
N
ew

 p
re

se
nt

at
io

n
-

se
e

H
is

to
ry

 b
ox

ETSI ETR 060

TECHNICAL September 1995

REPORT Second Edition

Source: ETSI TC-SPS Reference: RTR/SPS-02015

ICS: 35.100.60

Key words: ASN.1

Signalling Protocols and Switching (SPS);
Guidelines for using Abstract Syntax Notation One (ASN.1)

in telecommunication application protocols

ETSI
European Telecommunications Standards Institute

ETSI Secretariat

Postal address: F-06921 Sophia Antipolis CEDEX - FRANCE
Office address: 650 Route des Lucioles - Sophia Antipolis - Valbonne - FRANCE
X.400: c=fr, a=atlas, p=etsi, s=secretariat - Internet: secretariat@etsi.fr

Tel.: +33 92 94 42 00 - Fax: +33 93 65 47 16

Copyright Notification: No part may be reproduced except as authorized by written permission. The copyright and the
foregoing restriction extend to reproduction in all media.

© European Telecommunications Standards Institute 1995. All rights reserved.

Page 2
ETR 060: September 1995

Whilst every care has been taken in the preparation and publication of this document, errors in content,
typographical or otherwise, may occur. If you have comments concerning its accuracy, please write to
"ETSI Editing and Standards Approval Dept." at the address shown on the title page.

Page 3
ETR 060: September 1995

Contents

Foreword ...5

1 Scope ..7

2 References..8

3 Abbreviations...9

4 Overview of ASN.1 ..9

5 Specification of protocol data units..10
5.1 Modules ...10
5.2 Tagging ..11
5.3 Handling of optional and default elements...12
5.4 Subtyping ...13
5.5 Importing and exporting data types..14

5.5.1 Exporting ...14
5.5.2 Importing ...14

5.6 Comments and user-defined constraints...15
5.7 Information elements dependencies..17
5.8 Miscellaneous ..17

5.8.1 Elements and types...17
5.8.2 Order of elements ...18
5.8.3 Specification of nested structures ...19
5.8.4 Enumerated types ...19
5.8.5 Specification of operations and errors...20

6 Leaving holes in specifications..20
6.1 General aspects...20
6.2 Embedding information..20
6.3 Defining generic types ...22

7 Protocol modifications ...23
7.1 Changes to abstract-syntaxes descriptions ...23

7.1.1 Non compatible changes...23
7.1.2 Changes without impact on the abstract-syntax..24
7.1.3 Extension of an abstract syntax ..24
7.1.4 Private extensions ...26

7.2 Impact on the transfer-syntax ..26
7.2.1 Non compatible changes...26
7.2.2 Changes without impact on transfer-syntaxes ..26
7.2.3 Extension of a transfer-syntax...27

8 Compatibility issues...27
8.1 Backward compatibility ..27
8.2 Forward compatibility ...28

9 Changing names of information objects..29
9.1 Module names ...29
9.2 Abstract syntax names ..30
9.3 Application context names...30

Annex A: Migration from 1988/1990 notation to 1994 notation ..31

Annex B: Specific guidance for users of the 1988/1990 notation...32

Page 4
ETR 060: September 1995

B.1 Use of identifiers ... 32

B.2 Choice and Any values ... 32

B.3 Tagging... 33

B.4 Operations and Errors .. 36

History ... 38

Page 5
ETR 060: September 1995

Foreword

This ETSI Technical Report (ETR) has been produced by the Signalling Protocols and Switching (SPS)
Technical Committee of the European Telecommunications Standards Institute (ETSI).

ETRs are informative documents resulting from ETSI studies which are not appropriate for European
Telecommunication Standard (ETS) or Interim European Telecommunication Standard (I-ETS) status. An
ETR may be used to publish material which is either of an informative nature, relating to the use or the
application of ETSs or I-ETSs, or which is immature and not yet suitable for formal adoption as an ETS or
an I-ETS.

This second edition of ETR 060 takes into account the further evolution of ASN.1 since the publication of
the first edition in 1992.

Page 6
ETR 060: September 1995

Blank page

Page 7
ETR 060: September 1995

1 Scope

The purpose of this ETSI Technical Report (ETR) is to provide guidelines on the use of Abstract Syntax
Notation One (ASN.1) for specifying telecommunication application protocols.

This ETR is based on ITU-T Recommendations X.680 [1], X.681 [2], X.682 [3] and X.683 [4] which specify
the Abstract Syntax Notation One (ASN.1). In case of misalignment, these Recommendations shall be
considered as the primary reference.

Unless explicitly indicated, all references to encoding and decoding functions assume the use of the Basic
Encoding Rules (BER) or any of their variants as they are specified in ITU-T Recommendation X.690 [5]1.

This ETR is not a tutorial on ASN.1. Tutorial matter exists on this subject, e.g. "A tutorial on Abstract
Syntax Notation One" [17], "ASN.1 MACRO Facility" [18], "ASN.1 and ROS" [19], "An overview of
ASN.1" [20]. More specific tutorial information on the latest extensions to ASN.1 can be found in "An
introduction to the ASN.1 MACRO replacement notation" [21] and "Efficient encoding rules for ASN.1-
based protocols" [22].

Annex F of ITU-T Recommendation X.680 [1] also provides a set of general guidelines for use of the
notation.

Throughout this ETR, the term "user" denotes a person who employs ASN.1 for protocol design. The term
1988/90 notation is used to refer to that ASN.1 notation specified in CCITT Recommendation X.208
(1988) | ISO/IEC 8824:1990 [9]. The term current notation is used to refer to that specified in ITU-T
Recommendation X.680 [1].

Unless explicitly stated, all the guidelines contained in the body of this ETR are also applicable to users of
the 1988/90 notation.

Annex A provides guidance for the migration from the 1988/90 notation to the current notation.

Annex B provides specific guidance which only applies to superseded features of the 1988/90 notation.

Terms between quotation marks refer directly to items or productions defined by the ASN.1 standard (e.g.
"typereference", "Symbol").

The main objectives of the recommendations made in this ETR are:

a) allow the re-use of data types from one domain to another;

b) ease protocol evolution, taking into account compatibility issues;

c) ease the maintainability of the specifications;

d) ease automated implementation of encoding and decoding functions;

e) ease the production of test specifications, especially when specified using the Tree and Tabular
Combined Notation (see ITU-T Recommendation X.292 [11]) which makes a direct use of the
ASN.1 type definitions of the protocol to be tested.

1 ITU-T Recommendation X.690 supersedes CCITT Recommendation X.209 [10].

Page 8
ETR 060: September 1995

2 References

This ETR incorporates by dated and undated reference, provisions from other publications. These
references are cited at the appropriate places in the text and the publications are listed hereafter. For
dated references, subsequent amendments to or revisions of any of these publications apply to this ETR
only when incorporated in it by amendment or revision. For undated references the latest edition of the
publication referred to applies.

[1] ITU-T Recommendation X.680 (1994): "Specification of abstract syntax notation
one (ASN.1): Specification of the basic notation" (also published as
ISO/IEC 8824-1).

[2] ITU-T Recommendation X.681 (1994): "Abstract Syntax Notation One (ASN.1):
Information Object Specification" (also published as ISO/IEC 8824-2).

[3] ITU-T Recommendation X.682 (1994): "Abstract Syntax Notation One (ASN.1):
Constraint Specification" (also published as ISO/IEC 8824-3).

[4] ITU-T Recommendation X.683 (1994): "Abstract Syntax Notation One (ASN.1):
Parameterisation of ASN.1 specifications" (also published as ISO/IEC 8824-4).

[5] ITU-T Recommendation X.690 (1994): "Specification of ASN.1 encoding rules:
basic encoding rules" (also published as ISO/IEC 8825-1).

[6] ITU-T Recommendation X.691 (1994): "Abstract Syntax Notation One (ASN.1):
Packed Encoding Rules" (also published as ISO/IEC 8825-2).

[7] ITU-T Recommendation X.680 (1994): "Specification of abstract syntax notation
one (ASN.1): Specification of the basic notation - Amendment 1: Rules for
extensibility".

[8] ITU-T Recommendation X.681 (1994): "Abstract Syntax Notation One (ASN.1):
Information Object Specification - Amendment 1: Rules for extensibility".

[9] CCITT Recommendation X.208 (1988): "Specification of abstract syntax
notation one (ASN.1)" (also published as ISO/IEC 8824:1990).

[10] CCITT Recommendation X.209 (1988): "Specification of basic encoding rules
for abstract syntax notation one (ASN.1)".

[11] ITU-T Recommendation X.292 (1993): "OSI Conformance Testing Methodology
and Framework: Tree and Tabular Combined Notation (TTCN)" (also published
as ISO/IEC 9646-3).

[12] CCITT Recommendation X.219 (1988): "Remote operations; model, notation
and service definition".

[13] ITU-T Recommendations Q.771 to Q.775 (1993): "Specifications of Signalling
System No 7: Transaction Capabilities (TC)".

[14] CCITT Recommendations Q.771 to Q.775 (1988): "Specifications of Signalling
System No. 7, Transaction Capabilities Application Part (TCAP)".

[15] ETS 300 351 (1994): "ETSI object identifier tree; Rules and registration
procedures".

[16] ITU-T Recommendation X.880 (1995): "Remote Operations: concepts, model
and notation".

[17] "A tutorial on Abstract Syntax Notation One" - David Chappel, Cray Research
Inc. - OMNICOM Open System Data Transfer, Trans #25, December 1986.

Page 9
ETR 060: September 1995

[18] "ASN.1 MACRO Facility" - Jim Reinstedler, Ungermann-Bass Inc. - OMNICOM
Open System Data Transfer, Trans #33, April 1988.

[19] "ASN.1 and ROS: The impact of X400 on OSI" - James E. White - IEEE Journal
on Selected Areas In Communications, Vol.7, No.7 - September 1989.

[20] "An overview of ASN.1" - Gerald Neufeld, Son Vuang - Computers and ISDN
Systems - No.23 (1992).

[21] "An introduction to the ASN.1 MACRO replacement notation" - Nilo Mitra - AT&T
Technical Journal - Vol.73 - No.3 - May/June 1994.

[22] "Efficient encoding rules for ASN.1-based protocols"- Nilo Mitra - AT&T
Technical Journal - Vol.73 - No.3 - May/June 1994.

3 Abbreviations

For the purposes of this ETR, the following abbreviations apply

AC Application Context
APDU Application Protocol Data Unit
ASE Application Service Element
ASN.1 Abstract Syntax Notation One
BER Basic Encoding Rules
DSS1 Digital Subscriber Signalling Number one
MAP Mobile Application Part
PDU Protocol Data Unit
PICS Protocol Implementation Conformance Statement
PER Packed Encoding Rules
ROSE Remote Operation Service Element
SS7 Signalling System No.7
TC Transaction Capabilities
TTCN Tree and Tabular Combined Notation

4 Overview of ASN.1

Signalling messages are often described using a tabular notation; their format and binary representation is
specified using tables whose entries are the information elements from which they are built. This method
is rather convenient when the message structure is simple and when there is no need to consider different
encoding schemes to represent the same information.

The ITU-T Recommendations covering Signalling System No.7 (SS7) and Digital Subscriber Signalling
System No. one (DSS1), currently describe most of the Application Protocol Data Units (APDU) in this
manner (e.g. Telephone User Part messages, DSS1 "layer 3" messages, etc.). This is also the approach
taken in OSI to describe the protocol data units up to layer 5.

However, as far as the signalling information to be exchanged between telecommunication systems
becomes more and more complex, the limits of this tabular notation become clear; difficulties for
representing structured elements, duplication of definitions due to the mixture between the syntax of an
information and the way it is encoded, etc.

For the above reasons, it then becomes necessary to change the description technique of signalling
messages. This is achieved using the Abstract Syntax Notation One (ASN.1).

ASN.1 provides a means to describe data types as well as value of these types in an abstract manner. It
does this without determining the way instances of these data types are to be represented during
transmission.

Since a signalling message, as any protocol data unit, can be represented by a data type (generally a
structured one) ASN.1 fulfils very well the requirements for describing complex messages.

Page 10
ETR 060: September 1995

Beside the abstraction and the formalism of data descriptions, one of the objectives of ASN.1 is to
facilitate the encoding and decoding of values of the types defined using the notation. This is why, unlike
the data declaration portion of programming languages, it provides inherently a means for associating
identification tags with data types.

ITU-T Recommendation X.680 [1] specifies a number of simple and structured built-in types which allows
the user of the notation to define more complex types and associated data values by combining these
built-in types. In addition this notation also provides a set of subtype constructors (e.g. value range, size
constraint) to define types whose values are only a subset of the values of some other type (the parent
type).

Examples of simple built-in types are: boolean type, enumerated type, integer type, octet string type, while
examples of built-in structured types are: sequence type, set type, choice type, etc.

Beyond the specification of data units, the latest version of ASN.1 also provides tools for describing other
kind of information object classes, relationships between components of a PDU or other kind of
constraints, and for parameterizing a specification (see ITU-T Recommendations X.681 [2], X.682 [3],
X.683 [4]). Most of these features are intended to serve as a replacement for the MACRO notation and the
ANY type defined as part of the 1988/90 notation

Although the term "ASN.1" is still often used to refer both to this notation and the Basic Encoding Rules,
new Standards and Recommendations defining signalling protocols should made very clear that the two
aspects are distinct (i.e. other encoding rules may be applied to the defined abstract syntax).

While message description is mainly based on the ASN.1 type notation, the ASN.1 value notation is a
basis for some implementations and for specifying constraints for test cases written using the TTCN
notation (see ITU-T Recommendation X.292 [11]). It is therefore of high importance to define data types in
such a way that it is ensured that the resulting value notation is not ambiguous.

5 Specification of protocol data units

5.1 Modules

The following guidelines are appropriate when considering modules:

a) The set of ASN.1 productions which forms a protocol specification shall be organized into one or
several ASN.1 modules.

The criteria for organizing the modules are up to the protocol designer (functional domain, PDU
type, etc.). However for maintainability purposes, the number of inter-module dependencies (i.e.
number of modules seen from one module, number of symbols exported and imported) shall be
limited.

NOTE: The number of ASN.1 modules involved in the definition of data units of a particular
protocol is independent from the number of ASEs in terms of which this protocol is
structured. It has also no impact on the number of abstract syntaxes used to represent
instances of these data units.

b) Attention should be paid to avoid cross references between modules which make the parsing of
complete protocol data units unnecessarily more complex.

c) As stated in ITU-T Recommendation X.680 [1], each ASN.1 module should be given a module
identifier. This is used as a formal reference when exporting or importing definitions between
modules or when using external references.

This identifier shall be composed of a "modulereference" (i.e. a name starting with an upper case
letter) and optionally a value of type object identifier. Unlike an application-context-name or an
abstract-syntax-name, this value is never exchanged between peer protocol machines. However, it
is recommended that an object identifier value be always allocated to modules defined in ETSI
standards.

For further guidance on the use of object identifiers see "An overview of ASN.1" [20]. Rules for
assigning object identifier values within the scope of ETSI are described in ETS 300 351 [15].

Page 11
ETR 060: September 1995

d) It is suggested that modules defined for signalling applications be allocated a "modulereference" of
the following form:

<Protocol-Name>-<Qualifier>

e.g., MAP-Operations

Where <Protocol-Name> identifies a set of related application layer signalling protocols (e.g. MAP)
and <Qualifier> is a suitable acronym for the contents of this module (e.g. Operations,
CommonTypes, etc.).

5.2 Tagging

The following guidelines are appropriate when considering tagging:

a) the AUTOMATIC TAGS construct should always be used when defining a new module;

NOTE: The AUTOMATIC TAGS construct is not available to users of the 1988/90 notation.

EXAMPLE:

My-Module DEFINITIONS
AUTOMATIC TAGS
::=

BEGIN

My-Type ::= SEQUENCE {
a INTEGER,
b INTEGER OPTIONAL,
c BOOLEAN OPTIONAL

}

END

b) protocol designers which need to modify a module defined using the 1988/90 notation should follow
the guidelines provided in annex B. They should not add the AUTOMATIC TAGS construct in the
module header;

c) protocol designers should avoid to add new definitions in modules where the AUTOMATIC TAGS
construct was not used. They should preferably create a new module for that purpose;

d) the protocol designer shall be aware that automatic tagging places restrictions on the possible
modifications to a type definition when backward compatibility need to be ensured. In addition to
those provided in clause 7, users of automatic tagging shall apply the following rules:

- the order of elements in an existing set- or choice- type shall not be modified in a new version
of the specification;

- new elements in a set-, sequence- or choice- type shall be added after existing elements.

Page 12
ETR 060: September 1995

5.3 Handling of optional and default elements

When defining a structured type (set or sequence type) the protocol designer has to decide for each
"ComponentType" whether the presence of its value is mandatory or not when an instance of this type is
being used. ASN.1 provides two means to express that the value of a "ComponentType" can be omitted.

The following guidelines are appropriate when considering optional elements:

a) when the "ComponentType" corresponds to a genuine option and has a default value, the
DEFAULT keyword shall be used;

EXAMPLE 1:

DataUnit ::= SEQUENCE {
calledParty Address,
isdnSubscriber BOOLEAN DEFAULT FALSE

}

b) when the "ComponentType" corresponds to a genuine option and has no default value, the
OPTIONAL keyword shall be used;

EXAMPLE 2:

DataUnit ::= SEQUENCE {
calledParty Address,
callingParty Address OPTIONAL

}

c) it is not a good practice to use an OPTIONAL "ComponentType" to represent an information
element whose presence depends on the value of another element. A "TableConstraint" should
preferable be used (see also subclause 5.7).

NOTE: This facility is not available to users of the 1988/90 notation.

EXAMPLE 3: Define:

DataUnit ::= SEQUENCE {
calledParty Address,
supplServiceId SUPPLEMENTARY-SERVICE.&code,
supplServiceInfo SUPPLEMENTARY-SERVICE.¶meters

({SupplServiceSet}{@supplServiceId})
}
-- SUPPLEMENTARY-SERVICE is an information object class defined
-- elsewhere
-- SupplServiceSet is a set of object of this class.

rather than:

DataUnit ::= SEQUENCE {
calledParty Address,
supplServiceId SS-Code,
forwardedToNumber Address OPTIONAL,

-- present if SS-Code is 1
callBarringPassword Password OPTIONAL

-- present if SS-Code is 2
}

Page 13
ETR 060: September 1995

5.4 Subtyping

The following guidelines are appropriate when considering subtyping:

a) as a general rule, all types which appear in the specification of a PDU shall have their boundaries
formally specified. If this is not inherent to the type definition (e.g. a boolean type), this has to be
done using the subtyping mechanisms provided by the notation;

This concerns the integer types, octet string types, bit string types, character string types and all the
types derived from them. The maximum and minimum number of components in a sequence-of
type or set-of type shall also be specified.

b) if it is not possible to reach an agreement on a particular bound, it is recommended to define a
parameterized type, whose parameter is the unresolved bound. The actual bound will have to be
provided as part of national specifications or in the PICS. An exception specification should also be
added in order to provide a clear specification of the behaviour of an entity in case it receives a
value which does not conform to the actual implemented bound;

EXAMPLE 1:

UserData {INTEGER:up} ::= OCTET STRING ((SIZE(1..up)) !ErrorSpec:truncate)

RequestId {INTEGER:max) ::= INTEGER ((1..max) ! ErrorSpec: ignore)

ErrorSpec ::= ENUMERATED {
truncate (1),
ignore(2)

}

NOTE: This facility is not available to users of the 1988/90 notation.

c) when the same boundaries for value ranges or size constraints are used throughout several
subtype specifications or are subject to evolutions, it is recommended to assign a "valuereference"
to each of these values and to use them in the subtype definition;

EXAMPLE 2:

upperBound INTEGER ::= 20

TypeA ::= OCTET STRING (SIZE (1..upperBound))

TypeB ::= OCTET STRING (SIZE(5..upperBound))

d) note that if no lower bound is specified for a type derived from a set-of type or a sequence-type, this
means that a valid value for this type is an empty value. If this is semantically not acceptable, it is
worth to specify the type as follows:

TypeA ::= SEQUENCE SIZE (1..upperBound) OF BaseType.

e) use of inner subtyping is also encouraged to avoid duplications when there is a need to define a
structured type whose component list is a subset of the component list of an other type (mandatory
elements shall be common to both types).

Page 14
ETR 060: September 1995

EXAMPLE 3:

Address ::= SEQUENCE {
numberingPlan [0] NumberingPlan OPTIONAL,
natureOfAddress [1] NatureOfAddress OPTIONAL,
coding [2] Coding,
presentation [3] BOOLEAN,
screening [4] ScreeningIndicator,
addressSignal [5] DigitString

}

IsdnAddress ::= Address (WITH COMPONENTS {
...,
numberingPlan ABSENT,
natureOfAddress PRESENT

})

5.5 Importing and exporting data types

5.5.1 Exporting

The following guidelines are appropriate when considering exporting of information elements:

a) any "Reference" (e.g. "typereference", "valuereference") which is used by several modules or is
foreseen to be of possible interest to other domains shall be included in the export list of the module
where they are defined;

b) if it is felt that all symbols can be exported, the EXPORTS keyword shall not appear in the module
definition. This is equivalent to exporting every "Symbol" defined in the module.

5.5.2 Importing

The following guidelines are appropriate when considering importing of information elements:

Explicit imports of a "typereference" or a "valuereference" shall be used rather than an
"externaltypereference" or a "externalvaluereference".

EXAMPLE: Define:

IMPORTS TypeA FROM Module-A;

TypeX ::= SEQUENCE {
element1 INTEGER,
element2 TypeA

}

rather than:

TypeX ::= SEQUENCE {
element1 INTEGER,
element2 Module-A.TypeA

}

Page 15
ETR 060: September 1995

5.6 Comments and user-defined constraints

When considering the use of ASN.1 comments and user-defined constraints the following guidelines are
appropriate:

NOTE 1: The notation for User-defined constraints is not available to users of the 1988/90
standard.

a) When there is a need to specify some constraints on the contents of an information element beyond
what can be expressed using ASN.1, the notation for user-defined constraint shall be preferred to
ordinary comments. The latter are best suited to covey explanatory information. This is illustrated by
the following example.

EXAMPLE 1: Define:

TBCD-STRING ::= OCTET STRING (CONSTRAINED BY {
-- two digits per octet, each digit encoded 0000 to 1001 (0 to 9),
-- 1010 (*), 1011 (#), 1100 (a), 1101 (b) or 1110 (c); 1111 used
-- as filler when there is an odd number of digits.
-- bits 8765 of octet n encoding digit 2n
-- bits 4321 of octet n encoding digit 2(n-1) +1 --
})
-- This type (Telephony Binary Coded Decimal String) is used to
-- represent several digits from 0 through 9, *, #, a, b , c, ...

rather than:

TBCD-STRING ::= OCTET STRING
-- This type (Telephony Binary Coded Decimal String) is used to
-- represent several digits from 0 through 9, *, #, a, b , c, two
-- digits per octet, each digit encoded 0000 to 1001 (0 to 9),
-- 1010 (*), 1011 (#), 1100 (a), 1101 (b) or 1110 (c); 1111 used
-- as filler when there is an odd number of digits.
-- bits 8765 of octet n encoding digit 2n
-- bits 4321 of octet n encoding digit 2(n-1) +1

NOTE 2: The above transformation can be made to existing specifications without any impact
on the encoding.

b) In case of protocols based on Remote Operations, the specification may indicate that some user
error (e.g., unexpectedDataValue) should be returned in case such constraints are violated. In such
a case, it is recommended that the user-defined constraint be followed by an exception
specification.

EXAMPLE 2:

Status ::= OCTET STRING (CONSTRAINED BY
{ -- bit 8-5: 0000 (unused) --
} !Error: unexpectedDataValue)

Error ::= ENUMERATED {unexpectedDataValue(0)}

NOTE 3: The addition of an exception specification to an existing definition does not have any
impact on the encoding.

Page 16
ETR 060: September 1995

c) When the constraint depends on the value of another information element the user defined
constraint should include a formal parameter.

EXAMPLE 3:

ExternalSignalInfo {ProtocolId} ::= SEQUENCE {
protocolId ProtocolId,
signalInfo OCTET STRING (CONSTRAINED BY {

-- contains the complete encoding according to protocol Id --
ProtocolId})

}

NOTE 4: The above example only make sense if there is a need to maintain compatibility with
an existing specification. If a new protocol were to be defined, the semantic of the
above type is better provided trough the use of the EMBEDDED PDV type.

d) When it is expected that the user-defined constraint can be used to automatically invoke some
user-specific code for checking the constraint, it is recommended that it includes a reference to the
checking procedure to be invoked. This reference can be composed by a keyword (e.g.
EXTERNAL-CHECKING) followed by an object identifier which unambiguously identifies the
checking procedure.

EXAMPLE 4:

AddressString ::= OCTET STRING (CONSTRAINED BY {
-- EXTERNAL-CHECKING id-check-addressString -- })

EXAMPLE 5: The following Information Object Class may be used by protocol designers to
document the specific checking procedures they define:

EXTERNAL-CHECKING ::= CLASS {
&ConstrainedType ,
&rules PrintableString,
&id OBJECT IDENTIFIER UNIQUE

}
WITH SYNTAX {

TYPE &ConstrainedType
CHECKING RULES &rules
IDENTIFIED BY &id

}

The user-defined constraint for checking that the contents of an octet string
contains an address formed by a numbering plan indicator followed by a series
of digits.

addressStringCheck EXTERNAL-CHECKING ::= {
TYPE OCTET STRING
CHECKING RULES "First octet encoded numbering plan according to

Rec Q.763 Subsequent octets encoded as
two digits per octet, each digit encoded 0000 to
1001 (0 to 9), 1010 (*), 1011 (#), 1100 (a), 1101 (b)
or 1110 (c); 1111 used as filler when there is an odd
number of digits.
bits 8765 of octet n encoding digit 2n
bits 4321 of octet n encoding digit 2(n-1) +1"

IDENTIFIED BY id-check-addressString
}

Page 17
ETR 060: September 1995

5.7 Information elements dependencies

A protocol designer commonly needs to specify that the type of an information element depends on the
value of another information element (classifier). The following guidelines are appropriate when
considering the specification of dependencies between information elements:

NOTE: These guidelines are not appropriate to users of the 1988/90 notation which have to
specify such dependencies using ordinary comments or a combination of the MACRO
notation and the ANY DEFINED BY type.

a) The related information elements should be modelled as fields of an Information Object Class.
Instances of that class shall then be defined to associate a particular value of the classifier element
with the appropriate types for the other elements. This is illustrated by the following example.

EXAMPLE 1:

SUPPLEMENTARY-SERVICE ::= CLASS {
&Subscription ,
&Registration OPTIONAL ,
&code INTEGER UNIQUE

}
WITH SYNTAX {

SUBSCRIPTION INFO &Subscription
[REGISTRATION INFO &Registration]
IDENTIFIED BY &code

}

CallForwarding SUPPLEMENTARY-SERVICE ::= {
SUBSCRIPTION INFO ForwardingOptions
REGISTRATION INFO ForwardedToNumber
IDENTIFIED BY 1

}

b) The PDU which carries the related information elements shall be specified using the notation for
component relation constraints, as illustrated below.

EXAMPLE 2:

SupplServiceInfo ::= SEQUENCE {
id SUPPLEMENTARY-SERVICE.&code,
subscriptionInfo SUPPLEMENTARY-SERVICE.&suscription

({SupplServiceSet} {@id}),
registrationInfo SUPPLEMENTARY-SERVICE.®istration

({SupplServiceSet} {@id}) OPTIONAL
}
-- SupplServiceSet represents the set of supported objects of class
-- "SUPPLEMENTARY-SERVICE"

5.8 Miscellaneous

5.8.1 Elements and types

The following guidelines are appropriate when considering instances versus types:

An application deals with a great number of parameters some of them being mapped to a protocol
information element by the protocol machines. However there is no need to define a distinct data type for
each of these information elements. When two information elements are syntactically equivalent they shall
be represented as occurrences of the same data type, or if required for decoding, as occurrences of two

Page 18
ETR 060: September 1995

isomorphic types derived from the same base type by context-specific tagging. The base type shall be
defined only in one place.

EXAMPLE: Define:

Address ::= -- some suitable definition

Message ::= SEQUENCE {
calledNumber Address,
callingNumber Address,
time Time

}

rather than:

Message ::= SEQUENCE {
calledNumber CalledNumber,
callingNumber CallingNumber,
time Time

}

CalledNumber ::= -- A suitable definition
CallingNumber ::= -- The same definition

5.8.2 Order of elements

The following guidelines are appropriate when considering the order of information elements:

The order of elements when defining a type derived from the sequence type or the set type is up to the
protocol designer. However, when possible (i.e. if there is no special need for an other logical order), it is
recommended to group all the mandatory elements at the beginning of the construct.

This may allow an optimized coding of constructed data values when other encoding rules than the Basic
Encoding Rules (e.g. Packed Encoding Rules (PER), see ITU-T Recommendation X.691 [6]) are used.

EXAMPLE: Define:

Example ::= SEQUENCE {
element1 Type1,
element2 Type2,
element3 Type3,
element4 Type4 OPTIONAL,
element5 Type5 OPTIONAL

}

rather than:

Example ::= SEQUENCE {
element1 Type1,
element2 Type2,
element4 Type4 OPTIONAL,
element3 Type3,
element5 Type5 OPTIONAL

}

Page 19
ETR 060: September 1995

5.8.3 Specification of nested structures

The following guidelines are appropriate when considering the specification of nested structures:

When defining a type derived from a sequence type, a set type or a choice type, the protocol designer
should avoid to expand the definition of the component type in the definition of the structured type where
the component appears.

EXAMPLE: Define:

DataUnit ::= SEQUENCE {
element1 INTEGER,
element2 TypeA OPTIONAL

}

TypeA ::= SEQUENCE {
u1 [0] IMPLICIT INTEGER,
u2 [1] IMPLICIT INTEGER

}

rather than:

DataUnit ::= SEQUENCE {
element1 INTEGER,
element2 SEQUENCE {

u1 [0] IMPLICIT INTEGER,
u2 [1] IMPLICIT INTEGER} OPTIONAL

}

5.8.4 Enumerated types

It is recommended that each "EnumerationItem" be an "identifier" rather than a "NamedNumber".

EXAMPLE: Define:

Type-A ::= ENUMERATED {
item1,
item2,
item3,
item4

}

rather than:

Type-A ::= ENUMERATED {
item1 (0),
item2 (1),
item3 (2),
item4 (3)

}

Page 20
ETR 060: September 1995

5.8.5 Specification of operations and errors

Existing signalling protocols based on TC or ROSE have been defined in terms of Operations and Errors,
using the ASN.1 MACROs provided in ITU-T Recommendation Q.773 [13] and CCITT Recommendation
X.219 [12].

Since the MACRO notation does not belong to the current notation, it is strongly recommended that
Operations and Errors specified for new protocols be defined as instances of the Information Object
Classes contained in ITU-T Recommendation X.880 [16]. Guidance for migrating from the MACRO
notation to its replacement is provided in annex C of ITU-T Recommendation X.880 [16].

It should also be noticed that the new notation provides a formal way to specify whether an operation
argument (or a result parameter, or an error parameter) is optional or mandatory.

6 Leaving holes in specifications

6.1 General aspects

There exist a number of circumstances where there is a need to leave holes in the specification of a set of
protocol data units. This ETR identifies the following four main cases:

1) need to make provision for extension of the protocol;

2) need for embedding information from another protocol;

3) need to carry information whose syntax is not known to the designer of the main protocol (e.g.,
private extensions) and/or is expected to evolve independently from this main protocol;

4) need to define a generic PDU whose definition is expected to be refined in other specifications.

The first amendment to ITU-T Recommendation X.680 [7] and the first amendment to ITU-
Recommendation X.681 [8] provide a mean for supporting the first type of need. This is known as the
"ellipsis notation" and is further discussed in subclause 8.2.

As far as cases 2) and 3) are concerned, ASN.1 offers three possible notations:

- the EXTERNAL type;
- the EMBEDDED PDV type;
- the Instance-Of type.

NOTE 1: The last two alternatives are not available to users of the 1988/90 notation.

The use of parameterized types supports the last requirement (case 4)

NOTE 2: This facility is not available to users of the 1988/90 notation.

6.2 Embedding information

The following general guidelines are appropriate when considering the use of the above types:

a) the use of the EXTERNAL type is deprecated for the design of new protocols;

b) when the external information is related to a different protocol (i.e. embedding of one protocol into
another), it is recommended to use an EXTERNAL or EMBEDDED PDV type;

c) when the external information must be encoded using different rules than the embedding protocol, it
is necessary to use an EXTERNAL or EMBEDDED PDV type;

d) in all other situations the protocol designer shall prefer Instance-Of types which produce less
overhead than EMBEDDED PDV when their values are encoded using the Basic Encoding Rules.
The use of the Instance-Of type is illustrated below:

Page 21
ETR 060: September 1995

EXAMPLE 1: Given the following main definition:

SubscriberProfile ::= SEQUENCE {
directoryNumber IsdnAddressString,
category Category DEFAULT {ordinary},
supplementaryServices SET OF SupplementaryServiceInformation,
operatorSpecificServices SET OF OperatorSpecificService

}

OperatorSpecificService can be defined as an Instance-Of type as follows:

OperatorSpecificService ::= INSTANCE OF OPERATOR-SPECIFIC-SERVICE

OPERATOR-SPECIFIC-SERVICE ::= TYPE-IDENTIFIER

Which is equivalent to the following expanded definition:

OperatorSpecificService ::= [UNIVERSAL 8] IMPLICIT SEQUENCE {
type-id OPERATOR-SPECIFIC-SERVICE.&id
value OPERATOR-SPECIFIC-SERVICE.&Type ({@type-id})

}

Particular instances can be defined as follows:

JupiterFreephone OPERATOR-SPECIFIC-SERVICE ::= {
SpecificServiceInfo
IDENTIFIED BY { iso identified-organization jupiter-telecom (100)

supplementaryService (2) freephone (11)}
}

NOTE 1: The BER encoding of a value of an instance-of type is compatible with the BER
encoding of the equivalent value of an EXTERNAL type when the "Single-ASN1-type"
encoding option is used.

e) due to the absence of presentation layer in the current signalling environment, it is essential that no
presentation context information be used in external types and embedded-PDV types;

f) it is recommended that the following two subtypes be used by designers of signalling protocols in
place of the EXTERNAL and EMBEDDED PDV types;

NOTE 2: The following definitions are not available to users of the 1988/90 notation.

EXAMPLE 2:

SIG-EXTERNAL ::= EXTERNAL (WITH COMPONENTS {
...,
identification (WITH COMPONENTS {

...,
presentation-context-id ABSENT,
context-negociation ABSENT

}) })

SIG-EMBEDDED-PDV ::= EMBEDDED-PDV (WITH COMPONENTS {
...,
identification (WITH COMPONENTS {

...,
presentation-context-id ABSENT,
context-negociation ABSENT

}) })

Page 22
ETR 060: September 1995

g) a protocol designer who wants to make use of an external or embedded PDV type shall first define
an abstract syntax which encompasses all the data values which may be carried by this external or
embedded-PDV type. Then he shall assign a name (i.e. an object identifier value) to this abstract
syntax.

This name is used as the value of the "identification.syntaxes.abstract" element of the
"EmbeddedPdvValue" or of the "identification.syntax" element of the "ExternalValue".

NOTE 3: When an external type is used, the transfer-syntax associated with a particular
abstract-syntax is supposed to be agreed "a priori" between the peers. The embedded
PDV type allows an explicit identification of the transfer syntax.)

NOTE 4: This abstract syntax is independent from the one to which the containing type belongs
to. Thus when defining a set of data types whose values are to be carried within the
value of an external type there is no need to worry about possible clashes of the new
tag values with the ones already used by the protocol.

NOTE 5: The notation for defining values of the external type has been changed. Users of the
1998/90 notation shall refer to annex B.

h) it is recommended that the abstract-syntaxes be defined in terms of a single ASN.1 type (generally
a choice type) which encompasses all the values which make up an abstract syntax, using the
ABSTRACT-SYNTAX Information Object Class.

EXAMPLE 3:

my-abstract-syntax ABSTRACT-SYNTAX ::= {
My-PDUs IDENTIFIED BY {object identifier value }

}

My-PDUs ::= CHOICE {
initialPDU [APPLICATION 0] Type-A,
finalPDU [APPLICATION 1] Type-B

}

NOTE 6: This feature is not available to users of the 1988/90 notation which may use comments
to specify the association between the abstract-syntax-name and the type which
encompasses the data values.

6.3 Defining generic types

The following guidelines are appropriate when considering the use of the above types:

a) When there is a need to leave undefined the type of some components of a standardized structured
type, it is possible to define this structured type as a parameterized type.

EXAMPLE 1:

GenericPDU {DummyType} ::= SEQUENCE {
a INTEGER,
b BOOLEAN,
c DummyType OPTIONAL

}

Page 23
ETR 060: September 1995

b) It is recommended that such dummy references be resolved before or when an abstract-syntax is
defined using such parameterized types.

EXAMPLE 2:

my-abstract-syntax ABSTRACT-SYNTAX ::= GenericPDU {SpecificType}
IDENTIFIED BY {xxx}

-- note that this is equivalent to:

my-abstract-syntax ABSTRACT-SYNTAX ::= SpecificPDU
IDENTIFIED BY {xxx}

-- where

SpecificPDU ::= GenericPDU {SpecificType}

-- which in turn is equivalent to:

SpecifcPDU ::= SEQUENCE {
a INTEGER,
b BOOLEAN,
c SpecificType OPTIONAL

}

7 Protocol modifications

This clause describes the different categories of changes which can be made to a protocol specification
as far as the protocol data units are concerned. Subclause 8.1 deals with changes to abstract-syntaxes
while subclause 8.2 discusses their impact on transfer-syntaxes when the Basic Encoding Rules are used.

7.1 Changes to abstract-syntaxes descriptions

This subclause identifies three types of changes which can be made to abstract-syntax specifications (i.e.
changes to the type(s) in term of which the abstract-syntax is defined).

7.1.1 Non compatible changes

Changes cause incompatibility from an abstract-syntax point of view when a value of the original abstract-
syntax is not a valid value for the new abstract-syntax.

A non compatible change to the type(s) in term of which an abstract-syntax is defined causes an
incompatibility between the original abstract-syntax and the new one.

The following list provide some examples of such non compatible changes:

- replace a type by another type even if the tag remains the same;
- remove a type definition or a value definition referred either explicitly (IMPORTS) or implicitly (ANY

DEFINED BY of TC);
- remove a "NamedType" from the "AlternativeTypeList" of a Choice type;
- remove an "EnumerationItem" from the "Enumeration" of an enumerated type;
- restrict the "ValueRange" of an integer type;
- restrict the "SizeConstraint" of a string type;
- restrict the "SizeConstraint" of a sequence-of type;
- change the order of elements in the "ComponentTypeList" of a sequence type;
- make any combination of the above changes to one or more components of a structured type.

Page 24
ETR 060: September 1995

7.1.2 Changes without impact on the abstract-syntax

These changes are purely restricted to the way the abstract syntax and the type used for its definition are
specified. They do not affect the set of values defined by the abstract syntax. Such changes may be
needed to bring a specification in line with the rules stated in clauses 5 and 6 of this ETR (this list is not
necessarily complete).

a) In a set type or sequence type, replace the use of "COMPONENTS OF" with direct inclusion of the
equivalent components, or vice versa.

b) In a choice type, replacing nested choice types with direct inclusion of the each "NamedType" which
appear in the "AlternativeTypeList".

NOTE 1: This transformation affects the abstract-syntax when automatic tagging is used.

c) Replace a type by a "typereference" representing the same type or vice versa.

d) Replace a value by a "valuereference" representing it or vice versa; this includes replacing a
"number" by a "valuereference".

e) Replace a type by an equivalent selection type or vice versa.

f) Add or (if unused) remove one or more "NamedBit" from a bit string type.

g) Add or (if unused) remove one or more "NamedNumber" from an integer type.

h) Change the spelling of a "Reference" (e.g. "typereference", "modulereference", "valuereference",
etc.) or an "identifier" consistently throughout all ASN.1 Modules. This includes adding identifiers
where allowed from the syntax.

i) Split up one ASN.1 Module into several ASN.1 Modules.

j) Put several ASN.1 Modules together into one ASN.1 Module.

k) Move parts of one ASN.1 Module into another ASN.1 Module.

l) Add one or more "Symbol" to the "EXPORTS" list (or remove the "EXPORTS" statement to indicate
that everything is exported).

m) Add one or more "Symbol" to the "IMPORTS" list (symbols from ASN.1 Modules already referenced
in the "IMPORTS" list as well as symbols from newly referenced ASN.1 Modules).

n) Remove one or more existing "Assignment" (e.g., "TypeAssignment", "Valueassignment") if their
associated "Reference" is never used throughout all ASN.1 Modules.

o) Add a field to an object class definition if it is associated with a "Type" or "DefinedObjectClass"
whose values are already encompassed by the abstract-syntax.

NOTE 2: This includes adding an ERROR object of class ERROR to the definition of an
OPERATION object if this ERROR object is already used in the definition of another
OPERATION object.

7.1.3 Extension of an abstract syntax

An abstract-syntax is extended if its associated type is extended (i.e. if a choice type, it can be extended
by adding a new component or extending an existing one). One way of extending a PDU (or any
structured type) is to extend the type of any of its components.

One ASN.1 type is considered to be an extension of another if the former includes all the values of the
latter, and possibly some others.

Given a certain type, its extensions are those types which could be derived by one or more of the following
changes, combined with any number of those described in subclause 8.1.3.

Page 25
ETR 060: September 1995

a) Change a single type into a choice type which includes this single type in the "AlternativeTypeList".

NOTE 1: The tag of this alternative has to remain unchanged, no additional (EXPLICIT) Tag is
allowed. It has to be taken care, that all references to this changed type throughout all
ASN.1 Modules still meet all ASN.1 requirements - in particular distinctness of Tags
and uniqueness of Identifiers.

b) Add one/more "NamedType" to the "AlternativeTypeList" of a choice type.

NOTE 2: See note 1 for changing a single type into a choice type.

c) Add an optional component to a sequence type or a set type.

NOTE 3: When automatic tagging is employed or when it is expected that transfer syntaxes
which do not transmit tags (e.g. PER) will be used, a new component should be added
at the end of the sequence.

NOTE 4: When it is expected that transfer syntaxes which do not transmit tags (e.g. PER) will
be used, the tags of a new component should be in ascending order.

d) Add a default component to a sequence type or a set type.

NOTE 5: See notes 3 and 4.

e) Extend one or more components of a choice type, sequence type or a set type.

f) Extend the type in terms of which a sequence-of type or a set-of type is defined.

g) Change a mandatory component of a sequence type or set type to an optional or default
component.

NOTE 6: The Tag of this component has to remain unchanged and distinctness of Tags has to
be ensured.

h) Add one or more new "EnumerationItem" to an enumerated type.

NOTE 7: Distinctness of values and uniqueness of identifiers has to be ensured.

i) Extend the "ValueRange" of an integer type by decreasing the "LowerEndpoint" and/or increasing
the "UpperEndpoint".

j) Extend the "SizeConstraint" of an octet string type, a bit string type or a character string type by
decreasing the "LowerEndpoint" and/or increasing the "UpperEndpoint".

k) Extend the "SizeConstraint" of a sequence-of type or a set-of type by decreasing the
"LowerEndpoint" and/or increasing the "UpperEndpoint".

l) Change the "Value" assigned to a "valuereference" if the effect for all references still meets all other
rules (e.g. Increase a Value used only as "UpperEndpoint" in a "ValueRange" or "SizeConstraint").

The following changes to OPERATION and ERROR definition affect the abstract-syntax formed by the set
of values whose type is the one of TC messages or ROSE PDUs parameterized by a specific list of
operations:

m) Add new definition of class OPERATION and ERROR respectively as long as they are distinct with
all other definitions of class OPERATION and ERROR respectively.

n) Add an &Type field an object of class OPERATION if it didn't have such a field.

o) Add an &ResultType field to an object of class OPERATION if it did not have such a field.

p) Add an &ParameterType field to an object of class ERROR if it didn't have such a field.

Page 26
ETR 060: September 1995

7.1.4 Private extensions

Private extensions are those added to standard protocols outside standardization bodies (e.g. national
specifications). The actual use of private extensions outside the domain for which they are defined may
cause incompatibility problems if no forward compatibility rules are specified for the standard protocol
which has been extended.

The following guidelines are appropriate when considering private extensions:

a) a private extension should be a valid extension according to the rules described in subclause 7.1.3;

b) a private extension should be defined in such a way that it is ensured that its element can be
distinguished from new elements introduced in future version of a protocol;

c) if it is felt that a PDU type may require private extensions, the protocol designer should insert a
specific information element for that purpose, in any construct which may be extended.

The type for such an information element should preferably be an Instance-Of type (see subclause
6.2).

7.2 Impact on the transfer-syntax

The impact of changes to abstract-syntaxes on transfer syntaxes depends on the set of encoding rules
used to derive the transfer-syntax. This subclause deals only with the situation where the Basic Encoding
Rules (ITU-T Recommendation X.690 [5]) are used.

7.2.1 Non compatible changes

In general, a non-compatible change from an abstract-syntax point of view causes a non-compatible
change from a transfer-syntax point of view. However for a given set of encoding rules there may be some
exceptions.

In addition it is obvious that changing the encoding rules causes in most cases incompatibility from a
transfer-syntax point of view.

Note that changing an IMPLICIT tag to an EXPLICIT tag causes a protocol incompatibility when BER are
used but not necessarily when the Packed Encoding Rules (ITU-T Recommendation X.691 [6]) are used.

7.2.2 Changes without impact on transfer-syntaxes

As a general rule, changes which do not affect the abstract-syntax, do not affect the transfer-syntax
(providing that the encoding rules are unchanged).

This is always true with the Basic Encoding Rules (ITU-T Recommendation X.690 [5]). However, for the
Packed Encoding Rules (ITU-T Recommendation X.691 [6]), one major exception would be rule 7.1.2 b)
where in case of nested choices, the inner choice type is replaced by the direct inclusion on its
components. In addition, there may be some situations where a modification of the abstract-syntax does
not cause a modification to the transfer syntax.

The following example illustrates a situation where a non-compatible change is made to a type definition
without affecting the transfer-syntax when BER are used:

Replace an integer type by an enumerated type if this integer type is only used to define tagged types.

Page 27
ETR 060: September 1995

EXAMPLE: Change:

Colour ::= [1] IMPLICIT INTEGER {red (0), blue (1), white(2)} (0..2)

to:

Colour ::= [1] IMPLICIT ENUMERATED {red (0), blue (1), white(2)}

7.2.3 Extension of a transfer-syntax

The Basic Encoding Rules ensure that if the abstract-syntax is extended, the transfer-syntax is also
extended and the original values are preserved.

However, for the Packed Encoding Rules (ITU-T Recommendation X.691 [6]), one major exception would
be rule 7.1.3 a) where a a type is replaced by a choice type which contains this type.

8 Compatibility issues

The following subclauses deal only with compatibility from the encoding point of view. They do not deal
with functional compatibility aspects which have also to be taken into account when extending or
modifying a protocol.

8.1 Backward compatibility

The purpose of this subclause is to provide guidelines on the types of changes which can be made to a
protocol specification to while ensuring backward compatibility.

Changes which do not affect the transfer-syntax (i.e. the bits and bytes exchanged between peer entities)
or which extend it are backward compatible.

Using simple words, backward compatibility means that an encoded PDU of the original protocol is a valid
encoded PDU for the new protocol. Such changes are described in subclauses 7.2.2 and 7.2.3.

Non backward compatible changes are those which affect the transfer-syntax in a non compatible way. In
this case an encoded PDU of the original protocol is not necessarily a valid encoded PDU for the new
protocol. Example for such changes are listed in subclause 7.2.1

Page 28
ETR 060: September 1995

8.2 Forward compatibility

Changes to an abstract-syntax affect in most cases the transfer syntax.

If changes are made according to the rules indicated in the previous subclauses, the new protocol is
backward compatible with the original one. However an encoded PDU of a new version of this protocol is
not necessarily a valid PDU for the original protocol.

Forward compatibility is most generally achieved through application-context negotiation. However in
order to minimise the number of protocol fall-backs on signalling interfaces, it will sometimes be
necessary to define forward compatibility rules which allow a version of a protocol to accept protocol data
units generated by a future version without having to provide a new application-context-name.

This feature is also necessary where application context negotiation is not supported, e.g., the optional
dialogue portion of TC is not supported.

If the protocol designer wishes to ensure that a value of a PDU of the new version of a protocol be (at
least) always partly recognised by an implementation of an older version of this protocol, the following
guidelines shall be followed:

- the new protocol version shall complies with the rules described in subclauses 8.1.2 and 8.1.3 (i.e.
the new abstract syntax shall be an extension of the old one);

- the applicable encoding rules (which shall be unchanged) shall permit the unknown parts of the
encoding to be delimited2;

- Extensibility rules shall be included in the specification of the original protocol so that additions not
be treated as errors during the decoding process.

If the last recommendation is not followed, the behaviour of the receiving entity is implementation
dependent.

It is recommended to restrict the use of the extensibility rules to:

- the addition of OPTIONAL and DEFAULT components in types derived from the SEQUENCE or
SET type;

- the addition of alternatives to a CHOICE type, providing that it does not correspond to a mandatory
component of a higher structure;

- the addition of enumerated values to an ENUMERATED type, providing that it does not correspond
to a mandatory component of a higher structure;

- the relaxation of a constraint, providing that the constrained type does not correspond to a
mandatory component of a higher structure.

The protocol designer shall be aware that extensibility rules beyond those listed here (e.g., relaxing a size
constraint or a value range, or extending a CHOICE type corresponding to a mandatory element) may
require special care (e.g., specifying error codes to be used when an unrecognized information element is
encountered) to avoid important functional errors.

The first amendment to ITU-T Recommendation X.680 [7] enables the protocol designer to indicates in a
module header that extensibility rules apply to each type for which it is permitted. However this feature
shall be use cautiously since it does not take into account the above restrictions. It also provides a new
piece of notation to flag individually the types which can be extended in such a way that unknown
additions be ignored. This flag is an ellipsis (...) and is called an extensions marker. It is recommended
that protocol designers make use of this facility for the specification of extensibility rules. Users of the
1988/90 version of ASN.1 may include this flag as an ASN.1 comment.

2 This is always ensured if the Basic Encoding Rules (or any variant) or the Packed Encoding Rules are employed.

Page 29
ETR 060: September 1995

EXAMPLE: The following illustrates a specification where extra (unknown) element values
will be accepted for PDU-A and TypeA, but not for TypeB.

PDU-A ::= SEQUENCE {
element1 TypeA,
element2 TypeB,
...

}

TypeA ::= SEQUENCE {
element3 TypeC,
element4 TypeD,
...

}

TypeB ::= SEQUENCE {
element5 TypeE,
element6 TypeF

}

The extensibility mechanism may also be required when application layer relays are involved in the
exchange of messages, if they support a lower version of the protocol than the one used by the actual
senders and receivers of these messages (e.g., Vn-Vn dialogue relayed by a Vn-1 node). However, in this
case, there is an additional requirement that the relay node passes the received unrecognized information
to the subsequent node.

The specification of extensibility rules without any other indication does not place any requirement the
receiving entity regarding further processing of the part of encoding which corresponds to unknown
values. In the absence of any additional specification, the undecoded parts are ignored.

If there is a need to take any other special action (e.g. return a specific error, retransmit this part of the
encoding to a third party, etc.) the protocol designer shall provide an explicit specification of the expected
behaviour, in addition to the extensibility rules. As a possible option, it can include in the original version of
the protocol some information elements which convey dynamically an indication of the behaviour to be
followed on receipt of unrecognized information elements.

9 Changing names of information objects

This clause gives guidelines on the criteria to be used for changing the name of an information object (or
more precisely for deciding that a new information object has been created). It focuses only on syntax
related aspects. However the protocol designer shall be aware that other types of changes may have
impact on the names of information objects (e.g. addition or removal of an ASE to an AC).

9.1 Module names

A module is identified by a a "modulereference" and optionally an "ObjectIdentifierValue". This value shall
be changed if one or more changes which affect directly or indirectly a symbol visible outside the module
or used for defining an abstract-syntax are made.

It is recommended that the last arc of the object identifier values used for representing module names be
a version number.

Page 30
ETR 060: September 1995

9.2 Abstract syntax names

An abstract-syntax should be allocated a new name if a new type is added to the list of types in term of
which it is defined or if the set of data values associated with one of the existing types is modified and the
new type is not extension-related to the old type.(e.g. because one of these types is extended and does
not contain an extensions marker).

It recommended that the last arc of the object identifier values used for representing abstract syntax
names be a version number.

9.3 Application context names

An application-context should be allocated a new name if:

a) one or more associated abstract-syntaxes are modified;

b) one or more abstract-syntaxes are removed from the set of associated abstract-syntaxes;

c) one or more abstract-syntaxes are added to the set of associated abstract-syntaxes.

NOTE: This covers modifications where a new abstract-syntax is added to the application-
context in relation to a particular use of an external type which appear in one the PDU
of the main abstract-syntax.

It is recommended that the last arc of the object identifier values used for representing application
contexts be a version number.

Page 31
ETR 060: September 1995

Annex A: Migration from 1988/1990 notation to 1994 notation

Guidance for the migration from the 1988/1990 notation to the current notation is given in annex A of
ITU-T Recommendation X.680 [1].

More specific guidance for operations and errors is provided in ITU-T Recommendation X.880 [16].

Page 32
ETR 060: September 1995

Annex B: Specific guidance for users of the 1988/1990 notation

B.1 Use of identifiers

Although the use of identifiers is not mandatory from a syntactical point of view in the 1988/90 version of
ASN.1, it is recommended, when defining a type derived from the sequence, set and choice types, that
each element be allocated an identifier. This makes the specification more readable and eases the
parsing of the value notation (e.g. when used in a TTCN test case description). It may also be necessary
for defining unambiguously a value of such a type.

EXAMPLE:

Example ::= SEQUENCE {
calledNumber Address,
duration Duration OPTIONAL,
time Time

}

Address ::= OCTET STRING (SIZE(1..10))
Duration ::= INTEGER (0..30) -- mn

Time ::= SEQUENCE {
hour Hour,
min Min

}

Hour ::= INTEGER (0..23)
Min ::= INTEGER (0..59)

exampleValue1 Example ::= {
calledNumber "1122334455"H,
duration 10,
time {

hour 3,
min 25}

}

B.2 Choice and Any values

CCITT Recommendation X.208 [9] contained an erroneous value notation for choice and any types. In
some specific circumstances, the use of this notation resulted in unparsable modules. A new notation has
been published in 1991 as a corrigendum to the ISO/IEC standard and is now integrated in ITU-T
Recommendation X.680 [1].

It is recommended that users of the 1988/90 notation apply the ISO corrigendum, irrespective of the
version of ASN.1 to which they claim to conform. This correct notation is reproduced below:

ChoiceValue ::= identifier : Value

AnyValue ::= Type : Value

Page 33
ETR 060: September 1995

EXAMPLE: This example illustrates the use of the correct value notation by defining to valid
values for Type-A.

Type-A ::= CHOICE {
element1 INTEGER,
element2 [0] ANY

}

value1 Type-A ::= element1 : 1
value2 Type-A ::= element2 : BOOLEAN : TRUE

B.3 Tagging

Each ASN.1 built-in type (simple type or type constructor) is given a UNIVERSAL tag assigned by ITU-T
Recommendation X.680 [1]. However, the tagging mechanism provided by ASN.1 allows the user of this
notation to create a new type (tagged type) by assigning a new tag to an existing type (base type). Both
types are isomorphic (same syntax) and differ only by virtue of their tags.

EXAMPLE 1:

-- NewTaggedType is derived from built-in OCTET STRING type by tagging.

NewTaggedType ::= [APPLICATION 10] OCTET STRING

Theoretically, the user is allowed to assign a tag to any or all the types he defines. However, this is only
necessary when the original tag does not unambiguously identify values of the type.

The following guidelines are appropriate when considering tag allocation:

a) A tag is not a way to identify an application parameter uniquely throughout an application. Tagging
should only be used when necessary to avoid possible ambiguities at decoding time. This is the
case where ASN.1 requires distinct tags in a structured type but the original tags associated with its
component types do not fulfil this requirement.

This occurs mainly when:

- the information elements are members of a (non-ordered) set (i.e. a set type) and therefore
their relative position cannot be used to discriminate between two information elements of the
same type (thus with the same tag);

- the information elements are members of an ordered set (i.e. a sequence type) but the
presence or absence of optional elements makes impossible to discriminate between the
presence of an optional element and the presence of an immediately following information
element of the same type;

- because two occurrences of the same type would appear in a choice type;

- or any combination of the above situations.

EXAMPLE 2: Tagging is required for element 2.

DataUnit ::= SEQUENCE {
element1 INTEGER,
element2 [0] IMPLICIT INTEGER OPTIONAL,
element3 INTEGER

}

Page 34
ETR 060: September 1995

EXAMPLE 3: Tagging is not required for element 2.

DataUnit ::= SEQUENCE {
element1 INTEGER,
element2 BOOLEAN OPTIONAL,
element3 INTEGER

}

b) When tagging is necessary, the tags shall always be allocated in the context-specific class.

The main reason is that the context-specific class is the only one (when used in a correct manner)
which, in the absence of a central registry for signalling protocols3, ensure that there will never be
any conflict between tag values, when data types are imported and exported between modules4.

c) The protocol designer shall consider that the context (i.e. the scope of the tag value) is the context
of the next higher construct (an embedding sequence type or set type or an explicit tagged type).

EXAMPLE 4: This example illustrates the re-usability of context-specific tags:

DataUnit ::= SEQUENCE {
element1 INTEGER,
element2 [0] IMPLICIT SEQUENCE{

u1 [0] IMPLICIT INTEGER,
u2 [1] IMPLICIT INTEGER} OPTIONAL,

element3 [1] IMPLICIT TypeA OPTIONAL
}
TypeA ::= SEQUENCE {

e1 [0] IMPLICIT INTEGER OPTIONAL,
e2 [1] TypeB OPTIONAL

}
TypeB ::= SET {

f1 [0] IMPLICIT OCTET STRING,
f2 OCTET STRING

}

d) The scope of the tags used within the definition of a choice type is not limited to this choice. Thus in
situation where ASN.1 required distinct tags, these tags shall be different from the other tags which
appear in the next higher construct where this choice type is attached. To avoid worrying about
these problems a protocol designer can decide to always define a tagged (explicit) type derived
from the choice type.

EXAMPLE 5: This example illustrates a situation where uniqueness of tag values has been
taken care of by the protocol designer. If this approach is followed it is
recommended to reserve always the same set of tag values for this purpose:

DataUnit ::= SET {
e1 TypeA,
e2 [2] TypeB

}
TypeA ::= CHOICE {

a1 [0] IMPLICIT INTEGER,
a2 [1] IMPLICIT INTEGER

}

3 This is also because there is currently no systematic mean in signalling systems to explicitly convey abstract-syntax-names

or transfer-syntax-names.
4 This rule may be overridden by protocol designers which define common building blocs protocols (e.g. TC itself (ITU-T

Recommendations Q.771 to Q.775 [13]).

Page 35
ETR 060: September 1995

EXAMPLE 6: This example illustrates how the uniqueness of tag values is ensured by defining
a tagged type derived from a choice type which limits the scope of the tags used
in the "AlternativeTypeList".

DataUnit ::= SET {
e1 [0] TypeA,
e2 [1] TypeB

}
TypeA ::= CHOICE {

a1 [0] IMPLICIT INTEGER,
a2 [1] IMPLICIT INTEGER

}
TypeB ::= CHOICE { -- [0], [1] can be re-used

a1 [0] IMPLICIT INTEGER,
a2 [1] IMPLICIT INTEGER

}

EXAMPLE 7: This example illustrates a wrong specification where uniqueness of tag values is
not ensured.

DataUnit ::= SET {
e1 TypeA,
e2 [0] TypeB

}
TypeA ::= CHOICE {

a1 [0] IMPLICIT INTEGER,
a2 [1] IMPLICIT INTEGER

}

e) Since it is assumed that the scope of context specific tags is the next higher construct, no tagged
type shall be defined outside a construct (i.e. only data types derived from a universal type by
subtyping or built from other types using a construction mechanism shall be defined outside any
construct).

This means that the examples which were given in the Blue Book version of the TC user's guide
(CCITT Recommendation Q.775 [14]) shall not be considered as valid examples. However, the
White Book version of ITU-T Recommendation Q.775 [13] includes valid examples.

f) In order to minimize the number of octets required for encoding, the IMPLICIT tagging method shall
always be used when defining a tagged type (except if the base type is a choice type or an open
type). This can be easily specified by including the "IMPLICIT TAGS" keywords in each module
definition.

EXAMPLE 8: The following specification

Dummy-Module
DEFINITIONS IMPLICIT TAGS ::=
BEGIN

-- module body

TypeA ::= SEQUENCE {
element1 [0] TypeB,
element2 [1] TypeC

}

END

is equivalent to:

Page 36
ETR 060: September 1995

Dummy-Module
DEFINITIONS EXPLICIT TAGS ::=
BEGIN

-- module body

TypeA ::= SEQUENCE {
element1 [0] IMPLICIT TypeB,
element2 [1] IMPLICIT TypeC

}

END

NOTE: When the "TagDefault" value of a module is IMPLICIT it is not necessary to include the
keyword EXPLICIT when defining a tagged type derived from a choice type or an any
type because this is implicit. It is obviously not allowed to include the IMPLICIT
keyword.

g) The meaning of an "empty" "TagDefault" has been changed between versions of ASN.1
specification. Therefore, it is suggested to always include a non "empty" "TagDefault" to avoid any
ambiguity when defining a module.

h) It is recommended that the "TagDefault" indicates the tagging method used by the majority of the
types defined in the module.

B.4 Operations and Errors

Guidance on the specification of Operations and Errors using MACROs is already available in
Recommendation Q.775 [13] (TC) as well as CCITT Recommendation X.219 [12] (ROSE).

The following additional guidelines are appropriate when considering the use of MACROs for defining
Operation and Errors:

a) In order to allow the re-use in other domain of Operations and Errors defined, the specification
should be based on a two steps approach: First, Operation and Error types shall be defined. Then
Operation and Errors of these types shall be defined by allocating operation and error codes.

Using this method only makes sense if the operations and errors types are exported from the
modules where they are defined.

b) In order to make easier the transition to the new notation, it is recommended that:

- within the scope of an abstract-syntax, only one operation (error) value be assigned to a
particular operation (error) type;

- no semantics shall be attached to the potential conceptual difference between an operation
(error) type and an operation (error) value. This is because the two-step approach is mainly
an artificial mechanism which allows the protocol designer to re-arrange operation and error
codes according to his requirements5.

c) When defining a protocol (thus an abstract syntax) the protocol designer may import operation and
error types (not values) from other domains where these types have been allocated a local value.
The protocol designer is free to allocate other local values in order to ensure the uniqueness of
these values within the new domain. If the macro-replacement notation is employed, the same kind
of mechanism is provided through the use of the "recode" parameterized operation.

d) It is also recommended that the value assignment not be made in the modules where the types are
defined.

5 When the macro-replacement notation is used, an operation definition which has no associated operation code is not

interpreted as an operation type but as a Bind operation.

Page 37
ETR 060: September 1995

e) It is suggested that the operation argument/result type or the error parameter type not be expanded
in the Operation or Error type definition. This is in line with the new ROSE notation which require the
use that only a "typereference" (as opposed to a "Type") be used when defining operations and
errors.

It should also be noted that one of the advantages of giving a name to the type of the argument or
result parameter (rather than expanding the type definition) is for test specification where it is
convenient or indeed necessary (see ITU-T Recommendation X.292 [11]) to have names for the
PDU of the tested layer/sub-layer.

EXAMPLE 1: This means that operation type is to be defined in the following form:

OperationA ::= OPERATION
PARAMETER OperationA-Arg

RESULT OperationA-Res

ERRORS {ErrorA,
ErrorB}

OperationA-Arg ::= SEQUENCE {
element1 Type1,
elementX TypeX OPTIONAL

}

rather than:

OperationA ::= OPERATION
PARAMETER SEQUENCE {

element1 Type1 elementX TypeX OPTIONAL}

RESULT OperationA-Res

ERRORS {ErrorA,
ErrorB}

OperationA-Arg, OperationA-Res, ErrorA-Par, etc. have to be defined using separated assignment.
They can be regarded as the ROSE-user or TC-user Protocol Data Units.

This approach makes also easier the definition of several Operations which have the same
argument type and/or result type but differs by another aspects (e.g. errors, class, etc.).

EXAMPLE 2: The two operation types differ only by their class:

-- TC class 1 operation type
OperationA ::= OPERATION
PARAMETER OperationA-Arg

RESULT OperationA-Res

ERRORS {ErrorA,
ErrorB}

-- TC class 3 operation type
OperationB ::= OPERATION
PARAMETER OperationA-Arg

RESULT OperationA-Res

Page 38
ETR 060: September 1995

History

Document history

November 1992 First Edition

September 1995 Second Edition

February 1996 Converted into Adobe Acrobat Portable Document Format (PDF)

ISBN 2-7437-0123-4
Dépôt légal : Septembre 1995

	Foreword
	1	Scope
	2	References
	3	Abbreviations
	4	Overview of ASN.1
	5	Specification of protocol data units
	5.1	Modules
	5.2	Tagging
	5.3	Handling of optional and default elements
	5.4	Subtyping
	5.5	Importing and exporting data types
	5.5.1	Exporting
	5.5.2	Importing

	5.6	Comments and user-defined constraints
	5.7	Information elements dependencies
	5.8	Miscellaneous
	5.8.1	Elements and types
	5.8.2	Order of elements
	5.8.3	Specification of nested structures
	5.8.4	Enumerated types
	5.8.5	Specification of operations and errors

	6	Leaving holes in specifications
	6.1	General aspects
	6.2	Embedding information
	6.3	Defining generic types

	7	Protocol modifications
	7.1	Changes to abstract-syntaxes descriptions
	7.1.1	Non compatible changes
	7.1.2	Changes without impact on the abstract-syntax
	7.1.3	Extension of an abstract syntax
	7.1.4	Private extensions

	7.2	Impact on the transfer-syntax
	7.2.1	Non compatible changes
	7.2.2	Changes without impact on transfer-syntaxes
	7.2.3	Extension of a transfer-syntax

	8	Compatibility issues
	8.1	Backward compatibility
	8.2	Forward compatibility

	9	Changing names of information objects
	9.1	Module names
	9.2	Abstract syntax names
	9.3	Application context names

	Annex A:	Migration from 1988/1990 notation to 1994 notation
	Annex B:	Specific guidance for users of the 1988/1990 notation
	B.1	Use of identifiers
	B.2	Choice and Any values
	B.3	Tagging
	B.4	Operations and Errors

	History

