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Intellectual Property Rights

IPRs essential or potentially essential to the present document may have been declared to ETSI. The information
pertaining to these essential IPRs, if any, is publicly available for ETSI member s and non-member s, and can be found
in ETSI SR 000 314: "Intellectual Property Rights (IPRs); Essential, or potentially Essential, IPRs notified to ETS in
respect of ETS standards', which is available from the ETSI Secretariat. Latest updates are available on the ETSI Web

server (http://ipr.etsi.org).

Pursuant to the ETSI IPR Policy, no investigation, including IPR searches, has been carried out by ETSI. No guarantee
can be given asto the existence of other IPRs not referenced in ETSI SR 000 314 (or the updates on the ETSI Web
server) which are, or may be, or may become, essential to the present document.

Foreword

ThisETSI Standard (ES) has been produced by ETSI Technical Committee Methods for Testing and Specification
(MTS).

The use of underline (additional text) and strike through (deleted text) highlights the differ ences between base
document and extended documents.

The present document relates to the multi-part standard ES 201 873 covering the Testing and Test Control Notation
version 3, asidentified below:

ES201873-1: "TTCN-3 Core Language";

ES201873-2: "TTCN-3 Tabular presentation Format (TFT)";
ES201873-3: "TTCN-3 Graphical presentation Format (GFT)";
ES 201 873-4: "TTCN-3 Operational Semantics';

ES 201 873-5: "TTCN-3 Runtime Interface (TRI)";

ES201873-6: "TTCN-3 Control Interface (TCI)";

ES201873-7: "Using ASN.1 with TTCN-3";

ES201873-8: "ThelDL to TTCN-3 Mapping";

ES201873-9: "Using XML schemawith TTCN-3";

ES 201 873-10: "TTCN-3 Documentation Comment Specification”.

Modal verbs terminology

In the present document "shall”, "shall not", "should", “should not”, "may", "may not", "need", "need not", "will",
"will not", "can" and "cannot" areto be interpreted as described in clause 3.2 of the ETSI Drafting Rules (Verba forms
for the expression of provisions).

"must" and "must not" are NOT allowed in ETSI deliverables except when used in direct citation.
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1 Scope

The present document defines the " Continuous Signal support" package of TTCN-3. TTCN-3 can be used for the
specification of all types of reactive system tests over a variety of communication ports. Typical areas of application are
protocol testing (including mobile and Internet protocols), service testing (including supplementary services), module
testing, testing of CORBA based platforms, APIs, etc. TTCN-3 is not restricted to conformance testing and can be used
for many other kinds of testing including interoperability, robustness, regression, system and integration testing. The
specification of test suites for physical layer protocolsis outside the scope of the present document.

TTCN-3 packages are intended to define additional TTCN-3 concepts, which are not mandatory as conceptsin the
TTCN-3 core language, but which are optional as part of a package which is suited for dedicated applications and/or
usages of TTCN-3.

This package defines concepts for testing systems using continuous signals as opposed to discrete messages and the
characterization of the progression of such signals by use of streams. For both the production as well as the evaluation
of continuous signals the concept of mode is introduced. Also, the signals can be processed as history-traces. Finally,
basic mathematical functions that are useful for analyzing such traces are defined for TTCN-3. It isthus especially
useful for testing systems which communicate with the physical world via sensors and actuators.

While the design of TTCN-3 package has taken into account the consistency of a combined usage of the core language
with a number of packages, the concrete usages of and guidelines for this package in combination with other packages
is outside the scope of the present document.

2 References

References are either specific (identified by date of publication and/or edition number or version number) or
non-specific. For specific references, only the cited version applies. For non-specific references, the latest version of the
reference document (including any amendments) applies.

Referenced documents which are not found to be publicly available in the expected |ocation might be found at
http://docbox.etsi.org/Reference.

NOTE: While any hyperlinksincluded in this clause were valid at the time of publication, ETSI cannot guarantee
their long term validity.

2.1 Normative references

The following referenced documents are necessary for the application of the present document.

[1] ETSI ES 201 873-1 (V4.6.1): "Methods for Testing and Specification (MTS); The Testing and
Test Control Notation version 3; Part 1: TTCN-3 Core Language”.

[2] ETSI ES201 873-4 (V4.4.1): "Methods for Testing and Specification (MTS); The Testing and
Test Control Notation version 3; Part 4: TTCN-3 Operational Semantics’.

[3] ETSI ES 201 873-5 (V4.6.1): "Methods for Testing and Specification (MTS); The Testing and
Test Control Notation version 3; Part 5: TTCN-3 Runtime Interface (TRI)".

[4] ETSI ES 201 873-6 (V4.6.1): "Methods for Testing and Specification (MTS); The Testing and
Test Control Notation version 3; Part 6: TTCN-3 Control Interface (TCI)".

[5] I SO/IEC 9646-1: "Information technology -- Open Systems I nterconnection -- Conformance
testing methodology and framework; Part 1. General concepts’.

[6] ETSI ES 202 785 (V1.3.1): "Methods for Testing and Specification (MTS); The Testing and Test
Control Notation version 3; TTCN-3 Language Extensions: Behaviour Types'.
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2.2 Informative references

The following referenced documents are not necessary for the application of the present document but they assist the
user with regard to a particular subject area.

[i.1] ETSI ES 201 873-2 (V3.2.1): "Methods for Testing and Specification (MTS); The Testing and
Test Control Notation version 3; Part 2: TTCN-3 Tabular presentation Format (TFT)".

[i.2] ETSI ES201 873-3 (V3.2.1): "Methods for Testing and Specification (MTS); The Testing and
Test Control Notation version 3; Part 3: TTCN-3 Graphical presentation Format (GFT)".

[i.3] ETSI ES 201 873-7 (V4.5.1): "Methods for Testing and Specification (MTS); The Testing and
Test Control Notation version 3; Part 7: Using ASN.1 with TTCN-3".

[i.4] ETSI ES 201 873-8 (V4.5.1): "Methods for Testing and Specification (MTS); The Testing and
Test Control Notation version 3; Part 8: The IDL to TTCN-3 Mapping".

[i.5] ETSI ES201 873-9 (V4.5.1): "Methods for Testing and Specification (MTS); The Testing and
Test Control Notation version 3; Part 9: Using XML schemawith TTCN-3".

[i.6] ETSI ES 201 873-10 (V4.5.1): "Methods for Testing and Specification (MTS); The Testing and
Test Control Notation version 3; Part 10: TTCN-3 Documentation Comment Specification”.

[i.7] ETSI ES 202 784 (V1.3.1): "Methods for Testing and Specification (MTS); The Testing and Test
Control Notation version 3; TTCN-3 Language Extensions: Advanced Parameterization”.

[i.8] ETSI ES202 782 (V1.2.1): "Methods for Testing and Specification (MTS); The Testing and Test
Control Notation version 3; TTCN-3 Language Extensions. TTCN-3 Performance and Real Time
Testing".

3 Definitions and abbreviations

3.1 Definitions

For the purposes of the present document, the terms and definitions given in ES 201 873-1 [1], ES 201 873-4 [2],
ES 201 873-5[3], ES 201 873-6 [4] and | SO/IEC 9646-1 [5] apply.

3.2 Abbreviations

For the purposes of the present document, the abbreviations given in ES 201 873-1 [1], ES 201 873-4 [2],
ES 201 873-5[3], ES 201 873-6 [4] and ISO/IEC 9646-1 [5] apply.

4 Package conformance and compatibility

The package presented in the present document isidentified by the package tag:

e "TTCN 3:2012 Support for Testing Continuous Signals" -to be used with modules complying
with the present document.

For an implementation claiming to conform to this package version, all features specified in the present document shall
be implemented consistently with the requirements given in the present document and in ES 201 873-1 [1],
ES 201 873-4 [2], ES 201 873-5 [3] and ES 201 873-6 [4].

ETSI
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The package presented in the present document is compatible to:
ES 201 873-1 (V4.6.1) [1]
ES 201 873-4 (V4.4.1) [2]
ES 201 873-5 (V4.6.1) [3]
ES 201 873-6 (V4.6.1) [4]
ES 202 785 (V1.3.1) [6]

ES 201 873-7 (V4.5.1) [i.3]
ES 201 873-8 (V4.5.1) [i.4]
ES 201 873-9 (V4.5.1) [i.5]
ES 201 873-10 (V4.5.1) [i.6]
ES202 784 (V1.3.1) [i.7]
ES202 782 (V1.2.1) [i.8]

If later versions of those parts are available and should be used instead, the compatibility to the package presented in the
present document has to be checked individually.

5 Package concepts for the core language

Systems can communicate its data or signals, either in discrete form (e.g. as an integer value) or in continuous form
(e.g. real values). With respect to this difference signals are classified into four categories. The categories distinguish
whether the time and value domain of asignal is of discrete or continuous nature:

1) Anaogue signals are continuous in the time and value domain. Analogue signals are the most 'natural’ signal
category, characterized by physical units (e.g. current, voltage, velocity) and measured with sensors. Typical
examples of the physical quantities used in the area of embedded system development are the vehicle velocity,
the field intensity of aradio station etc. Analogue signals can be described as a piecewise function over time

(e.g. vx =1 (1).

2) Time quantified signals are discrete signalsin the time domain. The signal values are defined only at
predetermined time points (sampling points). Typical examples of time quantified signals are the time-value
pairs of arecorded signal. A typical representation of atime quantified signal is a series or an array of real
numbers. Even if the original signal is a synthetic function it can only be reconstructed from atime quantified
signal with considerable mathematical effort.

3) Vaue quantified signals are time-continuous signals with discrete values. Typical examples of avalue
quantified signal are data that are derived from analogue signals and which are dedicated to further processing,
e.g. an A/D converted sensor signal that is provided to an electrical control unit.

4) Digital signasare discrete on the time and value domain. If the set of possible signal values includes only two
elements, one speaks about binary signals. Typical examples of binary signals are switching positions or flags.

Thus on atheoretical level, we distinguish between the continuous and discrete evolution of time and values. In a
discrete system, the changes of states are processed at fixed and finite time steps. In a continuous system state changes
occur for infinitesimally small time steps. | mportant mathematical models for continuous systems are ordinary
differential equations. A mixed system, which shows continuous and discrete dynamics, is known as a hybrid system.
Hybrid systems can be modelled with hybrid automatons. Examples for systems that show such variable dynamics are
often found in the area of embedded control systems e.g. in the automotive and aircraft industry.

In the general case, atest description notation for embedded software systems shall support all of four categories of
signals mentioned above. TTCN-3 currently supports the signal categories (2) and (4). The extension of the language
with respect to a support of the signal categories (1) and (3) is the content of the present document.

ETSI



9 ETSI ES 202 786 V1.2.1 (2014-06)

TTCN-3isaprocedural testing language, thus test behaviour is defined by algorithms that typically send messagesto
ports and receive messages from ports. For the evaluation of different alternatives of expected messages, or timeout
events, the port queues and the timeout queues are frozen when the evaluation starts. This kind of snapshot semantics
guarantees a consistent view on the test system input during an individual evaluation step. Whereas the snapshot
semantics provides means for a pseudo parallel evaluation of messages from several ports, there is no notion of
simultaneous stimulation and time triggered evaluation. To enhance the core language to the requirements of continuous
and hybrid behaviour we introduce:

. the notions of time and sampling;
e thenotions of streams, stream ports and stream variables;

. the definition of an automaton alike control flow structure to support the specification of hybrid behaviour.

5.1 Time and Sampling

The TTCN-3 extensions defined in this package adopt the concept of a global clock and enhance it with the notion of
sampling and sampled time. Asin TTCN-3, all time values are denoted as float values and represent time in seconds.
For sampling we intend to support simple equidistant sampling models as well as dynamic sampling models.

On technical level an equidistant sampling model of the formt =k* bdel t a, wheret describesthe time progress, d
specifies the number of executed sampling steps and, bdel t a yields the minimal achievable step size for a given test
system, is used as an overall basisto model equidistant samplings with larger step size or dynamic sampling.

The basic sampling with its minimal step size bdel t a isa property of a concrete test system and not intended to be
specified as part of the test case specification. However, as a consequence of this underlying model, atest systemis able
to execute user defined samplingsif and only if al specified sampling rates at test specification level provide step sizes
that are multiples of bdel t a.

When using the TTCN-3 extension defined in this package, each reference to time, either used for the definition and
evaluation of signals but as well by means of ordinary TTCN-3 timers, is considered to be completely synchronized to
the global clock and the base sampling.

51.1 The now operator

For the specification of time-dependent signal sequences, it is necessary to be able to track the passage of time. The
access of time is guaranteed by a globally available clock whose current value can be accessed by means of the now
operator. Time progress starts at the beginning of each test case execution, thus time values are related to the start of the
test case execution.

Syntactical Structure

now
Semantic Description

Evaluation of the now operator yields the current value of the clock which is the duration of time since the start of the
currently running test case.

Restrictions

The now operator shall only be applied from within atest case, i.e. by test cases, functions and altsteps executed on test
components. The now operator shall neither directly nor indirectly be called by TTCN-3 control part.

Example

EXAMPLE:

/1l Use of nowto retrieve the actual tinme since the test case has started
var float actual Tine : = now,

ETSI
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5.1.2 Define the default step size for sampling

For sampling, a globally valid base sampling rate defined by the test systemis provided. In addition, sampling rates can
be set separately and as part of the test specification by means of st epsi ze attribute.

Syntactic Structure
st epsi ze StepSi zeVal ue
Semantic Description

The St epSi zeVal ue isastring-literal which shall contain adecimal number. This number interpreted as secondsis
used as the default rate of sampling values over the stream ports to which are affected by thisst epsi ze attribute. The
actual sampling rate of a specific port can be changed dynamically with the del t a operation.

Restrictions

A st epsi ze attribute can only appear in awith-annotation. A st epsi ze attribute can be applied to individual
modules, test cases, groups, component types and stream port types and effects either the statements that are contained
in one of these entities or in case of component types and stream port types the respective instances.

Examples

EXAMPLE 1:

/] sets the stepsize for a nodul e
modul e myModul e

} with {stepsize " 0.0001" };
EXAMPLE 2:

/] sets the stepsize for a testcase

testcase nyTestcase() runs on nyConponent {

} with {stepsize " 0.0001" }:

EXAMPLE 3:

/] sets the stepsize for all instances of the port type StreamCut
type port Streanmfut stream{ out float} with {stepsize " 0.0001" };

5.2 Data streams

In computer science the term data stream is used to describe a continuous or discrete sequence of data. Normally the
length of a stream cannot be established in advance. The datarate, i.e. the number of samples per time unit, can vary.
Data streams are continuously processed and are particularly suited to represent dynamically evolving variables over a
course of time. Thus, streams are an ideal representation of the different discrete and continuous signals mentioned in
the beginning of clause 5.

ETSI
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While in standard TTCN-3 interactions between the test components and the SUT are realized by sending and receiving
messages through ports, the interaction between continuous systems can be represented by means of so called streams.
In contrast to scalar values, a stream represents the whol e allocation history applied to a port. In computer science,
streams are widely used to describe finite or infinite data flows. To represent the relation to time, so called timed
streams are used. Timed streams additionally provide timing information for each stream value and thus enable the
traceability of timed behaviour. The TTCN-3 extension defined by this package provides timed streams. In the
following we will use the term measurement (record) to denote the unity of a stream value and the related timing in
timed streams. Thus, concerning the recording of continuous data, a measurement record represents an individual
measurement, consisting of a stream value that represents the data side and timing information that represents the
temporal perspective of such a measurement.

Standard TTCN-3 offers no direct support for the specification, management and modification of data streams. In this
TTCN-3 extension, we introduce two different but not complementary representations of timed data streams. The term
timed considers the fact that we are interested in the time and value domain of a signal. As a consegquence we consider a
stream to consist of a sequence of samples, which each provide information about the timing and the val ue perspective
of the sample.

1) Static perspective: The static perspective provides a direct mapping between a timed stream and the TTCN-3
datastructuresr ecor d and r ecor d of . Thiskind of mapping is referred to below as the static
representation of a data stream and allows random accessto all elements of the data stream.

2)  Dynamic perspective: To provide dynamic online access to data streams, we extend the existing concepts of
TTCN-3 port type and port to provide access to data streams and their content. A so called st r eam port
references exactly one data stream and provides access to the dynamically changing values of the referenced
data stream.

Please note: to represent streams in the present document we use a tabular notation. The table has two rows by which
the first one represents the val ue perspective of a stream and the second represents the temporal perspective. The
temporal perspective is defined by means of timestamps that are synchronized with the overall clock. The columns
represent the samples of the stream.

EXAMPLE:
Val ue 1,2 [1.4 [1.5 [1.7 JL.7 JL.5 J1.2 [1.0 [1.1 |14 [L5 |12 1.0 |1 [L4
T nestanp 0 |01 |02 [0.3 [0.4 [0.5 [0.6 [0.7 [0.8 [0.9 [0 |11 |12 |13 |L4

The example shows a stream with the length of 1.4 seconds and float values that change between 1.0 and 1.5.

5.2.1 Data Streams: static perspective

A TTCN-3 data stream can be mapped directly to existing TTCN-3 data structures. The mapping considers each stream
to be represented by means of a TTCN-3 record of data structure. This structure itself consists of individual entities, so
called samples, each sample representing either a measurement on an incoming stream or stimulus that is dedicated to
be applied to an outgoing stream.

A sampleitself is represented by means of a TTCN-3 record data structure. The record consists of two fields. It has two
fields of typef | oat . Thefirst field with the name val ue represents what we call the value of a stream. Its data type
should be aligned with the data type of the corresponding stream. The second field denotes the temporal perspective of
asample. It denotes the temporal distance to the preceding sample (the sampling step size del t a). The second field is
of typef | oat and represents time values that have the physical unit second. Example 1 shows the exemplary
definition of a data structure to specify individual samples.

EXAMPLE 1.

type record Sanpl e{
float val ue,

float delta
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Given such a structure, atimed data stream of an arbitrary datatype is modelled as arecord of samples.

EXAMPLE 2:

type record of Sanple MyStreanType;

The static representation of data streams can be used for the online and offline evaluation of streams as well as for the
piecewise in-memory definition of streams or stream templates, which are to be applied to stream portsin the
subsequent test case execution. Thus, the static representation of streams can be used to assess incoming streams and to
define outgoing or reference streams and template streams mostly by means of ordinary TTCN-3 operations and control
structures and as such provide an ideal interface between ordinary TTCN-3 concepts and the concepts defined in this
package. The following example shows a short specification of a sampled stream.

EXAMPLE 3:

var MyStreanfType nyStreanVar : = {
{val ue: =0.0, delta:=0.1},
{val ue: =0. 2, delta:=0.2},
{val ue: =0. 1, delta:=0.1},
{val ue: =0. 0, delta:=0.3}

If the stream definition from above is applied to an outgoing stream port directly with the beginning of atest case, the
result will look as follows.

EXAMPLE 4:
Val ue 0.0 [0.0 [0.2 [0.1T [0.0
T mestanp 0 (0.1 [03 0.4 [07

Please note: each stream port isinitialized with avalue that defines the valuation of a stream at time 0.0. Thus the first
sample in Example 4 is not defined by the specification in Example 3 but by the base initialization of the stream port.
More information is provided in the following clauses.

NOTE 1: Inorder to create larger streams a manual specification approach is not feasible. In this case we propose
to use the data processing capabilities of TTCN-3 to programmatically/algorithmically construct the
dedicated record structures.

NOTE 2: The data structures presented in this section serve for illustration purposes only. They show how timed
data streams can be mapped to standard TTCN-3 data structures and thus can be processed easily by using
the existing TTCN-3 language features and operators. The TTCN-3 extensions provided in this package
do not include type declarations from above.

5.2.2 Data Streams: dynamic perspective

In standard TTCN-3 ports are used for the communication among test components and between test components and the
SUT. To be ableto initiate, modify and evaluate a stream based communication between the entities of atest system,
this package extends the concepts of standard TTCN-3 port types and ports with the notion of stream-based
communication and stream ports. Stream ports are the endpoints of a stream based communication. Thus stream portsin
TTCN-3 embedded are used to provide access to streams, their values and the respective timing information. A stream
port references exactly one data stream and thus provides access to the respective stream values and timing information.
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5.2.2.1 Defining stream port types

The TTCN-3 port concept of message-based and procedure-based ports is extended with stream-based ports. Stream
ports support stream-based communication.

Syntactical Structure

type port PortTypeldentifier stream"{"
(in | out | inout ) StreanVal ueType

"y

Semantic Description

Stream port types shall be declared by using the keyword st r eam Stream ports are directional. The directions are
specified by the keywordsi n (for thein direction), out (for the out direction) and i nout (for both directions).

The specified SreamValueType references the type of values which can be sent or received (depending on the direction
of the port) over ports of the type PortTypel dentifier.

Restrictions

Each stream port type definition shall have one and only one entry indicating the allowed type together with the allowed
communication direction.

Example

EXAMPLE:

/'l Stream based port which allows streamval ues of type float to be received

type port Streamin stream{ in float }

/] Stream based port which allows streamvalues of type float to be sent

type port Streanmfut stream{ out float }

5.2.2.2 Declaration and instantiation of stream ports

The declaration of stream-based portsis similar to the declaration of message-based and procedure-based ports. The
component type declares which ports are associated with a component. A component type can have ports with
different communication characteristics (e.g. stream-based ports, message-based ports, and procedure based). All ports
are instantiated together with the component that owns the port, i.e. when the component is created.

Outgoing stream ports start to emit stream values directly after the component, which contains the respective stream
port, has been started. The same applies for incoming stream ports. They start receiving data directly after their
component has been started. Both incoming and outgoing stream ports are updated for each sampling step. If no explicit
step size is defined by means of step size annotations on module level, test case level, port type level etc. the port is
initially sampled with the test systems' base sampling, which is the smallest available step size.

Outgoing stream ports may already beinitialized before its first use, so that their values before the start of their
component are defined. The initialization occurs in the context of their declaration.

Outgoing stream ports, when they are not explicitly initialized, are automatically initialized with implicit default values.
Theimplicit default values for the various TTCN-3 basic data types can be found in the following table.

float integer boolean charstring bitstring octetstring

0.0 0 FALSE " '0'B '00'O

Theinitial stream port value for outgoing stream port appliesto the time point 0.0 and for the following sample steps as
long as no other stream valueis set. The value initialization for incoming streamsisin responsibility of the data
provider. Hence either the system adapter or the emitting component (in case of a PTC) isresponsible to initialize the
streams.
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Syntactical Structure

port StreanPort TypeRef erence
{ StreanPortldentifier [ ":=" StreanDefaultValue ] [","] }+ [";"]

Semantic Description

A stream port Portlnstance named StreamPortl dentifier is declared inside a component type definition using a
SreamPortTypeReference which is atype-reference expression for an existing stream port type. Optionally, a
StreamDefaultVal ue can be supplied which defines the value of the stream before the first sampling over this port.

Restrictions

The StreamDefaultVValue shall be of the type StreamValueType in the port type definition referenced by
SreamPortTypeReference.

Examples
EXAMPLE 1

type port Streamin stream{ in float }
type port Streamfut stream{ out float }

type conponent SUT {
port Streamin A B;
port Streanmtut C D

}
EXAMPLE 2:
type conponent SUT {

port Stream n A B;
port Streantut C: =1.0,D: =2.0;

5.2.3 Data stream access operations

Similar to message-based and procedure-based communication incoming streams can be examined and outgoing
streams can be controlled. In general, we provide access to the actual sample of a stream (i.e. the stream value, the
respective timing and sampling information) by means of stream data operations. Moreover, we provide access to the
preceding samples by means of dedicated navigation operations. Last but not least, we are able to extract record
structured stream data as explained in clause 5.2.1 by means of stream evaluation statements.

In contrast to message-based and procedure-based communi cation, we integrate stream data operations and stream
navigation operations on expression level. Thus, we are able to directly assign valuesto streams and read val ues from
streams by means of ordinary TTCN-3 assignments.

5.2.3.1 The value operation

Each data stream connected to a stream port allows accessing its current value by means of the val ue operation. In
case of incoming streams, the value operation yields the actual value that is available at a stream port.

Syntactical Structure

( StreanPortReference | StreanPort Sanpl eReference ) "." val ue
Semantic Description

Theval ue operation can be applied to either a SreamPortReference expression or a SreamPortSampl eReference
expression which is yielded by the application of a navigation operation on a StreamPortReference. In the first case, it
yields the current value of the stream port; in the second case it yields the value in the referenced sampling.
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When using a StreamPortReference to an outgoing stream port, the val ue operation expression can also be used on the
left hand side of an assignment or as an out parameter to a function.

When using aval ue operation expression as a value expression the type of the value is the StreamVaueType of the
referenced stream port.

If the value operation is used for setting the actual output value of a stream, the effectiveness of the stream port
evauation is delayed. A vaue, which has been assigned to a stream port value handle, becomes effective inside and
outside the component at the beginning of the next sampling step.

Restrictions

If theval ue operation expression is used as the target of an assignment, the type of the assigned value shall be
compatible with the StreamV alueType of the referenced stream port.

Examples

EXAMPLE 1:

/'l accessing the actual input value of a stream
var float nyVar:=stream nPort. val ue;

EXAMPLE 2:

/'l accessing the actual input value of a stream

/1 and conpare it with a given expectation
if (stream nPort.value>= 100.0) {.};

NOTE 1: Thevalue, which is provided by means of the val ue operation, isthe value that has been measured at
the beginning of the actual sampling period.

EXAMPLE 3:

/] setting the actual output value of a stream
streanmQut Port . val ue: = 100. O;

NOTE 2: Theuse of theval ue operation can be combined in such away that the specification of complex
eguations and equation systems is supported.

EXAMPLE 4:

/1 calculating the Chns' | aw

vol t age. val ue: = anper age. val ue * resistance. val ue;

5.2.3.2 The timestamp operation

Similar to the value operation the timestamp operation allows to access the time related information of the actual
sample.

Syntactical Structure

( StreanPort Reference | StreanPort Sanpl eReference ) "." timestanp

Semantic Description

The timestamp operation can be applied to a stream port referenced by a StreamPortReference expression or a
StreamPortSampl eReference referring to a specific sample of a stream port.
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The application of the timestamp operation on a StreamPortReference yields the exact time point at which the actual
stream port value has been measured. The application of the timestamp operation on a SreamPortSampl eReference
yields the exact time point at which the referenced sample has been measured. The exact sample time denotes the
moment when a stream value has been made available at the test system's input and thus strongly dependent on the
sampling rate.

Thetime point is provided as a floating-point number (f | oat ) and has the physical unit seconds. The time information
is completely synchronized with the test system clock described in clause 5.1.

Restrictions
The timestamp operation always yields a non-negative float value.
Example

EXAMPLE:

/'l access of the sanple tine
/1 for the current sanple
var float neasurenentTinel: =streanport.tinestanp;

NOTE: Datastreams are used to represent samplesin a dynamic measurement process. A sample that istaken
from adata stream is usually historical information, i.e. theresult of at i nest anp operation refersto
the state of the system (i.e. the SUT) at atimein the past.

5.2.3.3 The delta operation

The step size of adata stream can dynamically change during a test execution. The change can be initiated either by the
test specification or by means of the measurement system (i.e. the system adapter). The delta operation provides access
to the actual step size of a port.

In addition to the timestamp operator TTCN-3 embedded allows to obtain the step size that has been used to measure a
certain value. Thisinformation is provided by the delta operation. The delta operation can be used in a similar way than
the value and the timestamp operation. It returns the size of the last sampling step (in seconds).

Syntactical Structure

( StreanPortReference | StreanPortSanpl eReference ) "." delta
Semantic Description

When used on a SreamPortReference, the delta operation allows read and write access to the actual step size of a port.
When the delta operation is used for reading on a SreamPortReference, it yields the actual step size for agiven port.
When the delta operation is used for writing on a SreamPortReference it sets the length of the step size for future
writing and reading at the given port. The step sizeisdefined asaf | oat number and has the unit seconds.

When used on a SreamPortSampleReference it yields the actual step size active at the time of the referenced sample
measurement.

A value, which has been assigned to a stream port delta handle, affects the length of the next sampling period, not the
actual one. Thus, it cannot be used to shorten or lengthen the actual sampling step.

Restrictions
When used on a SreamPortSampleReference, the del t a operation only allows read access.
Examples

EXAMPLE 1:

var float actual StepSize;

/'l reads the actual stream size froma port
actual StepSi ze: = streanport.delta;
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EXAMPLE 2:

/1 sets the actual step size for a port
streanport.delta: = 0.001

5.2.4 Data stream navigation operations

Beside access to the actual values of a stream, additional access to the history of streams by means of so called stream
navigation operationsis provided. The result of a navigation operation is a handle, which allows the application of the
value, timestamp or delta operation for preceding stream states. Such a state isidentified by means of two different
operations. The at operation demands atime index of typef | oat that denotes the time that has passed since the
beginning of the test case. The pr ev operation backtracks the sample steps beginning with the actual step and demands
an integer index value to define the number of sampling steps to step back.

5.24.1 The prev operation
The prev operation returns a handle to obtain stream related information for previous states of a stream.

Syntactic Structure

St r eanPor t Ref er ence prev [ "(" Previndex ")" ]

Semantic Description

The prev operation can be applied to a stream port StreamPortReference. It can optionally be parameterized with an
integer index parameter Previndex and returns a StreamPortSampleReference handle to retrieve val ues, timestamps and
sampling step sizes for preceding stream states. The index parameter denotes the number of samplesto step back in
stream history. If no parameter list is given, thisis equivalent with the index 1.

Restrictions
The prev operation can only appear as an operand to avalue, timestamp or delta read operation.

NOTE 1. The application of the pr ev operation needs the combination with the val ue operation, the
ti mest anp operation or the del t a operation to provide meaningful results.

Examples

EXAMPLE 1:

port.prev(0).value; // provides access to the actual stream val ue
port. prev. val ue; /'l provides access to the previous stream val ue
port.prev(1l).value; // provides access to the previous stream val ue
port.prev(2).value; // provides access to the streamvalue 2 steps ago

NOTE 2: Theexpressionsport.prev andport.prev(1) yieldidentical results.

EXAMPLE 2:

port.prev(0).timestanp; // provides access to the timestanp

/1 that denotes the beginning the actual sanpling step
port. prev(0).delta; /'l provides access to the length of the | ast sanpling step
port.prev(1l).timestanp; // provides access to the tinmestanp

/1 that denotes the beginning the preceding sanpling step

port.prev(1l).delta; /'l provides access to the length of the sanpling step 2 steps ago
EXAMPLE 3:

Val ue 1.2 [1.4 [1.5 [1.7 |1.7 |15 1.2 [1.0 1.1 1.4 [1.5 1.2 [1.0 |1.1 1.4

Ti mest anp 0 |01 |[0.2 [0.3 |[0.4 |[0.5 |0.6 |[0.7 |0.8 |0.9 |[1.0 |1.1 [L.2 |1.3 | 1.4
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port. prev(0).val ue; // yields 1.4
port. prev. val ue; /1 yields 1.1
port.prev(1).val ue; // yields 1.1
port. prev(2).val ue; /1l yields 1.0
port.prev(0).timestanp; // yields 1.4
port.prev(0).delta; /1 yields 0.1
port.prev(l).timestanp; // yields 1.3
port.prev(1l).delta; /1 yields 0.1
5.2.4.2 The at operation

The at operation returns a handle to obtain stream related information for previous states of a stream, which are
identified by means of atimestamp value.

Syntactical Structure
StreanPort Reference "." at [ "(" Timepoint ")" ]

Semantic Description

The at operation can be applied to a stream port StreamPortReference. The at operation can optionally be
parameterized with af | oat parameter Timepoint and returns a StreamPortSampleReference handle to retrieve val ues,
timestamps and sampling step sizes for preceding stream states. The Timepoint parameter represents a time stamp that
identifies a sample at a certain place in time. The time stamp denotes the time that has passed since the start of the test

case (see clause 5.1). It references the sample that has either the same time stamp or, if such a sample does not exist, the
sample with the next smaller time stamp.

Restrictions
The at operation can only appear as an operand to avalue, timestamp or delta read operation.

NOTE: The application of the at operation has to be done in combination with a value operation, atimestamp
operation or a delta operation to provide meaningful results.

Examples

EXAMPLE 1:

port.at(now).value; // provides access to the actual stream val ue
port.at (0).val ue; /1 provides access to the initial stream val ue

/1 (i.e. the streamvalue at beginning of the test case)
port.at(10.0).value; // provides the streamvalue at the time point 10.0

/1 (i.e. 10. Seconds after the beginning of the test case)

EXAMPLE 2:
port.at (now).ti mestanp; /'l provides access to the beginning of the actual sanpling step
port.at(0).tinmestanp; /'l provides access to the beginning of the initial sanpling

/] step (i.e. always 0.0)

port.at(10.0).ti mestanp; // provides access to the beginning of the sanpling step
/] at tinme point 10.0

EXAMPLE 3:

Val ue 1.2 [1.4 [1.5 [1.7 |L.7 |15 [1.2 |1.0 1.1 [L.4 |15 1.2 [1.0 1.1 [L.4
Ti mest anp 0 |01 |[0.2 [0.3 |[0.4 |[0.5 |0.6 |[0.7 |0.8 |0.9 |[1.0 |1.1 |[L.2 |1.3 | 1.4
port. at (now). val ue; /1l yields 1.4

port.at (0).val ue; /1 yields 1.2

port.at (1.0).val ue; /1l yields 1.5

port.at (1.09).val ue; /1l yields 1.5

port.at(now.ti nstanp; /1l yields 1.4

port.at(0).tinstanp; /1 yields 0.0

port.at(1.09).timestanp; // yields 1.0
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5.2.5 Data stream extraction and application operations

Beside accessto individual values of a stream, this package supports the extraction and application of stream segments
that are represented by means of the record of data structure (data perspective) described in clause 5.2.1. The history
operation allows to extract arbitrary stream segments. The apply operation is used to apply extracted or manually or
programmatically defined stream segments to stream ports.

5.25.1 The history operation

The history operation allows obtaining the complete or partial history of astream asa TTCN-3 record of structure (see
clause 5.1, data representation). The history operation has two parameters that denote the start time and end time of the
desired stream segment.

Syntactical Structure
StreanPort Reference "." history "(" StartTine "," EndTine ")"
Semantic Description

The history operation provides arecord of based sample representation of a stream. The operation has two parameters
StartTime and EndTime that denote the start time and end time of the stream segment that is designated for export. The
parameters are each of type float and represent the time that has passed since the beginning of the respective test case.
Time values are given in units of seconds. The first parameter describes the measurement time of the first stream entry
to be considered for history export. The second parameter denotes the time of the last record. If the specified start time
value is greater than the specified end time value the history operation results in an empty record of structure.

Restrictions
The EndTime parameter shall not have a value greater than now.
Examples

EXAMPLE 1:

nyStreanRec: = nyPort. history(0.0, now);
EXAMPLE 2:

type record Bool Sanpl e {bool ean v,float t}

type port Bool StreaniType stream {in bool ean}

type conponent MyStreanConponent {port nyPort Bool Streaniype}
var record of Bool Sanpl e nyStreanRec;

nyStreanRec: = nyPort. history(0.0, now);

EXAMPLE 3:
Val ue 12 [1.4 [1.5 [1.7 JL.7 JL.5 J1.2 [1.0 [1.1 |14 [L5 |12 [0 |1 |14
T nestanp 0 |01 |02 [0.3 [0.4 [0.5 [0.6 [0.7 [0.8 [0.9 [L.0 |11 |12 |13 |L4

myStreanRec: = port. history(0.0, now);

/1l yields

/1 {{1.2,0.0}, {1.4,0.1},{1.5,0.1},{1.7,0.1},{1.7,0.1},{1.5,0.1},{1.2,0.1},{1.0,0. 1},
// {1.1,0.1},{1.4,0.1},{1.5,0.1},{1.2,0.1},{1.0,0.1},{1.1,0.1},{1.4,0.1}}
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5.25.2 The values operation

The values function allows obtaining the complete or partial history of astream asa TTCN-3 record of structure
without any timing information.

Syntactical Structure

StreanPort Reference "." values "(" StartTinme "," EndTinme ")"
Semantic Description

The value operation has two parameters StartTime and EndTime that denote the start time and end time of the desired
stream segment.

The history function provides arecord of based value representation of a stream. The parameters are each of type float
and represent the time that has passed since the beginning of the respective test case. Time values are given in units of
seconds. The first parameter describes the measurement time of the first stream entry to be considered for history
export. The second parameter denotes the time of the last record. If the specified start time value is greater than end
time value the history operation resultsin an empty record of structure.

The result of the value operation applied to a stream port of type T isavalue of record of T.
Restrictions

The EndTime parameter shall not have a value greater than now.

Examples

EXAMPLE 1:

nyStreanRec: = port.val ues(0.0, now);

EXAMPLE 2:

type port Bool StreanfType {in bool ean}
type conponent{ port nyPort Bool Streanmlype}

var record of bool ean nyStreanRec;

nySt reanRec: = nyPort. val ues(0.0, now);

EXAMPLE 3:
Val ue T2 [1.4 |15 |17 [L.7 |5 [1.2 [0 |11 L4 |15 L2 |10 L1 [L 4
T nestanp 0 [0.1 |02 |[0.3 0.4 |05 |06 |07 0.8 |09 [L0 |11 [L2 |13 |14

nyStreanRec: = port. history(0.0, now;
/'l yields
/I {12, 1.4, 1.5, 1.7, 1.7, 1.5, 1.2, 1.0, 1.1, 1.4, 1.5, 1.2, 1.0, 1.1, 1.4}

5.253 The apply operation

The apply operation is used to apply stream data to a stream port that are represented by means of a TTCN-3 record of
structure. The apply operation applies the sample records contained in the record of data structure one after the other in
time to the given port.

Syntactical Structure

StreanPort Reference "." apply "(" Sanples ")"
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Semantic Description

Application of the apply operation to the stream port StreamPortReference, it will consecutively write the values of the
given record of Samplesto the port, using the sampling deltas from Samples as deltas for writing the values, as well.

The application of an apply operation p. appl y(v) isequivaent to the following construction:

cont {
var integer i := 0;
p.value := v[i].val ue;
if (i+1l < lengthof(v)) {
p.delta := v[i+1].delta;

}
until {
[true] {if(lengthof(v)>count){i:=i+1; continue}}

}
Examples

EXAMPLE 1:

type port Floatln {in float}
type port FloatCQut {out float}

type conponent{ port nylnPort Floatln;
port nyCQut Port FloatCQut }

type record Sanple {bool ean value, float delta};

var record of Sanple nyStreanRec;

testcase nyTestcase () runs on tester{
/1 measure on all incoming ports for 100 seconds
wai t (100. 0) ;
/1 get the all sanpless at nylnport until now
myStreanRec: = nyl nPort. history(0.0, now);
/'l and apply the neasured data to nyCQutPort.
nmyQut Port. appl y(nyStreanRec); // lasts 100 seconds

}
EXAMPLE 2:

var MyStreanfType<fl oat> nyStream: = {
{0.0, 0.1},
{0.2, 0.2},
{0.1, 0.1},
{0.0, 0.3}
}

port.apply(nyStrean;
/1 yield -> see table bel ow

Val ue 0.0 (0.0 (0.2 |0.1 0.0
Ti nest anp 0 0.1 (0.3 [0.4 0.7
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5.3 The assert statement
Theassert statement is used as a short hand for the specification of expected system behaviour.

Syntactical Structure

assert "(" Predicate { "," Predicate } ")"
Semantic Description

The assert statement specifies one or alist of predicates that express the expectation on the SUT. A predicate consist of
an arbitrary TTCN-3 boolean expression. If one of the predicates fail, the assert statement automatically sets the verdict
tof ai | . The assert statement is allowed at any place in the TTCN-3 source code that allows the application of the
setverdict statement. To assess continuous data it will be used in particular within the hybrid machine alike control
flow structures described in clause 5.4.

NOTE: The semantics of the assert statement can be mapped to existing TTCN-3 statements in the following
way:
assert (predl, pred2,..., predn);

isfully equivalent to

if(! predl) setverdict(fail);
if(! Pred2) setverdict(fail);

|f(' predn) setverdict(fail);
Examples

EXAMPLE 1.

assert (a.val ue==4.0);

EXAMPLE 2:

assert(a.val ue==4.0, b.value ==5.0, d.value ==445.0);

54 Control structures for continuous and hybrid behaviour

This clause introduces control flow structures that allow the parallel and sampled application and assessment of stream
values at ports. The concepts defined in clauses 5.1, 5.2 and 5.3 allow the construction, application and assessment of
individual streams. For more advanced test behaviour, such as concurrent application and assessment of multiple
streams and the detection of complex events (e.g. zero crossing or flag changes at multiple ports), we need stronger
concepts. For this purpose, we combine the concepts defined in the last clauses with state-machine-like specification
concepts, so called modes.

A mode expresses a certain runtime mode of a system or an SUT. Thiskind of runtime mode is characterized by a
defined behaviour at ports and a set of predicates that limit the applicability of the behaviour. Unlike ordinary
behavioural TTCN-3 statements, a mode applies its behaviour over time (at |east for one sampling step).

541 Modes

The term mode is used to specify the discrete and countable macro states of a dynamic hybrid system. It mainly serves
to distinguish the macro states of a hybrid system from the theoretically infinite number of micro-states. By means of
modes, this package provides alayer of abstraction that hel ps distinguishing between the discrete changes of a hybrid
system (or test system) that are relevant from the users (and testers) perspective and the discrete changes that are
introduced by the underlying test execution environment in order to map continuous behaviour to a computational
environment (which is naturally discrete). The interpretation and cal culation of micro steps depend on the underlying
technical environment, i.e. the sampling. Thus, a micro step is calculated by the combination of the active macro-states
with the sampled evaluation of data at the stream ports.
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el I

If the velocity v remains constant for
more than 5 sec,, it shall not underrun
the limit x for 5 seconds.

[duration>5.0)/

To detect: the velocity remains constant
for more than 5 seconds

[duration >5.0]/

To check: v shall not underrun the limit x
for 5 seconds

Figure 1: Abstract test specification for a continuous system that show the values v and x

Modes and the transitions between modes can be written down in a state-machine-like structure, which is closely
defined in the theory of hybrid automatons. Figure 1 shows an abstract test specification that consists of three atomic
modes, transitions, invariants and assertions.

For realizing such hybrid automatons, three new block statements are introduced, the cont statement, the seq statement
and the par statement. Whilethe cont statement is used for the specification of atomic modes, the par and seq
statement are used to aggregate modes to larger constructs by means of parallel and sequential composition.

Modesin general are characterized by their duration and their internal behaviour (i.e. the assignment and assessment of
values at stream ports). The duration, or better the duration of the mode's activity, is defined by a set of predicates,
which relates to time or the valuation of (stream) ports, variables etc.

Syntactical Structure
( cont | par | seq ) "{"
{Decl ar ati on}
[ OnEnt r yBI ock]
[ I nvari ant Bl ock]
Body
[ OnExi t Bl ock]

"}
[Unti | Bl ock]

A mode specification consists of several syntactical compartments:
J local declarations to be used inside the mode;
. an optional onentry block, that defines behaviour that has to be executed once at the activation of the mode;
. an optional invariant block that defines predicates that should not be hurt while the mode is active;
. an obligatory body to specify the mode's internal behaviour;

. an optional onexit block that defines the behaviour that has to be executed once at the deactivation of the
mode; and

. an optional transition block (UntilBlock) that defines the exit conditions to end the mode's activity.

Atomic modes may be composed to composite modes. Composite modes show nearly the same structural setup as
atomic modes. The only differences refer to their behavioural descriptions. While atomic modes contain assignments,
assert statements and the inv, onexit, onentry blocks described above, composite modes contain other modes instead of
statements. Asfar asinvariants, onentry and onexit blocks and transitions are concerned, the structural setup and the
behaviour of composite modes both are identical to atomic modes.
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Semantic Description

While amode is active, each invariant of a composite mode has to hold. Additionally, each transition of a composite
mode ends the activity of the mode when it applies.

When a mode is entered, its onentry-block is executed. When a mode is exited, its onexit-block is executed.
For every step of an active mode, the contents (either modes or statements) of the mode are executed.
Examples

Example 1 shows the definition of an atomic mode consisting of two assignments to stream ports, an invariant that
checks the state of an outgoing stream port, an onentry block that initializes the variable x, and an onexit block that
resets the stream portt o_Set _Poi nt to thevalue of 0. 0, and transitions that check the valuation of an incoming
stream port.

EXAMPLE 1:
cont {// body
onent ry{x: =10. 0; }

inv{//invariant
to_Set _Poi nt. val ue>20000. 0O;
}

t o_Set _Poi nt. val ue: =3. 0* now;,
t o_Engi ne_Perturbati on. val ue: =0. 0+x;

onexit{to_Set_Poi nt. val ue: =0. 0}

until{//transition
[ti _Engi ne_Speed. val ue>2000. 0] {t o_Engi ne_Pert urbati on. val ue: =2. 0; }
[ti _Engi ne_Speed. val ue>3000. 0] {t o_Engi ne_Perturbati on. val ue: =1. 0; }

}

Example 2 shows the setup of a parallel mode that contains two sequential modes, which each of them containing
further atomic modes.

EXAMPLE 2:

par { // overall perturbation and assessnent
inv{//invariant

seq{// perturbation sequence
cont{// stimulation action 1}
cont{// stimulation action 2}

seqg{// assessment sequence
cont{// assessnment action 1}
cont{// assessment action 1}

)

until{ //transition

}

5411 Definition of the until block

The until block alows the specification of exit conditions for modes and additionally the specification of explicit
transitions between modes. The entries of the until block are called transitions. Each transition specifies conditions for
their activation (i.e. guards and trigger events) and may provide an explicit definition of the mode that hasto be
activated next (target mode). An until block can contain several alternative transitions that each specify different exit
conditions and target modes.
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541.1.1 Definition of transition guards and events

The until block defines a number of transitions between modes. A transition contains either a guard or atrigger event
specification or both. The guard and the trigger event specification are both used to determine whether atransition can
fire or not. A guard is modelled as aboolean TTCN-3 expression. A trigger event is modelled by means of TTCN-3
receiving operations (receive statement, trigger statement, getcall statement etc.). The predicate or the TTCN-3
receiving operations may be followed by an optional statement block, which contain instructions to be executed upon
activation of the transition. At the end of the transition there may be a goto clause which specifies the follow-up mode.

Syntactical Structure
until "{"
{ "[" [Quard] "]" [TriggerEvent] [StatenmentBl ock] [goto Target] }
"y

Semantic Description

A transition is considered to be activated if the guard expression is satisfied and a valid receiving event occurred at the
specified TTCN-3 receiving operation and the invariant of the target mode holds. Transitions are checked for each
active mode at each sampling step. If atransition becomes active then the optional statement block is executed once.
Afterwards the enclosing mode and all his child modes are deactivated. The control flow is continued with the
activation of the follow-up mode. The transitionsin an until block are checked in the given order. If multiple transitions
exist, the first transition that fulfils the activation conditions is activated.

Restrictions
In the optional statement block of atransition any TTCN-3 statement is principally allowed, except:

. Blocking instructions (i.e. the following operations and statements: all receiving operations, timeout, done,
killed, wait and mode) shall not be used. Such constructs may block the execution of the statement block with
the consequence, that the next sampling step is missed.

o Each type of control flow related statement that leads to the leaving of the enclosing mode (e.g. goto, return).
Example

EXAMPLE:

cont{ //node

A. val ue: =3;

}

until { // transitions
[C value > 4.0] MPortl.receive(Tenpl Exp) { log(" statenent block 1" ); }
[C.value > 4.0 and D.value > E.value]{ log(" statenent block 1" ); }

[1 Port2.receive(Tenpl Exp) { |og(" statenent block 1" ); }
}

54.1.1.2 Definition of follow up modes

The explicit definition of follow up modes by means of agoto clause is possible. Each mode specification can have a
preceding label that defines the target for a goto clause. Moreover each transition can have an optional goto clause that
refers to an mode label.

Semantic Description

If atransition with agoto clause is activated, the optional statement block is executed and afterwards the execution is
continued at the label position with the activation of the following mode.
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Restrictions

Besides the restrictions that already exist for the use of the goto statement, this package defines additional restrictions
for the use of the goto clause in the context of modes. Goto jumps are only allowed in a sequential environment, either
inside seq modes or on the top level of acomposition, i.e. directly on testcase level. Moreover, goto jumps are not
allowed to violate the composition hierarchy, thusit is not possible to jump to a parent mode or into a child mode.
Jumps are only allowed between modes on the same hierarchy level.

However, if no follow up mode is explicitly defined by means of a goto statement the sequential ordering of mode
specification implicitly defines the follow up mode. Thus, when two atomic modes follow each other in the
specification, the second mode is the follow up mode for al active transition transitions of the preceding mode that do
not have an explicit goto clause.

Examples
Example 1 shows the application of labels and goto statementsin the context of modes.

EXAMPLE 1:

| abel statel,;
cont{ //node
A. val ue: =3;
}
until {[C value > 2.0]}
| abel state2;
cont{ //node
A. val ue: =4;
} until { // transitions
[Cvalue > 4.0] { log(" statement block 1" ); } goto statel
[D.value > E.value]{ |og(" statement block 2" ); } goto state2

[T Port2.receive(Tenpl Exp) { log(" statement block 1" ); }
}

EXAMPLE 2:

cont{ A value:=3;} until {[B.value >3]}

cont{ A value:=5;} until {[C. value >=3*D.val ue]}

cont{ A value:=7;} until {[C value >=3]}
54.1.1.3 The repeat statement
The control flow of a mode's transition's statement block may end in arepeat statement.
Semantic Description

Ther epeat statement causes the re-execution of apar statement, seq statement or cont statement, i.e. the
execution of the par statement, seq statement or cont isactivated again and executed with the next sampling step.

NOTE 1: In case of the execution of ther epeat statement the local time of the respective mode (see duration
symbol in clause 5.4.1.3) is reset, in case of composite modes the child modes are first deactivated and
then again activated according to the kind (parallel or sequential) of the mode. Moreover, the respective
onentry and onexit blocks are executed.
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Example

EXAMPLE:

cont{ //node

A. val ue: =4;
} until { // transitions

[C.value > 4.0] { log(" statenent block 1" ); } goto statel
[D.value > E.value]{ log(" repeat the execution" ); repeat}
[1 Port2.receive(Tenpl Exp) { |og(" statenent block 1" ); }
}

NOTE 2: Therepeat statement isfunctional equivalent to the use of a goto clause that addresses alabel directly
above the current mode.

54114 The continue statement
The control flow of a mode's transition's statement block may end with a continue statement.
Semantic Description

Thecont i nue statement causes the further execution of apar statement, seq statement or cont statement, i.e. the
execution of the par statement, seq statement or cont is continued with the next sampling step without a reset to
the local time (see duration symbol in clause 5.4.1.3). The onentry and onexit blocks are not executed.

Example

EXAMPLE:

cont{ //node

A. val ue: =4;
} until { // transitions

[C.value > 4.0] { log(" statenent block 1" ); } goto statel
[D.value > E.value]{ log(" continue the execution" ); continue}

[T Port2.receive(Tenpl Exp) { log(" statenment block 1" ); }
}

54.1.2 Definition of invariant blocks

Syntactical Structure

inv "{" Predicate {"," Predicate} "}"
Semantic Description

Aninvariant block containsbool ean predicates (expressions) which characterize the applicability of amode. Thus, an
invariant block is always related to its containing mode specification and it specifies the conditions that shall be valid
for amode during runtime.

For each mode, all invariants are checked for each sampling step when the mode is active. While amode is active the
invariants of a mode shall not be violated. If an invariant of an active mode is violated, the mode shall be able to switch
to another mode that has valid invariants during the respective sampling step. If thisis not possible, the test system shall
set aner r or verdict. Theinvariants block is always checked at the beginning of each sampling step, even before the
body of each mode is executed.

Examples

Example 1 below shows the definition of an atomic mode that sets the out port A continuously with the value of 3.0.
Moreover, the invariant prescribes conditions on the incoming ports B, C and D. When one of the invariantsis violated
by the actual value at ports, mode execution is stopped.
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EXAMPLE 1.

type port Streamn stream{ in float }
type port Streanmfut stream{ out float }

type conponent SUT {
port Stream n A B;
port Streamtut C, D

}

cont {
A. val ue: =3;

inv {B.value > 3, C. val ue >=3*D. val ue}

}

The specification of invariants allows the easy definition of ending conditions for the execution of modes. Based on a
simple sequentia control flow paradigm, this supports the specification of sequences of modes, that are executed one
after the other whenever the invariant state of the active mode changes.

EXAMPLE 2:

cont {

A. val ue: =3;
inv {B.value >3, C. val ue >=3*D. val ue}

}
cont{

A. val ue: =5;
inv {B.val ue <=3, C. val ue >=3*D. val ue}

54.1.3 Definition of the onentry block
The onentry block contains a statement list that is to be executed once and only once during the activation of a mode.

Syntactical Structure

onentry Statemnent Bl ock
Semantic Description

The onentry block is executed as part of the activation procedure of a mode. To successfully start the onentry block all
invariants shall satisfy their conditions. The onentry blocks of hierarchically ordered modes are executed sequentially,
beginning with the onentry block of the outer-most mode to the inner modes.

Restrictions
In an onentry block of a mode any TTCN-3 statement is principally allowed, except:

o Blocking instructions (i.e. the following operations and statements: all receiving operations, timeout, done,
killed, wait and mode) shall not be used. Such constructs would potentially block the execution of the
statement block with the consequence, that the next sampling step is missed.

. Each type of control flow related statement that leads to the leaving of the mode (e.g. goto, return).
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Example
The example below shows the definition of an atomic mode that sets the sampling of a port during its activation time.

EXAMPLE:

cont {
onentry {A delta:=0.001;}
A. val ue: =3;

5414 Definition of the onexit block
The onexit block contains a statement list that is to be executed once and only once during the deactivation of a mode.

Syntactical Structure
onexit StatenentBl ock
Semantic Description

The onexit block is executed as part of the deactivation procedure of a mode. The execution of the onexit block is
triggered either by an activated transition or the violation of an invariant that lead to the leaving of the mode. In case of
an active transition the onexit block is executed directly after the execution of the transition's optional action block. The
onexit blocks of hierarchically ordered modes are executed sequentially, beginning with the onexit blocks of the inner-
most modes towards the outer modes.

Restrictions
In an onexit block of amode any TTCN-3 statement is principally allowed, except:

. Blocking instructions (i.e. the following operations and statements: all receiving operations, timeout, done,
killed, wait and mode) shall not be used. Such constructs would potentially block the execution of the
statement block with the consequence, that the next sampling step is missed.

. Each type of control flow related statement that leads to the leaving of the mode (e.g. goto, return).
Example

The following example shows the definition of an atomic mode that sets the sampling of a port during its deactivation
time.

EXAMPLE:

cont {

A. val ue: =3. 0;

onexit {A value:=1.0;}
} until {[B.value> 3.0]}

54.1.5 Local predicate symbols in the context of modes

To enable an explicit treatment of some exceptional situations, we introduce the keywordsnot i nv and f i nshed that
represent special predicates with a mode local evaluation.

Semantic Description

The keyword not i nv can be used as a predicate that indicates the violation of any local mode invariant. Thus, if one
of the invariants of amode is violated and the mode is active, the evaluation of the not i nv symbol yields true for all
expressionsin the contained until block. Otherwise it yields false. Thus, the not i nv symbol allows the explicit
handling of occurring invariant violation by means of transitions.
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Thefi ni shed keyword can be used as a predicate to handle the proper termination of a composite mode. A proper
termination is given when the termination is triggered by the status of the child elements of a composite mode and not
by itstransitions or invariants. If and only if amode is terminated by the status of its child elements the term finished
yieldstrue. Thus, thef i ni shed predicate allows the explicit handling of proper mode terminations by means of
transitions.

Examples

EXAMPLE 1:

cont{ //node
A. val ue: =3;
}
until { // transitions
[notinv] { log(" Invariant violated" ); }
[1 Port2.receive(Tenpl Exp) { log(" Invariant not violated" ); }
}

EXAMPLE 2:

par { //node
cont { //inner node 1
A.val ue: =3. 0;
} until {[C. value>3.0]}
cont { //inner node 2

B. val ue: =3. 0;

} until {[D. value>3.0]}
} until { // transitions
[finished] { log(" finished by childs' state" ); }
[D.value > 4.0] { log(" not finished by childs' state" ); }

5.4.1.6 The duration operator

Within a mode there is continuous access to the time that has elapsed since the beginning of the test case by using the
now operator. It is also possible to access the time that has elapsed since the activation of the enclosing mode
construct. The accessis provided by means of thedur ati on oper at or, which isapplicable in expressionsin all
mode related substructures like the body block, the invariant block and the until block.

NOTE: Theevauation of thedur at i on operator depends on its context. Thus, it may differ dependent on its
place of application.

Examples
EXAMPLE 1:
cont{ A value:=3.0;} until {[now > 4.0]}

/'l executes the content of the body block until
/1 the overall test case tine has reached 4.0 seconds

EXAMPLE 2:

cont{ A value:=3.0;} until {[duration > 4.0]}

/'l executes the content of the body block for 4.0 seconds
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The following example shows the application of the dur at i on operator in two different modes. Both modes are
activated at different times and thus the application of the duration symbol in the second cont mode yields different
results than the application of thedur at i on operator in the enclosing par mode.

EXAMPLE 3:
par {
cont{ A value:=2.0;} until (duration > 4.0)

cont{ A value:=3.0;} until (duration > 4.0)
} until{[duration > 6.0]}

542 Atomic modes: the cont statement

Syntactical Structure

The syntactical structure and context for the cont statement is part of the syntactical structure provided in clause 5.4.1.
Semantic Description

Thecont statement is used to define atomic modes. Atomic modes directly define the test behaviour at stream ports by
means of value allocation and value assessments. A cont mode may contain assignments and assert statements and
forms the |eaves of a hierarchical mode structure.

When acont statement is activated, all contained elements are executed repetitively for each sample step. The
execution ends when atransition fires or an invariant is violated.

Restrictions
a A cont mode shall not invoke any potentially blocking behaviour.
b) A cont mode cannot contain other modes.

Examples

EXAMPLE 1.

/] executes the assignnents at each sanple step
cont { // Node 1

Port 1. val ue := 10.0;

Port2.value := 2.0 * duration;

}

until (duration > 5.0)

NOTE: Assignment and evaluation of the cont modeis, in atheoretical sense, continuous, i.e. executed at each
step, provided for sampling. The cont mode allows the organization of periodic assignments and
periodic revisions of values or variables of stream and stream ports.

EXAMPLE 2:

cont { // node 1
outportl.value := inportl. prev.val ue *2;

streanvar.val ue := inportl. prev(5).val ue;
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EXAMPLE 3:

cont { // node 1

outportl.value := inportl. prev.val ue *2;
streanvar.val ue : = inportl. prev(5).val ue;
inv {

streanvar.val ue > 200.0

}

until { // Transition
[streanvar.val ue >150] { streanvar.value =0; }

[streanvar. val ue >180] {}

5.4.3 Parallel mode composition: the par statement

The parallel composition of modes is specified by means of the par statement. A parallel composition may contain
sequential modes, parallel modes and atomic modes.

Syntactical Structure
The syntactical structure and context for the cont statement is part of the syntactical structure provided in clause 5.4.1.

The general structure of the par statement is similar to the cont statement and the seq statement. It consists of a body
part, which defines the overall behaviour of the mode. In case of the par statement the body part contains the mode
definitions that are to be composed in parallel. The mode can define an optional invariant and a transition part, as well
as onentry and onexit blocks.

Semantic Description
In case of its activation, a parallel composition leads to a parallel execution of all composed (i.e. contained) modes.

While being active, each invariant of a composite mode hasto hold. Additionally, each transition of a composite mode
ends the activity of the mode when it fires. Furthermore, each mode provides access to an individual local clock that
returns the time that has passed since the mode has been activated. The value of the local clock can be obtained by
means of the duration keyword.

The activation of a paralel mode leads to the parallel activation of al child modes. During execution, the parallel mode
is responsible to check the status of all contained modes. The execution of a parallel mode ends, either when a transition
in the transition block has fired or when the execution of at least one child mode has been completed. The second
situation is called a proper termination of a parallel mode and forces the local symbol finished to yield true (see

clause 5.4.1.3).

Examples

EXAMPLE 1.

var integer count := O;
par {
cont {
x.val ue: =1;
y.val ue: =2;
}
until { // Transition
[z.value> 3.0] { }
[1 Port2.receive {}

}

cont {
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x. val ue: =2
y.val ue: =1

}

until { // Transition
[z.value> 10.0] { }

[T Portl.receive {}

}

until { // Transition
[finished] {if(count > 1) {count++; continue}}

}

NOTE 1: The predicate finished yieldst r ue only during the distinct sample step when a child of a parallel mode
has finished. Moreover, it yields true for every child element that has finished. Thus, it servesasa
notification event, which can be used to model complex termination conditions for parallel modes.

NOTE 2: For parallel execution, it is always possible that several children modes terminate at the same time. Thus,
counting the finished child modes to determine if al child modes have finished is not reliable. Instead, the
child modes should set conditions that can be queried in the finished.

EXAMPLE 2:
par {

cont {

x.val ue: =1

I
N

y.val ue

}

until { // Transition
[z.value> 1.0] { }
[1 Portl.receive(nsgl) {}

}

cont {
x. val ue: =2
y.val ue: =1

}

until { // Transition
[z.value> 10.0] { }
[1 Portl.receive() {}

}

until { // Transition
[z.value > 11.0] { }
[1 Portl.receive(nsg) {}

54.4 Sequential mode composition: the seq statement

The sequential composition of modesis specified by means of the seq statement. A sequential composition may contain
sequential modes, parallel modes and atomic modes.

Syntactical Structure

The syntactical structure and context for the cont statement is part of the syntactical structure provided in clause 5.4.1.
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The general structure of the seq statement is similar to the cont statement and the par statement. It consists of a body
part, which defines the overall behaviour of the mode. In case of the seq statement the body part contains the mode
definitions that are to be composed.

Semantic Description

In case of its activation, a sequential composition leads to a sequential execution of the composed (i.e. contained)
modes.

While being active, each invariant of a composite mode hasto hold. Additionally, each transition of a composite mode
ends the activity of the mode when it fires. Furthermore, each mode provides access to an individual local clock that
returns the time that has passed since the mode has been activated. The value of the local clock can be obtained by
means of the duration keyword.

The activation of a sequential mode leads to the activation of itsfirst child mode. During execution, the sequential mode
is responsible to schedule the contained modes in their sequential order. Thus, when a child mode has finished, the
target mode of the exit transition is activated. Per default, the target mode is the next mode is the sequence\. The
execution of a sequential mode ends either when a transition in the transition block is fired or when the execution of the
last child mode has been completed. The second situation is called a proper termination of a sequential mode and forces
the local symbol finished to yield true (see clause 5.4.1.3).

Example

The following example defines the sequential execution of two atomic modes, which are composed sequentially by
means of a sequential mode.

EXAMPLE:

seq{
cont {

x.val ue: =1
y.val ue: =2

}

until { // Transition
[z.value> 2.0] { }
[1 Portl.receive() {}

}

cont {
x. val ue: =2
y.val ue: =1

}

until { // Transition
[z.value> 1.0] { }
[1 Portl.receive() {}

}

until { // Transition
[z.value> 12.0] { }
[1 Portl.receive(nsg) {}
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545 Parameterizable modes

To provide a higher degree of flexihility, it is possible to specify parameterizable modes. Values, templates, ports, and
modes can be used as mode parameters. The definition of parameterizable modesis similar to the definition of TTCN-3
functions.

NOTE: Unlike functions parameterizable modes are not called in the sense of afunction call but inserted by
means of a substitution mechanism at compile time. Thus, the recursive application of parameterizable
modesis not possible.

545.1 Parameterizable mode definitions

A parameterizable mode definition allows the definition of reusable and parameterizable modes. A parameterizable
mode may be defined within a module.

Syntactical Structure

node MbdeNane
["(" { ( Formal Val uePar | Fornmal Ti merPar | Formal Tenpl atePar | Fornmal PortPar | Fornal ModePar )

1y "]
[ runs on Conponent Type ]

( Cont Mode | Par Mode | SegMode )
Semantic Description

[

In amodule, the behaviour of a mode can be defined by using the statements and operations described in clauses 5.4.1
to5.4.4.

Restrictions

a) If amode uses variables, constants, timers and ports that are declared in a component type definition, the
component type shall be referenced using the r uns on keywords in the mode header. The one exception to
thisruleisif all component-wide information used within the mode is passed in as parameters.

b) A modewithout r uns on clause shal never invoke functions or modeswith ar uns on clause locally.

Examples

EXAMPLE 1:

node nyMbde runs on Tester cont{assert(engi ne_speed >= 500.0)}

EXAMPLE 2:

node pert_seq_2(in float startVal, in float increase, in float expected_speed)
runs on Tester
par {
seq{// perturbation sequence
cont{to_Set Point:=startVal} until {[duration>=2.0]}
cont{to_Set_Point:=startVal + duration/to_Set_Point.delta*increase}
until {[duration>=5.0]}
}

cont {assert (engi ne_speed >= expected_speed);

testcase nmyTestcase runs on Engi neTester {
pert_seq_2(1000.0, 10.0, 500.0);
pert _seq_2(5000.0, 1.0, 0.0);
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545.2 Mode types (optional)

Mode types are optional. They are available only if this extension package is used in combination with the TTCN-3
extension package ES 202 785 "Behaviour Types' [6]. If this package is used in combination with [6], both packages
have to be named with their package tags in the language clause of the TTCN-3 module in which the packages are used.

Mode types are the set of identifiers of mode definitions with a specific parameter list and runs on clauses. They denote
those modes defined in the test suite that have a compatible parameter list and compatibler uns on clauses.

Syntactical Structure

type node Behavi or Typel dentifi er

"(" { ( Formal Val uePar | Fornmal Ti merPar | Formal Tenpl atePar | Formal PortPar | Fornmal ModePar )
[("."1rrm"

[ runs on ( Conponent Type | self ]

Example

EXAMPLE:

type nmode ModeType assert_node() runs on Tester;

5.5 The wait statement

Syntactical Structure
wait "(" Expression ")"
Semantic Description

The wait statement suspends the execution of a component until a given point in time. The time point is specified asa
float value and relatesto the internal clock.

The execution of the wait statement suspends the execution of the related component until the point in time specified by
itsargument. If the argument holds a value that precedes the actual clock value an error verdict shall be set.

Example
EXAMPLE:
streanout port.val ue = 10.0;
wai t (100.0 + now); /] suspends the execution of a conponent

/1 until 100.0 seconds after the start of the testcase
streanout port.val ue = 12.0;

NOTE: Thewait statement has noimpact on sampling. All stream ports of the given component are still
sampled with respect to their sampling rate.
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6 TRI extensions for the package

6.1 Extensions to clause 5.5 of ES 201 873-5: Communication
interface operations

Clause 5.5.6 Stream operations
5.5.6.1 triSetStreamValue (TE — SA)
Signature Tri StatusType tri Set StreanVval ue

(in TriConponent | dType conponent|d,

in TriPortldType tsiPortld,

in Tri AddressType SUTaddress,

in Tri MessageType streanVal ue)

In Parameters conponent | d identifier of the sending test component

t si Port I d identifier of the test system interface port via which the
message is sent to the SUT Adapter

SUTaddr ess (optional) destination address within the SUT

st r eanVal ue the encoded stream value (message) to be sent
Out Parameters n.a.

Return Value The return status of the t ri Set St r eamval ue operation. The return
status indicates the local success (TRI_OK) or failure (TRI_Error) of
the operation.

Constraints The TE calls this operation when it executes a new sampling step on
a sampled output stream port, which has been mapped to a TSI port.
The TE calls the operation for all sampling steps of all outgoing
stream ports if no system component has been specified for a test
case, i.e. only a MTC test component is created for a test case.

The encoding of st r eanVal ue has to be done in the TE prior to this
TRI operation call.

Effect The SA can update the message to the SUT.

The tri Set St r eanVal ue operation returns TRI_OK in case it has
been completed successfully. Otherwise TRI_Error shall be returned.
Notice that the return value TRI_OK does not imply that the SUT has
received st r eanVal ue.
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triGetStreamValue (TE — SA)

Signature

Tri StatusType tri Get StreanVal ue
(in Tri Conponent | dType conponentld,
in TriPortldType tsiPortld,
in Tri AddressType SUTaddress,
out Tri MessageType streanVal ue)

In Parameters

conponent | d identifier of the sending test component

t si Port | d identifier of the test system interface port via which the
message is sent to the SUT Adapter

SUTaddr ess (optional) destination address within the SUT

Out Parameters

st r eanVal ue the encoded stream value (message) that has been
received from the SUT.

Return Value

The return status of the t ri Get St r eanVal ue operation. The return
status indicates the local success (TRI_OK) or failure (TRI_Error) of
the operation.

Constraints

The TE calls this operation when it executes a new sampling step on
a sampled input stream port, which has been mapped to a TSI port.
The TE calls the operation for all sampling steps of all outgoing
stream ports if no system component has been specified for a test
case, i.e. only a MTC test component is created for a test case.

The decoding of st r eanVal ue has to be done in the TE after to this
TRI operation call.

Effect

The SA can update the stream value at the input port.
The tri Get St reanVal ue operation returns TRI_OK in case it has
been completed successfully. Otherwise TRI_Error shall be returned.

6.2

Clause 5.6.4

5.6.4.1

Extensions to clause 5.6 of ES 201 873-5: Platform
interface operations

Clock and sampling operations

triStartClock (TE — PA)

Signature

Tri StatusType tri StartC ock(in |long ticksPerSecond)

In Parameters

ti cksPer Second the precision of the clock given in ticks per
second.

Out Parameters

n.a.

Return Value

The return status of the operation. The return status indicates the
success (TRI_OK) or failure (TRI_Error) of the operation.

Constraints

n.a.

Effect

The operation starts the test system clock with a given precision. The
precision is defined by the in parameter ticksPerSecond. The
parameter specifies the number of time units (ticks) that characterizes
a second.

5.6.4.2

triReadClock (TE — PA)

Signature

Tri StatusType tri ReadC ock(out |ong tinepoint)

In Parameters

n.a.

Out Parameters

ti mepoi nt current time.

Return Value

The return status of the operation. The return status indicates the
success (TRI_OK) or failure (TRI_Error) of the operation.

Constraints

There was a preceding invocation of
tri Startd ock(int long ticksPerSecond).

Effect

The operation yields the actual clock value. The clock value is given
by the out parameter t i nepoi nt, which represents the number of
time units (ticks) that has elapsed since the start of the clock (see
tri Startd ock).
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triNextSampling (TE — PA, SA — PA)

Signature

Tri StatusType tri Next Sanpling
(in long tinepoint,
in TriPortl| DType port)

In Parameters

ti mepoi nt pointin time when the execution of the next sample step
for a given stream port shall be started
por t the stream port the sample step is requested for

Out Parameters

n.a.

Return Value

The return status of the operation. The return status indicates the
success (TRI_OK) or failure (TRI_Error) of the operation.

Constraints

There was a preceding invocation of
tri Startd ock(int long ticksPerSecond).

Effect

The operation signals that the next sample step for a given port shall
start at the specified point of time timepoint.
At this point in time the PA will issue a

triProcessStep(in TriPortlDLi st Type ports)
operation to inform the TE which ports shall be sampled next.
The parameter t i nepoi nt is expressed as the number of time units
(ticks), that has elapsed since the start of the clock (see
tri Startd ock).
A call to this operation returns immediately. The operation merely
triggers the corresponding t ri ProcessSt ep operation.
If ti mepoi nt represent a point of time in the past then the operation
returns a TRl _Er r or value and has no other effect.

5.6.4.4

triBeginWait (TE — PA)

Signature

Tri StatusType tri Begi nWit
(in long tinmepoint,
in Tri Conponent| dType conponent)

In Parameters

ti mepoi nt pointin time until execution of a component should be
suspended
conponent component whose execution should be suspended

Out Parameters

n.a.

Return Value

The return status of the operation. The return status indicates the
success (TRI_OK) or failure (TRI_Error) of the operation.

Constraints

There was a preceding invocation of
tri Startd ock(int long ticksPerSecond).

Effect

The operation signals that the execution of component component
should be suspended until the specified point of time t i mepoi nt .
At this point in time the PA will issue a

tri EndWai t (conmponent)
operation.
timepoint is expressed as the number of time units (ticks), that has
elapsed since the start of the clock (seetri St art d ock).
A call to this operation returns immediately. The operation merely
triggers the corresponding t ri EndWai t operation, it does not
schedule the execution of the component.
If ti mepoi nt represent a point of time in the past then the operation
returns a TRl _Er r or value and has no other effect.
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triProcessStep (PA — TE)

Signature

void triProcessStep(in TriPortlDListType ports)

In Parameters

Por t s a list of ports that shall be sampled at the operation call

Out Parameters

n.a.

Return Value

n.a.

Constraints

There was a preceding invocation of
tri Next Sanpl i ng(tinepoint, port)

Effect The operation signals that the point in time t i mepoi nt that was
specified in the corresponding
tri Next Sanpl i ng(tinepoi nt, port)
has been reached.
5.6.4.6 triEndWait (PA — TE)
Signature void tri EndWait(in Tri Component| dType conponent)

In Parameters

conponent component of the corresponding triBeginWait operation.

Out Parameters

n.a.

Return Value

n.a.

Constraints

There was a preceding invocation of
triBegi nWit (timepoint, conponent).

Effect

The operation signals that the point in time t i mepoi nt that was
specified in the corresponding
triBegi nWait(timepoint, conponent)

has been reached.

7.1

Clause 7.3.3.2.31

TCI extensions for the package

Extensions to clause 7.3.3.2 of ES 201 873-6: TCI-CH

provided

tciSetStreamValueReq (TE — CH)

Signature

voi d tci Set StreanVal ueReq

(in TriPortldType sender,
in TriConmponent| dType receiver,
in Val ue streanval ue)

In Parameters

sender identifier of the port via which the message is sent to the
receiving component.

recei ver identifier of the receiving component

st r eanVal ue the stream value to be set

Out Parameters

n.a.

Return Value

voi d

Constraints

The TE calls this operation at the CH when it executes a new
sampling step on a sampled output stream port, which has been
connected with a test component port.

Effect

If receiving at ci Set St r eanVal ueReq operation, the CH can call
t ci Set St reanVal ue in the TE on the node where the receiver

component is deployed.
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tciGetStreamValueReq (TE — CH)

Signature

voi d tci Get StreanVal ueReq

(in TriPortldType receiver,
in TriConponent| dType sender,
i n Val ue streanval ue)

In Parameters

recei ver identifier of the port via which the message is received
from the sending component.

sender identifier of the sending component

st r eanVal ue the stream value to be received

Out Parameters

n.a.

Return Value

voi d

Constraints

The TE calls this operation at the CH when it executes a new
sampling step on a sampled input stream port, which has been
connected with a test component port.

Effect

The CH calls t ci Get St r eanVal ue in the TE on the node where the
sending component is deployed.

7.2

Clause 7.3.3.1.23

Extensions to clause 7.3.3.1 of ES 201 873-6: TCI-CH

required

tciSetStreamValue (CH — TE)

Signature

voi d tci Set StreanVval ue

(in TriPortldType sender,
in Tri Conponent| dType receiver,
i n Val ue streanval ue)

In Parameters

sender identifier of the port via which the message is sent to the
receiving component.

recei ver identifier of the receiving component

st r eanVal ue the stream value to be set

Out Parameters

n.a.

Return Value

voi d

Constraints

The CH calls this operation in the local TE where r ecei ver is
deployed when t ci Set St r eanVal ueReq has been called.

Effect

The CH updates the respective outgoing stream port on the test
component.

Clause 7.3.3.1.24

tciGetStreamValue (CH — TE)

Signature

voi d tci Get Streanval ue

(in TriPortldType receiver,
in Tri Conponent | dType sender,
i n Val ue streanval ue)

In Parameters

recei ver identifier of the port via which the message is received
from the sending component.

sender identifier of the sending component

st r eanVal ue the stream value to be received

Out Parameters

n.a.

Return Value

voi d

Constraints

The CH calls this operation in the local TE where sender is deployed
when t ci Get St r eanVal ueReq has been called.

Effect

The CH updates the respective incoming stream port on the test
component.
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7.3 Extensions to clause 8.5.3.1 of ES 201 873-6: TCI-CH
provided

Theinterface Tci CHPr ovi ded isto be extended as follows:
public interface Tci CHProvi ded {

public void tci Set Streanval ue (TriPortld sender,
Tri Conponent | d recei ver,
Val ue streanval ue) ;
public void tci GetStreanvalue (TriPortld receiver,
Tri Conponent | d sender,
Val ue streanval ue) ;

7.4 Extensions to clause 8.5.3.2 of ES 201 873-6: TCI-CH
required

Theinterface Tci CHRequi r ed isto be extended as follows:
public interface Tci CHRequired extends Tci CDRequired {

public void tci Set StreanVal ueReq (TriPortld sender,
Tri Conponent | d receiver,
Val ue streanval ue) ;

public void tci Get StreanVal ueReq (TriPortld receiver,
Tri Conponent | d sender,
Val ue streanval ue) ;

7.5 Extensions to clause 9.4.3.1 of ES 201 873-6: TCI-CH
provided

Theinterface TClI - CH Pr ovi ded isto be extended as follows:

voi d tci SetStreanval ue (TriPortld sender, Tri Conponentld receiver, Value streanVal ue)
voi d tci GetStreanvalue (TriPortld receiver, TriConponentld sender, Value streanVal ue)

7.6 Extensions to clause 9.4.3.2 of ES 201 873-6: TCI-CH

required
Theinterface TCl - CH Requi r ed isto be extended as follows:
voi d t ci Set Streanval ueReq
(TriPortld sender, TriConponentld receiver, Value streanVal ue)
voi d t ci Get Streanval ueReq

(TriPortld receiver, TriConponentld sender, Value streanVal ue)

7.7 Extensions to clause 10.6.3.1 of ES 201 873-6:
TciChRequired

The classthat definesthe TCI_CH required interface is to be extended as follows:

virtual void tci SetStreanval ueReq

(const TriPortld *sender, const Tri Conponentld *receiver, const TciValue *streanVal ue)=0;
virtual void tci GetStreanval ueReq

(const TriPortld *receiver, const Tri Conponentld *sender, const Tci Val ue *streanVal ue) =0;
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7.8 Extensions to clause 10.6.3.2 of ES 201 873-6:
TciChProvided

The class that definesthe TCI_CH provided interface is to be extended as follows:

virtual void tci SetStreanval ue

(const TriPortld *sender, const Tri Conponentld *receiver, const TciVal ue *streanVal ue) =0;
virtual void tciGetStreanval ue

(const TriPortld *receiver, const Tri Conponentld *sender, const Tci Val ue *streanVal ue) =0;

7.9 Extensions to clause 12.5.3.1 of ES 201 873-6: TCI-CH
provided

Theinterface| Tci CHPr ovi ded isto be extended as follows:

public interface |Tci CHProvided {

public void tci Set Streamval ue (I TriPortld sender,
| Tri Conponent I d receiver,
| Tci Val ue streanval ue) ;
public void tci GetStreanValue (ITriPortld receiver,
| Tri Conponent I d sender,
| Tci Val ue streanval ue) ;

7.10 Extensions to clause 12.5.3.2 of ES 201 873-6: TCI-CH
required

Theinterface | Tci CHRequi r ed isto be extended as follows:

public interface | Tci CHRequired {

public void tci Set Streanmval ueReq (I Tri Portld sender,
| Tri Conponent 1 d receiver,
| Tci Val ue streanval ue) ;
public void tci Get Streanval ueReq (I TriPortld receiver,
| Tri Conponent I d sender,
| Tci Val ue streanval ue) ;
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Annex A (normative):
BNF and static semantics

Al New TTCN-3 terminals

Table A.1: List of new TTCN-3 terminals defined in this package which are reserved words

appl y hi story par val ues

assert prev

at inv wai t
seq

cont nmode st epsi ze
stream

delta noti nv

duration tinestanp

onentry
finished onexi t unti |

The TTCN-3 terminaslisted in table A.1 shall not be used asidentifiersin a TTCN-3 module. These terminals shall be
written in al lowercase letters.

A.2  Changed BNF Rules

1. Modul eDefinition ::= (([Visibility] (TypeDef |
Const Def |
Tenpl at eDef |
Modul ePar Def |
Functi onDef |
Si gnat ur eDef |
Test caseDef |
Al tstepDef |
| nport Def |
Ext Functi onDef |
Ext Const Def |
ModeDef

)) |
(["public"] G oupDef) |
(["private"] FriendModul eDef)
) [WthStatenent
2. pCall ::= ConfigurationQOps |
Get Local Verdi ct |
Ti mer Qps |
Test casel nst ance |
(Functionl nstance [ Ext endedFi el dRef erence]) |
(Tenpl at eOps [ Ext endedFi el dRef erence]) |
ActivateQp |
NowCp |
St r eanDat aOps |
St reanNavi gati onQps |
MbdeLocal Ops
3. Attri bKeyword ::= EncodeKeyword |
Vari ant Keyword |
Di spl ayKeyword |
Ext ensi onKeyword |
Opti onal Keyword |
St epsi zeKeywor d
4. PortDef Attribs ::= MessageAttribs |
ProcedureAttribs |
M xedAttribs |
StreamAttribs
5.PortElement ::= ldentifier [ArrayDef] [AssignmentChar Portlnitial Val ue]
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6. Comruni cati onStatements ::= SendStatenent |
Cal | Statenent |
Repl ySt at emrent |
Rai seSt at enent |
Recei veSt at enent |
Trigger Statenment |
Get Cal | St atenent |
Get Repl ySt at enent |
Cat chSt at enent |
CheckSt at enent |
Cl ear Statenent |
Start Statenent |
St opSt at enent |
Hal t St at enent |
CheckSt at eSt at enent |
St reantval St at enent s
7. Behavi our St atenents ::= Testcasel nstance |
Functi onl nst ance |
Ret ur nSt at enent |
Al t Construct |
I nterl eavedConstruct |
Label St at enent |
Got oSt at enent |
Repeat St at enent |
Deacti vat eSt at enent |
Al t st epl nst ance |
ActivateQp |
Br eakSt at enent |
Cont i nueSt at enent |
MbdeSpeci fi cati on
8. FunctionStatenment ::= ConfigurationStatenments |
Ti mer St at ement s |
Conmuni cati onSt at ement s |
Basi cStatements |
Behavi our St at enent s |
Set Local Verdi ct |
SUTSt at ement s |
Test caseQperation |
Assert St at enent |
Wi t St at ement

A.3 New BNF Rules

9. NowQp ::= "now'
10. St epsi zeKeyword :: = "stepsize"
11. StreamAttribs ::= StreankKeyword "{" StreanDirection Type "}"

12. StreankKeyword ::= "streant

13. StreanDirection ::= I nParKeyword | CQutParKeyword | | nQutParKeyword
14. Portlnitial Val ue ::= Expression

15. StreanDat aOps ::= Port Dot Port DataQp

16. Port DataCp ::= PortVal ueQ |
Port Ti nest anpQp |
PortDeltaQp |
Port Hi storyQp |
Por t Val uesOp

17. Port Val ueQp ::= Val ueKeyword

18. Port Ti nestanpQp ::= "ti nestanp"

19. PortDel taCp ::= "delta"

20. PortHi storyQp ::= HistoryOpKeyword [ "(" StartValue [, EndvValue] ")" ]
21. Hi storyOpKeyword ::= "history"

22. StartVal ue ::= Expression

23. EndVal ue ::= Expression

24. PortVal uesQ ::= Val uesKeyword [ "(" StartValue [, EndvValue] ")" ]
25. Val uesOpKeyword :: = "val ues"

26. StreanNavi gati onQps ::= Port Dot ( PortPrevOp | PortAtQp ) [ Dot PortDataQp ]
27.PortPrev®p ::= PrevOpKeyword [ "(" IndexValue ")" ]

28. PrevOpKeyword ::= "prev"

29. I ndexVal ue ::= Expression

30. Port AtQp ::= AtOpKeyword [ " (" TinelndexValue ")" ]
31. At pKeyword ::= "at"

32. Ti mel ndexVal ue ::= Expression

33. ModeLocal Ops ::= DurationO | Finished® | NotinvQp
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.DurationOp ::= "duration"

. Fi ni shedOp ::= "fini shed"

.NotinvOp ::= "notinv"

. Streantval Statenents ::= Port Dot Port Appl yOp

. Port Appl yQp ::= ApplyKeyword [ "(" ApplyParaneter ")" ]

. Appl yKeyword ::= "appl y"

. Appl yPar aneter ::= Tenpl at el nst ance

.Assert Statenent ::= AssertKeyword [ "(" AssertionList ")" ]
. Assert Keyword ::= "assert"

. AssertionLi st Expression {, Expression }

. Wi t St at enent Wi t Keyword "(" WaitDuration ")"
. Wi tKeyword = "wait"

.VWaitDuration ::= Expression

. ModeSpecification ::= ( BasicMde | Seqvbde | ParMbde ) [ UntilBlock ] | Mdel nstance

. Basi cMbde ::= ContKeyword "{" {Varlnstance [ Seni Col on]}
[ OnEnt r yBI ock]
[l nvari ant Bl ock

{Basi cMbdeQp [ Seni Col on] }
[ OnExi t Bl ock]

"y
. Cont Keyword ::= "cont"

.OnEntryBl ock ::= OnEntryKeyword "{" StatenentBl ock "}"

. OnEntryKeyword ::= "onentry"

.I'nvariantBlock ::= InvKeyword "{" InvariantList "}"
.I'nvKeyword ::= "inv"

.I'nvariant Li st [ Bool eanExpression {"," Bool eanExpression }]
. Basi cMbdeOp :: signment | Assert Statenent

As
.OnExitBlock ::= OnExitKeyword "{" StatenentBlock "}"

. OnExi t Keyword ::= "onexit"
. SeqMbde ::= SeqgKeyword "{" {Varlnstance}
[ OnEnt ryBl ock
[l nvari ant Bl ock
ModeLi st
[ OnExi t Bl ock]
L
. Par Mode ::= ParKeyword "{" {Varlnstance}
[ OnEnt r yBI ock]
[ I nvari ant Bl ock]
{ ModeSpecification [Sem Colon] }
[ OnExi t Bl ock
nye
. SeqKeyword ::= "seq"
. Par Keyword ::= "par"
. ModeList ::= { [Label Statenent [Sem Colon] ] MdeSpecification [Sem Col on] }
.UntilBlock ::= Until Keyword "{" Until QuardList "}"
.Until Keyword ::= "until"
.Until QuardList ::= {Until GuardSt at enent }
.Until QuardStatenent ::= ( ( "[" Bool eanExpression "]" [QuardOp] ) | ( "[" "]1" QuardOp ) )
[ St at ement Bl ock] [ Got oSt at enment ]
. ModeTypeDef ::= TypeKeyword MbdeKeyword |dentifier

[ "(" Tenpl at eOr Val ueFor nal ParList ")" ]
[ RunsOnSpec]
. ModeKeyword ::= "node"

. ModeDef ::= ModeKeyword Identifier
[ "(" Tenpl ateOr Val ueFormal ParList ")" ]
[ RunsOnSpec]
MbdeSpeci fi cation
. Model nstance ::= MbdeRef "(" FunctionActual ParList ")"
.ModeRef ::= [ldentifier Dot] Identifier
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