippfel, stset'', bpm'' = trf-inputset(inpset,stset’,bpid){(bpm')),
{bpe = merge-pfix{sapfel:isppfel :: ippfel))
post: bpe bpm"'
type: trf-statenode: State-node State-node-set /dentifier BoMap — BpExpr BpMap

Transform a state with associated input nodes, save nodes and spontaneous transitions.

def trf-saveset(snm,saveset) =
pre: {saveset = {},
post: <>
pre: (savesig € saveset),
{pfe = trf-save(snm,savesig)
post: pfe :: trf-saveset(snm,saveset\{savesig}))
type: trf-saveset: State-name Save-set — PrefixExpr*

Transform a non-empty set of save constructs into a list of basic process prefix expressions.

def trf-save(snm,sigid) =
pre: (bpe = mk-BpExpr{snm),
{sev = mk-BpEvent("save(sigid)")
post: (mk-PrefixExpr({sev,bpe}}
type: trf-save: State-name Signal-identifier — PrefixExpr

Transform a save statement to a basic process prefix expression.

def trf-spontaneousset({spset,stset,bpid)(bpm) =
pre: spset = {}
post: (<>, stset, bpm)
pre: (sptr € spset),
{mk-Spontaneous-transition(tr) = sptr),
(bpev = mk-BpEvent{"sender : = self")),
{bpe,bpm' = trf-transition(tr,stset,bpid){(bpm)),
{pfe = mk-PrefixExpribpev,bpe)),
(stset’ = stset \ dom({bpm)),
(pfel,stset'’,bpm"’ = trf-spontaneousset(spset\{sptr},stset'}{bpm')),
(pfel' = pfe :: pfel)
post: (pfel’, stset'’, bpm'’)
type: trf-spontaneousset: Spontaneous-transition-set State-node-set Identifier BoMap —
PrefixExpr* State-node-set BoMap

Transform a set of spontaneous transitions into a list of basic process prefix expressions. Note that
in the CSR the assignment of the basic process instance identifier value to the variable "sender”
reflects the execution of a spontaneous input action.

def trf-inputset(inpset, stset,bpid)(bpm) =
pre: (inpset = {})

Page 82
ETR 071:1993

post: {< >, stset, bpm)

pre: (inode € inpset),
(pfe,stset’,bpm' = trf-input(inode,stset,bpid,bpm)),
(pfel,stset'" ,bpm'’ = trf-inputset{inpset\{inode},stset')(bpm)),
(pfel' = pfe :: pfel)

post: (pfel’, stset'', bpm'')

type: trf-inputset: /nput-node-set State-node-set Identifier BoMap —
PrefixExpr* State-node-set BpMap

Transform a set of input nodes to a list of basic process prefix expressions.

def trf-input(in,stset,bpid)(bpm) =
pre: (mk-/nput-node(sigid,varl,tr) = in),
(st = conv-sigvarl(sigid,varl)),
{inpev = mk-BpEvent("input(st)"}),
{bpe,bpm’ = trf-transition(tr,stset,bpid){bpm))},
(pfe = mk-PrefixExpriinpev,bpe}},
(stset' = stset\dom{bpm'))
post: (pfe, stset’, bpm’)
type: trf-input: /nput-node State-node-set Identifier BoMap —
PrefixExpr State-node-set BoMap

Transform an input node with an associated transition to a basic process expression,

def trf-decision{dn,stset,bpid){bpm) =
pre: (mk-Decision-node(quest,answset,elseansw) = dn),
{cond = derive-elsecondition{quest,answset}),
{btev = mk-BpEvent("[cond]")},
(mk-Transition{tr) = elseanswy),
(bpe,bpm' = trf-transition(tr,stset,bpid)(bpm)),
{(pfe = mk-PrefixExpribtev,bpe)),
(pfel,bpm'' = trf-answset(quest,answset,bpid)(bpm’)
post: merge-pfix(pfe :: pfel) bpm"
pre: (mk-Decision-node(quest,answset,nil) = dn),
{{pfel,bpm’ = trf-answset(guest,answset,bpid}{bpm')}
post: merge-pfix(pfe :: pfel) bpm'
type: trf-decision: Decision-node State-node-set Identifier BoMap — BpExpr BpMap

Transform a decision construct into alternatives each with a Boolean term as the initial event.

def derive-elsecondition{quest,answset) = (...}
type: derive-elsecondition: Decision-question Decision-answer-set — Term

Derive a Boolean term which represents the negation of the conditions of all other decision answers.
This term represents the condition of the "else” transition.

def trf-answset(quest,answset, stset,bpid)(bpm) =
pre: (answset = {})
post: (<>, bpm)
pre: (answ € answset),
(mk-Decision-answer(rc,tr) = answ),
{cnd = derive-condition{quest,rc)),
(btev = mk-BpEvent("lcndl™)),
{bpe,bpm' = trf-transition(tr,stset,bpid){bpm)),
{(pfe = mk-PrefixExpribtev,bpe)),
{pfel, bpm'' = trf-answset({quest,answset\{answ},stset,bpid)(bpm'))
post: (pfe :: pfel) bpm"’
type: trf-answset: Decision-question Decision-answer-set State-node-set
Identifier BoMap — PrefixExpr* BpMap

Page 83
ETR 071:1993

Transform a set of answers of a decision construct into a list of basic process prefix expressions.
These are to be structured as alternatives.

def derive-condition{quest,rng) = (...)
type: derive-condition: Decision-question Range-condition — Term

Derive a Boolean term from a decision question and a range condition in a decision answer.

def trf-inst{inst) = (...)
type: trf-inst: Number-of-instances — N XN_,

Transform the number of instances information from a process declaration.

def trf-parameters(parml) =
type: trf-parameters: Process-formal-parameter®* — Par

Transform a list of formal parameters of a process declaration into a list of call-by-reference
parameters and a list of call-by-value parameters.

def trf-localvars(vars) =...
type: trf-localvars: Variable-definition-set — (Var xTerm(Var))*

Transform a set of local variable declarations and initial value assignments.
B.2.1 Generator functions

def gen-proc-or-path-id{orig,rnm,chrc) ={(...}
type: gen-proc-or-path-id: (Process-identifier | ENVIRONMENT)
Signal-route-name Channel-to-route-connection-set — [dentifier

Construct an identifier which is either a process identifier or a path identifier based on the specified
process identifier. If the environment is specified the result is a path identifier derived from the
channel to route connection set and the name of the signal route.

def gen-sigterm(sigset) = (...)

. A
type: gen-sigterm: Signal-identifier-set — 2597 dor)

Generate the powerset of interpretations of the signal identifier set.
B.2.2 Conversion functions

def conv-processidentifier(pid) = (...}
type: conv-processidentifier: Process-identifier — Route

Convert a receiving process identifier into a route descriptor. Note that in order for this route
description to be derived the process identifier of the sending process instance must be available.

def conv-expressionlist{exprl) = (...)
type: conv-expressionlist: [Expression]* — Term*

Convert a list of expressions into a list of terms.

def conv-prodexprlist(prodid,exprl} = {...)
type: conv-prodexprlist: Procedure-identifier |[Expression]* — Var* Term(Var)*

Convert a procedure call parameter list into a call-by-reference parameters (Var*) and a list of call-
by-value parameters (Term(Var)*). In order to perform this separation of the parameters the
procedure declaration is needed, so the procedure identifier is needed in order to retrieve the basic
process declaration from which the sort of the parameters in the parameter list can be derived.

Page 84
ETR 071:1993

def conv-timeridentifier(tid,expri) = {...)
type: conv-timeridentifier: Timer-identifier Expression* — SigTerm(Var)

Convert a timer identifier with an optional list of expressions into a signal term. Timers are handled
as signals in the CSR.

def conv-signalident(sigid) = (...) ,
type: conv-signalident: Signal-identifier — SigSort

Convert a signal identifier of a save construct into a signal sort in the CSR.

def conv-sigvarl(sigid,varl) = {(...) .
type: conv-sigvarl: Signal-identifier [Variable-identifierl — SigTerm

Convert a signal identifier and associated list of variables into a signal term.
B.2.3 Auxiliary functions

def merge-pfix(pfl) =
pre: (len(pfl)
post: hd{pfe)
pre: (pfe = hd(pfl})
post: mk-ChoiceExpr(pfe, merge-pfix(tl{pfl))
type: merge-pfix: PrefixExprt — BpExpr

1)’

Construct a structure of basic process choice expressions from a list of basic process prefix
expressions. ‘

B.3 Transformation of TTCN

The transformation of TTCN defines a set-up of all entities in the CSR. With respect to the
conceptual model for TTCN (subclause 4.2) the TTCN tester is transformed to a process instance,
PCOs are related to paths, abstract tester is related to a module and the TTCN system is related to
system.

The three processes of the TTCN tester, called Tree, Timer, and Input, are transformed to a basic
process, Timer process, and Input process. The TTCN tester maintains sets of parameters, variables
and constants. For all these parameters, variables and constants, locations are allocated in the
storage environment of the process instance in the CSR, which models the TTCN tester, and an
initial assignment of values is performed.

The transformation of a TTCN test suite is defined in subclauses B.3.3 and B.3.4 which deal with
the transformation of the static part of a TTCN test suite (data, variables, PCOs, etc.) and the
dynamic part {the TTCN test cases). Subclause B.3.1 defines the assumptions made on the input
domain of the transformations, i.e. a subset of TTCN with the same expressive power as full TTCN.
Subclause B.3.2 is devoted to the transformation of data type definitions (including ASN.1).

B.3.1 Assumptions on TTCN
TTCN allows several ways to specify properties for the contents of an element in a PCO queue.

The contents of the element, i.e. the type of the element and the value of certain fields of the
element is of importance for testing in several ways.

For checking the type, the type of the expected message can be indicated. For checking the value
of certain fields, a constraint for the type can be indicated.

As a third and last possibility TTCN allows the use of qualifiers which use references to fields of a
message. Using constraints with actual parameters equal to the expected values provides the same
expressive power and indicates a more direct relation to the message.

Page 85
ETR 071:1993

. Assumption: references to fields of a message are not used in a qualifier.
. Assumption: references to fields of a message are not used as the left hand side of an
assignment.

References to fields are only used in the right hand side of an assignment on the behaviour line to
update variables which are used for historical information. The use of references to fields in the left
hand side of an assignment has the same function as the use of actual parameters for the
constraints, where the parameter indicates the field of the message.

The references to fields in the qualifiers are not necessary, because one can parameterise the
constraint with a specific value or define different constraints for the different qualifiers (where the
values for the fields are provided in the constraint).

The use of the references to fields in assignments is necessary unless for each of the possible
values for the field different constraints are made. In that case the value of the field is represented
in the execution path. This is, however, impossible if the number of possible values is infinite.
B.3.1.1 Assumptions on referencing parts of messages

There are two reasons to reference to a certain part of a message. One reason is to restrict the
value of this part of the message and another is to store the value for reuse. The restriction on
messages is useful with respect to the sending and receiving of messages, whereas the storing for
reuse of parts of messages is only necessary when receiving messages. To restrict parts of
messages to certain values, TTCN has the constraints (with actual parameters for those cases
where the restrictions are determined dynamically). To store the value received for reuse, TTCN
offers the possibility to reference a part of a message within the right hand side of an assignment.

TTCN is less restrictive with respect to the places where references to fields of a message may
occur.

. Assumption: Only the constraints on the right hand side of an assignment are used to
reference a part of a message.

Due to this assumption, the order of evaluation of a event line in terms of its components can be
the same for both sending and receiving events.

PCO ! PDU [Ql (A:=v1,B:=v2) Constraint

If no reference to PDU in the qualifier and the left hand side of the assignments the order:
3 1 2 3

can become
2 1 3 2

and:
PCO ? PDU [Ql (A:=v1,B:=v2) Constraint

If no reference to PDU in the qualifier and the Ieff hand side of the assignments the order:
1 2 3 1

can become:
2 1 3 2

Conclusions: a restriction on the possible values for a part of a message are made by a constraint
{possibly by usage of a specific actual value for a formal parameter). For the storage of the value of

Page 86
ETR 071:1993

a part of a received message the right hand side of an assignment on the behaviour line may contain
references to named fields of the PDU. A reference to a part of a message should be to a named
field by using its name.

B.3.1.2 Assumptions on constraints

In the following it will be shown that due to the fact that if one set of alternatives deals completely
with the reception of a message from a PCO queue some of the constructs which are defined for
constraints become redundant. (As they are also difficult to describe in a formal manner these
constructs shall be eliminated from the constructs that are mapped to abstract data types).

The type of a message identifies the set of all possible values.
A constraint for a type of a message identifies a subset of the set of all possible messages.

The set of all possible messages can be constructed by varying the values for the parts of the
message. To identify a subset of the set of all possible messages the set of allowed values for the
parts of a message should be restricted.

A type of a message is built from subtypes, which are types themselves. Restricting the set of
possible messages by using a constraint is performed by restricting the set of allowed values for the
subtypes of the type of the message. A constraint is defined by supplying constraints for each of
the subtypes of the type.

Possible restrictions for a type are:

- no restriction;
- subset of specific values;
- one specific value.

Depending on the type different ways to indicate a subset of specific values may exist. Some types
may have special values to indicate a restriction.

Sometimes the type to be restricted could be adapted to the needs for restrictions (without
changing the set of possible values).

Due to the semantics of the behaviour part of TTCN, the restriction of a type to a subset of specific
values could also be expressed by a set of alternatives of constraints with exactly one of the
specific values. Because of the possible infiniteness of the set of possible values or the great
number of possible values this becomes impractical.

For those parts of a message for which the value is to be used in calculations (and not only to pass
to an acknowledging message) probably only a finite set of possible values will exist.

. Assumption: a constraint that allows several (but a finite number of) values, are specified as
several constraints which allow each of these values one by one.

The use of actual parameters to indicate these values enhances the readability of the test, because
the test then stresses what is of importance with respect to the message.

. Assumption: for the different constructs, the constraints on the set of values are indicated as
follows:

- constraints for SEQUENCE type by restrictions on subtypes;

- constraints for SET type by restrictions on subtypes;

- constraints for CHOICE type by restrictions on subtypes and restriction on the number
of alternatives;

- constraints for SEQUENCE OF type by restrictions on the number of elements and by
restrictions on the subtype;

Page 87
ETR 071:1993

- constraints for SET OF type by restrictions on the number of elements and by
restrictions on the subtype;

- constraints for OPTIONAL types by restrictions on the type or the special value OMIT,
indicating the absence of the type or the special value ? indicating the presence of any
value of type. If the presence of a specific value is necessary, but the absence is also
allowed this is expressed using two constraints. One where the absence is mandatory
and one where the specific value is present. (indicating a specific value implies the
presence of the typel;

- constraints for any type by restriction on the type by indicating a set of allowed values
of the type or the special value "?" to indicate no restriction {* for optional types).

TTCN offers a lot of constructs which can be used in constraints. Their semantics are mostly based
on examples and the application of these constructs in combination is not investigated, therefore
only a subset will be considered. For the other constructs transformation rules will be provided.

The use of actual parameters is only a special way of indicating specific values. From this it can be
concluded that the use of specific values, the OMIT, the ? and the * are sufficient to express all
possible restrictions on messages.

. Assumption: in constraints only specific value, valuelist, Omit, AnyOne and AnyOrOmit are
used.

In the following pages transformations for the constructs for constraints mentioned in ISO 9646 [2],
Part 3 are provided.

First some general transformations for parts of test cases that are no longer considered due to the
assumptions made.

- PDU.fieldN refers to a field of a PDU;

- ValueN is used for any value of the correct type;

- VariableN is used for any variable of the correct type;

- T: indicates that the following is a type definition;

- C: indicates that the following is a constraint definition.

1) The use of assignments to indicate values of certain fields:
+preamble
PCO ! PDU {PDU.field1 : = value1}
+ rest1
can be transformed into:
+ preamble
PCO ! PDU Constraint({value1}

+ resti

2) The use of the qualifier to check the values of certain fields:

+preamble
PCO ? PDU [PDU.field1 = value1l
+ restl
PCO ? PDU [PDU.field1 = value2]
+ rest2
PCO ?OTHERWISE FAIL
can be changed to:
+ preamble
PCO ? PDU Constraint{value1}

+ rest1

Page 88
ETR 071:1993

PCO ? PDU Constraint{value2)
+ rest2
PCO ?0THERWISE FAIL

3) If the qualifier is used to deal with an infinite number of values:

+preamble
PCO ? PDU [PDU.field1 > value1]
+ restl
PCO ? PDU [PDU.field1 < = value?2]
+ rest2
PCO ?OTHERWISE FAIL

can be changed to:

+preamble
PCO ? PDU {variable1 : = PDU.field1}
[variable1 > value1l
+ rest1
[variablel < = value2]
+ rest2
PCO ?OTHERWISE FAIL

4) Transformation if valuelist is used:
T: a: type T: a: type

C: a: {value1, value2) C1: a: valuel
C2: a: value2

+preamble + preamble
T C T C1
+rest +rest
T C2

+rest

The constraint C allows two values for field a. The constraints C1 and C2 allow only one of the
values in each constraint.

5) Transformation if range is used:

if finite then in the same way as 4.
else in the same way as 3.

6) Transformation if complement is used:

T: a: type ... T: a:type ...
C: a: complement(value1, value2) C1: a: (valuel, value2)
C2:a:?
+preamble +preamble
T C T Cci (FAIL)
+rest +rest
T C2 (PASS)

+rest

The constraint C allows all possible values not equal to value1 or value2. The test case does not
deal with a message which contains these values. In the transformed version C1 deals with the
values value1 and value2 and C2 deals with all possible values. However, because of the priority for
the alternatives in a case where the alternative with C2 shall be executed this can only be if C1 did
not match and therefore the forbidden values are not part of the message.

Page 89
ETR 071:1993

7} Transformation if ifpresent is used:

T: a: type OPTIONAL ... T: a: type OPTIONAL
C: a: valuel IF_PRESENT ... C1: a: valuel
C2:a:*
+ preamble + preamble
T C T C1 (PASS)
+rest +rest
T Cc2 (PASS)
+rest

For this transformation the same explanation applies as for transformation 6.
8) Transformation if permutation is used:

T: a : SEQUENCE OF type T: a: SET OF type
C: a: { perm{value1l, value2) } C1: a: {valuel, value2}

This transformation uses the semantics already provided by ASN.1. The semantics of a SET (OF)
type includes that any permutation of the fields is allowed.

9) Transformation if length is used (note that this means that it is finite):

T: a : stringtype T: a : SEQUENCE OF type
C: a: "some*thing"[13] C1: a: "some????thing”

The use of the length indication means that this is information which is available at specification
time. Therefore it is only an abbreviation.

10) Transformation if subset is used:
T: a: SET OF type T: a: SET {b : type OPTIONAL,

¢ : type OPTIONAL,
d : type OPTIONAL }

C: a: subset({valuet, C1: a: SET{b : valuel IF_PRESENT,
value2, ¢ : value2 IF_PRESENT,
value3}) d : value3 IF_PRESENT}

This transformation is very straightforward, but note that the use of the ifpresent construct also
results in new transformations. Note that the indication of tags have intentionally been left out.

11) Transformation if superset is used:
T: a: SET OF type T: a: SET {b: type,

c: type,
d : type OPTIONAL}

C: a: superset({ valuel, C1:a: SET{b : valuel,
value2}) c : value2,
d: *}

Notice that an upper limit for the number of elements of the set has to be introduced. Note that the
tags have been left out.

12) Transformation if wildcards are used:

T: a : stringtype T: a : SEQUENCE {b : type,
c : type,

Page 90
ETR 071:1993

d: type }

C:a: "f20" ... C1:a: SEQUENCE { b : "f",
c:?,
d : “0" }

This transformation shows that a further refinement of the type can transform wildcards inside
values into wildcards instead of values.

B.3.2 Transformation of TTCN data types and values

This subclause provides the details on how to transform a TTCN type definition to an algebraic
specification. In the following a set of base data types is identified for which it is assumed that
algebraic specifications exist. The main part of this subclause deals with the transformation of
ASN.1 data type definitions to algebraic specifications. At the end the transformation of TTCN
structured data types, ASP and PDU data types is described which resembles most of the
transformation of ASN.1.

B.3.2.1 Base data types

TTCN identifies the following predefined data types INTEGER, BOOLEAN, BITSTRING, HEXSTRING,
OCTETSTRING and the CharacterString predefined types NumericString, PrintableString,
TelexString, VideoString, VisibleString, |A5String, GraphicString and GeneralString. The
CharacterString types only differ in their representation and can be reduced to either OCTETSTRING
or HEXSTRING.

BOOLEAN, INTEGER, BITSTRING, OCTETSTRING, and HEXSTRING are considered base data types.

TTCN identifies the following predefined operators, some of them applicable to values of any data
type defined in a TTCN test suite.

Arithmetic operators: the arithmetic operators are +, -, *, /, and MOD and represent the operations
addition, subtraction, multiplication, division and modulo. Operands shall be of INTEGER type (or a
derivative of INTEGER type) and the result is also of INTEGER type.

Relational operators: the following relational operators are defined by TTCN: = {equality), < {(less
than), > (greater than), <> (not equal), > = (greater than or equal), and < = {less than or equal).
Operands = and < > can be applied to operands of any compatible type. The others have INTEGER
type operands. The result of applying these operators is a Boolean value.

Boolean operators: the Boolean operators are AND, OR, and NOT which stands for conjunction,
disjunction and negation. Operands are of type Boolean. The operators result in Boolean value.

Algebraic specifications for these base data types can be found in e.g.. "Fundamentals of algebraic
specifications 1" [7], and even in standards and recommendations, e.g. ISO 8807 [8] and CCITT
Recommendation Z.100 [1]. It is assumed that algebraic specifications of these data types are
available. They are implicitly used in the following.

B.3.2.2 TTCN data types
In TTCN, data types can be defined using either ASN.1 or TTCN defined constructs.

B.3.2.2.1 ASN.1 data type definitions

In a TTCN test suite data type definitions are either explicit or implicit. Explicit by use of the ASN.1
notation, particularly the Type and TypeAssignment grammar rules from 1SO 8824 [9], and implicit
by reference to an ASN.1 definition in an ISO Standard or CCITT Recommendation. In the following
the transformation of explicit ASN.1 type definitions to algebraic specification is considered. It is
assumed that implicit ASN.1 type definitions have been resolved which means that the definitions
have been substituted for the references.

Page 91
ETR 071:1993

In order to get an abstract model the transformation does not deal with coding details, e.g. basic
encoding rules (BER), see I1SO 8825 [10] or tagging and the ordering of elements in a set. The
definition of the transformation is based mainly on research results reported in "Combining ASN.1
support with the LOTOS language” [11] and "System documentation for the one 2 one translator
and user guide" [12].

Optional parameters and fields: as a default parameters of ASPs or fields of PDUs are optional and
thus can be omitted in instances of an ASP or a PDU. To deal with absent optional parameters or
fields a specific value, denoted by the term ABSENT, is added to every sort in all types. ABSENT
can be used instead of any value for an ASP parameter or a PDU field.

Matching values and matching mechanism: constraints denote values for ASPs and PDUs to be sent
or to be received. In a constraint for an incoming ASP or PDU, TTCN allows to substitute special
symbols (- {omit), ? {any), * (any or omit)} for values. During the matching process of a constraint
against the received values these symbols indicate the application of a specific matching
mechanism.

The handling of these matching values and the matching mechanism is similar to the handling of
optional parameters in ASPs or PDUs. Specific values are added to the sort of every type denoted
by the terms OMIT, ANY, and ANYOROMIT.

In an algebraic specification for each of the specific values (including ABSENT) an operation (or
constant) is introduced as follows:

<ABSENT : -> sort_>;
<OMIT : -> _sort_>;

<ANY :-> sort_>;
<ANYOROMIT : -> _sort_>;

where ABSENT, etc. is the name of the operation and _sort_ is the sort of the type. The semantics
of these operations with respect to equality is defined by the following equations. The general
structure of an equation is a triple <V, Eq, e> with V a set of variables, Eq a set of equations
which define conditions to be fulfilled in order to apply equation e. Each equation consists of two
terms, referred to as left-hand side and a right-hand side. An equation states that both terms denote
the same value in an algebra and thus may be exchanged for each other in any context.

<{}, {}, <eq{ABSENT, ABSENT), true> >

<{}, {}, <eq(OMIT, OMIT), true> >

<{}, {}, <eq(ANY, ANY), true> >

<{}, {}, <ealANYOROMIT, ANYOROMIT), true> >

<{}, {}, <eq(ABSENT, OMIT), true> >

<{x: _sort_}, {<ne{x, ABSENT), true>}, <eqix, OMIT), false> >
<{x: _sort_}, {<ne{x, ABSENT), true>}, <eqix, ANY), true>>
<{x: _sort_}, {}, <ealx, ANYOROMIT), true> >

<{x, x': _sort_}, {}, <nelx, x'}), notleq(x, x"}> >

The first four equations state that each of the specific values ABSENT, etc. is equal to itself. The
fifth equation relates ABSENT in received ASPs or PDUs to OMIT in constraints. The next three
equations are related to the matching mechanism as defined by TTCN:

- no values matches the OMIT with the exception of ABSENT used to indicate an absent ASP
parameter or PDU field;

- if any value is expected then there should be one different from ABSENT;

- if any or no value is expected then any value matches.

It is assumed that ABSENT is only used for ASPs and PDUs and not in constraints. OMIT, ANY, and
ANYOROMIT are to be used only in constraints.

Page 92
ETR 071:1993

Transformation schema: to guide the transformation this Clause discusses the general schema used
throughout the rest of this section to present the transformation from ASN.1 type definitions to
algebraic specifications.

A general form of an ASN.1 type definition is:
hame 1= _type_

name is the identifier of the type. _name_ is unique for the test suite. type_is either a primitive
ASN.1 type or a structured ASN.1 type. Component types of a structured ASN.1 type should have
unique names, denoted e.g. by _element1_, element2 , The transformation of such an ASN.1
type definition results in a type specification whose general form is as follows:

name = < {_name_},
{ <_name_: type -> name >,

<eq: _name_, name_-> Bool>,
<ne : _name_, name_-> Bool> },

{---}>

Every type specification has a unique name associated and consists of three parts: a set of sorts, a
set of operations, and a set of equations.

All identifiers to denote the type, the sort, and the operations are inherited from the ASN.1 type
definitions.

The specification referred to by name_ is a partial type specification which exactly specifies one
sort, e.g. name_. However, this partial type definition is part of a type specification which is
comprised of all data type definitions. References to sorts, e.g. the Boolean sort, and operations not
part of the type are resolved in that predefined type specification.

The use of name_ as an identifier of a type, a sort, and an operation becomes obvious from the
context in which _name_ is used.

It is assumed that all type specifications additionally comprise all operations and equations
introduced previously with the necessary changes to identifiers, e.g. change of sort identifiers.

ASN.1 primitive types: the ASN.1 Boolean type, integer type, real type, bitstring type, and
octetstring type are transformed to the corresponding algebraic specifications of the base data types
{subclause B.3.2.1).

Enumerated type: an enumerated type identifies a set of distinct integer values.

name :: = ENUMERATED {
element1 (_number1_),

elementn { _numbern_) }

name = < {_name_},
{ <_element1_:-> name >,

<_elementn_: -> name_>,

... {* all operations for specific values *),

<eq: _name_, name_-> Bool>,

<ne: _name_, name_-> Bool> },

{ <{}, {}. <eal_element1_, element1), true>>,
<{}, {}, <eal_element1 , element2), false> >,

<{}, {}, <eal_element1_, elementn), false> >,

Page 93
ETR 071:1993

<{}, {}, <eal_element2_, element1), false> >,
<{}, {}, <eql_element2 , element2), true> >,

<{}. {}, <eal(_elementn , elementn_), true> >,
... (* all equations for specific values *),
<{x, x": _name _}, {}, <ne(x,x'), notleq(x, x'))>> } >

- The elements of the enumeration type are referred to by their names in the type specification,
and are denoted by the operations _elementi .

- All operations for specific values and all equations for specific values refer to the operations
and equations for ABSENT, ...

Null type: A type definition of a NULL types is given by:

name ::= NULL

name = < {_name_},
{ <_name_:-> name_ >,
... {* all operations for specific values *},
<eq:_name_, name_-> Bool>,
<ne: _name_, name_-> Bool> },
{ ... {* all equations for specific values *),
<{}, {}, <eal name_, name), true>>,
<{x, x' : _name }, {} , <ne(x, x'), notleq(x, x’)}>>} >

ASN.1 constructor types: it is assumed that every element of an ASN.1 constructor type is
explicitly named. Furthermore, it is assumed that for all referenced component types algebraic
specifications exist.

Sequence types: a sequence type is defined as follows:

name::= SEQUENCE {
element1 _typel

elementn _typen_ }

name = < { name_},
{ < _name_: typel , ..., _typen_-> name_>,
< element1_ : name_-> _typel_>,

< _elementn_: name_ -> typen_ >,

... {* all operations for specific values *),
<eq: _name_, name_-> Bool>,

<ne: _name_, name_-> Bool> },

{ <{x1: typel , ..., xn: _typen_}, {},
<_element1_{_name_(x1, ..., xn})), x1> >,
<{x1: typel , ..., xn: typen_ }, {},

< _elementn_{_name_({(x1, ..., xn)}, xn>>,

... {* all equations for specific values *)

<{x1, x1": _typel_, ..., xn, xn" : _typen_}, {}
<eq(_name (x1, ..., xn}, name (x1’, ..., xn'}},
and{eq(xn, xn'), and(...eqi{xn, xn')...}>>,

<{x, y: _name_}, {}, <nelx, y)), notlea(x, y)>>} >

- The operations _elementi provide access to the component types of the sequence type.

Page 94
ETR 071:1993

Sequence-of type: a sequence-of type is defined as follows:

name ::= SEQUENCE OF _type

name = < { name },

{ <empty :-> name_>,

<+ ! _type_, name_-> name >,

<length : _name_-> Integer>,

<get: name_, Integer -> _type_ >,

... {* all operations for specific values *),

<eq:_name_, name_-> Bool>,

<ne:_name_, name_-> Bool> },

{ <{}, {}. <lengthl{absent}, error> >,

<{}. {}. <length{empty), 0> >,

<{t: _type_, s: name_}, {}, <length{+(t, s)), plus(1, length(s))> >,

<{i: Integer, s : _name_}, {<i <= 0, true>, <i > length(s), true>},
< getly, i), error> >,

<s: name_, t: type }, {<i = 1, true>},
<get(+{t, s}, i}, t>>,

<{i : Integer, s : _name_, t: _type_},
{<1 < i, true>, <i <= length(s), true>},
<get(+(t, s), i), getls, i -1)>>,

... {* all equations for specific values *},

<{}, {}, <eaqlempty, empty), true> >,

<{t: type_, s: _name_}, {}, <ealempty, +{t, s)), false> >,

<{t: type ,s: name_}, {}, <eq(+(t, s), empty), false>>,

<{t, t': type , s, s': _name_}, {<eqlt, t'), true>},
<eq(+{t, s), +(t', s")), eqls, s')>>,

<{t, t': type , s, s': _name_}, {<nelt, t'), true>},
<eql+(t, s), +(t', s')), false> >,

<{s, s': _name_}, {}, <nels, s'}, notleq(s, s')>> } >

- Operation + creates instances of a sequence-of type.

- Operation /ength returns the number of elements in the sequence-of.

- Operation extract returns the ith element from the sequence-of.

- Operation get is only defined for integers 7 to /ength(s). The use of get with an integer less
than O or greater than /ength(s/ results in an error indication.

Set type: a set type is defined as follows:

name ::= SET {
elementl typel_,

elementn _typen_ }

<name> = < { name_},
{ < _name_: typel_, ..., typen_-> name_>,
< _element1_: name_-> _typel_>,

< _elementn_: name_-> _typen_>,
... {* all operations for specific values *),
<eq: _name_, name_-> Bool>,
<ne: _name_, _name_-> Bool> },
{ <{x1: typel , ..., xn: typen_}, {},
< _element1_{_name {(x1, ..., xn)), x1> >,

<{x1: typel , ..., xn: _typen_}, {},

<_elementn_{_name_(x1, ..., xn}), xn> >,

... {* all equations for specific values *},

<{x1, x1': _typel_, ..., xn, xn' : _typen_,}, {}
<eq(_name_(x1, ..., xn}, _name_(x1', ..., xn’}},
and(eq(xn, xn'), and{...eqi{xn, xn'}...}> >,

<{x, y: _name_}, {}, <nelx, y}}, notleq(x, y))>>} >

Set-of type: a set-of type is defined as follows:

name::= SET OF type

<name> = < { _name_},
{ <empty : -> name_>,
<+ : _type , name_-> name_>,
<length : _name_-> Integer>,
<get: name , Integer -> type >,
... {* all operations for specific values *),
<eq: _name_, name_-> Bool>,
<ne: _name_, _name_-> Bool> },
{ <{}, {}, <length(absent), error> >,
<{}, {}, <length(empty), 0>>,

<{t: _type_, s: name_}, {}, <length{+(t, s}}, plus(1, length(s))> >,
<{i: Integer, s : _name_}, {<i <= 0, true>, <i > length(s), true>},

<getly, i), error> >,

<s: _name_, t: _type }, {<i = 1, true>},
<get{+{t, s), i), t>>,

<{i: Integer, s: name_, t: type },
{<1 < i, true>, <i <= length(s), true>},
<get(+({t, s), i}, getls, i -1)>>,

... {* all equations for specific values *},

<{}, {}, <ealempty, empty), true> >,

<{t: type ,s: _name_}, {}, <eqlempty, +(t, s)), false>>,
<{t: type ,s: name_ }, {}, <eq(+(t, s), empty), false> >,

<{t, t': type ,s,s': name_ }, {<eqlt, t'), true>},
<eq(+(t, s}, +{t', s')), eqls, s'}>>,

<{t, t': type , s, s': name_}, {<nelt, t'), true>},
<eql{+{t, s), +(t', s')), false> >,

<{s, s' : _name_}, {}, <ne(s, s'), notleqg(s, s"))>> } >

Choice type: a choice type is defined as follows:

name ::= CHOICE {
_element1__typel_,

elementn _typen_ }
name = < {_name_},
{ <is_element1_: _name_->Booal>,

<is_elementn_: name_->Bool>,

< _elementl _: typel -> name >,
< _elementn_: typen -> name_ >,
<conv_elementl : name -> typel_ >,

<conv_elementn_: name_-> _typen_>,

Page 95
ETR 071:1993

Page 96
ETR 071:1993

... {* all operations for specific values *),

<eq: _name_, name_-> Bool>,

<ne:_name_, name_-> Bool> },

{ <{x1: _typel_}, {}, <is_element1 (name_ (x1)), true> >,
<{x1: _typel_}, {}, <is_element2 (name (x1)), false> >,

<{x1: _typel_}, {}, <is_elementn_(_name (x1)), false> >,

<{xn: _typen_}, {}, <is_element1 { name_(xn)), false> >,
<{xn: _typen_}, {}, <is_element2 (name_(xn)), false> >,

<{xn: _typen_}, {}, <is_element1 (name_(xn)), true> >,
<{x1: _typel }, {}, <conv_element1 (name (x1)), x1> >,
<{x2 : _type2_}, {}, <conv_element1 (_name (x2)), error> >,

<{xn : _typen_}, {}, <conv_element1 { name {xn)), error> >,

<{xn: _typen_}, {}, <conv_elementn_(name_(xn)), xn> >,

... {* all equations for specific values *),

<{x, x': _name_}, {},
<eq(x, x'}), or(eqg{conv_element1_(x), conv_element1_(x'}},
or{eg{conv_element1 (x), conv_element2 (x'}},

or{eg(conv_element1_({x), conv_elementn_{(x'}),

or{eg{conv_elementn_(x), conv_elementn (x'))...}> >,
<{x, x' : _name_}, {}, <nelx, x'}, not{eq(x, x'))>> }>

- Operation is_element determines the type of the chosen alternative.
- Operation conv_elementi converts the chosen alternative to its type.

Selection type: a selection type is defined as follows:

_name_name_ ::= CHOICE {
element1 _typel_,

elementn _typen_ }

name 1= elementi_ < name _name_

name = < {_name_},
{ <_name_: typei_-> name_ >,
... (* all is_elementi_ and conv_elementi_ operations *)
... {* all operations for specific values *),
<eq:_name_, name_-> Bool>,
<ne :_name_, name_-> Bool> },
{ ... (* all is_elementi_ and conv_elementi_ equations *),
... {(* all equations for specific values *},
<{x, x' : _typei_}, {}, <eq(_name_(x), _name_(x')), eq(x, x')> >,
<{x, x' : _name_}, {}, <ne(x, x'), notleq(x, x")})>> }>

Object identifier type: an object identifier type is defined as follows:
name ::= OBJECT IDENTIFIER

Values of the type are essentially sequences of integers. An object identifier type is represented
thus as a SEQUENCE OF INTEGER type.

Page 97
ETR 071:1993

name ::= SEQUENCE OF INTEGER

Character string types: ASN.1 identifies the following character string types: NumericString,
PrintableString, TeletexString, VideotexString, VisibleString, |AbString, GraphicString, and
GeneralString. In addition, the different denotations of time {generalised and universal time) are
based on the VisibleString type.

As stated before character string types can be reduced to the OCTETSTRING or HEXSTRING type.
It is assumed that these reductions have already been performed.

Object descriptor: in ASN.1 an object descriptor type consists of text. An object descriptor thus
may be defined as follows:

name ::= _characterstring

As the type definition reduces to a character string the transformation for character string types
applies.

ASN.1 external types: the external type is not used in TTCN.
B.3.2.2.2 Test suite type definitions

Type definitions are provided by using tables. This subclause uses these predefined tables. The
transformation schemata of the previous section apply.

Simple type definitions using tables: TTCN defines that a simple type is defined by a name for the
type, its base type, and certain type restrictions. Restrictions are defined to be either a list of
distinct values, a range of INTEGER values, or a length range. Lists of distinct values can be
specified for all pre-defined or test suite defined data types.

Table B.2: Simple type definitions

Simple Type Definitions

Type Name Type Definition Comments

name _type_ _freetext_

Detailed Comment: freetext

_freetext_is any text which serves the purpose of a comment, however the transformation does not
deal with comments. The transformation results in an algebraic specification named name_, and
renaming of sort type by name_ throughout the type specification.

type = < {_type_},
{ < opl_:..-> type >,
... {* all operations for specific values *},
<eq: type , type -> Bool>,
<ne: type , type -> Bool> }
{ ... (* all equations for specific values *),
<{x, x' : _type_}, {}, <nelx, x'}), notleqix, x'})>> } >

Page 98
ETR 071:1993

name = < { name_},

{ <_opl_:..-> name >,
... (* all operations for specific values *),
<eq:_name_, _name_-> Bool>,
<ne: name_, name_-> Bool> }

... (* all equations for specific values *)
<{x, x' : _name_}, {}, <ne(x, x'}), notleq(x, x'}}>> } >

Test suite type definitions using ASN.1: TTCN allows to specify data types in ASN.1. The definition
of an ASN.1 type is provided in a tabular form as shown below. References to types within the type
definition have to be defined locally in the same table, in other tables, or by reference in the ASN.1

type reference table.

Table B.3: ASN.1 type definition

ASN.1 Type Definition

Type Name: name_
Comments: _freetext_

Type Definition

type

Detailed Comment: _freetext_

It is assumed that all references to other tables have been resolved such that all referenced types
are locally defined. The transformation can be performed as described in subclause B.3.2.2.1.

Structured type definitions: a structured type definition may be used as subtype in ASPs, PDUs, and
other structured type definitions. The information to be provided with the definition are the name of
the structured type and its elements. For each element its name and type is stated (along with an
additional attribute restricting the length of string types). All elements are considered to be optional.

The definition of a structured type is given according to the following table format.

Table B.4: Structured type definition

Page 99
ETR 071:1993

Structured Type Definition

Type Name: name_

Comments: freetext

Element Name

Type Definition

Comments

elementi

_typei

freetexti

Detailed Comments: freetext

Due to the strong similarities of structured type definition and ASN.1 sequence types the
transformation procedure follows the same rules as stated for an ASN.1 sequence type (subciause

B.3.2.2.1).

ASP type definitions: Abstract Service Primitives (ASP) define events a tester may send or receive
during test execution. The definition of an ASP type is to be provided in a table shown below. For
each element its name and type is stated {(along with an additional attribute restricting the length of
string types). All elements are considered to be optional.

Table B.5: ASP type definition

ASP Type Definition

ASP Name: name_
PCO Type: pco_
Comments: _freetext_

Parameter Name

Parameter Type

Comment

elementi

typei

freetexti

Detailed Comments: freetext

The indication of the PCO where the ASPs are expected to occur is of no relevance for the
transformation of the ASP type definition to an algebraic specification. It is assumed that the macro

symbol is not used.

name = < {_name_},

{ <_name_: _typel_, ..

.. _typen_-> name_>,

<_element1_: name_-> typel >,

<_elementn_: _name_ -> typen >,

... {* all operations for specific values *),

<eq :_name_, name_-> Bool>,

<ne: _name_, name_ -> Bool> },

{ <{x1:_typel , ..., xn: _typen }, {},
<_element1_(_name_(x1, ..., xn)), x1> >,

Page 100
ETR 071:1993

<{x1:_typel_, ..., xn: typen_}, {},
<_elementn_{_name_(x1, ..., xn)), xn> >,

... {* all equations for specific values *),

<{x1, x1': _typel_, ..., xn, xn' : _typen_}, {}

<eq(_name_(x1, ..., xn}, _name_(x1', ..., xn')),
and(eqixn, xn’), andq{.

..eq{xn, xn'}...}>>,

<{x, y: _name_}, {}, <neq(x, y)), notlea(x, y))>> } >

TTCN allows to specify ASPs in ASN.1. The definition of an ASN.1 type is provided in a tabular
form as shown below. References to types within the type definition have to be defined locally in
the same table, in other tables, or by reference in the ASN.1 type reference table.

Table B.6: ASN.1 ASP type definition

ASN.1 ASP Type Definition

ASP Name: name
PCO Type: pco_

Comments: _freetext_

Type Definition

type

Detailed Comment: freetext

It is assumed that all references to other tables have been resolved such that all referenced types
are locally defined. The transformation can be performed as described in subclause B.3.2.2.1.

PDU type definitions: Protocol/ Data Units (PDU) define events a tester may send or receive during
test execution and are similar to an ASP definitions. Thus, the same transformation procedure apply

which is outlined below.

Table B.7: PDU type definition

PDU Type Definition

PDU Name: name_
PCO Type: pco_

Comments: freetext_

Field Name

Field Type

Comments

elementi _typei_

freetext

Detailed Comments: freetext

Page 101
ETR 071:1993

The indication of the PCO where this PDU is expected to occur is of no relevance for the

transformation of the PDU type definition to an algebraic specification. It is assumed that the macro
symbol is not used.

name = < {_name_},
{ <_name_: typel_, ..., typen_ -> name >,
<_element1_: name_-> _typel >,

<_elementn_: _name_-> typen_>,

... (* all operations for specific values *),
<eq:_name_, name_-> Bool>,
<ne:_name_, name_-> Bool> },

{ <{x1: typel_, ..., xn: typen_}, {},
< _element1_{_name_{(x1, ..., xn)), x1>>,
<{x1: _typel , ..., xn: typen_}, {},
<_elementn_{_name_{(x1, ..., xn)), xn> >,
... {* all equations for specific values *),
<{x1, x1': typel , ..., xn, xn": typen_}, {}

<eq(_name (x1, ..., xn), name_(x1', ..., xn')),
and{eq(xn, xn'), and(...eq{xn, xn'}...) > >,
<{x, y: _name_}, {}, <neq(x, y)), notleq(x, y))>> } >

TTCN allows to specify PDUs in ASN.1. The definition of an ASN.1 PDU type is provided in a
tabular form as shown below. References to types within the type definition have to be defined
locally in the same table, in other tables, or by reference in the ASN.1 type reference table.

Table B.8: ASN.1 PDU type definition

ASN.1 PDU Type Definition

PDU Name: name_
PCO Type: pco_

Comments: freetext_

Type Definition

type

Detailed Comment: freetext

It is assumed that all references to other tables have been resolved such that all referenced types
are locally defined. The transformation can be performed as described in subclause B.3.2.2.1.

B.3.2.3 An example - The Verdict type

EXAMPLE: TTCN distinguishes two type of verdicts: preliminary and final verdicts
which are denoted (PJ, (F), (), P, F, | respectively. A particular variable (R/
is introduced to hold the current verdict while executing a TTCN test case.
Initially R is assigned the value none. Whenever a verdict is coded in the
Verdict column of a Dynamic Behaviour Description table the value of R is
updated according to the following rules: if the verdict coded is a
preliminary verdict the result of evaluating the coded verdict against R is
determined according to the following table:

Page 102
ETR 071:1993

Table B.9: Calculation of the variable R

Current value of R Entry in verdict column

(P)] (F)
none P | F
P P | F
i I | F
F F F F

If the verdict coded is a final verdict assignment the result of evaluating the
coded verdict against R is determined according to the following table:

Table B.10: Calculation of the final verdict R

Current value Entry in verdict column

of R P 1 F R
none P | F error
P P 1 F P

| error] F |

F error error F F

The transformation to an algebraic specification of the Verdict type has to
identify the sort and the operations to represent and calculate values and
provide a representation of the above introduced rules to calculate the value
of R. A possible solution is indicated in the following algebraic specification.
The sort is denoted Verdict. For every possible verdict (fP), (F), (I}, P, F, I,
and none) a constant is introduced which are denoted pref, preF, prel, P, F,
/ and none. The operation ¢ has two arguments of sort Verdict and returns
a term of sort Verdict. The semantics of operation ¢ as determined by
tables B.9 and B.10 and is defined in the equations of the specification.

Verdict = < {Verdict},
{ <none : -> Verdict>, <preP : -> Verdict>, <prel : -> Verdict>,
<preF : -> Verdict>, <P : -> Verdict>, <l:-> Verdict>, <F -> Verdict>,
<error : -> Verdict> }, <c : Verdict, Verdict -> Verdict>,
{ <{}, {}, <clnone, preP}, preP>>, <{}, {}, <clnone, prel), prel>>,
<{}, {}, <cinone, preF), preF>>, <{}, {}, <clpreP, preP}, preP> >,
<{}, {}: <clpreP, prel), prel>>, <{}, {}, <clpreP, preF), PreF> >,
<{}, {}, <clprel, preP), prel> >, <{}, {}, <clprel, prel), prel>>,
<{}, {}, <clprel, preF), preF>>, <{}, {}, <clpreF, preP), preF> >,
<{}. {}, <clpreF, prel), preF> >, <{}, {}, <clpreF, preF), preF>>,
<{}. {}, <cinone, P), P> >, <{}, {}, <clnone, I}, I>>,
<{}, {}, <clnone, F), F>>, <{}, {}, <c(none, none), error> >,
<{}, {}, <clpreP, P), P>>, <{}. {}, <clpreP,), I>>,
<{}. {}, <clpreP, F), F>>, <{}, {}, <clpreP, none), P> >,
<{}. {}, <clprel, P), error>>, <{}, {}, <clprel, 1), I>>,
<{}. {}, <clprel, F), F>>, <{}, {}, <clprel, none), 1>>,
<{}, {}, <clpreF, P), error>>, <{}, {}, <clpreF,), |>>,
<{}. {}, <clpreF, F), F>>, <{}, {}, <clpreF, none), F>>}

Page 103
ETR 071:1993

B.3.3 The range for TTCN

This subclause provides the details to derive the range (Clause B.1) of the transformation from a
TTCN test suite. In a first step all identifier sets shall be set up. In a second step the storage
environment for test suite parameters, test suite constants, test suite variables, and test case
variables shall be defined.

For TTCN test suite data types it is assumed that these data types have been transformed as
defined in the previous section. The signature 2:<Sort w SigSort, OP uSigOP) {subclause 5.2) is

derived from the algebraic specifications of data types as follows:

- the set Sort is comprised of all sorts of those algebraic specifications which result from the
transformation of a TTCN simple data type, ASN.1 data type, or TTCN structured type and all
basic data types;

- the set SigSort is comprised of the sorts of all algebraic specifications corresponding to an
ASP or a PDU data types;

- the set OP is comprised of all operations of all algebraic specifications which generate
instances of sorts from Sort;

- the set SigOP is comprised of all operations which generate instances of sorts from SigSort
corresponding to ASPs, PDUs or timers (see also the transformation of timer declarations
below).

B.3.3.1 Sets of identifiers

For TTCN only one module exists. As a default this module is identified by mod. The set of all
module identifiers, denoted by Mod/d, thus consists of the single element mod.

Modld = { mod }
PCOs are declared by use of the following table proforma:

Table B.11: PCO declaration

PCO Declaration

PCO Name PCO Type Role Comments
bcoy _bcotype, _ _pcorole,_ _freetext, _
pco; _bcotype,;_ _pcorole;_ _freetext;_

Detailed Comments: freetext

The information necessary to fill the set Pathld is derived from the entries in column PCO Name.
Every PCO in the TTCN test suite is associated with two paths in the CSR which are referred to by
the path identifiers _pco;; _ and _pco;, , for 1 < j < i. _pcoj; denotes the path which conveys
signals from the environment to the abstract tester, and _pco;, denotes the path which conveys
signal from the abstract tester to the environment. The set Path/d thus is given by:

Pathld = { _pco,,_, pcoys , ..., _PCO;y_. PCO;_}, 12 1.

The identification of the PCO type becomes of importance if the set of signals to be conveyed by a
route has to be determined. TTCN associates with every ASP and (possibly not all) PDUs a PCO
type. Thus if it is to deduce the ASPs or PDUs conveyed by a route this information can be obtained
by joining the PCO Declaration table with all ASP and PDU Declaration tables over the PCO type
(see also the definition of r,,, below).

Page 104
ETR 071:1993

The transformation to the CSR is only concerned with one test case which is uniquely identified
throughout the TTCN test suite by its test case identifier, denoted by e.g. tcid. The set BPIld,, , of
basic process identifiers within module mod is given by:

BPId,,,; = { tcid }

Due to the fact that only one module exists the set of all basic process identifiers consists of those
identifiers defined for module mod.

BPId = BPId,,, = { tcid }

A pid-value is associated to every process instance. The set of all pid-values for process tcid is
denoted by:

BPPIld,, = {pidtcid}

It is a set which consists of exactly one pid-value because at any time there exists at most one
process instance in the TTCN system. The set of all pid-values thus reduces to:

Pld = ModPid,,,, = BPPId,,; = { pid,y}

The set Routes binds the process identifier ¢cid to all paths pco;, 1 < j < i. This enables tcid to send
to and to receive signals from all paths.

Routes = { (tcid, pco,), ..., (tcid, pco) }

In TTCN it is recommended to use the following table proformas for the declaration of test suite
parameters, test suite constants, test suite variables, and test case variables. For all parameters,
constants, and variables sets of identifiers are derived from the corresponding entries in the
Parameter Name, Constant Name, and Variable Name columns. These sets are denoted by TSP,
TSC, TSV, and TCV for test suite parameters, constants, variables and test case variables. The sort
of every parameter, constant or variable is derivable from the entry in the Type column. Variables,
parameters, and constants of the same sort are comprised in the same set. For example,

Var ype = { _tspy_, _tsp,, tevy, , tsv,)

is the set of variables of sort _type_if tsp, , _tsp,, _tcv,, , _tsv, are defined to be of type
_type .
Table B.12: Test suite parameter declaration
Test Suite Parameter Declaration
Parameter Name Type PICS/PIXIT Ref Comments

tspy _type,_ _freetext,_ _freetext,_

tsp; _type;_ _freetext; _freetext;

Detailed Comments: freetext_

is transformed to

TSP = {_tsp1_, ey _tspj_ Lhiz

Page 105
ETR 071:1993

Table B.13: Test suite constant declaration

Test Suite Constant Declaration
Constant Name Type Value Comments
tscq _typeq_ _Cq_ _freetext, _
_tsc _ _type, _C_ _freetext, _
Detailed Comments: _freetext_
is transformed to
TSC = { _tscq_, ..., _ts¢_}, k=1
Table B.14: Test suite variable declaration
Test Suite Variable Declaration
Variable Name Type Value Comments
tsv, _type,_ _Vi_ _freetext, _
tsv _type,,_ Vi _freetext,,
Detailed Comments: _freetext_
is transformed to
TSV = { _tsvy_, ..., _tsv,, }, m 21
Table B.15: Test case variable declaration
Test Case Variable Declaration
Variable Name Type Value Comments
tevy _type,_ V' _freetext,_
_tev, _type,_ Vi _freetext,,
Detailed Comments: freetext_

is transformed to
TCV = { tcvy , ..., tov, },n21

The set Var of all variables is the union of the sets TSP, 7SC, TSV, TCV and a set Vary,, of
auxiliary variables, e.g. SendObject and ReceivedObject and the variable R which holds the last
verdict assignment 1SO 9646 [2], Part 3, Annex B. Particularly, Var,,, contains variables which
serve as formal parameters to constraint declarations.

Var = TSP U TSC U TSV U TCV U Var,,,,
The sets of data terms and signal terms over variable set Var with respect to signature X’ can be

derived as outlined in subclause 5.2 {Data and signals). The notation as introduced in subclause 5.2
is adopted in the following to denote terms, set of terms, etc..

Page 106
ETR 071:1993

For each ASP and PDU declaration in a TTCN test suite it can be assumed that there is a set
SigTermg(Var) in the CSR with ss denoting the sort of the ASP or PDU. For every ASP sort,
denoted by asp,, ..., asp,, p 2 1, and PDU sort, denoted by pdu,, ..., pduq, q = 1, a set of
constraints exists, denoted by SigTermasp,-, 1<i<pand SigTermpdu,-, 1 <i<q.Let S/'gTer/rr“asp,,
1 <i<pand SigTermApdu,-, 1 < i £ q, denote the interpretation of signal terms from the sets
S/gTermasp,, 1<i<pand SigTermpdw-, 1<i<aq.

The information about which PCO is capable to convey which ASPs or PDUs is stated with the
declaration of the ASP or the PDU type. The set r, ftcid, pco,-} denotes all signal interpretation which
can be carried by the route ftcid, pcoj}.

rmfteid, pcoy) = {
{ SigTermAaspk | asp, /s defined over _pcotype_ and pco; is of PCO type pcotype_},
{ SigTermApdu, | pdu,is defined over _pcotype_ and pco; is of PCO type pcotype },
{1})

r,,(tcid, pcojzl ={
{ SigTermAaspk | asp, is defined over _pcotype_ and pco; /s of PCO type pcotype_},
{ SigTermApdu, | pdu,is defined over _pcotype_ and pco; is of PCO type pcotype },

forallpco;, 1 <j<i,asp, 1 <k < p,andpdy, 1 <1< q.

The use of L in the definition of r, (tcid, pco/-,) is due to the fact that an abstract tester may receive
an unforeseen signal.

B.3.3.2 Transformation of values, expressions, timers, and constraints

For literal values the transformation starts out with determining the type of the value. From this
information the corresponding algebraic specification, identified by the type, can be deduced. The
transformation of the value in a term is done by constructing a term, which should represent the
value, from the constants and constructor operations of the algebraic specification.

If the value is given for a structured type then it is assumed that the values assigned to the
elements of the structured type have already been transformed to a term of appropriate sort. To
construct the term for the structured type then the constructor operation defined for that type has
only to be applied. This also applies for ASN.1 values.

In a recursive descend all operators and values of an expression are transformed to their
corresponding representation as terms in the CSR. This can be accomplished as follows:

- the result type of the expression can be deduced either from the parameter or field of an ASP
or a PDU, if used in the context of a constraint declaration, or from the left hand side of an
assignment, if used in an assignment. This information is used to determine the corresponding
algebraic specification to search for the operations to be used for the transformation of
operators and sub-expression on this level;

- from the operations found the type of the sub-expressions is determined. If a sub-expression
reduces to a value then the transformation for values can be applied. If a sub-expression is
composed of other expressions, then this procedure can be re-iterated for each of the sub-
expressions.

In the CSR a timer is modelled as a signal. For each timer declaration in a TTCN test suite (see table
proforma below)} a signal sort and a signal declaration is assumed to be in SigSort and SigOP.

Page 107
ETR 071:1993

Table B.16: Timer declaration

Timer Declaration

Timer Name Duration Unit Comments
tid, _dur,_ _unity_ _freetext, _
tid _dur,_ _unit,_ _freetext,

Detailed Comments: _freetext

The timer names are assumed to define a sort in SigSort
SigSort O { _tid,_, ..., _tid,_}
and an operation in SigOP
SigOP D { < _tid,_:-> _tid, >, ..., <_tid,_ :-> _tid, > }.

Constraints define values for ASPs and PDUs to be sent and received. Constraints are declared by
using the following table proforma:

Table B.17: Constraint declaration

Constraint Declaration

Constraint Name: _consid_ (_par,_: _typeq_, ..., _par,_: _type,)
Type: _type_
Derivation Path: _path_

Comments: freetext

Parameter or Field Name Parameter or Field Value Comment

parorfield; _value;_ _freetext;_

Detailed Comment: freetext

In the CSR ASP and PDU constraints are signal terms. In general constraint declarations are signal
terms and not signal ground terms due to the parameterisation of constraint declarations. In the
following the details on how to transform a constraint declaration to a signal term are provided.

Constraints use various combinations to specify values for parameters or fields of an ASP or a PDU,
e.q. literal values, data object references, expressions, special matching mechanisms, or references
to other constraints. Without loss of generality it can be assumed that all values for parameters and
fields are given as data terms or signal terms of the appropriate sort {(dependent on the type of the
parameter or field). For exampile:

- a literal value of type Integer is denoted by a term of sort Integer;

- data object references, i.e. test suite parameters or constants, are of specific sort and are to
be found in set Var. Every element of Var is a term of specific sort (subclause 5.2 };

- an expression is a term representing a particular value;

- special matching mechanisms are mapped to terms (subclause B.3.2). Note that only value
list, omit, any, or any or omit are considered;

Page 108
ETR 071:1993

- references to constraints are substituted by the signal terms representing the referenced
constraints.

In order to generate a term of sort type_ the generator or constructor operation, as defined in the
algebraic specification for type type , is applied to the terms specified for the parameters and
fields. This application of a generator or constructor operation results in a signal term.

B.3.3.3 Storage environment

The storage environment is determined by the partial functions € and p. Their initialisation is given
below:

self — I,

parent = [,
offspring = I3
sender = Iy

nowi- Ig

g =¢g,;lv1l,, veVarg,

activey; — I, Si € SigTerm™

tsp; 1, i=1,...,4
tsc; > I, i=1,...k
tsvi =177 i=1,..m
Ltes; > 177 i =1,...,n

€ maps all elements of set Var to storage locations.

(1, +> tcid]

Iy L

g > time

l, =L, veVary,
p=p, |l > false, sieSigTerm”
v, i=1,..,J

170> ¢;, i=1,.k

I Lvvi, i=1,.,m
I Lvvy, i=1,..,

3

Initially, the variables v € Var,,, (storage locations /, for all v € Var,,,) are assigned the undefined
value { L). The values (values v;, 1 < i < j) assigned to test suite parameters (storage location /*;, 1
< i < j) are deduced from the PICS and PIXIT and are assumed to be available at initialisation time.
The values (values ¢;, 1 < i < j) assigned to test suite constants (storage location I";1 <0 £ k),
are deduced from the TTCN test suite. The test suite variables and test case variables (storage
location /""", 1 < i < m, and /""", 1 < i < n) are assigned either the initial value defined in the
TTCN test suite (values v, 1 <i<m,andv'’, 1 <i < n or assigned the undefined value (L).

B.3.4 Transformation of TTCN behaviour descriptions
The operational semantics of TTCN 1SO 9646 [2], Part 3, Annex B are defined with respect to an

evaluation model, called Abstract Evaluation Tree (AET). An AET is a tree-like representation of a
test case with all defaults attached and repeats substituted by goto's and tree attachments.

Page 109
ETR 071:1993

This subclause aims at a description of the transformation of AETs to basic processes. In the
following a definition of an AET is provided (subclause B.3.4.1). Emphasis is put on the tree
structure and, what is essential with respect to the definition of the operational semantics of TTCN,
the ordering of TTCN statements which is reflected in the ordering of edges from a node. As part of
the description of the transformation the subset of the BPA used is identified (subclause B.3.4.2).

The transformation is defined recursively over the structure of an AET and is defined in subclause
B.3.4.3.

B.3.4.1 Abstract Evaluation Trees (AET)

An AET is a tree like representation of a TTCN test case. A node of an AET denotes a level of
indentation in a dynamic behaviour description of a test case where the level of the node in the AET
equals the level of indentation. Edges are labelled with TTCN statements. All labels of edges from a
node corresponds to a set of alternatives. The set of AETs is defined as follows:

Definition: the set AET of Abstract Evaluation Trees is the set of rooted trees such that t € AET
implies:

1) every edge is labelled by a TTCN statement;

2} the level of a node equals the level of indentation in the dynamic behaviour description, where
the level of a node is defined as:
2.1) the level of the root of an AET is zero;
2.2} the level of a node, which is not the root, is the level of its predecessor plus one;

3} the left-to-right order of labels of edges from a node n on level m corresponds to the top-to-
bottom order of the set of alternatives on the level of indentation m.

A1 € AET is denoted by t = fa, t,, ..., a,, t,,).
B.3.4.2 Identification of the subset of the Basic Process Algebra (BPA)

The transformation ranges over the set €r7cy U Ecommon Of TTCN events and common events and
the operators,; and @ (see subclauses 5.3.2 and 5.3.3).

B.3.4.3 Definition of the transformation of AETs

This section introduces a function trans mapping a t € AET to a basic process. trans is recursively
defined over the structure of an AET.

A TTCN test case may attach test steps, defaults, or local trees. Attached tree may be expanded as
described in I1SO 9646 [2], Part 3. In general, however, it is not possible in advance to expand all
attached trees due to recursive attachments. Therefore, it is assumed that the procedure as defined
in Annex B, subclause B.4.4 is applied to handle attachments. |f during evaluation of the behaviour
of a TTCN test case on a certain level a tree attachment is encountered then the expansion and the
transformation (as defined hereafter) is performed.

The transformation trans of an AET t = (a, t,, ..., a,, t,) to a basic process is defined as

trans(t) = #a,# ";" trans(ty) "@" ... "®" #a, # "." transit,)

with #...# as described below.

Referring to the TTCN grammar (see ISO 9646 [2], Part 3, Annex A) an a;, 1 < i < m, stands for a
behaviour line which may have one of the following forms:

Page 110

ETR 071:1993

Table B.18: TTCN statement lines

Test Case Dynamic Behaviour

Test Case Name: tcid

Group: group

Purpose: freetext

Default:

Comments:

Nr Lab Behaviour Description Constraints Ref Verdict

el

1 pco | aspname [boolexp] cref ver
(assy, ..., ass,,) topy, ... top,

2 pco ? aspname [boolexp] cref ver
(assy, ..., ass,,) topy, ... top,

3 pco ? OTHERWISE [boolexp] fail
(assq, ..., ass,) topy, ... top,

4 ? TIMEOUT tid [boolexp] ver
(assy, ..., ass,,) topy, ... top,

5 [boolexp 1 (ass,, ..., ass;) ver
topy, ... top,

6 (assq, ..., ass,,) topq, ... top, ver

7 topy, ... top, ver

8 -> label

Detailed Comments: freetext

#...# is defined as follows:
(1) #pco | aspname [boolexp 1 { assy, ..., ass,,) topy, ... top,, cref ver# =
[bt] ";" output (s) via p ";" #(assy, ..., ass,) top,, ... top,, cref ver#

where

[bt] is a data term of sort Boolean which result from the transformation of
Boolean expression boolexp.

s is a signa! ground term which results from the transformation of cref according
to the following procedure:

if cref is a constraint reference without parameters then s is the signal
ground term which results from the transformation of the referenced
constraint declaration as described in subclause B.3.3;

if cref is a constraint reference with parameters which are variables then s
is the signal term which result from cref by substitution of actual for formal
parameters in the constraint declaration and transformation of the
constraint declaration as described in subclause B.3.3;

if cref is a constraint reference with parameters which are variables and
constraint references then s is the signal term which result from cref by
substitution of actual for formal parameters related to variables in the
constraint declaration, by processing the constraint references which are
passed as an actual parameter due to these rules, and transformation of the
constraint declaration as described in subclause B.3.3.

Even when actual parameters are passed in a constraint reference, s equals
some signal ground term s’ due to the fact that the variables are bound to
values.

(2)

(3)

(4)

(5)

(6)

Page 111
ETR 071:1993

p is the path identifier derived from PCO pco (subclause B.3.3).

and
#(assy, ..., ass,,) top,, ... top, cref ver# as defined in (6).
#pco ? aspname [boolexp 1 (assy, ..., ass,) top,, ... top,, cref ver# =
input(s} via p [bt] ";" #(ass,, ..., ass,,) topy, ... top,, ver#
where

s is a signal ground term which results from the transformation of cref according

to the following procedure:

- if cref is a constraint reference without parameters then s is the signal
ground term which results from the transformation of the referenced
constraint declaration as described in subclause B.3.3;

- if cref is a constraint reference with parameters which are variables then s
is the signal term which result from cref by substitution of actual for formal
parameters in the constraint declaration and transformation of the
constraint declaration as described in subclause B.3.3;

- if cref is a constraint reference with parameters which are variables and
constraint references then s is the signal term which result from cref by
substitution of actual for formal parameters related to variables in the
constraint declaration, by processing the constraint references which are
passed as an actual parameter due to these rules, and transformation of the
constraint declaration as described in subclause B.3.3.

Even when actual parameters are passed in a constraint reference, s equals
some signal ground term s’ due to the fact that the variables are bound to
values.

p is the path identifier derived from PCO pco (subclause B.3.3).

[bt] is a data term of sort Boolean which result from the transformation of

Boolean expression boolexp.

and
#(assy, ..., ass,) topy, ... top, ver# as defined in (6).
#pco ? OTHERWISE [boolexp 1 (ass,, ..., ass,) topy, ... top, fail# =
otherwise p [bt] ";" #(assy, ..., ass,,) top,, ..., top, fail#
where

p is the path identifier derived from PCO pco (Section B.3.3).
[bt] is a data term of sort Boolean which result from the transformation of
Boolean expression boolexp.
and
#(assq, ..., ass,,) top,, ... top,, ver# as defined in (6).

#? TIMEOQUT tid [boolexp] { assy, ..., ass,,) topy, ... top, ver# =
input(s) [bt] ";" #{ ass,, ..., ass,,) topy, ... top,, ver#

where
s the signal term representing the timer tid (Section B.3.3).
[bt] is a data term of sort Boolean which result from the transformation of
Boolean expression boolexp.

and
#(ass,, ..., ass,,) top,, ... top, ver# as defined in (6).
#l boolexp 1 (ass,, ..., ass,,) top,, ... top, ver# =
[bt] ;" #(ass,, ..., ass,,) top,, ... top,, ver#
where

[bt] is a data term of sort Boolean which result from the transformation of
Boolean expression boolexp,

and
#(ass,, ..., ass.,) top,, ... top, ver# as defined in (6).

#(assq, ..., ass,,) topy, ... top,, ver# =

UMt ass, " #topy, ... top,, ver#
where
ass; = x:= tforass; = x:= exp
foralli, 1 <i < n with
X € Var.
t a data term of the same sort as variable x which results from the transformation
of expression exp.

Page 112
ETR 071:1993

and #topq, ... top, verb# as defined in (7).
(7) #topy, ... top, ver# =

top, ;" ... " top, " R 1= clR, ver)
where

set(t,s) if top; ="Start tid (tv)”
top; = reset(s) if top; ="Cancel tid"
read(x,s) if top; ="Read tid (x)"

foralli, 1 £ i < n with
s the signal term representing the timer tid {subclause B.3.3).
t a term of sort 7/me denoting the absolute point in time when the timer is to
expire. tv is either the default assignment made in the timer declaration or a value
explicitly set. t is computed by adding the interpretations of terms tv’ and now
where tv’ is a data term of sort Time which results from the transformation of
expression tv.
X a variable of sort Time.
and
¢ as defined in subclause B.3.2 and ver the transformation of ver (Section B.3.2).
(8} #-> label# = P, where P is a basic process name. P identifies uniquely a node in the AET
which is ancestor to the parent node of -> /abe/ (refer also to Clause B.2 "Transformation of
SDL").

Some constructs of a TTCN statements are optional. Therefore, the transformation rules are to be
interpreted as applying only to those constructs which actually occurs in a TTCN statement.

Boolean expressions serve the purpose of a guard. In the transformation this has been made
explicit. Boolean expressions are considered to be part of a send, receive, OTHERWISE, TIMEOUT
event or assignment list.

The execution of a test case terminates if a final verdict is assigned. In this case the transformation
adds a ";” stop ,; nil after update to variable R.

Comments: 1SO 9646 [1, Part 3, Annex B defines that if an alternative has been selected for
execution the components are executed in sequence. This motivates the use of the sequence ;-
operator in the transformation of TTCN statements.

ISO 9646 [], Part 3, Annex B defines that "processing of a set of alternatives is instantaneous, i.e.
the status of any events cannot change during the matching process" {cited from 1SO 9646 [2],
Part 3). The semantics defined for the ®-operator (subclause 5.6) performs the evaluation
instantaneous. To be more precise evaluation of a set of alternatives and execution of an event
coincide.

Annex C: Examples

C.1 Introduction

In the following Clauses some examples for the transformations from SDL and TTCN to the CSR are
presented. The examples are provided in order to show as much as possible different aspects of the
transformation and therefore are not useful as an SDL specification and/or a TTCN testcase. It is
very difficult to find a real specification and/or test which uses all the different events and still
remains manageable.

The examples are divided in a data part and a behaviour part. The data part will be transformed to a
Z-algebra and the behaviour part is transformed to a basic process with possible references to
terms over the X-algebra.

C.2 SDL to CSR

c.21

A simple SDL example

Page 113
ETR 071:1993

SYSTEM Example
XE

EC

[X,Y'D}

oo
|:lam
]

iam(pid), Cblock

[dd‘rrjl/ CY

o

cy\ [ddm

m

)

YHE

=

XYblock

Figure C.1: An SDL system

BLOCK Cblock

, (Z?(JX /T
[dd.m
‘eCY
[dd.mj

[xyD |

ECce

Figure C.2: The Cblock

Page 114
ETR 071:1993

BLOCK XYblock
CXx

[dd .mj

xXE

o

(1, 10000)

yYE
[iam] Yy
[dd.m
S
(1, 10000)
yx e

Figure C.3: The XYblock

PROCESS c <

N
DCL x,y.z pid ;
I

< BOTH > < ONLYX

}

]
< ONLYX > ONLYY)
__\r__. -
X(x) D(z) . / Y / j>Y@) D(z) / X /
p(x.y) dd TO z p(x.y) dd TO z

(o) (o

Figure C.4: The process ¢

Page 115
ETR 071:1993

PROCESS x -~
< iam(SELF> MONO
.
DCL v pid,
Xtime integer = EXTERNAL ; m(y) dd
TIMER u ;
SET(u.NOW
+Xtime) gb TO
I —
DUO ><
gb dd C u / m /
(MONO > gb TO y X ¢ VIA xy
>< | RESET(u. | | SET(u.NOW
‘NOW+Xtime)i +Xtime)

(o) (o

Figure C.5: The process x

Page 116
ETR 071:1993

PROCESS y < > iam(SELF) MONO)
DCL x pid, N
Ytime integer = EXTERNAL ; m(x) dd
TIMER u ; ‘
SET(u,NOW
TYtime) | |80 TO X
1
DUO) ><
gh dd ¢ u / m /
< MONO) gb TO x y ¢ VIA yx
\ | RESET(u. | | SET(uNOW
)< lNOW%—YtimeJ) +Ytime)
(DUO) (DUO J

Figure C.6: The process y

PROCEDURE p

m(x) TO y

m(y) TO x

N
FPAR IN x.y pidl;

TIMER T ;

Figure C.7: The procedure p

C.2.2 Its CSR representation

Page 117
ETR 071:1993

As indicated in Annex B, Clause B.1, the CSR representation consists of several entities. In order to
represent an SDL system in the CSR it is sufficient to provide the contents/ values of these entities.

Pathld : = { EC, XE, YE, CX, CY }

Modld : = { Cblock, XYblock }

BPId := {c, x, v}

Pld:= {1, 2,.., 10001, 10002, .. ,20001 }
BPldcplock := { ¢}

BPIdxyplock := { X v }

BPPId. := { 1}

BPPId, := { 2, .., 10001 }
BPPId, := { 10002, .., 20001 }
MOdPIdCblock = { 1 }
MOdPIdXYblock :={2,..,20001}
P¢ i = Ppoth 7 nil, where

Pboth : = (iqput(X(x)) ; Ponly) + (input(Y{y}) ?'Ponl x} + input(D(z)) ; output(dd) to z ; Ppoth
Ponlyx : = {input(X(x) ; callip(x,y)) ; Ppoth) + (input(D(z) ; output(dd) to z ; Ponlyx) +

save(Y) ; Ponl X

Ponlyy := (input{Y(y} ; callip{x,y)) ; Ppoth) + (input(D{z) ; output(dd) to z ; Ponlyy) +

save(X) ; Pgnl
Py := output(iam(SELF)) ; Pmonox ; nil, where

Page 118
ETR 071:1993

Pmonox : = (inputimly)) ; set(u,now +Xtime) ; Py ox) + (input{dd) ; output(gb) to y ; stop)
Pduox := {input(gb) ; Pmonox) + (input(dd) ; output(gb) to y ; stop) +
{input(c) ; create(x) ; reset{u,now + Xtime) ; Pduox) +
{input{u) ; output(c) via xy ; set(u,now + Xtime) ; Pq,ox) + savelm) ; Pg,ox
Py := output(iam(SELF)) ; Pmonoy : Dil, where
Pmonoy : = (inputim(x}} ; set{u,now +Ytime) ; Pq,qy) + (inputldd) ; outputigb) to x ; stop)
Pduoy 1= (inputi{gb) ; Pmonoy) + (input(dd) ; output{gb) to x ; stop) +
(input(c) ; create(y) ; reset(u,now +Ytime) ; Pq,qy) +
(input{u) ; outputic) via yx ; set{u,now + Ytime) ;pduoy) + save(m) ; Pduoy
Pp := set(T,now) ; Pjpj¢ ; nil, where
Pinit : = (input(T) ; output(im(x)) ; output(m(y)) to x ; return) + save(X,Y) ; Pinit

Dlc) 1= (Pg, 1,1, (), (), (¢, L), ty, Lg), {z, L))
Dix) := (Py, 1, 10000, (), (), ly, L;), (Xtime, L))}
Dty) : = (Py, 1, 10000, (), (), {{x, L;),(Ytime, L))
Dip) := (Pp, 0, o5 (), ((x, L) ty, Le), (D))

Routescpock i = { (EC, ¢), (¢, CX), (¢, CY) }
ROUtesXYblock = { (CX, X): (CYI V), (X, XE), (V: YE)I (XI y)r (yl X) }
Routes : { (EC, c), (c, CX], (c, CY}, (CX, x), (CY, y), (x, XE), {y, YE), (x, y}, {y, x) }

rCblock! (EC, c)):= { X, Y, D}
TCblock! {€: CX)) := { dd, m }
er|OCk((c, CY)):= { dd, m }
'XYblock! (CX, x}) := {dd, m}
"XYblock((CY., y)) := {dd, m}
'XYblock! (X, XE)) := { iam }
XYblock! {v: YE} } := {iiam }
XYblock! (X, Y1) := {c}
rXYblock! v, X)) 1= {¢}

The signature X =(Sort, OP)
The variables of each sort s:s € Sort: Var,

C.3 TTCN to CSR
C.3.1 A simple TTCN example

The TTCN syntax used here is based on the TTCN.MP syntax rules, however a number of the
keywords have been eliminated. The use or non use of these keywords does not effect the
transformation to the CSR.

$Suite Example

Simple Type Definitions

Comments
Alternative name

Type Name
PIDtype
Detailed Comment:

Type Definition
INTEGER

Test Suite Parameter Deciaration

Parameter Name Type PICS/PIXIT Ref Comments
Xtime INTEGER
Ytime INTEGER

Detailed Comments:

Page 119
ETR 071:1993

Test Case Variable Declaration
Variable Name Type Value Comments
count INTEGER 0
X PIDtype
Yy PIDtype
Detailed Comments:
PCO Declaration
PCO Name PCO Type Role Comments
pcoC PCOtype1l uT
pcoX PCOtype2 LT
pcoY PCOtype?2 LT
Detailed Comments:
Timer Declaration
Timer Name Duration Unit Comments

timer 500*(Xtime + Ytime) | sec

Detailed Comments:

ASN.1 ASP Type Definition

ASP Name: iamtype
PCO Type: PCOtype2

Comments:

Type Definition

iamtype :: = SEQUENCE({ field PIDtype }
PIDtype :: = INTEGER

Detailed Comment:

ASN.1 ASP Type Definition

ASP Name: Dtype
PCO Type: PCOtype1

Comments:

Type Definition

Dtype :: = SEQUENCE({ field PIDtype }
PiDtype ::= INTEGER

Detailed Comment:

Page 120
ETR 071:1993

ASN.1 ASP Type Definition

ASP Name: Xtype
PCO Type: PCOtype1

Comments:

Type Definition

Xtype :: = SEQUENCE({ field PIDtype }
PIDtype :: = INTEGER

Detailed Comment:

ASN.1 ASP Type Definition

ASP Name: Ytype
PCO Type: PCOtype1

Comments:

Type Definition

Ytype :: = SEQUENCE({ field PIDtype }
PIDtype :: = INTEGER

Detailed Comment:

Constraint Declaration

Constraint Name: coniam
Type: iamtype
Derivation Path:

Comments:
Parameter or Field Name Parameter or Field Value Comment
field ?
Detailed Comment:
Constraint Declaration
Constraint Name: conD(fpar:INTEGER)
Type: Dtype
Derivation Path:
Comments:
Parameter or Field Name Parameter or Field Value Comment
field fpar

Detailed Comment:

Page 121
ETR 071:1993

Constraint Declaration

Constraint Name: conX({fpar:INTEGER)

Type: Xtype
Derivation Path:
Comments:
Parameter or Field Name Parameter or Field Value Comment
field fpar

Detailed Comment:

Constraint Declaration

Constraint Name: conY (fpar:INTEGER)

Type: Ytype
Derivation Path:
Comments:
Parameter or Field Name Parameter or Field Value Comment
field fpar

Detailed Comment:

Page 122
ETR 071:1993

Test Case Dynamic Behaviour
Test Case Name: testcase
Group: Example/
Purpose: This testcase checks if the system is capable to produce at least one
thousand process instances within a specified amount of time.
Default:
Comments:
Nr | Label Behaviour Description Constraints Ref Verdict | C
1 pcoX?iamtype (x: =iamtype.field) coniam
2 pcoY?iamtype {y: =iamtype.field) coniam (PASS)
3 pcoClXtype conX(x)
4 pcoClYtype conY(y)
5 {count: =2) START timer
6 +newcomers({pcoX,pcoY)
7 + post{count)
8 [TRUE] PASS
9 ?TIMEOUT timer |
10 pcoY?OTHERWISE FAIL
11 pcoX?OTHERWISE FAIL
12 $Tree postifpar:INTEGER))
13 [fpar>0]
14 pcoC!Dtype (fpar: =fpar-1) conD({fpar)
15 + post(fpar)
16 [fpar=0] (PASS)
17 [fpar< 0] I
18 $Tree newcomers{fpco1,fpco2:PCOtype)
19 [count < 1000]
20 fpco1?iamtype {count: =count+ 1)} coniam
21 +newcomers{pco1,pco2)
22 fpco2?iamtype {count: =count+1) coniam
23 +newcomers(pco1,pco?2)
24 fpco1?0THERWISE FAIL
25 fpco2?OTHERWISE FAIL
26 [count=1000] (PASS)
27 [count> 1000] (PASS)
Detailed Comments:

C.3.2 Its CSR representation

As indicated in Annex B, Clause B.1 the CSR representation consists of several entities. In order to
represent a TTCN test suite in the CSR it is sufficient to provide the contents/ values of these
entities.

Pathid : = { pcoC, pcoX, pcoY }
Modld : = { Example } /* Free of choice for TTCN */
BPId : = BPldgyample : = { testcase }
Pld : = BPPldiggtcase : = M°dP|dExampIe ={1}
Ptestcase * =
{ input{iamtype $Constraint coniam) via pcoX [TRUE] ; {x: =iamtype.field) ;
{input{iamtype $Constraint coniam) via pcoY [TRUE] ; {y: =iamtype.field} ; R: =preP ;
output(Xtype $Constraint conX({x)) via pcoC ;
output(Ytype $Conxtraint conY{y)) via pcoC ;
{count: =2) ; set(timerduration, timer) ;

Page 123
ETR 071:1993

(Phewcomers(PcoX,pcoY) ;
Pposticount) ;
[TRUE] ; R:=P; stop ; nil
@ input(timer) [TRUE] ; R:=1; stop ; nil)
® otherwise pcoY [TRUE]; R:=F ; stop ; nil)
@ otherwise pcoX [TRUE]; R: =FAIL ; stop ; nil)

Ppost(fpar:INTEGER)) i=
([fpar>0};
output{Dtype $Constraint conD{fpar)) via pcoC ; (fpar: =fpar-1) ;
Ppost(fpar)
@ [fpar=0]1; R:=preP
@ Ifpar<0} ; R:=1I; stop ; nil)

{ [count<1000] ;
{ input(iamtype $Constraint coniam) via fpco1 [TRUE] ; {count: =count+ 1) ;

Pnewcomers(frcot,fpco2)
@ input(iamtype $Constraint coniam) via fpco2 [TRUE] ; {(count: =count+1) ;

Pnewcomers!frcol,fpco2)
@ otherwise fpcol ; R:=F ; stop ; nil
@ otherwise fpco2 ; R:=F ; stop ; nil)
@ [count=1000]; R:=preP)
® [count>1000] ; R:=preP)

Ditestcase) : = (Ptggicaser 1/ 1, (Xtime, Ytime), (), ({count,0),(x, L,),ly,L;),(R, none)))

Routesgyample : = { (testcase, pcoC), (pcoX, testcase), (pcoY, testcase) }
Routes : = { (testcase, pcoC), (pcoX, testcase), (pcoY, testcase) }

rExample((testcase, pcoC)) : = {sl s eSigTerm} u{_Lst}
rExample (PCOX, testcase)) : = {s| s e.S'igTerm} UL}
Example! (PCOY, testcase)) : = {s|s e SigTerm} U{L,,}

The signature X =(Sort, OP)
The variables of each sort s: s € Sort, Var,

Page 124
ETR 071:1993

Abstract data type, 24
Abstract service primitive, 18; 19; 56
Algebra, 22; 25; 26
Basic process, 21; 23; 28; 38; 41; 43; 44:
45; 46; 47; 51; 53; 54; 59
declaration, 29; 45; 46; 54
Basic process algebra, 21; 28; 29; 30
operators, 30
Basic SDL, 16
Cardinality, 52
Carrier set, 25
Clock
global, 27
Concatenation, 22
Discrete time, 19
Disjoint union, 23
Environment, 16; 24; 25; 26; 28; 38; 39; 40;
46; 54; 57; 58; 59
undefined, 39; 54
Error element, 25
Events
basic process, 29
input port process, 36
module, 49
path process, 55
process instance, 39
system, 56
timer process, 33
ldentifier
basic process, 23
module process, 23; 56
path identifier, 23
path process, 23; 47; 55; 56
process identifier, 23
process instance, 23; 24; 26; 27; 38;
39; 47
Inference rules
general form, 22
Input port process, 21; 36; 37; 38; 41;: 43;
44; 59
Input queue, 36
Input stream, 78; 19
Interpretation
data term, 26
operation, 26
revealed variable, 26
signal ground term, 26
signal term, 26; 27
Labelled transition system, 22; 32; 36; 40:;
49; 55; 57
Module process, 22; 23; 28; 39; 49; 55; 56;
57; 58
Module storage, 26; 39; 40; 41; 45; 46
Operation, 24
Ordering
strict, 27
total, 27
Path process, 22; 23; 44; 49; 52; 53; 55; 56;
57; 58; b9
undefined, 41

Procedure
declaration, 29; 46
Process instance, 21; 23; 26; 38; 49; 50; 51;
52; 53; 54; 58; 59
undefined, 38; 45; 50; 51
Process instance identifier, 49
Protocol data unit, 18; 19; 56
Routes, 28; 39; 47; 50; 51; 52; 53; 58
function, 28
Saved signals queue, 36; 38
SDL active timer, 33
SDL block, 76; 19; 22; 23; 49; 50; 51; 52;
53; b4; b5
SDL channel, 16; 19; 22; 23; bb; 56
SDL input port, 16; 36; 37; 38; 41
SDL procedure, 38
SDL process graph, 23; 29; 30
SDL process instance, 76; 22; 25; 38; 42; 43;
44; 45; 46; 47; 48
SDL signal identifier, 25
SDL signal instance, 76
SDL signal route, 76; 28
SDL specification, 22
SDL system, 76; 19; 22; b6; 57; 58; b9
SDL timer, 41
Semantics
basic process, 32
input port process, 36
module process, 49
path process, 55
process instance, 40
system, 57
timer process, 33
Sequence, 27
empty, 22
finite, 22
first element, 22
last element, 22
Set of alternatives, 18; 19
Side-condition, 22; 32; 36; 41; 49; 50; 55; 57
Signal, 24; 26; 27; 39
explicit, 27; 39; 47; b0; 51; 52; 68
implicit, 27; 39; 47; b1
instantiation, 27
saved, 36
undefined, 26; 28; 44; 53; 55; 59
Signal operation, 25
Signal sort, 25
Signature, 24; 25
Snapshot, 18
Sort, 24
State
basic process, 29
input port process, 36
module process, 40
path process, 55
process instance, 38
system, 56
timer process, 33
Storage, 25; 26; 38; 39; 40; 46; 47; 54

undefined, 39; 54
Storage environment, 26; 38
System, 22; 56
initial state, 59
Term
data, 24; 25; 26
data ground, 24; 25
signal, 25; 26; 43
signal ground, 25; 27; 33
undefined, 26
Time, 27; 39; 41
Timer, 27; 41; 42
Timer process, 21; 33; 38; 41; b9
Transition, 22
TTCN abstract evaluation tree, 78; 23
TTCN abstract tester, 79; 22; 23; 28; 49; 53
TTCN constraint, 25 .
TTCN input queue, 36; 37; 38
TTCN PCO, 18; 19; 22; 23; 28; 55; 56
TTCN running timer, 33
TTCN system, 79; 22; 56; 57; 58; 59
TTCN test case, 31
TTCN test suite, 22
TTCN tester, 717; 22; 36; 37; 38; 42; 43; 44;
45; 47; 49
TTCN timer, 41
TTCN unforeseen message, 26
Union, 23
Variable, 24; 38
revealed, 25; 26; 39

Page 125
ETR 071:1993

Page 126
ETR 071: June 1993

History

Document history

June 1993 First Edition

February 1996 Converted into Adobe Acrobat Portable Document Format (PDF)

