
ETSI EG 201 872 V1.2.1 (2001-08)
ETSI Guide

Methods for Testing and Specification (MTS);
Methodological approach to the use of object-orientation

in the standards making process

ETSI

ETSI EG 201 872 V1.2.1 (2001-08)2

Reference
REG/MTS-00076

Keywords
UML, protocol, testing, methodology

ETSI

650 Route des Lucioles
F-06921 Sophia Antipolis Cedex - FRANCE

Tel.: +33 4 92 94 42 00 Fax: +33 4 93 65 47 16

Siret N° 348 623 562 00017 - NAF 742 C
Association à but non lucratif enregistrée à la
Sous-Préfecture de Grasse (06) N° 7803/88

Important notice

Individual copies of the present document can be downloaded from:
http://www.etsi.org

The present document may be made available in more than one electronic version or in print. In any case of existing or
perceived difference in contents between such versions, the reference version is the Portable Document Format (PDF).

In case of dispute, the reference shall be the printing on ETSI printers of the PDF version kept on a specific network drive
within ETSI Secretariat.

Users of the present document should be aware that the document may be subject to revision or change of status.
Information on the current status of this and other ETSI documents is available at http://www.etsi.org/tb/status/

If you find errors in the present document, send your comment to:
editor@etsi.fr

Copyright Notification

No part may be reproduced except as authorized by written permission.
The copyright and the foregoing restriction extend to reproduction in all media.

© European Telecommunications Standards Institute 2001.
All rights reserved.

http://www.etsi.org/
http://www.etsi.org/tb/status
mailto:editor@etsi.fr

ETSI

ETSI EG 201 872 V1.2.1 (2001-08)3

Contents

Intellectual Property Rights ..5

Foreword..5

1 Scope..6

2 References ..6

3 Definitions and abbreviations..7
3.1 Definitions .. 7
3.2 Abbreviations.. 7

4 A methodology for the use of the UML in telecommunication standards development.........................8
4.1 Introduction... 8
4.2 A process based upon the UML ... 8
4.3 Examples based on the Private User Mobility (PUMR) supplementary service ... 10
4.4 Develop a Context Model .. 11
4.4.1 Activity overview .. 11
4.4.2 Artefacts .. 11
4.4.3 Compile feature list.. 11
4.4.3.1 PUMR example .. 12
4.4.4 Develop Domain Model ... 13
4.4.4.1 Identify communication entities .. 14
4.4.4.2 Identify system architecture .. 15
4.4.4.3 Identify interfaces... 15
4.4.4.4 PUMR example .. 15
4.5 Develop a Requirements Model ... 17
4.5.1 Activity overview .. 17
4.5.2 Artefacts .. 18
4.5.3 Collect functional requirements.. 18
4.5.3.1 Develop use cases... 18
4.5.3.2 Identifying actors.. 19
4.5.3.3 Identifying use cases... 19
4.5.3.4 PUMR Example ... 19
4.5.3.5 Describing each use case... 21
4.5.3.5.1 Activity Diagrams... 21
4.5.3.5.2 PUMR Example .. 21
4.5.4 Collect non-functional requirements... 24
4.6 Develop a Specification Model .. 24
4.6.1 Activity overview .. 24
4.6.2 Artefacts .. 25
4.6.3 Refining the model of communicating entities .. 25
4.6.3.1 Class diagrams.. 26
4.6.3.1.1 Identifying candidate classes ... 26
4.6.3.1.2 Further iterations of the model ... 30
4.6.3.2 Sequence diagrams ... 30
4.6.3.3 Collaboration diagrams... 32
4.6.3.4 Statechart diagrams... 32
4.7 Use SDL and MSC to specify detailed behaviour ... 34
4.8 Use the UML to support test development.. 37
4.8.1 Activity overview .. 37
4.8.2 Artefacts .. 37
4.8.3 Identify components... 38
4.8.3.1 PUMR example .. 38
4.8.4 Define test configurations... 39
4.8.4.1 PUMR example .. 40
4.8.5 Define test case structure.. 41
4.8.6 Define test cases .. 41
4.8.6.1 PUMR example .. 41

ETSI

ETSI EG 201 872 V1.2.1 (2001-08)4

Annex A (informative): Case Study..43

A.1 QSIG Private User Mobility Registration (PUMR) supplementary service...43

A.2 PUMR UML models...43
A.2.1 Context Model .. 43
A.2.2 Requirements Model ... 45
A.2.3 Specification Model .. 49
A.2.4 Testing Model ... 65

Annex B (informative): Summary of UML symbology ...71

B.1 Introduction ..71

B.2 Structural items...72

B.3 Behavioural items ...73

B.4 Relationships ..74

History ...75

ETSI

ETSI EG 201 872 V1.2.1 (2001-08)5

Intellectual Property Rights
IPRs essential or potentially essential to the present document may have been declared to ETSI. The information
pertaining to these essential IPRs, if any, is publicly available for ETSI members and non-members, and can be found
in ETSI SR 000 314: "Intellectual Property Rights (IPRs); Essential, or potentially Essential, IPRs notified to ETSI in
respect of ETSI standards", which is available from the ETSI Secretariat. Latest updates are available on the ETSI Web
server (http://www.etsi.org/ipr).

Pursuant to the ETSI IPR Policy, no investigation, including IPR searches, has been carried out by ETSI. No guarantee
can be given as to the existence of other IPRs not referenced in ETSI SR 000 314 (or the updates on the ETSI Web
server) which are, or may be, or may become, essential to the present document.

Foreword
This ETSI Guide (EG) has been produced by ETSI Technical Committee Methods for Testing and Specification (MTS).

http://www.etsi.org/ipr

ETSI

ETSI EG 201 872 V1.2.1 (2001-08)6

1 Scope
The present document describes a methodological approach to the use of object-orientation, and, in particular the
Universal Modelling Language (UML), in the ETSI standards-making process. The purpose of the present document is
to establish a set of guidelines that provide the user with a framework within which the concepts of the UML can be
used effectively in the development of ETSI standards.

The guidelines presented in the present document are intended primarily for use in the production of standards
specifying communications protocols. However, they could be applied in part to the use of UML to other types of
standard where this is deemed to be appropriate and beneficial.

The present document presents a straightforward process for using the UML from the collection of the initial broad
requirements through to the point where it is necessary to begin describing detailed behaviour.

The application of the UML to the development of a protocol standard does not preclude the use of the Specification
and Description Language (SDL). The methodological approach described in the present document can be used in
conjunction with the guidelines specified for the use of SDL given in ETR 298 [2], EG 201 015 [3], EG 201 383 [4] and
EG 202 106 [5].

2 References
The following documents contain provisions which, through reference in this text, constitute provisions of the present
document.

• References are either specific (identified by date of publication and/or edition number or version number) or
non-specific.

• For a specific reference, subsequent revisions do not apply.

• For a non-specific reference, the latest version applies.

[1] ETSI ETR 266: "Methods for Testing and Specification (MTS); Test Purpose style guide".

[2] ETSI ETR 298: "Methods for Testing and Specification (MTS); Specification of protocols and
services; Handbook for SDL, ASN.1 and MSC development".

[3] ETSI EG 201 015: "Methods for Testing and Specification (MTS); Specification of protocols and
services; Validation methodology for standards using Specification and Description
Language (SDL); Handbook".

[4] ETSI EG 201 383 (V1.1.1): "Methods for Testing and Specification (MTS); Use of SDL in ETSI
deliverables; Guidelines for facilitating validation and the development of conformance tests".

[5] ETSI EG 202 106 (V1.1.1): "Methods for Testing and Specification (MTS); Guidelines for the use
of formal SDL as a descriptive tool".

[6] ETSI TCR-TR 011 (1993): "Business Telecommunications (BT); Private Telecommunications
Network (PTN) internal mobility Private user mobility and cordless terminal mobility General
principles and service aspects".

[7] ITU-T Recommendation Z.109 (1999): "SDL combined with UML".

[8] ISO/IEC 17875 (2000): "Information technology - Telecommunications and information exchange
between systems - Private Integrated Services Network - Specification, functional model and
information flows - Private User Mobility (PUM) - Registration supplementary service".

[9] ISO/IEC 9646: "Information technology - Open Systems Interconnection - Conformance testing
methodology and framework".

ETSI

ETSI EG 201 872 V1.2.1 (2001-08)7

[10] ISO/IEC 17876 (2000): "Information technology - Telecommunications and information exchange
between systems - Private Integrated Services Network - Inter-exchange signalling protocol -
Private User Mobility (PUM) - Registration supplementary service".

[11] Jacobson, Booch & Rumbaugh: "The Unified Software Development Process", Addison-Wesley
(1999), ISBN 0-201-57169-2.

3 Definitions and abbreviations

3.1 Definitions
For the purposes of the present document, the following terms and definitions apply:

actor: abstraction for entities outside a system or subsystem that interact directly with that system or subsystem

artefact: piece of information that is used or produced during the development of a standard

NOTE: This definition of the term "artefact" is commonly used in the context of the UML. Examples of artefacts
are models, textual descriptions, standards and external documents.

domain model: related set of UML diagrams and text which together identify at a high level of abstraction, the logical
and physical entities of a system and the relationships between them

feature: candidate requirement

postcondition: constraint that must be true at the completion of an operation

precondition: constraint that must be true when an operation is invoked

QSig: corporate network signalling system defining basic and supplementary service protocols at the Q-reference

requirements model: set of UML diagrams and text which together elaborate the requirements to be met by a
standardized system

use case: specification of sequences of actions that a system or subsystem can perform by interacting with actors

user: human being or an item of equipment to which a service is provided

3.2 Abbreviations
For the purposes of the present document, the following abbreviations apply:

HDB Home Data Base
CP Coordination Point
IUT Implementation Under Test
MSC Message Sequence Chart
MTC Main Test Component
HDB Home Data Base
PCO Point of Control and Observation
PISN Private Integrated Services Network
PINX Private Integrated services Network eXchange
PTC Parallel Test Component
PTN Private Telecommunication Network
PTNX Private Telecommunication Network eXchange

NOTE: Since the publication of TCR-TR 011 [6] in 1993, the terms PTN and PTNX, which were used
extensively in that document, have been replaced by PISN and PINX in the context of Corporate Network
standardization. Throughout the present document, PISN and PINX have been used as the current terms.

PUM Private User Mobility
PUMR PUM dynamic Registration

ETSI

ETSI EG 201 872 V1.2.1 (2001-08)8

SDL Specification and Description Language
TTCN Tree and Tabular Combined Notation
UML Universal Modelling Language
VDB Visitor Data Base

4 A methodology for the use of the UML in
telecommunication standards development

4.1 Introduction
The UML is a powerful, graphical language that can be used effectively and beneficially within the ETSI standards
making process, particularly in the specification of communication protocols. The present document presents a general
framework within which the UML can be applied to this process but the three following points should be considered
before making a commitment to its use:

1) the UML is an ideal language for the collection, analysis and processing of requirements. Consequently, the
process described here introduces formality to the early stages of the standards development where such
formalism has not generally existed in the past;

2) particular UML diagram types are recommended at each stage of the process but this should not be regarded as
"set in concrete". If different UML diagram types appear to be more appropriate or meaningful in particular
situations then these should be used;

3) the use of the UML in the standards making process should not imply that the UML diagrams produced must
appear in the standard, although that, too, is not precluded. The language should be regarded as a valuable tool
for producing standards of a high quality and not just another means of drawing diagrams to describe protocols.

4.2 A process based upon the UML
The UML is a modelling language and is not, itself, a development process. It is possible to think of it as a set of
individual diagram types and symbols which together make up the language and which can be used in an ad hoc manner
wherever and whenever an opportunity arises. However, greater benefits can be gained if it is considered as the basis for
a straightforward process for the overall development of telecommunication standards. It is just such a process which is
described here. The process has been derived from the Unified Development Process [11] with some modifications to
reflect the specific requirements of standards development. There are many different types of UML diagram which can
be produced within the process but these have been segregated into three overall modelling stages as follows:

- Context Modelling

- the collection, refinement and expression of ideas and existing knowledge to establish the objectives of
standardization project.

- Requirements Modelling

- the further processing of the Context Model to establish and express a set of achievable technical
requirements to be met by the protocol standard(s).

- Specification Modelling

- the extension and refinement of the Context Model and the Requirements Model to provide sufficient detail
for the development of a behaviour model.

Throughout the present document, UML activity and package diagrams are used to illustrate the use of the UML in the
standards development process. Figure 1 shows the three discrete models as simple packages.

ETSI

ETSI EG 201 872 V1.2.1 (2001-08)9

Context
Model

Requirements
Model

Specification
Model

These arrows indicate
dependency rather than
the flow of information

Figure 1: UML models required in the standardization process

Figure 2 presents an overview in graphic form of a process for using the UML to produce these models.

[further refinement
necessary]

[new requirements
identified]

[further refinement
necessary]

[specification ready]

Develop Context
Model

Develop Requirements
Model

Evaluate Requirements

Develop Specification
Model

Evaluate Specification

[context model ready]

[requirements ready]

Figure 2: A process using the UML in writing standards

ETSI

ETSI EG 201 872 V1.2.1 (2001-08)10

The process involves the following steps:

1) carry out an initial study to produce a Context Model comprising a list of desired features and a domain model
based on existing knowledge and experience;

2) model the requirements for the standard so that the requirements can be evaluated and refined;

3) use these requirements in the production of a specification model of the system on which the standard is to be
based;

4) continuously evaluate and refine the specification and, consequently, the requirements.

In each of these activities there will be a number of different types of UML diagram and textual descriptions produced.
The following list indicates which are the most likely to be useful at each stage but this does not preclude the inclusion
of any UML diagram type at any stage if its use is likely to improve the understandability of the overall specification:

- Context Model:

- class diagrams;

- object diagrams;

- text.

- Requirements Model:

- use case diagrams;

- activity diagrams;

- text.

- Specification Model:

- class diagrams;

- sequence diagrams;

- collaboration diagrams;

- statechart diagrams;

- text.

Both the Requirements Model and the Specification Model should form the main input to the development of detailed
behaviour specifications of the standardized system and of a corresponding conformance test suite.

It is unlikely that a single pass through this process will result in a fully specified protocol so it should be used
iteratively to refine the requirements and the definition.

4.3 Examples based on the Private User Mobility (PUMR)
supplementary service

In order to illustrate each of the stages involved in developing UML Context Models, Requirements Models and
Specification Models, the QSIG Private User Mobility (PUM) supplementary service, PUM Dynamic Registration
(PUMR) has been used as an example throughout the present document. A pre-normative study of mobility issues
within private networks, TCR-TR 011 [6], was produced by ETSI Technical Committee, Business Telecommunications
(TC-BTC). The PUMR inter-PINX protocol standards, ISO/IEC 17875 [8] and ISO/IEC 17876 [10] were produced by
TC-BTC and ECMA technical committee TC32. The UML examples in the present document and the complete
example shown in Annex A are based on the relevant parts of TCR-TR 011 [6] and the protocol standards.

ETSI

ETSI EG 201 872 V1.2.1 (2001-08)11

4.4 Develop a Context Model

4.4.1 Activity overview

The development of a Context Model includes the collection of a list of features as well as the development of a
Domain Model. As is shown in Figure 3, both activities take place in parallel. In most cases, it is possible to begin
collecting and evaluating desired features while developing a Domain Model based on information already known about
the system.

Compile Feature List Develop Domain Model

Figure 3: The Context Modelling process

4.4.2 Artefacts

The following artefacts are produced as part of the Context Model (Figure 4):

- a Domain Model consisting of class and object diagrams;

- a feature list.

Context Model

Domain model

Class diagrams

Object diagrams

Feature list

Figure 4: Artefacts produced as part of the Context Model

4.4.3 Compile feature list

During the standardization process, different parties come up with many ideas for features to be standardized. These
features are used as the basis of discussions from which the requirements for a standard emerge. The UML does not
provide a suitable graphical model for the collection and management of features. However, they are an important input
to the overall process described here for the use of the UML. Therefore, it is useful to collect all desired features into a
feature list. From that collection, each feature is evaluated and its status recorded to indicate whether it has been
selected for inclusion in the next release of the standard, deferred to a subsequent release or rejected altogether. This
process is shown graphically in Figure 5.

ETSI

ETSI EG 201 872 V1.2.1 (2001-08)12

Evaluate proposed

feature

Check list for

proposed feature

Collect desired

features

Set status to

"Selected"

Set status to

"Deferred"

Set status to

"Rejected"

[unavailable]

[available]

[select] [reject]

[defer]

Figure 5: The feature evaluation process

Additional status indications should be given to those features which have not yet been evaluated and to those which
have been implemented in a specific release of the standard.

Each item in a feature list should be assigned a number and a brief definition along with information regarding its origin
and priority.

4.4.3.1 PUMR example

An example of how a feature list could be structured is shown in Table 1.

NOTE: The Priority and Status columns contain values which have been inserted for illustrative purposes only
and do not reflect the real-world situation.

Table 1: PUMR feature list

No Feature Priority Status
1 A PUM user should be able to register at any capable (wired or wireless) terminal within

the PISN
1 Selected

2 A PUM user registered at another terminal should have a service profile which is as close
as possible to the service profile offered at the user’s normal point of connection to the
network (i.e. at the user’s home location)

2 Deferred

3 Registration should be for incoming calls, outgoing calls or both incoming and outgoing
calls

1 Selected

4 Registration for outgoing calls may be limited by the PUM user to a preset period of time
(duration) or a specific number of calls

3 Rejected

5 Giving an alternative identifier for the PUM registration requires the Visitor PINX to enquiry
to the Directory PINX to obtain the PUM user's PISN number

2 Selected

6 Registration for incoming calls should always be mandatory 1 Selected
7 The security mechanisms provided by PUM to support mobility services should at least be

as good as for existing services
2 Selected

8 For the purposes of security at registration, a PUM user should be able to register using
the user’s assigned PISN number or an alternative identifier

1 Deferred

9 A PUM user with a high security level should not be precluded from using an ordinary
terminal

1 Deferred

ETSI

ETSI EG 201 872 V1.2.1 (2001-08)13

No Feature Priority Status
10 Before registering to another Visitor PINX, a PUM user should be de-registered from a

Previous Visitor PINX
3 Selected

11 A PUM user may register directly from a Visitor PINX or indirectly from a Remote PINX via
a Visitor PINX, to the Home PINX

3 Deferred

12 Security mechanisms should not appear as complicated procedures to the PUM users but
they should be a part of the general PUM procedures

2 Rejected

13 For the purposes of security, it should be possible to request the provision of a Personal
Identification Number (PIN) in addition to the PUM user’s identity (PISN number or
alternative identifier)

3 Deferred

14 A PUM user may be offered a set of possible optional security mechanisms to decide
upon, for authentication and access control

3 Rejected

15 The PUM user should be able to move between terminals during an active call (change of
access point)

2 Deferred

16 Several PUM users may register for incoming calls at the same terminal access
simultaneously

3 Deferred

17 The PUM user should be able to specify different terminal accesses according to the
feature (service type) requested

2 Selected

18 Bearer services offered to a PUM user should include at least a 64 kbit/s circuit mode, a
3,1 KHz audio, and speech telephony service

3 Selected

19 To register, a PUM user should send a message to the PISN containing e.g. its PUM
number, the identifier of the terminal, the indication of the PUM feature (e.g. registration for
incoming and/or for outgoing calls)

2 Selected

20 The PUM user's own number is used as the basis for accounting, independent of any
terminal or PINX used by the PUM user

2 Deferred

As can be seen from this list, there is no limit placed on the level of detail which can be included as a desired feature.
Low-level descriptions such as the requirement for a PIN are equally as valid at this stage as high-level ones such as the
ability to register at any terminal.

4.4.4 Develop Domain Model

As shown in Figure 6, the development of a domain model is done in three steps:

1) identification of communication entities and communication paths;

2) identification of possible system architectures;

3) identification of interfaces.

Identify
system

architecture

Identify
interfaces

Identify
Communication

Entities

Figure 6: Domain Modelling process

ETSI

ETSI EG 201 872 V1.2.1 (2001-08)14

Domain models can be developed for different levels of abstraction but the final domain model should consist of a
reasonable selection of class and object diagrams. However, the purpose of a domain model is the development of an
overview of a communication system and should not include detailed specification. As a guide, a domain model should
contain no more detail than would normally be presented in a pre-normative study report.

Within ETSI, there is a large and valuable base of knowledge and experience which is the result of producing numerous
standards for a wide range of communication technologies. This knowledge and experience should be used to simplify
the development of the domain model by providing "short-cuts" to possible solutions. As an example, when specifying
a new protocol for an emerging technology, it is not necessary to redesign the ISO Layered Model as its application in
this area is already well understood.

4.4.4.1 Identify communication entities

The high-level structure of a specification's context can be described with a domain model which is represented using
UML class diagrams. Associations are used to express the relationships between entities in the domain diagram. A
generic domain model class diagram for communication systems is shown in Figure 7.

Communication System

Communication Environment
Entity

Communication System
Entity

Communication Entity

1..* 1..*

Figure 7: Generic class diagram for communication systems

The Communication System encapsulates the whole system for which a standard is to be specified. It contains
Communication System Entities which can, themselves, be composed of other (sub-)entities. Communication
Environment Entities lie outside of the system.

Both Environment and System Entities are generalizations of the same abstract base class, Communication Entity.
Communication entities are associated with other such entities. This means that communication paths exist between
instances of communication entities as shown in Figure 9. Communication paths use interfaces to exchange signals,
however, the interfaces are realized by the communication entities. This is illustrated in Figure 8.

Communication interface

Communication Entity

Figure 8: Communication entities realize interfaces

ETSI

ETSI EG 201 872 V1.2.1 (2001-08)15

4.4.4.2 Identify system architecture

Step two in the development of a domain model is the collection of possible system architectures. This information is
then used in the third step to identify interfaces. Figure 9 shows an architecture where two terminals are connected to a
pair of interconnected exchanges.

Exchange: Communication System Entity Exchange: Communication System Entity

Terminal: Communication Environment Entity Terminal: Communication Environment Entity

Figure 9: Object diagram showing system architecture

4.4.4.3 Identify interfaces

From the object diagrams developed in the previous step (clause 4.4.4.2), interfaces can be identified. There are two
kinds of interfaces: Normative and non-normative ones. Normative interfaces are the subjects of standardization;
non-normative interfaces are either proprietary or standardized in a different document.

As a general rule, system entities exchange information with one another through normative interfaces and they
communicate with environment entities through non-normative interfaces. Nevertheless, there may also be
non-normative interfaces between system entities.

NOTE: Due to the interpretation of signals being modelled as operation calls on objects (see clause 4.6.3.1.1),
each communication path has to be seen as the combination of two interfaces, one on each end of the
path.

4.4.4.4 PUMR example

Figure 10 shows the top-level class diagram of the context in which PUMR will be found. It contains the following
information: On the system level, there is the Private Integrated Service Network (PISN). A PISN system has
associations with terminals and Private Integrated services Network eXchanges (PINX). Terminals are stereotyped as
environment entities, meaning that their behaviour will not be specified within the model. Nevertheless, there would be
no use of the PISN without terminals, that is why they are associated with the system through an aggregation. PINXs
are communication system entities and their association with the PISN through composition shows that they are the
building blocks of the system; without the exchanges there would be no network.

PINX
«communication system entity»

1..* 2..*

Terminal
«communication environment entity»

PISN
«communication system»

Figure 10: System-level class diagram for the PUM Registration supplementary service

ETSI

ETSI EG 201 872 V1.2.1 (2001-08)16

The feature list in Table 1, the class diagram in Figure 10 and existing knowledge of similar systems and technologies
together provide the basis for the object diagram in Figure 11 which represents the basic architecture of PUMR. The
class diagram shows that there are two basic classes, PINXs and terminals. Each of the objects shown in Figure 11 are
instances of one or other of these classes.

The main feature of PUMR is the ability of a PUM user to register at any terminal connected to the PISN. Existing
knowledge of the GSM network architecture and protocol has been used in the development of the
Home PINX/Visitor PINX/Previous Visitor PINX architecture represented in Figure 11. Feature 5 from the PUMR
feature list in Table 1 has led to the addition of the Directory PINX.

Directory :PINX

Previous Visitor :PINX

Visitor :PINX

Home :PINX

:Terminal

Figure 11: Basic PUMR object diagram

From Figure 11, three functional entities which are necessary for the specification of the PUMR supplementary service
can be identified. These are the Home location, the Visitor location and the Directory function (assuming that a
Previous Visitor is also a Visitor). These entities communicate with one another which means that each of them is
required to handle a specific set of signals. Using the UML, these sets of signals can be represented by interfaces.
Figure 12 shows that a PINX entity realizes three PUMR interfaces, one for each of the Home, the Visitor and the
Directory function. These interfaces are collected together in a package to build the PUM Registration supplementary
service. Since this service is the subject of the standardization effort, the PUMR interfaces are normative. In addition,
there is a non-normative interface between a PINX and a terminal.

NOTE: At the domain level, classes do not represent physical objects. While Figure 12 suggests that every PINX
has to be able to act as a Home, Visitor and Directory entity, this does not have to be the case during the
deployment of physical exchanges.

PUM Registration
supplementary service

PUMR Directory

PUMR Home

PUMR Visitor

The interface between PINX and
Terminal is non-normative.
All PUMR interfaces are normative.

<<system entity>>

PINX

<<environment entity>>

Terminal

Figure 12: Identification of interfaces for PUMR

ETSI

ETSI EG 201 872 V1.2.1 (2001-08)17

4.5 Develop a Requirements Model

4.5.1 Activity overview

The purpose of the Requirements Model is to evaluate the list of features developed as part of the Domain Model and to
elaborate them as formal requirements. A process for developing a Requirements Model is shown in Figure 13.

[complex
behaviour]

[non-complex
behaviour]

[no further
selected features]

[further selected
features to be
considered]

Select feature from
Feature List

Realize feature as a
requirement using

a use case

Realize feature as a
requirement using

plain text

Draw activity diagram

Update Feature List

Write text description

[functional
requirement]

[non-functional
requirement]

Figure 13: The Requirements Modelling process

ETSI

ETSI EG 201 872 V1.2.1 (2001-08)18

4.5.2 Artefacts

By analysing and developing the selected features from the Feature List, it is possible to specify a set of requirements
for the protocol to be standardized. As can be seen in Figure 14, requirements can be broadly classified as either
functional, which can be described with UML use cases, or non-functional which can only be described in plain text.

Functional Requirements

Use case
Diagrams

Activity
Diagrams

Textual
Descriptions

Non-functional Requirements

Textual
Descriptions

Requirements Model

Figure 14: Artefacts produced as part of the Requirements Model

When specifying a protocol system, it is often the case that both functional and non-functional requirements are
identified. As an example, it is clear that the feature "For the purposes of security at registration, a PUM user should be
able to register using the assigned PISN number or an alternative identifier" shown in Table 1 will result in a number of
functional requirements whereas, "Bearer services offered to a PUM user should include at least a 64 kbit/s circuit
mode, a 3,1 kHz audio and speech telephony service" probably will not.

4.5.3 Collect functional requirements

4.5.3.1 Develop use cases

Use cases make it possible for requirements to be captured in a structured way. They usually consist of a textual
description, but activity diagrams can be used to represent activities inside the system and the interaction of the system
with actors.

The Feature List and the Domain Model should be used as the starting point for the development of use cases in the
Requirements Model. The Domain Model provides the context in which selected features are developed into
requirements for the standard.

The development of use cases is an iterative process which involves the following activities:

- identification of actors;

- identification of use cases;

- description of each use case.

Generally, only a few use cases will be found in the first iteration; new ones will be added during subsequent passes and
the existing ones will probably need to be refined.

ETSI

ETSI EG 201 872 V1.2.1 (2001-08)19

4.5.3.2 Identifying actors

Actors are used to represent external systems or some internal parts of a system which use a particular subsystem. There
can also be actors which are related to system initialization and maintenance.

Two criteria should be used in finding actors:

1) for every actor there should be at least one user which will enact the role. A user in this context can be at any
level of abstraction, for example, a mobile terminal or protocol layer;

2) there should be minimal overlap of roles between actors. This prevents having two actors that have essentially
the same role.

All actors should be given relevant names and short textual descriptions of the role they play and how they use the
system.

In the PUM Dynamic Registration example, the actor is the PUM User.

4.5.3.3 Identifying use cases

The identification of use cases is not a simple task. The following guidelines may be helpful:

1) review the Feature List which has been compiled during domain modelling as a source for system requirements;

2) consider each service provided by the future system as a good starting point for use case identification;

3) consider the actor's point of view. What do actors want to do with the system?

The identification of possible use cases in a system can be simplified by addressing only one system service in each use
case and by considering only the primary actors as they will initiate most of the use cases.

Every actor needs one or more use cases to fulfil its needs. Each candidate use cases identified in this way will not
necessarily become a unique use case as it may be possible for some to be incorporated into other use cases. A potential
use case that appears complete in itself should be identified separately, whereas one that always follows as a
continuation of another should probably be combined with it.

The choice of a name for a use case can help considerably in making the model easy to understand. Use case names
should clearly identify the function represented by it and, in most instances, should start with a verb.

4.5.3.4 PUMR Example

In order to illustrate the process of developing use cases, an example has been taken from TCR-TR 011 [6]. This
example deals with the requirements for PUM Dynamic registration for incoming calls identified on page 24 of the
present document. These requirements are identified as follows:

- the PUM user can specify a terminal access to which some or all incoming calls to the PUM user will be
presented;

- a different terminal access may be specified for each service type (e.g. voice, telefax);

- the PUM user will be able to determine the desired "service profile" attached to this new registration, i.e.
depending on the calling party's identity, call importance indication, for "no answer" and "busy" conditions and
other possible criteria;

- several PUM users may register for incoming calls at the same terminal access simultaneously;

- in addition to new facilities brought by the PUM service, the supplementary services usually offered to any PISN
user should be made available to PUM users.

ETSI

ETSI EG 201 872 V1.2.1 (2001-08)20

There are three use cases that can be defined for PUM Dynamic Registration, as follows:

Use case 1: Specify Access Point for Incoming Calls

The PUM user specifies a terminal access to which some or all incoming calls to the PUM user
will be presented. Several PUM users may register for incoming calls at the same terminal access
simultaneously.

Use case 2: Specify Service Type

A different terminal access may be specified for each service type (e.g. voice, telefax).

Use case 3: Specify Profile

The PUM user will be able to determine the desired "service profile" attached to this new
registration depending on the calling party's identity, call importance indication, "no answer" and
"busy" conditions and other possible criteria [6].

Figure 15 shows how the three use cases for PUM incoming call registration can be presented graphically in a Use Case
Diagram.

PU M U se r

Spe cify Acce ss Poin t
fo r Incoming C all

Spe cify Se rv ice
T ype

S pe cify P ro file

PISN

Documentation:

The PUM user will be
able to determine the
desired "service profile"
attached to this new
registration depending on
the calling party's identity,
call importance indication,
"no answer" and "busy"
conditions and other
possible criteria.

Figure 15: Example Use Case diagram for PUM Registration for Incoming Calls

NOTE: The box marked "Documentation" in Figure 15 is intended to show the text that might be included as part
of the specification of the "Specify Profile" use case. It is included here for clarity and would not
normally appear in a use case diagram.

ETSI

ETSI EG 201 872 V1.2.1 (2001-08)21

4.5.3.5 Describing each use case

In most instances, it is difficult to construct a use case name which is both easy to read and comprehensive in its
description of the function of the use case. It is, therefore, useful to produce a short description of each use case
included in the Requirements Model. The following information should be used to describe each use case:

- name of the use case;

- brief description:

- short overview of the purpose of the use case;

- identities of the actors involved in the use case;

- any preconditions;

- step-by-step specification of what the use case needs to do when interacting with its actors;

- this can be plain text but, if it extends beyond 2 or 3 steps, an activity diagram could be used to provide
additional clarification;

- any postconditions.

4.5.3.5.1 Activity Diagrams

When describing communication protocols it is often not possible to describe the functions of a use case in very simple
terms. When the description of a use case cannot be expressed simply in a few lines of text, a UML activity diagram can
be used as well. In particular, an activity diagram should be used if:

- the use case represents functions which are complex;

- there are conditional branches implied in the function of the use case.

Care should be taken to avoid the inclusion of too much detail in an activity diagram. The purpose of the Requirements
Model is to define the requirements that are to be met by the standardized protocol, not to describe the detailed
behaviour of the constituent entities.

4.5.3.5.2 PUMR Example

A simple, tabular description of the "Specify Profile" use case is shown in Table 2.

Table 2: "Specify Profile" use case description

Name Specify Profile
Description The PUM user specifies the desired service profile to be

associated with the new registration
Preconditions The PUM user is registered at the Visitor PINX
Processing See activity diagram
Postconditions Service profile established for the PUM user

Figure 16 shows how the use case for processing a Service Profile setup request from a PUM user (Figure 15) could be
described in an activity diagram.

ETSI

ETSI EG 201 872 V1.2.1 (2001-08)22

Request Service Profile setup

Set default local Service Profile

Find user's PISN number

Request user's Service Profile

Send user's Service Profile

Install indicated local Service ProfileInstall user's Service Profile

Report Service Profile established

[registration complete]

[visitor support = download profile]

[visitor support = default]

[user ID = alternative identifier]

[user ID = PISN number]

[profile = indicative]

[profile = detailed]

Figure 16: Activity diagram showing an overview of the Specify Profile use case

The overview of the Specify Profile use case in Figure 16 shows that a request from a PUM user to set up a Service
Profile will cause one of the following:

- a default Service Profile provided by the Visitor Location will be established if the Visitor Location does not
support the downloading of Service Profile information from the Home Location;

- a Service Profile provided by the Visitor Location will be established if the Home Location provides a simple
indication of the PUM user's service classification (for example, "select Service Profile No. 5");

- a Service Profile provided by the Home Location will be transferred to the Visitor Location and established for
the PUM user.

If the user provides an alternative identifier rather than a PISN (directory) number as identification, this will be resolved
into a PISN number before any request is made to the Home Location.

Although Figure 16 identifies the activities that must occur as part of the Specify Profile use case, it does not indicate
where in a network each activity should take place. Simple visual analysis is usually sufficient at this stage to determine
where the responsibility for each action is likely to lie. For example, it is clear that the sending of the user's
Service Profile information will almost certainly take place at the Home location. UML swimlanes can be used
effectively to highlight these divisions of responsibility as shown in Figure 17.

ETSI

ETSI EG 201 872 V1.2.1 (2001-08)23

PUM User Visitor Location Directory Function Home Location

Request Service Profile setup

Install default local Service Profile

Find user's PISN number

Request user's Service Profile Send user's Service Profile

Install user's Service Profile Set indicated local Service Profile

Report Service Profile established

[registration complete]

[visitor support = download prof ile]

[visitor support = default]

[user ID = alternative identifier]

[user ID = PISN number]

[profile = detailed]

[profile = indicative]

Figure 17: PUM Specify Profile activity diagram using swimlanes

ETSI

ETSI EG 201 872 V1.2.1 (2001-08)24

When partitioning an activity diagram with swimlanes it can be tempting to start adding more detail to the activity
itself. However, at the Requirements Modelling stage, activity diagrams should show only tasks and conditions. Even
the addition of swimlanes should be limited to those instances where their placement is obvious with only the minimum
of analysis.

4.5.4 Collect non-functional requirements

The UML is not an appropriate language for expressing requirements which are not action-based. Well structured text
and tables should be used for this purpose.

4.6 Develop a Specification Model

4.6.1 Activity overview

A Specification Model is developed from the Domain Model by:

- refining the model of communication entities;

- adding communication interfaces;

- adding new entities if necessary;

- specifying the communication between entities.

The Domain Model and the Requirements Model should be used together as the base from which the Specification
Model is developed. The Requirements Model provides guidance on how more detailed class diagrams can be
developed from the Domain Model. It is at this point in the process that the flow of information across the interfaces
which connect the communication entities should be considered. Initially, the functional messages (for example,
SETUP and RELEASE) of the protocol should be identified and the temporal relationships between them specified
using sequence and collaboration diagrams. In those cases where it is necessary to describe complex behaviour, it may
also be useful to develop some statechart diagrams. A Specification Model should only express the relationships
between classes and describe sequences of actions, but it should not specify how the communication mechanisms are to
be realized. Developing a Specification Model may highlight inadequacies and inaccuracies in the Domain Model
which should be reviewed and revised as necessary.

The activity diagram in Figure 18 shows, in simplified terms, the process involved in the development of a
Specification Model.

Review
class diagram

[no further iterations
required]

[further iterations
required]

Develop
sequence diagrams

Develop
statechart diagrams

Elaborate
class diagram

Develop
collaboration diagrams

Figure 18: Specification Model development

ETSI

ETSI EG 201 872 V1.2.1 (2001-08)25

4.6.2 Artefacts

The elaboration of a Specification Model is an iterative process involving a number of complementary diagrams as
shown in Figure 19.

Specification Model

Class
Diagrams Textual

Descriptions

StatechartsSequence
Diagrams

Collaboration
Diagrams

Figure 19: Artefacts produced as part of a Specification Model

4.6.3 Refining the model of communicating entities

A class diagram based on the generic class diagram for communication systems shown in Figure 7 is ideal for
specifying a system in terms of its communication entities but it does not identify the interfaces necessary for these
entities to communicate. The generic Specification Model shown in Figure 20 extends the Domain Model by adding
communication interfaces which can be either normative or non-normative. It also introduces a "communication
message" class which should be used for specifying the protocol signals which are to be passed across the interfaces.

1..*

Communication
Message

1..* 1..*

Can be either normative
or non-normative

Communication
System

Communication
Environment Entity

Communication
System Entity

Communication
EntityCommunication

Interface

«interface»

operation (message: Communication Message)

message parameter

Figure 20: Generic Specification Model (class diagram) for communication systems

ETSI

ETSI EG 201 872 V1.2.1 (2001-08)26

4.6.3.1 Class diagrams

4.6.3.1.1 Identifying candidate classes

Although a number of classes will have been identified during the Domain Modelling stage, it is certain that these
classes will require the addition of further detail and that new classes will need to be specified.

Within a specification model, use cases are realized by classes and their derived objects which communicate and co-
operate together to perform the necessary functions.

Three types of classes are identified within the generic Domain Model and should also be used when specifying classes
for the Specification Model. These class types, denoted by stereotypes, are:

- communication entities:

- communication system entities;

- communication environment entities;

- communication interfaces;

- communication messages.

The following approach, shown graphically in Figure 21, should be used in refining these classes:

- review the use cases and the data flows to determine what new communication entities should be added to those
already specified in the Domain Model;

- determine what, if any, new interfaces are required between the communication entities;

- add operations to each of the interfaces to handle the protocol messages that are necessary to support the use
cases described in the Requirements Model;

- specify new message classes for each of the messages identified at each interface;

- add attributes to each of the message classes to indicate what information the message should carry.

[no new interfaces
required]

Review
Requirements

[new entities
required]

Add new Communication
System Entities

[no new entities
required]

Review
interfaces

Add new Normative
Interfaces

[new interfaces
required]

Specify
Communication Messages

Figure 21: Class diagram elaboration

ETSI

ETSI EG 201 872 V1.2.1 (2001-08)27

Those interfaces which are the subject of the standard should be clearly identified by attaching a text box to the
interface class indicating that it is normative, as shown in Figure 22.

Normative
Interface

Visitor PINX

PUMR signalling at
a Visitor PINX

«communication interface»

registration_Request (registration_request)

PUM_SETUP (PUM Delete registration Invoke)

PUM_CONNECT (PUM Registration Response)

Figure 22: Example of an interface identified as "Normative"

4.6.3.1.1.1 Operations

Class operations should be used to identify which signals can be legitimately processed by a particular communications
interface. It is conventional within the UML to indicate only those messages that can be received by a class. Those that
may be sent are implied by the signals that can be received by adjacent classes.

The following example illustrates how this approach can be used to specify the signalling at a telecommunication
interface. A normative (or non-normative) interface is usually considered to be a notional point in the communication
path between two entities implementing the interface. Each of these entities will support the transmission and reception
of a group of signals which together form the protocol at the interface. Figure 23 uses a traditional reference diagram to
illustrate the implementation of an interface at an imaginary reference point "X". It also shows the protocol messages
that can be exchanged between the Terminal and the Network Access.

ALERTING
RELEASE
REL_ACK

Terminal

X
Reference

Point

X
Reference

Point Network
Access

X-Reference
Implementation
(Terminal Side)

X-Reference
Implementation
(Network Side)

SETUP
RELEASE
REL_ACK

Figure 23: Representation of an imaginary communication system

Figure 24 shows how the UML can be used to represent this type of system as two communication interfaces each of
which is realized by one of the communication entities. It uses a class diagram to show how the Terminal side interface
at the X Reference Point can receive SETUP, RELEASE and REL_ACK messages which are all of the generic type,
"PDU" while the Network Access side interface can only receive ALERTING, RELEASE and REL_ACK.

ETSI

ETSI EG 201 872 V1.2.1 (2001-08)28

Normative
Interface

Normative
Interface

TERMINAL
«communication entity»

NETWORK
«communication entity»

X reference
TERMINAL SIDE

«communication interface»
X Reference

NETWORK SIDE

«communication interface»

SETUP (setup:PDU)
RELEASE (release:PDU)
REL_ACK ()

ALERTING ()
RELEASE (release:PDU)
REL_ACK ()

Figure 24: Class diagram showing signals as operations

4.6.3.1.1.2 PUMR Example

The very simple class diagram in Figure 10 shows the PUMR system comprising little more than a generic PINX which
realizes three separate interfaces. At the specification modelling stage, this model, shown in Figure 25, has been
developed further to give considerably more detail about the messages that can be sent across the interfaces. For each of
the distinct functions (Home, Visitor and Directory) within the PUMR system, a class has been specialized from the
general PINX class. In addition, the communication interface classes have been tagged as either "Normative" or
"Non-normative".

ETSI

ETSI EG 201 872 V1.2.1 (2001-08)29

Visitor PINX
«communication systementity»

1

PUMsignallingat a Visitor PINX
«communication interface»

Directory PINX
«communication systementity»

PUMsignallingat a DirectoryPINX
«communication interface»

0..1

Terminal
«communication environment

PINX
«communication systementity»

PISN
«communication system»*

2..*

Home PINX
«communication systementity»

PUMsignalling at a Home PINX
«communication interface»

1

Normative Interface

User signalling
«communication interface»

Normative Interface

Normative Interface

Non-normative
Interface

1

+registration_response ()

+PUM_SETUP (PISNEnquiryInv : PISNEnquiry Invoke)
+RELEASE()

+PUM_SETUP (PUMRegistrationInv: PUMRegistration Invoke)
+PUM_CONNECT(PUMDelRegistrationResp : PUMDelete Registration Response)
+PUM_CONNECT(PISNEnquiryResp : PISNEnquiry Response)
+CALL_PROCEEDING()
+RELEASE()
+RELEASE_COMPLETE ()

+registration_request ()
+PUM_CONNECT (PUMRegistrationResp : PUMRegistration Response)
+PUM_CONNECT (PUMRegistrationErr : PUMRegistration Error)
+PUM_SETUP(PUMDelRegistrationInv : PUMDelete Registration Invoke)
+CALL_PROCEEDING ()
+RELEASE ()
+RELEASE_COMPLETE()

Figure 25: System-level specification model class diagram for PUM Registration

4.6.3.1.1.3 Attributes

Class attributes can be used to describe the contents of protocol messages where these messages are described as UML
classes. The attributes should clearly identify which items of information are included in a particular message but
should not attempt to describe the detailed format that they will take as this is better achieved using ASN.1. However, it
is possible to describe basic data structures using UML.

Figure 26 shows how a SETUP message will contain an originating address and a destination address, which are both
network addresses, and a service identifier which can take any of the values allowed for a basic service. It also shows
how a Network Address has an address portion and a sub-address, each of which is a string of up to 26 dialled digits
and that there are a range of enumerated values possible for the Network Basic Service argument.

ETSI

ETSI EG 201 872 V1.2.1 (2001-08)30

SETUP Network Address Dialled Digit String

Digit
«enumeration»

Network Basic Service
«enumeration»

1..26

1
Originator: Network Address
Destination: Network Address
Service i/d: Network Basic Service

AddressDigits: Dialled Digit String
SubAddressDigits: Dialled Digit String

0
1
2
3
4
5
6
7
8
9

allServices
speech
unrestrictedDigitalInformation
audio3100Hz
telephony
teletex
telefaxGroup4Class1
videotexSyntaxBased
videotelephony

Figure 26: Example of message classes using attributes

4.6.3.1.2 Further iterations of the model

The classes specified in the earlier stages of modelling should be refined or amended through subsequent iterations so it
is important to maintain a log of the changes made to each class and in which use case realizations it participates.

A class should depict only one major objective and should be given a name which clearly identifies that objective using
the vocabulary of the domain. Additional documentation should be added to each class to ensure that its purpose is
made clear and unambiguous.

In order to avoid unnecessary complexity in the Specification Model, it is useful to review each of the possible classes
identified, considering the following points:

- if the specification is similar to another class then it may be possible to combine the classes;

- if the specification of the class cannot be expressed in a few lines then it is probably too complex and should be
sub-divided;

- if neither a clear name nor a concise specification can be devised then it is probably that the class is not valid and
further analysis is required;

- if it is difficult to decide how a use case can be realized then it is possible that there are further classes to be
defined.

4.6.3.2 Sequence diagrams

Sequence diagrams are used for modelling the relationship in time of the messages which are exchanged within a
system. They show how the "responsibilities" specified in use cases are assigned to the different objects and classes of
the system. The operations of objects are used to identify the messages which can flow between objects.

Figure 27 shows a very high level sequence diagram for the PUM Registration service. It illustrates the simple
requirement that a PUM user should be able to send a registration request to the PISN which will return a registration
response after processing the request and registering the user at the new location.

ETSI

ETSI EG 201 872 V1.2.1 (2001-08)31

: PUM user

: PISN

registration_request()

registration_response()

From TCR-TR 011 pp 62

Figure 27: High level sequence diagram for PUM user registration

Each sequence diagram should include one or more of the participating actors and the system objects between which
messages are exchanged. The normal message flow should be described first and, if there are complicated exceptions,
these should be shown in separate diagrams. Constraints can be used to highlight the differences between normal and
exceptional flows of messages. Figure 28 represents a refinement of the PUM registration scenario, considering the
different objects in the system, i.e. Visitor, Home and Previous PINXs.

PUMUser : Terminal

CALL_PROCEEDING()

RELEASE()

RELEASE_COMPLETE()

registration_response()

PUM_CONNECT
(PUMDelete Registration Response)

RELEASE()

RELEASE_COMPLETE ()

New: Visitor PINX : Home PINX Previous : Visitor PINX : Directory PINX

registration_request ()

PUM_SETUP
(PUMregistration Invoke)

CALL_PROCEEDING()

PUM_SETUP
(PUMDelete Registration Invoke)

PUM_CONNECT
(PUMRegistration Response)

Figure 28: Complete sequence diagram for successful PUM user registration

Sequence diagrams are used in UML to describe the detailed interaction between objects and, as such, are similar to
basic Message Sequence Charts (MSCs). However, it is not possible to include parts of another sequence diagram or to
structure complex ones similar to HMSCs. Hence sequence diagrams should not include too much detail if they are to
remain understandable.

ETSI

ETSI EG 201 872 V1.2.1 (2001-08)32

4.6.3.3 Collaboration diagrams

Collaboration diagrams depict a set of objects in a given situation. Links between objects that can interact together show
the messages that can be exchanged. These are numbered in sequence to specify the time order in which they occur and
can have arguments in the form of a parameter list.

Figure 29 shows the collaboration diagram which represents the same message scenario depicted in the sequence
diagram in Figure 28.

Vis itor :
PINX

Home :
P INX

: PUM user

Pre vious :
P INX

Direc tory
: PINX

2: PUM_SETUP()
8 : RELEASE()

3: CALL_PROCEEDING()
5: PUM _CONNECT()

9: RELEASE_COMPLETE()

4: PUM_SETUP()
11: RELEASE()

6: CALL_PROCEE DING()
10: PUM_CONNECT()

12: RELEASE_COMPLETE()

1: regis tration_request()

7: regis tration_response()

Figure 29: An example UML collaboration diagram for PUMR

Collaboration diagrams are especially useful at the specification modelling stage when determining what objects are
required in the system and specifying the meaning of their interactions. These objects can be either named or unnamed
instances of classes.

Collaboration diagrams and sequence diagrams are different views of the same information. The difference between
them is that sequence diagrams focus on the relationship in time of the messages that flow between objects whereas
collaboration diagrams focus on the relationships between the objects themselves.

4.6.3.4 Statechart diagrams

Although class diagrams are very useful for showing the structure of a protocol system, its dynamic behaviour can only
be represented through communication interfaces (operations in classes), functional requirements (use cases), and object
interaction examples (sequence diagrams). By using statechart diagrams, it is possible to describe the individual
behaviour of a given object of a particular class in terms of state changes caused by events. This state behaviour should
correspond to the interpretation of the messages received by the object. Once an object for which it would be helpful to
have a more detailed description of behaviour has been selected from a sequence diagram, the use cases related to its
class should be studied to determine what behaviour is to be modelled. Then, any relevant sequence diagrams and
collaboration diagrams should be studied to ensure that all messages sent and received by the class are included in the
statechart diagram as actions or events.

When receiving an event, the statechart initiates the sole transition that is enabled by it, causing an action and a state
change. Actions are the operations specified in the class of the object that receives the event. For example, an action
may be to send a signal to another object. It is acceptable to have events and actions associated only with state
transitions and not with the states themselves. The main reason why this is acceptable is that in the standards making
process, SDL is used for detailed behaviour in the next stages and so such basic statechart diagrams are sufficient at the
specification stage.

In Figure 30, the notation "EVENT [GUARD]/ACTION" is used to label the transitions. Control is transferred from state
"Idle" to state "Processing" or state "Relocating" depending on the value of the "Location" argument.

ETSI

ETSI EG 201 872 V1.2.1 (2001-08)33

Start

Setup(Location)[Location = Home] / CallProceeding

Idle

Processing Relocating

Setup

Setup(Location)[Location = Previous] / Connect

/ CallProceeding

Figure 30: A simple statechart diagram derived from the PUM study

It must be noted that both guards and actions are only textual and are used for descriptive or referencing purpose only.
Even though they are not executable, they should be expressed in a structured and meaningful form.

All interface objects must have a set of message-receiving operations showing all possible incoming events. Statechart
diagrams should be used if:

- an interface object has a large set of operations;

- an interface object has operations representing behaviour which is complex;

- there are conditional branches in the internal behaviour of the object; and/or

- at a given time, only a subset of operations of an interface are feasible.

The statechart diagram in Figure 31 shows an overview of the operation of PUM user registration at the Home PINX.
The caret (^) character preceding each action indicates the sending of a message (e.g. "^CALL_PROCEEDING")
during a transition from one state to another. This example is consistent with the sequence diagram shown in Figure 28.

ETSI

ETSI EG 201 872 V1.2.1 (2001-08)34

PUM_SETUP / ^PUM_SETUP

Idle

Sending
CALL_PROCEEDING

to Visitor Location

PUM_CONNECT sent to
Visitor Location

CALL_PROCEEDING sent / ^PUM_CONNECT

RELEASE / ^RELEASE_COMPLETE

CALL_PROCEEDING

PUM_CONNECT / ^RELEASE

RELEASE_COMPLETE

PUM_SETUP sent to
Previous Visitor

Idle

Wait for PUM_CONNECT
from Previous Visitor

PUM_CONNECT received
from Previous Visitor

Processing PUM Registration Request

Figure 31: Statechart diagram showing PUM user registration at Home PINX

The statechart diagram shows how the Home PINX begins in the Idle state and always returns to it at the end of
processing a registration request. The dual path through the chart indicates that CALL_PROCEEDING is being
processed at the same time as the PUM_SETUP to the Previous Visitor PINX.

Generally, a statechart diagram is attached to a class in order to describe the behaviour of its instances, specifying the
events to which they must react and how they should react. If the behaviour of a use case is already defined using
activity diagrams then the corresponding statechart diagrams should refine this behaviour in order to be consistent.
Statechart diagrams should be used in the latter stages of the process to specify details of the behaviour.

4.7 Use SDL and MSC to specify detailed behaviour
Although the UML can support the specification of detailed behaviour using existing industry-standard text-based
languages such as C++ and Java, it currently has no graphical action semantics of its own. This means that in using the
UML there is a reliance on an implementation language to get an executable specification. SDL, however, is able to
produce executable models which are independent of any implementation. Therefore, protocol standards are generally
described using SDL and MSC, and this should continue at least until a viable alternative is available within the UML.

ETSI

ETSI EG 201 872 V1.2.1 (2001-08)35

The general approach presented in the present document is that UML is used to identify, analyse and specify the system
entities, together with their relationships and then SDL and MSC are used for architectural and detailed behaviour
design. The joint use of the three notations requires a smooth transition from analysis (Specification Model) to design.
This is specified in ITU-T Recommendation Z.109 [7] that defines a set of mapping rules between UML and SDL
constructs, known as the SDL UML profile. This mapping between the diagrams of the two notations can be realized by
introducing a number of stereotypes in the UML classes.

The UML development process defined here adopts a similar approach. For the purpose of protocol standardization,
there are five new stereotypes introduced here and the mapping to SDL concepts shown in Table 3 is suggested.

Table 3: Mapping between UML stereotypes and SDL concepts

Stereotype in UML SDL concept
<<communication system>> System
<<communication system entity>> Block
<<communication environment entity>> SDL environment
<<communication interface>> Signal list
<<communication message>> Newtype or ASN.1 type

In addition, the following guidelines should also be considered

- links between the UML objects should be converted to channels;

- associations between <<communication interface>> and <<communication system entity>> or
<<communication environment entity>> join signal lists to channels in the SDL model;

- every block converted from a <<communication system entity>> should contain a process whose behaviour is
defined by the associated UML statechart diagram.

Use case diagrams are not directly mapped to SDL (they often are informal) but they are realized by classes that are
converted to an SDL structure diagram. UML statechart diagrams can be directly converted to SDL state machine
diagrams with a few adaptations for hierarchical UML states. Finally, sequence diagrams can also be directly mapped to
MSC on a one-to-one basis, as they are a subset of the MSC notation.

There is no single point in the UML development process where the transition to an SDL specification can easily be
made. The graphical similarity between UML sequence diagrams and MSC make them an obvious point at which to
move from one language to the other, particularly in those cases where the target standard is to contain a complete SDL
model. Certainly, the UML-based process described here should be used up to this point. However, there are benefits to
be gained by continuing beyond sequence diagrams and into the specification of statecharts.

Well-defined statechart diagrams, combined with a collection of sequence diagrams form a solid base from which to
develop an SDL model that conforms to the requirements specified in UML. The activity diagram shown in Figure 32
illustrates a general process that can be followed in making the transition from a UML specification of a system to an
SDL specification of its behaviour. It identifies the actions to be taken and the UML artefacts which are the inputs to
those actions.

ETSI

ETSI EG 201 872 V1.2.1 (2001-08)36

[no blocks remaining
to be considered]

[blocks remaining
to be considered]

Create
SDL Block

Create SDL Process
with SDL state machine

Select Block

Check Communication Entity
links from object diagrams

Create SDL Channels
between blocks

Check Communication Interfaces
related to links

Create
SDL Signallists

Create
SDL System System

Statechart
[entities

remaining]

SDL Block

[no entities
remaining]

Links

Communication

Communication
Environment

Entity

Communication
Interfaces

Communication
System
Entity

Interaction
Diagram

Figure 32: Transition from UML to SDL

ETSI

ETSI EG 201 872 V1.2.1 (2001-08)37

4.8 Use the UML to support test development
The development of a conformance test suite is an activity which can take place in parallel with the development of the
base standard. It should be a goal to reuse as much of the standardization specification as possible for test suite
development. This clause provides guidelines on how the UML could be used to support the development of
conformance test suites based on the ISO/IEC 9646 [9] standard. The Second Edition of the Tree and Tabular
Combined Notation (TTCN) is considered to be the target test notation.

4.8.1 Activity overview

The development of a test model can be divided into several distinct activities as shown in Figure 33. In the first step,
independent system components have to be identified. In the next step, test configurations are developed which describe
the mapping of components on system and test nodes. In the third and fourth steps, test case structures and test purposes
are defined for all test configurations.

Define test case structure

Define test configurations

Define test cases

Identify components

Figure 33: Activities during test model development

4.8.2 Artefacts

The following artefacts are produced as part of the Test Model (Figure 34):

- component and deployment diagrams for test configuration specification;

- class diagrams for test case structuring;

- sequence, collaboration and statechart diagrams for test purpose definitions.

ETSI

ETSI EG 201 872 V1.2.1 (2001-08)38

Test Model

Test configurations

Component diagrams

Deployment diagrams

Test purpose definitions

Sequence diagrams

Collaboration diagrams

Statechart diagrams

Test case structure

Class diagrams

Figure 34: Artefacts produced as part of the Test Model

4.8.3 Identify components

The goal of the first activity during test modelling is to identify functional entities which can be tested independently.
With the UML, these functional entities are depicted as components.

During conformance testing, only normative interfaces can be tested. Therefore, components must realize at least part of
a normative interface. Normative interfaces have been identified during Context Modelling (see clause 4.4.4.3), so the
Context Model can be used as a reference point for component identification.

4.8.3.1 PUMR example

Using the information about normative interfaces in Figure 12, the following components have been identified for
PUMR:

- PUMR Home;

- PUMR Visitor;

- PUMR Directory.

Figure 35 shows the PUMR components and the interfaces which they realize.

ETSI

ETSI EG 201 872 V1.2.1 (2001-08)39

PUMR Directory

PUMR Visitor

PUMR Home

From Context Model

PUMR Directory

PUMR Visitor

PUMR Home

Figure 35: PUMR components

4.8.4 Define test configurations

After their implementation, the components (functional entities) defined in clause 4.8.3 will be executed on some piece
of hardware. There are connections between the components, either physical or logical.

During conformance testing, one or more implementation components are replaced with test components. Test
components stimulate the Implementation Under Test (IUT) and then check the implementation's response for
conformance with the standard.

In order to be able to specify a test suite, a test configuration has to be defined first. UML deployment diagrams can be
used to identify the IUT, test components and their connection through Points of Control and Observation (PCO) and
Coordination Points (CP). In Figure 36, the component FE1 resides in a node called "Implementation" which is
stereotyped as IUT. Component FE2 has been moved from the IUT into the "Tester" node which is stereotyped as MTC
(for Main Test Component) according to ISO/IEC 9646 [9].

<<IUT>>

Implementation

FE1

<<MTC>>

Tester

FE2 <<PCO>>

PCO1

Figure 36: Generic test configuration

ETSI

ETSI EG 201 872 V1.2.1 (2001-08)40

4.8.4.1 PUMR example

Figure 37 shows an example of a test configuration for a PUMR system. The IUT only contains the PUMR Home
component, suggesting that this component is the target of the test suite. There are three Parallel Test Components
(PTC) which are connected with the IUT through a PCO each. These test components act as Visitor PINX, Previous
Visitor PINX and Directory PINX respectively. A main test component called "Test coordinator" is connected with the
parallel test components through coordination points.

<<MTC>>

Test Coordinator

<<IUT>>

PINX

PUMR Home

<<PTC>>

TC3

PUMR Directory

<<PTC>>

TC1
<<PTC>>

TC2

PUMR VisitorPUMR Visitor

Acts as Previous
Visitor PINX

Acts as New
Visitor PINX

Acts as
Directory PINX<<CP>>

CP1

<<CP>>

CP2

<<CP>>

CP3

<<PCO>>

PCO 3

<<PCO>>

PCO 1

<<PCO>>

PCO 2

Figure 37: PUMR test configuration

ETSI

ETSI EG 201 872 V1.2.1 (2001-08)41

4.8.5 Define test case structure

Test suites contain test cases which realize test purposes. It is common to put test cases with similar purposes into
groups. Basic groups of test purposes have already been defined in ISO/IEC 9646 [9]. For example, there are Capability
Tests, Valid Behaviour Tests and Timer Tests. Groups can be nested; the hierarchy of test groups is called Test Suite
Structure.

Through the use of packages within class diagrams, a test suite structure can be defined graphically with the UML, as is
shown in Figure 38. Test cases are also represented as packages. Of course, more than one diagram will be used to
define the test case structure in real-world specifications.

<<test group>>

Test cases

<<test group>>

Valid behaviour tests

<<test case>>

VBTest1
<<test case>>

VBTest2

<<test group>>

Capability tests

<<test case>>

CATest1
<<test case>>

CATest2

Figure 38: Test case structure

NOTE: The structure for test steps can be specified similarly to the test case structure.

4.8.6 Define test cases

Viewed at a conceptual level, a test case is the realization of a test purpose. The "Test purpose style guide",
ETR 266 [1], defines the information which has to be provided by the test designer in order to write TTCN test cases.
This information is mostly textual, but Message Sequence Charts may also be included as a graphical representation of
the test purpose.

NOTE: Message Sequence Charts can only express a subset of all possible TTCN behaviour descriptions.

The UML provides several diagram types which can be used to help the development of test cases. Sequence and
collaboration diagrams can show the signal exchange between the tester and the IUT. These may be taken from the
Specification Model and adapted for test specification purposes. As an alternative, statecharts may be used to model the
functionality of individual test components; these can also be taken and adapted from the Specification Model.

4.8.6.1 PUMR example

In this example, a test case should be developed for use case 1 identified in clause 4.5.3.4. The test purpose is to verify
that a user can successfully register at a Visitor PINX and that he will be deregistered from his Previous Visitor PINX.
The test configuration to be used is the one shown in Figure 37. In the Specification Model, a sequence diagram has
been drawn which shows the message exchange necessary for the PUMR user registration (Figure 28). Figure 39 shows
a version of this diagram which has been adapted to show the message exchange during test execution.

ETSI

ETSI EG 201 872 V1.2.1 (2001-08)42

Test purpose description for test

case VBTest1.

TC1 :VBTest1_TC1

TC2 :VBTest1_TC2

Test Coordinator PINX :IUT

CALL_PROCEEDING()

RELEASE_COMPLETE()

PUM_CONNECT(pumRegistrRes)

RELEASE()

PUM_SETUP(pumDelRegArg)

CALL_PROCEEDING()

RELEASE()

RELEASE_COMPLETE()

PUM_SETUP(pumRegistrArg)

PUM_CONNECT(pumDelRegResp)

Figure 39: Sequence diagram for test purpose specification

ETSI

ETSI EG 201 872 V1.2.1 (2001-08)43

Annex A (informative):
Case Study

A.1 QSIG Private User Mobility Registration (PUMR)
supplementary service

Private User Mobility Registration (PUMR) is a supplementary service that enables a Private User Mobility (PUM) user
to register at, or de-register from, any wired or wireless terminal within the PISN. The ability to register enables the
PUM user to maintain the provided services (including the ability to make and receive calls) at different access points.
It was chosen to illustrate the UML guidelines for the following reasons:

- a pre-normative study highlighting the initial requirements for the service already existed in TCR-TR 011 [6];

- the stage 1/stage 2 [8] and the stage 3 [10] standards are well expressed and include refined user requirements,
ASN.1 specifications of operations, Message Sequence Charts and SDL process charts;

- the PUMR service is neither trivially simple nor prohibitively complex.

Contained in this annex are a Context Model, a Requirements Model, a Specification Model and a Test Model for
PUMR. From these it would be possible to derive an SDL specification and a conformance test suite. The models may
have elements missing but they are complete enough to show how the various UML concepts and diagrams can be used
in the development of a protocol standard.

NOTE: The Context, Requirements and Specification Models are presented pictorially here but they are also
available in electronic format as either HTML for browsing or as Rational Rose 2000 models for editing.
The Testing Model is also available electronically as an XMI-compliant file.

A.2 PUMR UML models

A.2.1 Context Model
The PUMR Context Model is very simple and is just used to illustrate the basic concepts upon which the service is to be
built.

Figure 40: Context Model packages

ETSI

ETSI EG 201 872 V1.2.1 (2001-08)44

Figure 41: Simple PUMR Domain Model

Figure 42: Sequence diagram indicating the flow of information between the user and the PISN

Figure 43: PUMR system architecture shown in an object diagram

ETSI

ETSI EG 201 872 V1.2.1 (2001-08)45

A.2.2 Requirements Model
The use cases developed for the PUMR Requirements Model are based upon the requirements specified in
TCR-TR 011 [6] and the stage1/stage 2 standard, ISO/IEC 17875 [8] where the original requirements have been refined.

Figure 44: PUM Registration use case diagram

Figure 45: Activity diagram describing the "Register PUM User
at Terminal for Outgoing Calls"use case

ETSI

ETSI EG 201 872 V1.2.1 (2001-08)46

Figure 46: Activity diagram describing the "Specify Access for Incoming Calls" use case

ETSI

ETSI EG 201 872 V1.2.1 (2001-08)47

Figure 47: Activity diagram describing the "Specify Profile" use case

Figure 48: PUM De-registration use case diagram

ETSI

ETSI EG 201 872 V1.2.1 (2001-08)48

Figure 49: Activity diagram describing the "De-register from current location" use case

ETSI

ETSI EG 201 872 V1.2.1 (2001-08)49

A.2.3 Specification Model
The Specification Model draws on the information presented in the Context Model and the Requirements Model as well
as the existing PUMR Stage 3 standard, ISO/IEC 17876 [10] to offer a set of UML diagrams from which it would be
possible to start developing a detailed behaviour specification in SDL. This "reverse engineering" approach would not
normally be used as the purpose of using UML is to end up with a Stage 3 standard (or something similar). In this case,
it was used to ensure that the UML specification is fully aligned with the "resultant" standard.

Figure 50: Specification Model packages

Figure 51: Basic Domain Model (from Context Model)

ETSI

ETSI EG 201 872 V1.2.1 (2001-08)50

Figure 52: PUMR Object Model

Figure 53: Example sequence diagram showing registration using the PUM Number

ETSI

ETSI EG 201 872 V1.2.1 (2001-08)51

Figure 54: Example sequence diagram showing registration using Alternative Identifier

ETSI

ETSI EG 201 872 V1.2.1 (2001-08)52

Figure 55: Example sequence diagram showing de-registration

ETSI

ETSI EG 201 872 V1.2.1 (2001-08)53

Figure 56: Example sequence diagram showing PUMR interrogation

ETSI

ETSI EG 201 872 V1.2.1 (2001-08)54

Figure 57: PUMR detailed Domain Model

Figure 58: Statechart diagram showing the registration processing at the Home PINX

NOTE: Figure 58 and Figure 59 are examples of a statechart diagram and a sub-diagram that could be developed
for the PUMR supplementary service. The Specification Model is incomplete at this point and does not
include any further statecharts.

ETSI

ETSI EG 201 872 V1.2.1 (2001-08)55

Figure 59: Statechart sub-diagram showing the detailed processing
of a registration request at the Home PINX

Figure 60: PUMR message-specific packages

ETSI

ETSI EG 201 872 V1.2.1 (2001-08)56

Figure 61: Identification of PUMR signalling at the QSIG interfaces

Figure 62: Identification of the two QSIG signals used for carrying PUMR message information

ETSI

ETSI EG 201 872 V1.2.1 (2001-08)57

Figure 63: PUMR message contents carried in the SETUP signal

ETSI

ETSI EG 201 872 V1.2.1 (2001-08)58

Figure 64: PUMR message types carried in the CONNECT signal

Figure 65: Contents of the PUMR response messages

ETSI

ETSI EG 201 872 V1.2.1 (2001-08)59

Figure 66: Contents of the PUMR error messages

Figure 67: PUMR registration message types

Figure 68: PUMR de-registration message types

ETSI

ETSI EG 201 872 V1.2.1 (2001-08)60

Figure 69: PUMR delete registration message types

Figure 70: PUMR interrogation message types

Figure 71: PISN enquiry message types

ETSI

ETSI EG 201 872 V1.2.1 (2001-08)61

Figure 72: PUMR general data types

Figure 73: PUMR error codes

ETSI

ETSI EG 201 872 V1.2.1 (2001-08)62

Figure 74: Type specification of PUM user PIN

Figure 75: Type specification of PUM user identifier

Figure 76: Type specification of PUMR message extension

ETSI

ETSI EG 201 872 V1.2.1 (2001-08)63

Figure 77: QSIG message packages not specific to PUMR

Figure 78: QSIG basic service messages

Figure 79: QSIG general data types

ETSI

ETSI EG 201 872 V1.2.1 (2001-08)64

Figure 80: Type specification of QSIG party number

Figure 81: Type specification of QSIG digit string

ETSI

ETSI EG 201 872 V1.2.1 (2001-08)65

A.2.4 Testing Model
The Testing Model is derived from the Context and Specification Model and bridges the gap between the functional
specification and its associated test suite.

PUMR Visitor

(Context Model Interfaces)

Identification of functional entities.

PUMR Directory

(Context Model Interfaces)

PUMR Home

(Context Model Interfaces)

PUMR Visitor

PUMR Home

PUMR Directory

Figure 82: Functional entities

ETSI

ETSI EG 201 872 V1.2.1 (2001-08)66

<<IUT>>

PINX

PUMR Directory PUMR Home PUMR Visitor

<<MTC>>

Main Tester

PUMR Visitor

Simple single tester test configuration.

Figure 83: Test configuration with a single tester

ETSI

ETSI EG 201 872 V1.2.1 (2001-08)67

<<MTC>>

Test Coordinator

<<PTC>>

TC1

PUMR Visitor

<<IUT>>

PINX

PUMR Home

<<PTC>>

TC2

PUMR Visitor

<<PTC>>

TC3

PUMR Directory

Distributed test configuration.

Acts as Previous

Visitor PINX

Acts as New

Visitor PINX

Acts as

Directory PINX<<CP>>

CP3
<<CP>>

CP1

<<CP>>

CP2

<<PCO>>

PCO 1
<<PCO>>

PCO 3

<<PCO>>

PCO 2

Figure 84: Test configuration with distributed testers

ETSI

ETSI EG 201 872 V1.2.1 (2001-08)68

<<test group>>

Test cases

<<test group>>

Valid behaviour tests

<<test case>>

VBTest2

<<test case>>

VBTest1

<<test group>>

Capability tests

<<test case>>

CATest1

<<test case>>

CATest2

Test group and test case hierarchy.

Figure 85: Test case structure

ETSI

ETSI EG 201 872 V1.2.1 (2001-08)69

Test purpose description for test

case VBTest1.

TC1 :VBTest1_TC1

TC2 :VBTest1_TC2

Test Coordinator PINX :IUT

CALL_PROCEEDING()

RELEASE_COMPLETE()

PUM_CONNECT(pumRegistrRes)

RELEASE()

PUM_SETUP(pumDelRegArg)

CALL_PROCEEDING()

RELEASE()

RELEASE_COMPLETE()

PUM_SETUP(pumRegistrArg)

PUM_CONNECT(pumDelRegResp)

Figure 86: Test purpose description

ETSI

ETSI EG 201 872 V1.2.1 (2001-08)70

Behaviour description for test

component TC1 in test case VBTest1.

Wait for Call Proceeding

Wait for Release Complete

Wait for Connect

/PUM_SETUP(pumRegistrArg)

CALL_PROCEEDING

PUM_CONNECT(pumRegistrRes)/RELEASE()

RELEASE_COMPLETE

Figure 87: Behaviour description for test component TC1

Behaviour description for test

component TC2 in test case VBTest1.

Call Proceeding sent

Waiting for Release

Waiting for Setup

PUM_SETUP(pumDelRegArg)/CALL_PROCEEDING()

RELEASE/RELEASE_COMPLETE()

/PUM_CONNECT(pumDelRegRes)

Figure 88: Behaviour description for test component TC2

ETSI

ETSI EG 201 872 V1.2.1 (2001-08)71

Annex B (informative):
Summary of UML symbology

B.1 Introduction
For references purposes, this annex lists the UML symbols used throughout the present document and for each one
provides a very brief description of its usage. The symbols are grouped as follows:

- structural symbols;

- behavioural symbols;

- relationships.

This is not intended to be a complete UML symbology and only includes those symbols that are covered by the
guidelines in the present document. One of the many published UML tutorials and reference manuals should be
consulted for more detailed information.

ETSI

ETSI EG 201 872 V1.2.1 (2001-08)72

B.2 Structural items

[<<stereotype>>]

name

attributes

operations

Class:

Used to specify entities such as systems, functional entities and message types

name

Use case:

Used to specify functional scenarios in the form of a set of sequences of actions

name

Actor:
Used to represent external systems or some internal parts of a system which use
a particular subsystem

[name] : class

Component:

Used to specify functional entities and test components

name

Node:

Used to specify test configurations

name

Package:

Used for collecting groups of related diagrams or items together

<text>

Note:

Used to annotate diagrams

ETSI

ETSI EG 201 872 V1.2.1 (2001-08)73

B.3 Behavioural items
Initial state:

The starting point in an activity or statechart diagram
Final state:

The end point in an activity or statechart diagram

name

State:

Used to indicate the valid processing states that can exist within a system

event / [action]
Transition:

Used to show the effect of specific stimuli on the system

action

Action state:

Used to indicate individual actions taken by a system

Branch or Merge:

Indicates possible alternative outcomes or the re-joining of two processing paths

Fork:

A complex transition allowing concurrent processing of actions

Join:

The combination of two or more concurrent threads into a single thread

[name] : class

Object flow:

Used to represent the flow of data items in an Activity or Statechart diagram

ETSI

ETSI EG 201 872 V1.2.1 (2001-08)74

B.4 Relationships

source target

<<stereotype>>
name

Dependency:

A semantic relationship between two elements in which a change to one
element may affect the element depending upon it

name

0..1 *

Association showing navigability (→) and multiplicity (0..1, *)

child parent Generalization:

An association between a general element and a more specific element
derived from it. Used to show inheritance.

Composition:

The parts cannot survive without the composite item

Aggregation:

The parts can exist separately from the composite item

ETSI

ETSI EG 201 872 V1.2.1 (2001-08)75

History

Document history

V1.1.1 March 2001 Publication

V1.2.1 June 2001 Membership Approval Procedure MV 20010817: 2001-06-19 to 2001-08-17

V1.2.1 August 2001 Publication

	Intellectual Property Rights
	Foreword
	1 Scope
	2 References
	3 Definitions and abbreviations
	3.1 Definitions
	3.2 Abbreviations

	4 A methodology for the use of the UML in telecommunication standards development
	4.1 Introduction
	4.2 A process based upon the UML
	4.3 Examples based on the Private User Mobility (PUMR) supplementary service
	4.4 Develop a Context Model
	4.4.1 Activity overview
	4.4.2 Artefacts
	4.4.3 Compile feature list
	4.4.3.1 PUMR example

	4.4.4 Develop Domain Model
	4.4.4.1 Identify communication entities
	4.4.4.2 Identify system architecture
	4.4.4.3 Identify interfaces
	4.4.4.4 PUMR example

	4.5 Develop a Requirements Model
	4.5.1 Activity overview
	4.5.2 Artefacts
	4.5.3 Collect functional requirements
	4.5.3.1 Develop use cases
	4.5.3.2 Identifying actors
	4.5.3.3 Identifying use cases
	4.5.3.4 PUMR Example
	4.5.3.5 Describing each use case
	4.5.3.5.1 Activity Diagrams
	4.5.3.5.2 PUMR Example

	4.5.4 Collect non-functional requirements

	4.6 Develop a Specification Model
	4.6.1 Activity overview
	4.6.2 Artefacts
	4.6.3 Refining the model of communicating entities
	4.6.3.1 Class diagrams
	4.6.3.1.1 Identifying candidate classes
	4.6.3.1.2 Further iterations of the model

	4.6.3.2 Sequence diagrams
	4.6.3.3 Collaboration diagrams
	4.6.3.4 Statechart diagrams

	4.7 Use SDL and MSC to specify detailed behaviour
	4.8 Use the UML to support test development
	4.8.1 Activity overview
	4.8.2 Artefacts
	4.8.3 Identify components
	4.8.3.1 PUMR example

	4.8.4 Define test configurations
	4.8.4.1 PUMR example

	4.8.5 Define test case structure
	4.8.6 Define test cases
	4.8.6.1 PUMR example

	Annex A (informative): Case Study
	A.1 QSIG Private User Mobility Registration (PUMR) supplementary service
	A.2 PUMR UML models
	A.2.1 Context Model
	A.2.2 Requirements Model
	A.2.3 Specification Model
	A.2.4 Testing Model

	Annex B (informative): Summary of UML symbology
	B.1 Introduction
	B.2 Structural items
	B.3 Behavioural items
	B.4 Relationships

	History

