ETSI EG 201 872 vi.2.1 ¢oo1-08)

ETSI Guide

Methods for Testing and Specification (MTS);
Methodological approach to the use of object-orientation
in the standards making process

ETSI %

2 ETSI EG 201 872 V1.2.1 (2001-08)

Reference
REG/MTS-00076

Keywords
UML, protocol, testing, methodology

ETSI

650 Route des Lucioles
F-06921 Sophia Antipolis Cedex - FRANCE

Tel.: 43349294 4200 Fax: +334 93 65 47 16

Siret N° 348 623 562 00017 - NAF 742 C
Association a but non lucratif enregistrée a la
Sous-Préfecture de Grasse (06) N° 7803/88

Important notice

Individual copies of the present document can be downloaded from:
http://www.etsi.org

The present document may be made available in more than one electronic version or in print. In any case of existing or
perceived difference in contents between such versions, the reference version is the Portable Document Format (PDF).
In case of dispute, the reference shall be the printing on ETSI printers of the PDF version kept on a specific network drive
within ETSI Secretariat.

Users of the present document should be aware that the document may be subject to revision or change of status.
Information on the current status of this and other ETSI documents is available at http://www.etsi.org/tb/status/

If you find errors in the present document, send your comment to:
editor@etsi.fr

Copyright Notification

No part may be reproduced except as authorized by written permission.
The copyright and the foregoing restriction extend to reproduction in all media.

© European Telecommunications Standards Institute 2001.
All rights reserved.

ETSI

http://www.etsi.org/
http://www.etsi.org/tb/status
mailto:editor@etsi.fr

3 ETSI EG 201 872 V1.2.1 (2001-08)

Contents

Intellectual Property RIGNEScouiii ettt e nneas 5
[0 = 1Yo o [TSP US PR PPRPPR 5
1 o0 o TR PRR PSP PURR PPN 6
2 REFENEINCES. ...t b ettt h e h et bt e b e e he e e bt e e b e e eae e e b e e b e et e e nn e nn e beennes 6
3 Definitions and abDreViations.oouiiiei s 7
31 D= 1 Ao RO RRRTRPRRI 7
3.2 ADBDIEVIBLIONS. ...ttt b et b e bt e b e bt e bt e b e e et e a et Rn R n e nn e nan e nan s 7
4 A methodology for the use of the UML in telecommunication standards development.............c.ccceceee 8
41 F gL o o I8 To: (oo HOO PP U P U P UP PP TR 8
4.2 A process basad UPON thE UMLoiiiiiiiiiic ettt sb bbb nans 8
4.3 Examples based on the Private User Mobility (PUMR) supplementary SErViCecocevvveieeieeieeniecsieeniens 10
4.4 DevelOp @ CONEXE IMOOEcc.eiiiiiiee ettt sae e saeesbeesreesbeesreen 11
441 ACHVITY OVEIVIBWW ...ttt h e b et b e b e s bt e sb e e sb e e eb e e bt e b e e bt eaneenbeesbeesbeesbeesbeesreen 11
4.4.2 FN 1= o TSRS 11
4.4.3 COMPIE TEAIUNE TISE..c ettt ettt b e bbbt e san e en bt e be e b e nbe e b e 11
4431 PUMBR BXAMPIE. ...ttt st b e bttt e b e s bt et e b e sb e s bt e e e b e sbesbesbesnnenbe st 12
4.4.4 Devel Op DOMEIN MOUE! ...ttt b et b e bt e sb e e bt e sb e e s b e e nnesanesnnesnns 13
4441 [dentify COMMUNICALION ENEITIESeiiiiiiiii e 14
4442 [dentify SYSEM @rChITECIUIE ..ot 15
4443 [AENEITY TNEEITACES. ...ttt b e b e bt bbb e be e 15
4444 PUMBR BXAMPIE. ...ttt st e et s b et e e et e bt e e e b e sbeshe e e e b e sbesbesbesneesbe st 15
4.5 Develop a ReqUIrEMENTSIMOOEooiuiiiiieiee s ae b b e sree 17
451 ACHVITY OVEIVIBWW ...ttt h bbbt h e s bt e sb e e e bt e sb e e bt e b e e bt eaneenbeesbeesbeesbeenbeesreen 17
452 FN 1= o TSRS 18
453 Collect fUNCLIONAl FEQUITEIMENES........eitieieeie ettt sb e bbb b b e n e b bbb 18
4531 DEVE 0P USE CASES.e ettt ettt ettt ettt ettt b et e bt e bt e bt e bt e bt e bt e be e beenbe e beenbeenbeebeenes 18
4532 [AENEITYING @CLOIS. ... ettt e et a e s st sae e e an e et et e e b e e b e 19
45.3.3 [AENEITYING USE CASES......eeuteeatieteet ettt ettt ettt b e b e b e bt e s bt e bt e s be e s b e e s beesbe e s beenbeenbe e b e e be e 19
4534 PUMBR EXGIMPI ...ttt sttt sttt e b e she e e e b e sb e s bt e e e nbesbesbesbeannesbenben 19
4535 DesCribiNG BACN USE CASE........eiuiieeiei et bbb b b e 21
45351 ACHVITY DIAOIAIMS. ...ttt ettt bt ie e e b e be bt e se e besbesbeaseesbesbesbeeneenbesbesbeenseseesras 21
45352 0 Y 1 = 101 o) =TSSR 21
454 Collect NON-FUNCLIONAl FEQUITEIMENES........uiiiiiie ettt nbe e re e 24
4.6 Develop a SPeCifiCation MOOEooiiii et sreesree 24
4.6.1 ACHVITY OVEIVIBWW ...ttt et b bt bt e s bt e sb e e sb e e sb e e bt e b e e et enneenbeesbeesbeesbeesbeesreen 24
4.6.2 FN 1= o TSRS 25
4.6.3 Refining the model of commUNICaLiNG ENEITIES.........oiiiiiiiiieee s 25
46.3.1 ClaSS QIAOIAIMIS. ...tttk ettt ettt bttt b e e bt e b e e bt et e e bt e be e bt ebeebeebeesbeesbeesreesreen 26
46.3.11 [dentifying CaNQITAEE CIASSESeeiiiiie i 26
46.3.1.2 Further iterations Of theMOUEooiiii e 30
4.6.3.2 SEOUENCE QIBOIAIMS ...ttt ettt ettt ettt ettt e bt b e s bt e bt e sb e e sb e e st e e sb e e abeeabeesbeesbeenbeebeesbeesbeenreen 30
4.6.3.3 Colla0ration QIBGIAIMS........eeiteetieie ettt bbb e b e e s b e e b e e sbeeneeneesbeesreesreen 32
4.6.3.4 SEALECHAIT IAGIAIMS......coeeeeeee e b e b b e sb e e sbeesbeesreenree 32
4.7 Use SDL and MSC to specify detailed DEhaVIOUNcooiiiiiiee e 34
4.8 Use the UML t0 SUpPOrt teSt deVEI OPMENT.......ccueiiiiiii ettt sttt sttt sb e sb e b s sreesree 37
481 ACHVITY OVEIVIBWW ...tttk bbbt bt e s bt e sb e e sb e e sb e e bt et e e bt eaneenbeesbeesbeesbeesbeenreen 37
482 FN 1= o TP U PRSP 37
4.83 [AENLITY COMPONENTS. ... ettt a et eh et b et s e et sa st e ae e eae e e ae e e snesnneaanennnesnns 38
483.1 PUMBR EXAIMPIE.....cceeeeeee ettt b e b bbbt e b e s ae e s bt e b e e b e e b e 38
4.84 DEfiNE LESE CONFIGUIBLIONS.......eeueeeiteeiee ettt bbbt b e be e sbe e be e be e enneeanennnesnns 39
484.1 PUMBR EXAIMPIE.....cceeeeeeeee ettt b e b e b e bt e b e s ae e s bt e b e e b e e b e 40
4.85 DEfiNE LESE CASE SIIUCTUNE. ...ttt bbb e sb e b e sb e e be e b et smnesnneenn e e 41
4.8.6 DEfINE LESE CASES ...ttt ettt ettt b ettt et e e et e bt e bt e bt e bt e bt e bt e et e Rn e enn e ann e ann e 41
4.8.6.1 PUMBR EXAIMPIE.....cceeeeeeee ettt b e bt e b bt e s b e s ae e s bt et e e b e e be e 41

ETSI

4 ETSI EG 201 872 V1.2.1 (2001-08)

Annex A (infor mative): CASE SEUAY ...ttt nne e 43
A.1 QSIG Private User Mobility Registration (PUMR) supplementary ServiCe.........ccoceevveerverieeiieeseennns 43
A2 PUMR UML MOEIS.ottt ettt ettt et e sn e b e e nneesnn e 43
A.21 (001 (= 1Y, oo [USRS 43
A.2.2 REQUITEMENIS IMOE ...ttt bbb sb e bt e s b e e s b e e s beesb e e sbeesbeesbeesbeesreen 45
A.23 SPECIHTICALTION IMOOE ...ttt ettt e st e e sh e e sabe e snbe e e sbeeesaeeesnbeesnbenans 49
A.24 L= (1 g To 1Yo L= U PTSTRR 65
Annex B (informative): Summary of UML SymBOIOQYcooveeriieiiiiiieiieeie et 71
= 30 R 1 1 0o 8 i1 o o H OO P R OPR PR PRTOPPRPRRPRN 71
B.2 SHTUCKUIE] TEEIMIS. ..ttt h ettt e e bt ettt e e s be e e nneenbeenbeeanneenneen 72
B.3 BEhAVIOUIal ITEMS. ...ttt b e s sttt e b e e e se e san e e nbeeanneenneen 73
B.4 REEHONSNIPS ...t ere e 74
[1 (TSP PSP PPRP PRSPPI 75

ETSI

5 ETSI EG 201 872 V1.2.1 (2001-08)

Intellectual Property Rights

IPRs essential or potentially essentia to the present document may have been declared to ETSI. The information
pertaining to these essential 1PRs, if any, is publicly available for ETSI member s and non-member s, and can be found
in ETSI SR 000 314: "Intellectual Property Rights (IPRs); Essential, or potentially Essential, IPRs notified to ETS in
respect of ETS standards’, which isavailable from the ETS| Secretariat. Latest updates are available on the ETSI Web
server (http://www.etsi.org/ipr).

Pursuant to the ETSI IPR Policy, no investigation, including IPR searches, has been carried out by ETSI. No guarantee
can be given asto the existence of other IPRs not referenced in ETSI SR 000 314 (or the updates on the ETSI Web
server) which are, or may be, or may become, essential to the present document.

Foreword
ThisETSI Guide (EG) has been produced by ETSI Technical Committee Methods for Testing and Specification (MTS).

ETSI

http://www.etsi.org/ipr

6 ETSI EG 201 872 V1.2.1 (2001-08)

1 Scope

The present document describes a methodol ogical approach to the use of object-orientation, and, in particular the
Universal Moddling Language (UML), in the ETSI standards-making process. The purpose of the present document is
to establish a set of guidelines that provide the user with aframework within which the concepts of the UML can be
used effectively in the development of ETS| standards.

The guidelines presented in the present document are intended primarily for use in the production of standards
specifying communi cations protocols. However, they could be applied in part to the use of UML to other types of
standard wherethisis deemed to be appropriate and beneficial.

The present document presents a strai ghtforward process for using the UML from the collection of the initial broad
requirements through to the point where it is necessary to begin describing detailed behaviour.

The application of the UML to the devel opment of a protocol standard does not preclude the use of the Specification
and Description Language (SDL). The methodological approach described in the present document can be used in
conjunction with the guidelines specified for the use of SDL given in ETR 298 [2], EG 201 015 [3], EG 201 383 [4] and
EG 202 106 [5].

2 References

The following documents contain provisions which, through reference in this text, constitute provisions of the present
document.

» References are either specific (identified by date of publication and/or edition number or version number) or
non-specific.

» For aspecific reference, subsegquent revisions do not apply.
» For anon-specific reference, the latest version applies.
[1] ETSI ETR 266: "Methods for Testing and Specification (MTS); Test Purpose style guide”.

[2] ETS ETR 298: "Methods for Testing and Specification (MTS); Specification of protocols and
services;, Handbook for SDL, ASN.1 and MSC devel opment”.

[3] ETSI EG 201 015: "Methods for Testing and Specification (MTS); Specification of protocols and
services; Validation methodology for standards using Specification and Description
Language (SDL); Handbook".

[4] ETSI EG 201 383 (V1.1.1): "Methods for Testing and Specification (MTS); Use of SDL in ETS|
ddiverables; Guidelines for facilitating validation and the devel opment of conformance tests'.

[5] ETS EG 202 106 (V1.1.1): "Methods for Testing and Specification (MTS); Guidelines for the use
of formal SDL as a descriptive tool".

[6] ETSI TCR-TR 011 (1993): "Business Telecommunications (BT); Private Telecommunications
Network (PTN) internal mobility Private user mobility and cordless terminal mobility General
principles and service aspects'.

[N ITU-T Recommendation Z.109 (1999): "SDL combined with UML".

[8] ISO/IEC 17875 (2000): "Information technology - Telecommunications and information exchange
between systems - Private Integrated Services Network - Specification, functional model and
information flows - Private User Mobility (PUM) - Registration supplementary service".

[9] I SO/IEC 9646: "Information technology - Open Systems Interconnection - Conformance testing
methodol ogy and framework™.

ETSI

7 ETSI EG 201 872 V1.2.1 (2001-08)

[10] ISO/IEC 17876 (2000): "Information technology - Telecommunications and information exchange
between systems - Private Integrated Services Network - Inter-exchange signalling protocol -
Private User Mobility (PUM) - Registration supplementary service'.

[17] Jacobson, Booch & Rumbaugh: "The Unified Software Development Process’, Addison-Wesley
(1999), ISBN 0-201-57169-2.

3 Definitions and abbreviations

3.1 Definitions

For the purposes of the present document, the following terms and definitions apply:
actor: abstraction for entities outside a system or subsystem that interact directly with that system or subsystem
artefact: piece of information that isused or produced during the devel opment of a standard

NOTE: Thisdefinition of the term "artefact" is commonly used in the context of the UML. Examples of artefacts
are models, textual descriptions, standards and external documents.

domain model: related set of UML diagrams and text which together identify at a high level of abstraction, thelogical
and physical entities of a system and the relationshi ps between them

feature: candidate requirement

postcondition: constraint that must be true at the completion of an operation

precondition: constraint that must be true when an operation isinvoked

QSig: corporate network signalling system defining basic and supplementary service protocols at the Q-reference

requirements model: set of UML diagrams and text which together e aborate the requirementsto be met by a
standardized system

use case: specification of sequences of actionsthat a system or subsystem can perform by interacting with actors

user: human being or an item of equipment to which aserviceis provided

3.2 Abbreviations

For the purposes of the present document, the following abbreviations apply:

HDB Home Data Base

CP Coordination Point

IUT Implementation Under Test

MSC Message Sequence Chart

MTC Main Test Component

HDB Home Data Base

PCO Point of Control and Observation

PISN Private Integrated Services Network

PINX Private Integrated services Network eXchange
PTC Parallel Test Component

PTN Private Telecommunication Network

PTNX Private Telecommunication Network eXchange

NOTE: Sincethe publication of TCR-TR 011 [6] in 1993, the terms PTN and PTNX, which were used
extensively in that document, have been replaced by PISN and PINX in the context of Corporate Network
standardization. Throughout the present document, PISN and PINX have been used as the current terms.

PUM Private User Mobility
PUMR PUM dynamic Registration

ETSI

8 ETSI EG 201 872 V1.2.1 (2001-08)

SDL Specification and Description Language
TTCN Tree and Tabular Combined Notation
UML Universal Modelling Language

VDB Visitor Data Base

4 A methodology for the use of the UML in
telecommunication standards development

4.1 Introduction

The UML isapowerful, graphical language that can be used effectively and beneficially within the ETS| standards
making process, particularly in the specification of communication protocols. The present document presents a general
framework within which the UML can be applied to this process but the three following points should be considered
before making a commitment to its use:

1) the UML isanideal language for the collection, analysis and processing of requirements. Consequently, the
process described here introduces formality to the early stages of the standards devel opment where such
formalism has not generally existed in the past;

2) particular UML diagram types are recommended at each stage of the process but this should not be regarded as
"set in concrete”. If different UML diagram types appear to be more appropriate or meaningful in particul ar
situations then these should be used;

3) theuse of the UML in the standards making process should not imply that the UML diagrams produced must
appear in the standard, although that, too, isnot precluded. The language should be regarded as a valuabl e tool
for producing standards of a high quality and not just another means of drawing diagrams to describe protocols.

4.2 A process based upon the UML

The UML isamoddling language and isnat, itself, a development process. It is possible to think of it as a set of
individual diagram types and symbols which together make up the language and which can be used in an ad hoc manner
wherever and whenever an opportunity arises. However, greater benefits can be gained if it is considered asthe basis for
a straightforward process for the overall development of telecommunication standards. It is just such aprocess which is
described here. The process has been derived from the Unified Devel opment Process [11] with some modificationsto
reflect the specific requirements of standards devel opment. There are many different types of UML diagram which can
be produced within the process but these have been segregated into three overall modelling stages as follows:

- Context Modelling

- the collection, refinement and expression of ideas and existing knowledge to establish the objectives of
standardization project.

- Reguirements Modelling

- thefurther processing of the Context Model to establish and express a set of achievable technical
requirements to be met by the protocol standard(s).

- Specification Modelling

- the extenson and refinement of the Context Model and the Requirements Model to provide sufficient detail
for the development of a behaviour model.

Throughout the present document, UML activity and package diagrams are used to illustrate the use of the UML in the
standards devel opment process. Figure 1 shows the three discrete models as simpl e packages.

ETSI

ETSI EG 201 872 V1.2.1 (2001-08)

These arrows indicate
dependency rather than
the flow of information

Context Requirements
Model Model
I A

Specification
Model

Figure 1: UML models required in the standardization process

Figure 2 presents an overview in graphic form of a process for using the UML to produce these models.

Develop Context
Model

[context model ready]

Develop Requirements p»
Model J\

[further refinement .
necessary] Evaluate Requirements

. [new requirements
[requirements ready] identified]
Develop Specification
Model

[further refinement
necessary] Evaluate Specification

[specification ready]

Figure 2: A process using the UML in writing standards

ETSI

10 ETSI EG 201 872 V1.2.1 (2001-08)

The process involves the following steps:

1) carry out an initial study to produce a Context Model comprising alist of desired features and a domain model
based on existing knowledge and experience;

2) modd the requirements for the standard so that the requirements can be evaluated and refined;

3) usetheserequirementsin the production of a specification model of the system on which the standard isto be
based;

4) continuoudy evaluate and refine the specification and, consequently, the requirements.

In each of these activitiestherewill be anumber of different types of UML diagram and textual descriptions produced.
Thefollowing list indicates which are the most likely to be useful at each stage but this does not preclude theinclusion
of any UML diagram type at any stageif itsuse islikely to improve the understandability of the overall specification:

- Context Modd:
- classdiagrams,
- object diagrams,
- text.
- Requirements Modd:
- usecasediagrams,
- activity diagrams,
- text.
- Specification Modd:
- classdiagrams;
- sequence diagrams,
- collaboration diagrams,
- statechart diagrams,
- text.

Both the Requirements Model and the Specification Moded should form the main input to the devel opment of detailed
behaviour specifications of the standardized system and of a corresponding conformance test suite.

Itisunlikely that a single pass through this process will result in a fully specified protocol so it should be used
iteratively to refine the requirements and the definition.

4.3 Examples based on the Private User Mobility (PUMR)
supplementary service

In order to illustrate each of the stagesinvolved in developing UML Context Modd s, Requirements Model s and
Specification Moddls, the QSIG Private User Mobility (PUM) supplementary service, PUM Dynamic Registration
(PUMR) has been used as an exampl e throughout the present document. A pre-normative study of mobility issues
within private networks, TCR-TR 011 [6], was produced by ETSI Technical Committee, Business Telecommunications
(TC-BTC). The PUMR inter-PINX protocol standards, ISO/IEC 17875 [8] and | SO/IEC 17876 [10] were produced by
TC-BTC and ECMA technical committee TC32. The UML examplesin the present document and the complete
example shown in Annex A are based on therelevant parts of TCR-TR 011 [6] and the protocol standards.

ETSI

11 ETSI EG 201 872 V1.2.1 (2001-08)

4.4 Develop a Context Model

44.1 Activity overview

The development of a Context Modd includes the collection of alist of features as well as the development of a
Domain Modd. Asisshown in Figure 3, both activities take place in parallel. In most cases, it is possible to begin
collecting and evaluating desired features while devel oping a Domain Model based on information already known about
the system.

[Compile Feature List] Develop Domain Model]

e
.

Figure 3: The Context Modelling process

4.4.2 Artefacts
The following artefacts are produced as part of the Context Mode (Figure 4):
- aDomain Mode consigting of class and object diagrams;

- afeaturelist.

|
Context Model

1
Domain model
1

Class diagrams

Feature list

1

Object diagrams

Figure 4: Artefacts produced as part of the Context Model

4.4.3 Compile feature list

During the standardization process, different parties come up with many ideas for features to be standardized. These
features are used asthe basis of discussions from which the requirements for a standard emerge. The UML does not
provide a suitable graphical modd for the collection and management of features. However, they are an important input
to the overall process described here for the use of the UML. Therefore, it isuseful to collect all desired featuresinto a
feature list. From that collection, each feature is evaluated and its status recorded to indicate whether it has been
selected for inclusion in the next release of the standard, deferred to a subsequent release or rejected altogether. This
processis shown graphically in Figure 5.

ETSI

12 ETSI EG 201 872 V1.2.1 (2001-08)

Collect desired
features
Check list for \/
proposed feature J\

[available] \/ Evaluate proposed
/k feature

[select] [reject]

[unavailable]

[defer]
Set status to Set status to Set status to
"Selected" "Deferred" "Rejected"

Figure 5: The feature evaluation process

Additional gtatusindications should be given to those features which have not yet been evaluated and to those which
have been implemented in a specific release of the standard.

Each item in afeaturelist should be assigned anumber and a brief definition along with information regarding its origin
and priority.

4431 PUMR example

An example of how a feature list could be structured is shown in Table 1.

NOTE: The Priority and Satus columns contain values which have been inserted for illustrative purposes only
and do not reflect the real-world situation.

Table 1: PUMR feature list

No Feature Priority Status

1 A PUM user should be able to register at any capable (wired or wireless) terminal within 1 Selected
the PISN

2 A PUM user registered at another terminal should have a service profile which is as close 2 Deferred
as possible to the service profile offered at the user’'s normal point of connection to the
network (i.e. at the user's home location)

3 Registration should be for incoming calls, outgoing calls or both incoming and outgoing 1 Selected
calls

4 Registration for outgoing calls may be limited by the PUM user to a preset period of time 3 Rejected
(duration) or a specific number of calls

5 Giving an alternative identifier for the PUM registration requires the Visitor PINX to enquiry 2 Selected
to the Directory PINX to obtain the PUM user's PISN number

6 Registration for incoming calls should always be mandatory 1 Selected

7 The security mechanisms provided by PUM to support mobility services should at least be 2 Selected
as good as for existing services

8 For the purposes of security at registration, a PUM user should be able to register using 1 Deferred
the user’s assigned PISN number or an alternative identifier

9 A PUM user with a high security level should not be precluded from using an ordinary 1 Deferred
terminal

ETSI

13 ETSI EG 201 872 V1.2.1 (2001-08)

No Feature Priority Status

10 |Before registering to another Visitor PINX, a PUM user should be de-registered from a 3 Selected
Previous Visitor PINX

11 |A PUM user may register directly from a Visitor PINX or indirectly from a Remote PINX via 3 Deferred
a Visitor PINX, to the Home PINX

12 |Security mechanisms should not appear as complicated procedures to the PUM users but 2 Rejected
they should be a part of the general PUM procedures

13 |For the purposes of security, it should be possible to request the provision of a Personal 3 Deferred

Identification Number (PIN) in addition to the PUM user’s identity (PISN number or
alternative identifier)

14 |A PUM user may be offered a set of possible optional security mechanisms to decide 3 Rejected
upon, for authentication and access control

15 |The PUM user should be able to move between terminals during an active call (change of 2 Deferred
access point)

16 |Several PUM users may register for incoming calls at the same terminal access 3 Deferred
simultaneously

17 |The PUM user should be able to specify different terminal accesses according to the 2 Selected
feature (service type) requested

18 |Bearer services offered to a PUM user should include at least a 64 kbit/s circuit mode, a 3 Selected
3,1 KHz audio, and speech telephony service

19 |To register, a PUM user should send a message to the PISN containing e.g. its PUM 2 Selected

number, the identifier of the terminal, the indication of the PUM feature (e.g. registration for
incoming and/or for outgoing calls)

20 |The PUM user's own number is used as the basis for accounting, independent of any 2 Deferred
terminal or PINX used by the PUM user

As can be seen from thislist, thereisno limit placed on the level of detail which can beincluded as a desired feature.
Low-level descriptions such astherequirement for aPIN are equally as valid at this stage as high-level ones such asthe
ability to register at any terminal.
4.4.4 Develop Domain Model
As shown in Figure 6, the development of a domain model isdonein three steps:

1) identification of communication entities and communication paths;

2) identification of possible system architectures;

3) identification of interfaces.

Identify
Communication
Entities

Identify
system
architecture

Identify
interfaces

Figure 6: Domain Modelling process

ETSI

14 ETSI EG 201 872 V1.2.1 (2001-08)

Domain models can be devel oped for different levels of abstraction but the final domain modd should consist of a
reasonable selection of class and object diagrams. However, the purpose of a domain model is the devel opment of an
overview of a communication system and should not include detailed specification. As a guide, adomain model should
contain no more detail than would normally be presented in a pre-normative study report.

Within ETSI, thereisalarge and valuable base of knowledge and experience which isthe result of producing numerous
standards for a wide range of communication technologies. This knowledge and experience should be used to simplify
the development of the domain model by providing "short-cuts' to possible solutions. As an example, when specifying
anew protocol for an emerging technology, it isnot necessary to redesign the ISO Layered Model asits application in
thisareaisaready well understood.

4441 Identify communication entities

The high-level structure of a specification's context can be described with a domain model which isrepresented using
UML class diagrams. Associations are used to express the relationships between entities in the domain diagram. A
generic domain mode class diagram for communication systemsis shown in Figure 7.

Communication System

1.* 1..%

Communication Environment Communication System
Entity Entity

Communication Entity

Figure 7: Generic class diagram for communication systems

The Communication System encapsulates the whole system for which a standard is to be specified. It contains
Communication System Entities which can, themselves, be composed of other (sub-)entities. Communication
Environment Entities lie outside of the system.

Both Environment and System Entities are generalizations of the same abstract base class, Communication Entity.
Communication entities are associated with other such entities. This meansthat communication paths exist between
instances of communication entities as shown in Figure 9. Communication paths use interfaces to exchange signals,
however, theinterfaces are realized by the communication entities. Thisisillustrated in Figure 8.

Communication Entity O

Communication interface

Figure 8: Communication entities realize interfaces

ETSI

15 ETSI EG 201 872 V1.2.1 (2001-08)

4.4.4.2 Identify system architecture

Step two in the devel opment of a domain model isthe collection of possible system architectures. Thisinformation is
then used in the third step to identify interfaces. Figure 9 shows an architecture where two terminals are connected to a
pair of interconnected exchanges.

Exchange: Communication System Entity

Exchange: Communication System Entity

[Terminal: Communication Environment Entity [Terminal: Communication Environment Entity!

Figure 9: Object diagram showing system architecture

4.4.4.3 Identify interfaces

From the object diagrams developed in the previous step (clause 4.4.4.2), interfaces can be identified. There are two
kinds of interfaces: Normative and non-normative ones. Normative interfaces are the subjects of standardization;
non-normative interfaces are either proprietary or standardized in a different document.

Asagenera rule, system entities exchange information with one another through normative interfaces and they
communicate with environment entities through non-normative interfaces. Nevertheless, there may also be
non-normative interfaces between system entities.

NOTE: Duetotheinterpretation of signals being modelled as operation calls on objects (see clause 4.6.3.1.1),
each communication path has to be seen as the combination of two interfaces, one on each end of the
path.

4444 PUMR example

Figure 10 shows the top-level class diagram of the context in which PUMR will be found. It contains the following
information: On the system level, thereis the Private Integrated Service Network (PISN). A PISN system has
associations with terminals and Private Integrated services Network eXchanges (PINX). Terminals are sereotyped as
environment entities, meaning that their behaviour will not be specified within the model. Nevertheless, there would be
no use of the PISN without terminals, that is why they are associated with the system through an aggregation. PINXs
are communication system entities and their association with the PISN through composition shows that they are the
building blocks of the system; without the exchanges there would be no network.

«communication system»

PISN
1.* 2 *
«communication environment entity» «communication system entity»
Terminal PINX

Figure 10: System-level class diagram for the PUM Registration supplementary service

ETSI

16 ETSI EG 201 872 V1.2.1 (2001-08)

Thefeaturelist in Table 1, the class diagram in Figure 10 and existing knowledge of similar systems and technologies
together provide the basis for the object diagram in Figure 11 which represents the basic architecture of PUMR. The
class diagram shows that there are two basic classes, PINXs and terminals. Each of the objects shown in Figure 11 are
instances of one or other of these classes.

The main feature of PUMR is the ability of a PUM user to register at any terminal connected to the PISN. Exigting
knowledge of the GSM network architecture and protocol has been used in the devel opment of the

Home PINX/Visitor PINX/Previous Visitor PINX architecture represented in Figure 11. Festure 5 from the PUMR
feature list in Table 1 hasled to the addition of the Directory PINX.

Home :PINX Previous Visitor :PINX
Visitor :PINX Directory :PINX
:Terminal

Figure 11: Basic PUMR object diagram

From Figure 11, three functional entities which are necessary for the specification of the PUMR supplementary service
can beidentified. These are the Home location, the Visitor location and the Directory function (assuming that a
Previous Viditor isalso a Vidtor). These entities communicate with one another which means that each of themis
required to handle a specific set of signals. Using the UML, these sets of signals can be represented by interfaces.
Figure 12 shows that a PINX entity realizes three PUMR interfaces, one for each of the Home, the Visitor and the
Directory function. These interfaces are collected together in a package to build the PUM Registration supplementary
service. Since this service is the subject of the standardization effort, the PUMR interfaces are normative. In addition,
thereis a non-normative interface between a PINX and aterminal.

NOTE: At thedomain level, classes do not represent physical objects. While Figure 12 suggeststhat every PINX
has to be able to act asa Home, Visitor and Directory entity, this does not have to be the case during the
deployment of physical exchanges.

The interface between PINX and PUM Registration
Terminal is non-normative. .
supplementary service

All PUMR interfaces are normative.

- PUMR Home

<<system entity>> }
PINX
. PUMR Visitor
<<environment entity>> Q
Terminal PUMR Directory

Figure 12: Identification of interfaces for PUMR

ETSI

17 ETSI EG 201 872 V1.2.1 (2001-08)

4.5 Develop a Requirements Model
45.1 Activity overview

The purpose of the Requirements Model is to evaluate the list of features devel oped as part of the Domain Model and to
elaborate them as formal requirements. A process for devel oping a Requirements Modd is shown in Figure 13.

>

Select feature from
Feature List

[functional [non-functional
requirement] requirement]

Realize feature as a Realize feature as a
requirement using requirement using
ause case plain text

[further selected
features to be

considered] IEictr)]mplex]
ehaviour
[non-complex
behaviour]
(Write text descriptiora Ejraw activity diagram]

(Update Feature List]

[no further
selected features]

Figure 13: The Requirements Modelling process

ETSI

18 ETSI EG 201 872 V1.2.1 (2001-08)

452 Artefacts

By anaysing and devel oping the selected features from the Feature List, it is possible to specify a set of requirements
for the protocal to be standardized. As can be seen in Figure 14, requirements can be broadly classified as either
functional, which can be described with UML use cases, or non-functional which can only be described in plain text.

1
Requirements Model
Functional Requirements Non-functional Requirements
Use case
Diagrams
Textual
Descriptions
Activity Textual
Diagrams Descriptions

Figure 14: Artefacts produced as part of the Requirements Model

When specifying a protocol system, it is often the case that both functional and non-functional requirements are
identified. Asan example, it is clear that the feature "For the purposes of security at registration, a PUM user should be
able to register using the assigned PISN number or an dternative identifier” shown in Table 1 will result in anumber of
functional requirements whereas, "Bearer services offered to a PUM user should include at least a 64 kbit/s circuit
mode, a 3,1 kHz audio and speech telephony service" probably will not.

4.5.3 Collect functional requirements

45.3.1 Develop use cases

Use cases make it possible for requirements to be captured in a structured way. They usually consist of a textual
description, but activity diagrams can be used to represent activities inside the system and the interaction of the system
with actors.

The Feature List and the Domain Model should be used asthe starting point for the devel opment of use casesin the
Requirements Model. The Domain Model provides the context in which selected features are devel oped into
requirements for the standard.

The development of use casesis an iterative process which involves the following activities:
- identification of actors,
- identification of use cases;
- description of each use case.

Generally, only afew use cases will be found in thefirg iteration; new ones will be added during subsegquent passes and
the existing ones will probably need to be refined.

ETSI

19 ETSI EG 201 872 V1.2.1 (2001-08)

45.3.2 Identifying actors

Actors are used to represent external systems or some interna parts of a system which use a particular subsystem. There
can aso be actors which arerelated to system initialization and maintenance.

Two criteria should be used in finding actors:

1) for every actor there should be at least one user which will enact therole. A user in this context can be at any
level of abstraction, for example, amobile terminal or protocol layer;

2) there should be minimal overlap of roles between actors. This prevents having two actorsthat have essentially
the sameradle.

All actors should be given relevant names and short textual descriptions of the role they play and how they use the
system.

In the PUM Dynamic Registration example, the actor isthe PUM User.

45.3.3 Identifying use cases

The identification of use casesis not a simple task. The following guidelines may be helpful:
1) review the Feature List which has been compiled during domain modelling as a source for system requirements;
2) consider each service provided by the future system as a good starting point for use case identification;
3) consider the actor's point of view. What do actors want to do with the system?

The identification of possible use cases in a system can be simplified by addressing only one system service in each use
case and by considering only the primary actors asthey will initiate most of the use cases.

Every actor needs one or more use cases to fulfil its needs. Each candidate use cases identified in this way will not
necessarily become a unique use case as it may be possible for some to be incorporated into other use cases. A potential
use case that appears completein itself should be identified separately, whereas one that always follows as a
continuation of another should probably be combined with it.

The choice of aname for a use case can help considerably in making the model easy to understand. Use case names
should clearly identify the function represented by it and, in most instances, should start with averb.

4534 PUMR Example

In order to illustrate the process of devel oping use cases, an example has been taken from TCR-TR 011 [6]. This
example deals with the requirements for PUM Dynamic registration for incoming callsidentified on page 24 of the
present document. These requirements areidentified as follows:

- the PUM user can specify aterminal access to which some or al incoming calls to the PUM user will be
presented;

- adifferent terminal access may be specified for each service type (e.g. voice, telefax);

- the PUM user will be able to determine the desired "service profile" attached to this new regigtration, i.e.
depending on the calling party's identity, call importance indication, for "no answer” and "busy” conditionsand
other possible criteria;

- several PUM users may register for incoming calls at the same terminal access s multaneoudy;

- in addition to new facilities brought by the PUM service, the supplementary services usually offered to any PISN
user should be made available to PUM users.

ETSI

20 ETSI EG 201 872 V1.2.1 (2001-08)

There are three use cases that can be defined for PUM Dynamic Registration, as follows:

Usecase 1. Specify Access Point for Incoming Calls

The PUM user specifies aterminal access to which some or all incoming calsto the PUM user
will be presented. Several PUM users may register for incoming calls at the same terminal access
simultaneousdly.

Use case 2: Specify Service Type

A different terminal access may be specified for each service type (e.g. voice, telefax).
Usecase 3: Specify Profile

The PUM user will be able to determine the desired "service profile" attached to this new
registration depending on the calling party's identity, call importanceindication, "no answer" and
"busy" conditions and other possible criteria[6].

Figure 15 shows how the three use cases for PUM incoming call registration can be presented graphically in a Use Case
Diagram.

PISN

Specify Access Point

for Incoming Call Documentation:

The PUM user will be

Specify Service able to determine the

i=

PUM User

Type

Specify Profile

desired "service profile"
attached to this new

the calling party'sidentity,
call importance indication,
"no answer" and "busy"

conditions and other
possible criteria.

registration dependingon

Figure 15: Example Use Case diagram for PUM Registration for Incoming Calls

NOTE: Thebox marked "Documentation” in Figure 15 is intended to show the text that might be included as part
of the specification of the "Specify Profile" use case. Itisinduded here for clarity and would not

normally appear in a use case diagram.

ETSI

21 ETSI EG 201 872 V1.2.1 (2001-08)

45.3.5 Describing each use case

In most instances, it is difficult to construct a use case name which isboth easy to read and comprehensivein its
description of the function of the use case. It is, therefore, useful to produce a short description of each use case
included in the Requirements Model. The following information should be used to describe each use case:

- name of the use case;
- brief description:
- short overview of the purpose of the use case;
- identities of the actorsinvolved in the use case;
- any preconditions,
- step-by-step specification of what the use case needs to do when interacting with its actors,

- thiscan beplain text but, if it extends beyond 2 or 3 steps, an activity diagram could be used to provide
additional clarification;

- any postconditions.

45351 Activity Diagrams

When describing communication protocolsit is often not possible to describe the functions of a use case in very simple
terms. When the description of a use case cannot be expressed simply in afew lines of text, a UML activity diagram can
be used as well. In particular, an activity diagram should be used if:

- the use case represents functions which are complex;
- thereare conditional branchesimplied in the function of the use case.
Care should be taken to avoid the inclusion of too much detail in an activity diagram. The purpose of the Requirements

Modédl is to define the requirements that are to be met by the standardized protocol, not to describe the detailed
behaviour of the constituent entities.

4.5.3.5.2 PUMR Example

A smple, tabular description of the " Specify Profile’ use case is shown in Table 2.

Table 2: "Specify Profile" use case description

Name Specify Profile

Description The PUM user specifies the desired service profile to be
associated with the new registration

Preconditions The PUM user is registered at the Visitor PINX

Processing See activity diagram

Postconditions Service profile established for the PUM user

Figure 16 shows how the use case for processing a Service Profile setup request from a PUM user (Figure 15) could be
described in an activity diagram.

ETSI

22 ETSI EG 201 872 V1.2.1 (2001-08)

[registration complete]

[Request Service Profile setup J

[visitor support = default]

[visitor support = download profile]

user ID = alternative identifier
L 1 {Find user's PISN numberj

[user ID = PISN number]

(Request user's Service Profile)

(Send user's Service Profile)

[profile = indicative]

[profile = detailed]

[Set default local Service Profilej [Install user's Service Profilej [Install indicated local Service ProfiIeJ

[Report Service Profile establishedj

Figure 16: Activity diagram showing an overview of the Specify Profile use case

The overview of the Specify Profile use casein Figure 16 shows that arequest from a PUM user to set up a Service
Profile will cause one of the following:

- adefault Service Profile provided by the Visitor Location will be established if the Vidtor Location does not
support the downloading of Service Profile information from the Home Location;

- aSaviceProfile provided by the Visitor Location will be established if the Home Location provides asimple
indication of the PUM user's service classification (for example, "select Service Profile No. 5);

- aService Profile provided by the Home Location will be transferred to the Visitor Location and established for
the PUM user.

If the user provides an alternative identifier rather than a PISN (directory) number asidentification, thiswill be resolved
into a PISN number before any request is made to the Home Location.

Although Figure 16 identifies the activities that must occur as part of the Specify Profile use case, it does not indicate
wherein anetwork each activity should take place. Simple visual analysisis usually sufficient at this stage to determine
where theresponsibility for each action islikely to lie. For example, it is clear that the sending of the user's

Service Profile information will almost certainly take place at the Home location. UML swimlanes can be used
effectively to highlight these divisions of responsibility as shown in Figure 17.

ETSI

23

ETSI EG 201 872 V1.2.1 (2001-08)

PUM User

[registration complete]

[Reques! Service Profile setup

Visitor Location

\
J

[visitor support = default]

O%

[visitor support = download profile]

[u

[user ID = alternative identifier]

Directory Function

<>e

ser ID = PISN number]

\Jj Find user's PISN number

#

{Reques! user's Service Profile

\

Home Location

J

>[Send user's Service Profile]

[profile = indicative]

[profile = detailed]

Hs

[Insta\\ default local

Service Profile J Elnstall user's Service Profile] [Set indicated local Service Profile]

e

[Repun Service Profile established j

Figure 17: PUM Specify Profile activity diagram using swimlanes

ETSI

24 ETSI EG 201 872 V1.2.1 (2001-08)

When partitioning an activity diagram with swimlanesit can be tempting to start adding more detail to the activity
itself. However, at the Requirements Modelling stage, activity diagrams should show only tasks and conditions. Even
the addition of swimlanes should be limited to those instances where their placement is obvious with only the minimum
of analysis.

4.5.4 Collect non-functional requirements

The UML isnot an appropriate language for expressing requirements which are not action-based. Well structured text
and tables should be used for this purpose.

4.6 Develop a Specification Model

4.6.1 Activity overview
A Specification Model is developed from the Domain Moddl by:

- refining the modd of communication entities;

adding communication interfaces;

adding new entities if necessary;
- gpecifying the communication between entities.

The Domain Model and the Requirements Model should be used together as the base from which the Specification
Model is developed. The Requirements Model provides guidance on how more detailed class diagrams can be
developed from the Domain Moddl. It isat this point in the process that the flow of information across the interfaces
which connect the communication entities should be considered. Initially, the functional messages (for example,
SETUP and RELEASE) of the protocol should be identified and the temporal relationships between them specified
using sequence and collaboration diagrams. In those cases where it is necessary to describe complex behaviour, it may
also be useful to develop some statechart diagrams. A Specification Model should only express the relationships
between classes and describe sequences of actions, but it should not specify how the communication mechanisms are to
be realized. Devel oping a Specification Model may highlight inadequacies and inaccuracies in the Domain Model
which should be reviewed and revised as necessary.

The activity diagram in Figure 18 shows, in simplified terms, the process involved in the development of a
Specification Modd.

(:I.alEslsa1 %?égtfam
TTT

Develop Develop Develop
sequence diagrams collaboration diagrams statechart diagrams
[further iterations
required]

il

Review
class diagram

[no further iterations
required]

Figure 18: Specification Model development

ETSI

Artefacts

25

ETSI EG 201 872 V1.2.1 (2001-08)

4.6.2
The elaboration of a Specification Model is an iterative process involving a number of complementary diagrams as

shown in Figure 19.

Specification Model
Sequence o __________________________| Statecharts
Diagrams
LY /
1 1
1 1
1 1
\ /
1 1
\ Y !
'. | % /
\ /
\ Class i
| Diagrams ;
\ /
\ /
1 1
1 1
1 1
1 1
\ /
\ /
| ! ‘,‘
N \ 1
\ /
1
“ /
N 1
N, 1
N 1
\\\ \\ /I
N \ 1
\\\ \ 4
N Collaboration
Diagrams

1

Textual
Descriptions

4.6.3

Figure 19: Artefacts produced as part of a Specification Model

Refining the model of communicating entities

A class diagram based on the generic class diagram for communication systems shown in Figure 7 isideal for
specifying a system in terms of its communication entities but it does not identify the interfaces necessary for these

entities to communicate. The generic Specification Model shown in Figure 20 extends the Domain Model by adding

communi cation interfaces which can be either normative or non-normative. It aso introduces a " communication
message” class which should be used for specifying the protocol signalswhich are to be passed across the interfaces.

Communication
Environment Entity

Communication

System

Communication

System Entity

1.*

«interface»

Interface

Communication

operation (message: Communication Message)

Can be either normativ
or non-normative

.

v

lCommunication
Entity

Communication
Message

ETSI

message parameter

Figure 20: Generic Specification Model (class diagram) for communication systems

4.6.3.1

46.3.11

Class diagrams

Identifying candidate classes

26

ETSI EG 201 872 V1.2.1 (2001-08)

Although a number of classes will have been identified during the Domain Modelling stage, it is certain that these
classes will require the addition of further detail and that new classes will need to be specified.

Within a specification model, use cases arerealized by classes and their derived objects which communicate and co-
operate together to perform the necessary functions.

Three types of classes are identified within the generic Domain Model and should & so be used when specifying classes
for the Specification Model. These class types, denoted by stereotypes, are:

communication entities:

- communication system entities;

- communication environment entities,

communication interfaces;

communi cation messages.

The following approach, shown graphically in Figure 21, should be used in refining these classes:

review the use cases and the data flows to determine what new communication entities should be added to those
already specified in the Domain Modd;

determine what, if any, new interfaces are required between the communication entities;

add operations to each of theinterfaces to handle the protocol messages that are necessary to support the use
cases described in the Requirements Moddl;

specify new message classes for each of the messages identified at each interface;

add attributes to each of the message classes to indicate what information the message should carry.

[new entities
required]

N Review
Requirements

[Add new Communicatio

System Entities

)

(

[new interfaces

Add new Normative L required]

Interfaces

|

—

Specify
ommunication Message

J

[no new entities
required]

Review

interfaces

>

[no new interfaces
required]

®

Figure 21: Class diagram elaboration

ETSI

27

ETSI EG 201 872 V1.2.1 (2001-08)

Those interfaces which are the subject of the standard should be clearly identified by attaching a text box to the
interface class indicating that it is normative, as shown in Figure 22.

46.3.1.1.1

Visitor PINX

«communication interface»
PUMR signalling at
a Visitor PINX

registration_Request (registration_request)
PUM_SETUP (PUM Delete registration Invoke)
PUM_CONNECT (PUM Registration Response)

Normative
Interface

Figure 22: Example of an interface identified as "Normative"

Operations

Class operations should be used to identify which signals can be legitimately processed by a particular communications
interface. It is conventional within the UML to indicate only those messages that can be received by a class. Those that

may be sent areimplied by the signalsthat can be received by adjacent classes.

The following example illustrates how this approach can be used to specify the signalling at a telecommunication
interface. A normative (or non-normative) interfaceis usually considered to be anotiona point in the communication
path between two entities implementing the interface. Each of these entities will support the transmission and reception
of agroup of signals which together form the protocol at theinterface. Figure 23 uses atraditional reference diagram to
illugtrate the implementation of an interface at an imaginary reference point " X". It also shows the protocol messages
that can be exchanged between the Terminal and the Network Access.

Terminal

X X
X-Ref Reference Reference X-Ref
-Reference ' i -Reference
: Pont Pont : Network
Implementation I I Implementation ACCESS
(Terminal Side) (Network Side)
ALERTING SETUP
RELEASE RELEASE
REL_ACK REL_ACK

Figure 23: Representation of an imaginary communication system

Figure 24 shows how the UML can be used to represent thistype of system as two communication interfaces each of
which isrealized by one of the communication entities. It uses a class diagram to show how the Terminal sideinterface
at the X Reference Point can receive SETUP, RELEASE and REL_ACK messages which are all of the generic type,
"PDU" whilethe Network Access side interface can only receive ALERTING, RELEASE and REL_ACK.

ETSI

Normative
Interface

«communication entity»

TERMINAL

V

«communication interface»
X reference
TERMINAL SIDE

SETUP (setup:PDU)
RELEASE (release:PDU)
REL_ACK ()

28

ETSI EG 201 872 V1.2.1 (2001-08)

«communication entity»
NETWORK

V

«communication interface»
X Reference
NETWORK SIDE

ALERTING ()
RELEASE (release:PDU)
REL_ACK ()

Normative
Interface

Figure 24: Class diagram showing signals as operations

46.3.1.1.2 PUMR Example

The very simple class diagram in Figure 10 shows the PUMR system comprising little more than a generic PINX which
redlizes three separate interfaces. At the specification modelling stage, this model, shown in Figure 25, has been
developed further to give considerably more detail about the messages that can be sent across the interfaces. For each of
the distinct functions (Home, Visitor and Directory) within the PUMR system, a class has been specialized from the
general PINX class. In addition, the communication interface classes have been tagged as either "Normative' or
"Non-normative".

ETSI

«communication environment
Terminal

«communication interface,
User signalling

+registration_response ()

Non-normative
Interface

29

«communication systern:
PISN

2.*

<«communication system entity»
PINX

ETSI EG 201 872 V1.2.1 (2001-08)

1 1 0.1
«communication system entity» «communication system entity <«communication system entity>|
Home PINX Msitor PINX Directory PINX
/’ ‘\
‘/ \\
/ \
// \\
,/ \\
/ \
// ‘\

«communication interface»»
PUM signalling at a Home PINX

+PUM_SETUP (PUMRegistrationinv: PUM Registration Invoke)

+HPUM CONNECT (PISNEnquiryResp : PISN Enquiry Response)
+CALL PROCEEDING ()
+RELEASE ()

+PUM_CONNECT (PUMDelRegistrationResp : PUM Delete Registration Response)

+RELEASE_COMPLETE ()

/
/
/
/
/
/

Vv

«communication interface»
PUMsignalling at a Directory PINX

+HPUM SETUP (PISNEnquirylnv : PISN Enquiry Invoke)
+RELEASE ()

/
/

Normative Interfa;}

«communication interface»
PUMsignalling at a Visitor PINX

Normative Interfa;%

+registration_request ()

+PUM_CONNECT (PUMRegistrationResp : PUM Registration Response)
+PUM_CONNECT (PUMRegistrationErr : PUM Registration Error)
+PUM_SETUP (PUMDelRegistrationinv : PUM Delete Registration Invoke)
+CALL_PROCEEDING ()

+RELEASE ()

+RELEASE COMPLETE ()

Normative Interfacg}

Figure 25: System-level specification model class diagram for PUM Registration

46.3.1.1.3

Attributes

Class attributes can be used to describe the contents of protocol messages where these messages are described as UML
classes. The attributes should clearly identify which items of information areincluded in a particular message but
should not attempt to describe the detailed format that they will take as thisis better achieved using ASN.1. However, it
is possible to describe basic data structures using UML.

Figure 26 shows how a SETUP message will contain an originating address and a destination address, which are both
network addresses, and a service identifier which can take any of the values allowed for a basic service. It also shows
how a Network Address has an address portion and a sub-address, each of which isa string of up to 26 dialled digits

and that there are arange of enumerated values possible for the Network Basic Service argument.

ETSI

30 ETSI EG 201 872 V1.2.1 (2001-08)

SETUP Network Address Dialled Digit String
Originator: Network Address AddressDiaits: Dialled Digit String 1
Destination: Network Address SubAddressDigits: Dialled Digit String

Service i/d: Network Basic Service

1..26

«enumeration» «enumeration»
Network Basic Service Digit

allServices

speech
unrestrictedDigitallnformation
audio3100Hz

telephony

teletex

telefaxGroup4Classl
videotexSyntaxBased
videotelephony

CoO~NOUOR_AWNRERO

Figure 26: Example of message classes using attributes

46.3.1.2 Further iterations of the model

The classes specified in the earlier stages of modelling should be refined or amended through subsequent iterations so it
isimportant to maintain alog of the changes made to each class and in which use caseredlizationsit participates.

A class should depict only one major objective and should be given aname which clearly identifies that objective using
the vocabulary of the domain. Additional documentation should be added to each class to ensure that its purposeis
made clear and unambiguous.

In order to avoid unnecessary complexity in the Specification Moddl, it isuseful to review each of the possible classes
identified, considering the following points

- if the specification is smilar to another class then it may be possible to combine the classes;

- if the specification of the class cannot be expressed in a few lines then it is probably too complex and should be
sub-divided;

- if neither a clear name nor a concise specification can be devised then it is probably that the classisnot valid and
further analysisisrequired;

- ifitisdifficult to decide how a use case can berealized then it is possible that there are further classesto be
defined.
4.6.3.2 Sequence diagrams

Sequence diagrams are used for modelling the relationship in time of the messages which are exchanged within a
system. They show how the "responsihilities’ specified in use cases are assigned to the different objects and classes of
the system. The operations of objects are used to identify the messages which can flow between objects.

Figure 27 shows a very high level sequence diagram for the PUM Registration service. It illustrates the smple
requirement that a PUM user should be able to send aregistration request to the PISN which will return aregistration
response after processing the request and registering the user at the new location.

ETSI

31

ETSI EG 201 872 V1.2.1 (2001-08)

registration_request()

registration_response()

From TCR-TR 011 pp 62

Figure 27: High level sequence diagram for PUM user registration

Each sequence diagram should include one or more of the participating actors and the system objects between which
messages are exchanged. The normal message flow should be described first and, if there are complicated exceptions,
these should be shown in separate diagrams. Constraints can be used to highlight the differences between normal and
exceptional flows of messages. Figure 28 represents arefinement of the PUM regidration scenario, considering the
different objects in the system, i.e. Visitor, Home and Previous PINXs.

R

PUM User : Terminal New : Visitor PINX| : Home PINX

registration_request ()

PUM SETUP
(PUM registration Invoke)

CALL_PROCEEDING ()

PUM CONNECT
(PUM Registration Response)

PUM SETUP

(PUM Delete Registration Invoke)

Previous : Visitor PINX

: Directory PINX]

registration_response ()

RELEASE ()

CALL_PROCEEDING ()

RELEASE_COMPLETE ()

Figure 28: Complete sequence diagram for successful PUM user registration

M CONNECT

PUI
(PUM Delete Registration Response)

RELEASE ()

RELEASE_COMPLETE ()

Sequence diagrams are used in UML to describe the detailed interaction between objects and, as such, are similar to
basic Message Sequence Charts (MSCs). However, it isnot possible to include parts of another sequence diagram or to
structure complex ones similar to HM SCs. Hence sequence diagrams should not include too much detail if they are to
remain understandable.

ETSI

32 ETSI EG 201 872 V1.2.1 (2001-08)

4.6.3.3 Collaboration diagrams

Collaboration diagrams depict a set of objectsin a given situation. Links between objects that can interact together show
the messages that can be exchanged. These are numbered in sequence to specify the time order in which they occur and
can have argumentsin the form of a parameter list.

Figure 29 shows the collaboration diagram which represents the same message scenario depicted in the sequence
diagram in Figure 28.

4: PUM_SETUP()
11: RELEASE()

Home : Previous :

%
P INX - PINX

6: CALL_PROCEEDING()
10: PUM_CONNECT()
12: RELEASE_COMPLETE()

2: PUM_SETUP() 3: CALL_PROCEEDING()
8: RELEASE() 5: PUM_CONNECT()
9: RELEASE_COMPLETE()

1: registration_request()

> Visitor : Directory
PINX : PINX
<—

7: registration_response()
: PUM user

Figure 29: An example UML collaboration diagram for PUMR

Collaboration diagrams are especially useful at the specification modelling stage when determining what objects are
required in the system and specifying the meaning of their interactions. These objects can be either named or unnamed
instances of classes.

Collaboration diagrams and sequence diagrams are different views of the same information. The difference between
them isthat sequence diagrams focus on the relationship in time of the messages that flow between objects whereas
collaboration diagrams focus on the rel ationshi ps between the objects themselves.

4.6.3.4 Statechart diagrams

Although class diagrams are very useful for showing the structure of a protocol system, its dynamic behaviour can only
be represented through communi cation interfaces (operationsin classes), functional requirements (use cases), and object
interaction examples (sequence diagrams). By using statechart diagrams, it is possible to describe the individual
behaviour of a given object of a particular classin terms of state changes caused by events. This state behaviour should
correspond to the interpretation of the messages received by the object. Once an object for which it would be helpful to
have amore detailed description of behaviour has been selected from a sequence diagram, the use casesrelated to its
class should be studied to determine what behaviour isto be modelled. Then, any relevant sequence diagrams and
collaboration diagrams should be studied to ensure that all messages sent and received by the classareincluded in the
statechart diagram as actions or events.

When receiving an event, the statechart initiates the sole transition that is enabled by it, causing an action and a state
change. Actions are the operations specified in the class of the object that receives the event. For example, an action
may be to send asignal to another object. It is acceptable to have events and actions associated only with state
trangitions and not with the states themselves. The main reason why thisis acceptable isthat in the standards making
process, SDL isused for detailed behaviour in the next stages and so such basic statechart diagrams are sufficient at the
specification stage.

In Figure 30, the notation "EVENT [GUARD]/ACTION" is used to label the trangitions. Control istransferred from state
"Idl€" to state "Processing” or state "Relocating” depending on the value of the "Location™ argument.

ETSI

33 ETSI EG 201 872 V1.2.1 (2001-08)

Setup(Decation)[Location = Previous] / Connect

Setup(Location)[Location = Home] / CallProceeding

Processing Relocating

/ CallProceeding

Figure 30: A simple statechart diagram derived from the PUM study

It must be noted that both guards and actions are only textual and are used for descriptive or referencing purpose only.
Even though they are not executable, they should be expressed in a structured and meaningful form.

All interface objects must have a set of message-receiving operations showing all possible incoming events. Statechart
diagrams should be used if:

- aninterface object hasalarge set of operations,

- aninterface object has operations representing behaviour which is complex;
- thereare conditional branchesin theinternal behaviour of the object; and/or
- atagiventime, only a subset of operations of an interface are feasible.

The statechart diagram in Figure 31 shows an overview of the operation of PUM user registration at the Home PINX.
The caret (*) character preceding each action indicates the sending of a message (e.g. "*CALL_PROCEEDING")
during atransition from one state to another. This example is consistent with the sequence diagram shown in Figure 28.

ETSI

34 ETSI EG 201 872 V1.2.1 (2001-08)

PUM_SETUP / "PUM_SETUP
V
/ Processing PUM Registration Request \

Sending
CALL_PROCEEDING
to Visitor Location

PUM_SETUP sent to
Previous Visitor

CALL_PROCEEDING sent/ "PUM_CONNECT CALL_PROCEEDING

PUM_CONNECT sent to
Visitor Location

RELEASE / "RELEASE_COMPLETE

Wait for PUM_CONNECT
from Previous Visitor

PUM_CONNECT / "RELEASE

PUM_CONNECT received
from Previous Visitor

RELEASE_COMPLETE

® |

Figure 31: Statechart diagram showing PUM user registration at Home PINX

The statechart diagram shows how the Home PINX beginsin the Idle state and always returnsto it at the end of
processing aregistration request. The dual path through the chart indicatesthat CALL_PROCEEDING is being
processed at the same time as the PUM_SETUP to the Previous Visitor PINX.

Generally, a statechart diagram is attached to aclassin order to describe the behaviour of its instances, specifying the
events to which they must react and how they should react. If the behaviour of a use caseis already defined using
activity diagrams then the corresponding statechart diagrams should refine this behaviour in order to be consistent.
Statechart diagrams should be used in the latter stages of the process to specify details of the behaviour.

4.7 Use SDL and MSC to specify detailed behaviour

Although the UML can support the specification of detailed behaviour using existing industry-standard text-based
languages such as C++ and Java, it currently has no graphical action semantics of its own. This meansthat in using the
UML thereisardiance on an implementation language to get an executable specification. SDL, however, isable to
produce executable model s which are independent of any implementation. Therefore, protocol standards are generally
described using SDL and MSC, and this should continue at least until a viable alternative is available within the UML.

ETSI

35 ETSI EG 201 872 V1.2.1 (2001-08)

The general approach presented in the present document isthat UML is used to identify, analyse and specify the system
entities, together with their relationships and then SDL and MSC are used for architectural and detailed behaviour
design. The joint use of the three notations requires a smooth transition from analysis (Specification Model) to design.
Thisis specified in ITU-T Recommendation Z.109 [7] that defines a set of mapping rules between UML and SDL
constructs, known asthe SDL UML profile. This mapping between the diagrams of the two notations can be realized by
introducing anumber of stereotypesin the UML classes.

The UML development process defined here adopts a smilar approach. For the purpose of protocol standardization,
there are five new stereotypes introduced here and the mapping to SDL concepts shown in Table 3 is suggested.

Table 3: Mapping between UML stereotypes and SDL concepts

Stereotype in UML SDL concept
<<communication system>> System
<<communication system entity>> Block
<<communication environment entity>> SDL environment
<<communication interface>> Signal list
<<communication message>> Newtype or ASN.1 type

In addition, the following guiddines should also be considered
- links between the UML objects should be converted to channdls;

- associations between <<communication interface>> and <<communication system entity>> or
<<communication environment entity>> join signal liststo channelsin the SDL moddl;

- every block converted from a <<communication system entity>> should contain a process whose behaviour is
defined by the associated UML statechart diagram.

Use case diagrams are not directly mapped to SDL (they often areinformal) but they are realized by classes that are
converted to an SDL structure diagram. UML statechart diagrams can be directly converted to SDL state machine
diagrams with a few adaptations for hierarchical UML states. Finally, sequence diagrams can also be directly mapped to
MSC on a one-to-one basis, asthey are a subset of the MSC notation.

Thereisno single point in the UML devel opment process where the transition to an SDL specification can easily be
made. The graphical smilarity between UML sequence diagrams and M SC make them an obvious point at which to
move from one language to the other, particularly in those cases where the target standard isto contain a complete SDL
modd . Certainly, the UML-based process described here should be used up to this point. However, there are benefitsto
be gained by continuing beyond sequence diagrams and into the specification of statecharts.

Well-defined statechart diagrams, combined with a collection of sequence diagrams form a solid base from which to
develop an SDL mode that conforms to the requirements specified in UML. The activity diagram shown in Figure 32
illugtrates a general process that can be followed in making the transition from a UML specification of a system to an
SDL specification of its behaviour. It identifies the actions to be taken and the UML artefacts which are the inputs to
those actions.

ETSI

36 ETSI EG 201 872 V1.2.1 (2001-08)

Cre Communication
SDL System System
Communication
Environment
Entity
Create Communication
————————————————————— System
| spLBlock Ty
SDL Block
[entities
N\, remaining] . Statechart
\‘\ Create SDL Process |«2 o _______| Interaction
with SDL state machine Diagram
[
Ino entities
. remaining]
Select Block
Check Communication Entity
links from object diagrams
{Create SDL Channels]<_ ______________ Links
[blocks remaining between blocks
to be considered]
Check Communication Interfaces
related to links
Create |lZoooom Communication
SDL Signallists Interfaces

[no blocks remaining
to be considered]

Figure 32: Transition from UML to SDL

ETSI

37 ETSI EG 201 872 V1.2.1 (2001-08)

4.8 Use the UML to support test development

The development of a conformance test suite is an activity which can take place in parallél with the development of the
base standard. It should be agoal to reuse as much of the standardization specification as possible for test suite
development. This clause provides guidelines on how the UML could be used to support the development of
conformance test suites based on the I SO/IEC 9646 [9] standard. The Second Edition of the Tree and Tabular
Combined Notation (TTCN) is considered to be the target test notation.

4.8.1 Activity overview

The development of atest model can be divided into several distinct activities as shown in Figure 33. In the first step,
independent system components have to be identified. In the next step, test configurations are devel oped which describe
the mapping of components on system and test nodes. In the third and fourth steps, test case structures and test purposes
are defined for all test configurations.

Identify components

Define test configurations

Define test case structure

Define test cases

~N (Y Y M
< U U U

@®

Figure 33: Activities during test model development

4.8.2 Artefacts

The following artefacts are produced as part of the Test Moddl (Figure 34):
- component and deployment diagrams for test configuration specification;
- classdiagramsfor test case structuring;

- sequence, collaboration and statechart diagrams for test purpose definitions.

ETSI

38 ETSI EG 201 872 V1.2.1 (2001-08)

Test Model
1]] 1]
Test configurations Test case structure Test purpose definitions
1] 1 |
Component diagrams Class diagrams Sequence diagrams

— |

Deployment diagrams Collaboration diagrams

I
Statechart diagrams

Figure 34: Artefacts produced as part of the Test Model

4.8.3 Identify components

The goal of thefirst activity during test modelling is to identify functional entities which can be tested independently.
With the UML, these functional entities are depicted as components.

During conformance testing, only normative interfaces can be tested. Therefore, components must realize at least part of
anormative interface. Normative interfaces have been identified during Context Modelling (see clause 4.4.4.3), so the
Context Mode can be used as areference point for component identification.

4.8.3.1 PUMR example

Using the information about normative interfaces in Figure 12, the following components have been identified for
PUMR:

- PUMR Home
- PUMRVisitor;
- PUMR Directory.

Figure 35 shows the PUMR components and the interfaces which they realize.

ETSI

39 ETSI EG 201 872 V1.2.1 (2001-08)

PUMR Home

O

PUMR Home

PUMR Visitor

O

From Context Model

PUMR Visitor

PUMR Directory

O

PUMR Directory

Figure 35: PUMR components

4.8.4 Define test configurations

After their implementation, the components (functional entities) defined in clause 4.8.3 will be executed on some piece
of hardware. There are connections between the components, either physical or logical.

During conformance testing, one or more implementation components are replaced with test components. Test
components stimulate the Implementation Under Test (IUT) and then check the implementation's response for
conformance with the standard.

In order to be able to specify atest suite, atest configuration hasto be defined first. UML deployment diagrams can be
used to identify the IUT, test components and their connection through Points of Control and Observation (PCO) and
Coordination Points (CP). In Figure 36, the component FE1 resides in anode called "Implementation” which is
stereotyped as IUT. Component FE2 has been moved from the IUT into the "Tester" node which is stereotyped as MTC
(for Main Test Component) according to |SO/IEC 9646 [9].

<<MTC>> <<|UT>>
Tester Implementation
PCO1
FE2 <<PCO>> FE1

Figure 36: Generic test configuration

ETSI

40 ETSI EG 201 872 V1.2.1 (2001-08)

4841 PUMR example

Figure 37 shows an example of a test configuration for a PUMR system. The IUT only contains the PUMR Home
component, suggesting that this component isthe target of the test suite. There arethree Parallel Test Components
(PTC) which are connected with the IUT through a PCO each. These test components act as Visitor PINX, Previous
Visitor PINX and Directory PINX respectively. A main test component called "Test coordinator” is connected with the
parald test components through coordination points.

<<IUT>>
PINX
PUMR Home
PCO1 PCO 2 PCO 3
<<PCO>> <<PCO>> <<PCO>>
<<PTC>> <<PTC>> <<PTC>>
TC1 TC2 TC3
PUMR Visitor PUMR Visitor PUMR Directory
CP1 CP2 CP3 Acts as
A.ct.s as New <<CP>> <<CP>> <<CP>> Directory PINX
Visitor PINX .
Acts as Previous
<<MTC>> Visitor PINX

Test Coordinator

Figure 37: PUMR test configuration

ETSI

41 ETSI EG 201 872 V1.2.1 (2001-08)

4.8.5 Define test case structure

Test suites contain test cases which realize test purposes. It is common to put test cases with similar purposes into
groups. Basic groups of test purposes have already been defined in 1ISO/IEC 9646 [9]. For example, there are Capability
Tests, Valid Behaviour Tests and Timer Tests. Groups can be nested; the hierarchy of test groupsis called Test Suite
Structure.

Through the use of packages within class diagrams, atest suite structure can be defined graphically with the UML, asis
shown in Figure 38. Test cases are a so represented as packages. Of course, more than one diagram will be used to
define the test case structure in real-world specifications.

<<test group>>

Test cases

]]

<<test group>> <<test group>>
Capability tests Valid behaviour tests

[] [] [] []

<<test case>> <<test case>> <<test case>> <<test case>>

CATestl CATest2 VBTestl VBTest2

Figure 38: Test case structure

NOTE: The structurefor test steps can be specified similarly to the test case structure.

4.8.6 Define test cases

Viewed at a conceptual level, atest caseistheredization of atest purpose. The "Test purpose style guide”,

ETR 266 [1], defines the information which hasto be provided by the test designer in order to write TTCN test cases.
Thisinformation is mostly textual, but Message Sequence Charts may also be included as a graphical representation of
the test purpose.

NOTE: Message Sequence Charts can only express a subset of all possible TTCN behaviour descriptions.

The UML provides several diagram types which can be used to help the development of test cases. Sequence and
collaboration diagrams can show the signal exchange between the tester and the IUT. These may be taken from the
Specification Modd and adapted for test specification purposes. As an aternative, statecharts may be used to model the
functionality of individual test components; these can also be taken and adapted from the Specification Model.

4.8.6.1 PUMR example

In this example, atest case should be developed for use case 1 identified in clause 4.5.3.4. The test purpose isto verify
that a user can successfully register at a Visitor PINX and that he will be deregistered from his Previous Visitor PINX.
The test configuration to be used isthe one shown in Figure 37. In the Specification Model, a sequence diagram has
been drawn which shows the message exchange necessary for the PUMR user regisration (Figure 28). Figure 39 shows
aversion of this diagram which has been adapted to show the message exchange during test execution.

ETSI

42 ETSI EG 201 872 V1.2.1 (2001-08)

Test purpose description for test
case VBTestl.

Test Coordinator PINX :IUT

TC1 :VBTestl TC1 |

)| TC2 :VBTestl TC2 |

PUM_SETUP(pumRegistrArg)

CALL_PROCEEDING()

PUM_SETUP(pumDelRegArg)

i
|
|

PUM_CONNECT(pumRegistrRes)

CALL_PROCEEDING()

RELEASE()

RELEASE_COMPLETE()

PUM_CONNECT(pumDelRegResp)

>€4iﬁ44447ﬁ47T4

RELEASE()

RELEASE_COMPLETE()

|
|
|
|
|
|
|
|
|
|
X

N

>
|
|
|
\
|
|
:
|
|
|
|

Figure 39: Sequence diagram for test purpose specification

ETSI

43 ETSI EG 201 872 V1.2.1 (2001-08)

Annex A (informative):
Case Study

A.1 QSIG Private User Mobility Registration (PUMR)
supplementary service

Private User Mohility Registration (PUMR) is a supplementary service that enables a Private User Mobility (PUM) user
to register at, or de-register from, any wired or wireless terminal within the PISN. The ability to register enablesthe
PUM user to maintain the provided services (including the ability to make and receive calls) at different access points.

It was chosen to illugtrate the UML guiddines for the following reasons:

- apre-normative study highlighting theinitial requirements for the service already existed in TCR-TR 011 [6];

- the stage 1/stage 2 [8] and the stage 3 [10] standards are well expressed and include refined user requirements,
ASN.1 specifications of operations, Message Sequence Charts and SDL process charts;

- the PUMR serviceisneither trivially simple nor prohibitively complex.

Contained in this annex are a Context Model, a Requirements Model, a Specification Modd and a Test Modd for
PUMR. From these it would be possible to derive an SDL specification and a conformance test suite. The models may
have elements missing but they are complete enough to show how the various UML concepts and diagrams can be used
in the development of a protocol standard.

NOTE: The Context, Requirements and Specification Models are presented pictorially here but they are also
available in dectronic format as either HTML for browsing or as Rational Rose 2000 models for editing.
The Testing Model is also available electronically as an XMI-compliant file.

A.2 PUMR UML models

A.2.1 Context Model

The PUMR Context Model isvery simple and is just used to illustrate the basic concepts upon which the serviceisto be
built.

FLIR ETSI| Generic
............... = Domain hodel

Figure 40: Context Model packages

ETSI

44

ETSI EG 201 872 V1.2.1 (2001-08)

<<communication systemn==
FIsM

1.n

Terrminal

<=communication environment entity=>

2.n

<=communication system entity ==
PN

Figure 41: Simple PUMR Domain Model

- Terminal

registration_request()

reqgistration_response()

Figure 42: Sequence diagram indicating the flow of information between the user and the PISN

Horme

PR

PN

Yisitor

Previous . PIME

Directory ;. PINS

. Terminal

Figure 43: PUMR system architecture shown in an object diagram

ETSI

45 ETSI EG 201 872 V1.2.1 (2001-08)

A.2.2 Requirements Model

The use cases devel oped for the PUMR Requirements Mode are based upon the requirements specified in
TCR-TR 011 [6] and the stagel/stage 2 standard, | SO/IEC 17875 [8] where the original requirements have been refined.

o

Register PUM User at a Terminal
for Outgoing Calls

Q\%

Specify Access Point for Incoming
Call

-

Specify Service Type

-

Specify Profile

/%

PUM user

Authorized user

Figure 44: PUM Registration use case diagram

Request registration for >
outgoing calls

< [user D = Alternative ldentifier | Fnd 15er's
s PISM Mumber

[User ID 5 PISM Number]

<

Start outgoing [Session limit = number of calls | [Session limit = time period] Stant s255i0n
call counter ./ ., timer

[Session limit = unlimited]

Start outgoing
call session

Report "outgoing call
session started” to user

Figure 45: Activity diagram describing the "Register PUM User
at Terminal for Outgoing Calls"use case

ETSI

46

Request registration
for incoming calls

)

[User ID = Alternative ldentifier]

<>

ETSI EG 201 872 V1.2.1 (2001-08)

Find user's

[User IDD 5 PISN Mumber]

s PISM Mumber

[User status = Registered at another terminal]

<
<

Delete existing
“.__tegistration

[User Status ﬂyﬁgistered elsewhere |
Start incoming
call session

(Repnrt incaming call
session started

®

)

Figure 46: Activity diagram describing the "Specify Access for Incoming Calls" use case

ETSI

47

[registration complete |

i Request Serice)
profile setup

[wisitor support F download profile]

ETSI EG 201 872 V1.2.1 (2001-08)

[uzer ID = alternative identifier
. _ Find user's
[wisitor suppart = default | < = PISN number

Set default local

Serice

Profile

[user D =fISN number]

o

Request user's
Service Profile

[profile = indicativE/}

<

[profild = detailed]

Install user's

Install indicated)
local Service Profile

Service Profile

<>

EE Report Service
profile established

®

Figure 47: Activity diagram describing the "Specify Profile" use case

A

Authorized user

A

FPLIM u

ser

-

De-reqgister fram cument location

Figure 48: PUM De-registration use case diagram

ETSI

48 ETSI EG 201 872 V1.2.1 (2001-08)

Request PUM user
de-registration
< [User ID'= Alternative |dentifier] Find veers PN
number

[User ID=| PISN Number]

<

Terminate PUM uger), D fegistration = Quigaing Calls] [De-registration = Incoming Cals | orieate PUM ysers
oulgoing call session ./ S incaming call session

[De-registration = All Calls |

(Terminate PUM user's incoming
and outgoing call sessions

Report De-registration
ta PUM uger

Figure 49: Activity diagram describing the "De-register from current location" use case

ETSI

49 ETSI EG 201 872 V1.2.1 (2001-08)

A.2.3 Specification Model

The Specification Modd draws on the information presented in the Context Model and the Requirements Model as well
asthe existing PUMR Stage 3 standard, |SO/IEC 17876 [10] to offer a set of UML diagrams from which it would be
possible to start devel oping a detailed behaviour specification in SDL. This "reverse engineering” approach would not
normally be used as the purpose of using UML isto end up with a Stage 3 sandard (or something similar). In this case,
it was used to ensure that the UML specification isfully aligned with the "resultant” standard.

Pl FPLUNM Fegistration
I TRRR— suplementary Service
(from PLIN
W

LsIG ET=l Generic

(from PLUM) Comain Maodel
_l‘éf’

NI
hessages
ifram Q3I1G)

Figure 50: Specification Model packages

=<cammunication systems==
PISN

1..n 2.n

==«communication environment entity=> s<communication system entity ==
Terminal P

Figure 51: Basic Domain Model (from Context Model)

ETSI

50 ETSI EG 201 872 V1.2.1 (2001-08)

Home : Frevious :
_PINE _ Plrs
Yisitar Directaory
P C P
CPUM User
Figure 52: PUMR Object Model

: registration_request() :
' o

PUM_SETUP{PumRegistrirg)

CALL PROGEEDING()

BUM_SETUR(P umDe Reghrg)

PUM_CONMECT(PumRegistrRes)

'
-~

iregistration response()
_—

! CALL PROCEEDING()

RELEASE()

RELEASE_COMPLETE()

ES/UM_CONNECT(DummyRes}

RELEASE()

RELEASE_COMPLETE()

Figure 53: Example sequence diagram showing registration using the PUM Number

ETSI

51 ETSI EG 201 872 V1.2.1 (2001-08)

A isitor : “isitor Haorme - Horne Previous Directory
- PUM User Pl [=lIich “Wisitor PR Directory PIMX

registration_request()
_— o

PUM_SETUP(PisnEngdrg)

CALL PROGEEDINGT)

PUM_CONMMNECT{PumRegistrR es)

RELEASE()

RELEASE_COMPLETE()

PLIM_SETUP (PumRegistrAr)

! CALL PROCEEDING() |

PUM_CONNECT(PumRegistrRes)

PLM_SETUP(FumDelRegirg)

RELEASE()

: IRELEASE_COMPLETE()!
registration response(t) CALL_PROGEEDINGO)
_— '

PUM_CONMECT(PurnDe-regArg)

RELEASE()

RELEASE COMPLETE()

Figure 54: Example sequence diagram showing registration using Alternative Identifier

ETSI

52 ETSI EG 201 872 V1.2.1 (2001-08)

~ Yisitor : Visitor Horme : Horme

~ PUM User =1 PIRK

de-registration invake() ;

PUM_SETUFP{FumDe-regirg)

CALL_PROGEEDING()

PUM_ CONMECT{PumDe-regiryg)

+ de-registration response() '

RELEASE()

RELEASE_COMPLETE)

Figure 55: Example sequence diagram showing de-registration

ETSI

53 ETSI EG 201 872 V1.2.1 (2001-08)

/ - YWisitor - Vistor Horme : Home Other Wisitar

CPURM User PlMx PN Wisitor PIN
¢ interrogation invoke() . ' '
¢ PUM_SETUP{Purinterrogarg)
’” PUM_SETUP{FuminterrogAirg)

| CALL_PROCEEDING() |
; : ' CALL PROCEEDING() !

i : = ;
;

PUNM_CONMECT{Pumintermoghrg)

: ; ' PUM_COMNE CTiPuminterrogarg) |

b PUM_FACITILY (PurnlnterrogArg)

iinterrogatiun response() | ;
e ; . s

; RELEASE()

RELEASE()

| RELEASE_COMPLETE()

| RELEASE_COMPLETE()

Figure 56: Example sequence diagram showing PUMR interrogation

ETSI

54 ETSI EG 201 872 V1.2.1 (2001-08)

<2communication system entity==

FINx.
<<communication sytem entity ==
Directory PINX
1 Z<communication interfaces=
~— - FUN signalling at a Directony PINE
“<communication system entity== ffram Interfaces)
Wisitar PIRNX.
+ PUM_SETUP(PISMERquinglnw : PiznEngfrg)
T + RELEASED
1 Sl
<<gommunication system entitw== Tl
Home PIMX N
‘{lh 2<communication interface>>=
3 FUM signalling at a Wisitor PINX
. rfrom |nte faces)
l‘\ + reqgistration_request])
- + PURM_CONMECT(FUMRegistrationFesp : FumRegistrRes)
s + FUM_COWNMECT(FUMRegistrationErr : FumRegErrors)
i + PUM_SETUP{FUMD=IRegistrationinv : PumDelRegirg)
5 + CALL_PROCEELINGD
Q + RELEASE_COMFLETED
ttcommunication interfacess + PUM_CONMECT(PumDe-regfrg : PumbDe-regfrg)
FUM signalling at 2 Hame PINX * RELEASED
tfrem Interfases) + de-registration invoke)
- - - + interrogation inwoked)
+ PLUM_SETUF{FUMRegistrationin : PumRegistrfrg) + PUM_CONNECT(argname : Puminterrogang)
+ PUM_CONMECT(PUMECelRegistrationResp : PumDe-regfrg) + PUM_SETUP(argname : Puminterragarg)
+ PUM_CONNECT(FISHEnquinyResp : PisnEngRes) + FUM_FACITILY{Fuminterragfrg : Puminteragérg)
+ CALL_PROCEEDINGD
+ RELEASED

+ RELEASE_COMPLETEQ

+ PUM_SETUP{FumDe-regérg : FumbDe-regArg)

+ PUM_SETUP{Fumintarrogérg : Fuminterrogfeg

+ PUR_CONHECT(FPumintarrogarg @ Puminterragirg)
F PO SO E T Ty R Es - DOy R Es T

Figure 57: PUMR detailed Domain Model

o

T
S

PUM_SETUH /S “PUM_SETUP

Fracessing PUM
Registration Request

Figure 58: Statechart diagram showing the registration processing at the Home PINX
NOTE: Figure 58 and Figure 59 are examples of a statechart diagram and a sub-diagram that could be developed

for the PUMR supplementary service. The Specification Model isincomplete at this point and does not
include any further statecharts.

ETSI

55 ETSI EG 201 872 V1.2.1 (2001-08)

Sending CALL_Proceeding PUM_SETUP sent ‘
to wisitor Location to Previous Yisitor

CALL_PROCEEDING £
CALL_PROCEEDING sent / ~PLIM_CONNECT

from Previous “isitor

‘ Wait for PLIM_CORNMECT]

PUM_COMMECt sent to
Yisitor location

PUM_COMNNECT / ~RELEASE

PLM_CORMMECT received
RELEASE/ “RCLEASE_COMPLETE fram Previous “isitar

RELE _COMPLETE

Figure 59: Statechart sub-diagram showing the detailed processing
of aregistration request at the Home PINX

[]
Int efaces Messages
]

PUMF_Message types

Figure 60: PUMR message-specific packages

ETSI

56 ETSI EG 201 872 V1.2.1 (2001-08)

Z2<normative interface=:
Q513 Basic Senice

SETUP{zetup : PO
CALL_PROCEEDINGD
COMMECT{zonnect : FDUY
RELEASEQ
RELEASE_COMPLETED

A

Zdoommunication system entity==
FINX,
tfrom P UK
communicat on interface =+ s<communication interfacs =>

FUM signalling at a Wisitor PIMX FUM zignalling at a Home FINX
+ registration_requesil + PUM_SETUP{PUMReagistrationlnw : PumRegistnirg)
+ PUM_CONMNECT(PUMRegistrationResp : PumRegistiRes) + PUWM_COMMECT(FUMDeIRegistrationResp : PumDe-regArg)
+ FUM_COMMECT(FUMRegistrationEr : FumRegErrors) + PUM_CONMNECT{PISNEnquirgResp : PisnEnqRes)
+ PUM_SETUP(PUMDelRegistrationiny : PumbelRegArg) + CALL_FROCEELDING)
+ CALL_PROCEEDINGE + RELEASED
+ RELEASE_COMFPLETEQ + RELEASE_COMFLETEQ
+ PUM_CONHECT(PumDe-regérg : PumbDe-ragarg) + PUM_SETUP(FumDe-ragfrg : Fumbe-regAng)
+ RELEASED + PUNM_SETUP(Pumlintzrroging @ Puminterogéag)
+ de-registration inwoker) + PUM_CONMECT(Fuminteragirg : Pumintermaghng)
+ interrogation invoker) + PUKM_COHNHECT{dummyRes : DummyRes)
+ FPUNM_COMMECT{argname : Fuminterrogarg) =
+ PUKM_SETUP{argname : PuminterragAng) . /,
+ FUNM_FACITILYEPumintermogirg @ Puminterrogérg) ‘"_ R

Normative 2Zcommunication interface ==
interface - - FUM signalling at a Directony PINX

r PUM_SETUP(FISNEnquirdny : PisnEngérg)
- RELEASED

Figure 61: Identification of PUMR signalling at the QSIG interfaces

P << icati EE
<<gommunication message=» communication message

PLIL CONNWECT AL SETLE

Figure 62: Identification of the two QSIG signals used for carrying PUMR message information

ETSI

57 ETSI EG 201 872 V1.2.1 (2001-08)

Zdcommunication message=>=
SETUF

Calling User : PartyNMumber
Called Us=r: PartyNumber
Basic Serice : BasicSevice

i)

LEcommunicaton mesages=
PLng_SE TLE

iy

<scommunication mezage=>=

Z<communication message>>=
PumFeqgistrfrg

FisnEnqgfrg
ifrom PUMEB_Me=age_typeas) ifrom PUMR_Message_types)
+ pumUserld : FumUserld + alternativeld : Alternativeldentifier
+ bazicSenice : BazsicSernvice + argExtension : PumrExtension
+ hostingAddress : ParbyMumber
+ activatingUsersddr: PabyMumber
+ zenviceOption : SemwiceOption
+ sessionFarams | SessionFarams
+ userFin : UserFin
+ argExtension : PumrBxtension
<<communication message=> <sgommunication mesage=>=
Fuminterrogfrg FumbDelRe gfrg
ifrom F UMR_hie=age_types) from PUMR_Me=age_types)
+ pumbUs=erld : PumUsearld + pumUserid : Pumldsarld
+ basicService : BasicSewvice + basicService : BasicSevice
+ hostingaddr: FatwMumber c<communication messages> + host.ingAdc.Ir: F"arh,rN.umber.
+ serviceOption : ServiceOption PumDe-regArg + SF—'""'CF—'DP_t'O"' : SF—'W'CF—'DPt!O"'
+ argExtension : PumrEstensian + argextension : PumrBExtension
from PUME_Message_types)

puml=erid : PumUserld
basicService : BasicService
hostingAddr : PardyMumber
activatingUseraddr : FarbyMumber
serviceDption : ServiceDption
userFin : UserFin

argExtension : PumriExtension

¥+ FFFF T

Figure 63: PUMR message contents carried in the SETUP signal

ETSI

58 ETSI EG 201 872 V1.2.1 (2001-08)

<<communication messages>
COMMECT

Connected User : PartyMNumber

S<communication message==
PUM CONMETT

N

FUM Responses PUNM Erfors

Figure 64: PUMR message types carried in the CONNECT signal

PUM Responses

A\

<<communication messages> <<communication message=>=
PumRegistrRes PisnEngRes
(fram PUMR_Message_types) (frorm PLIME_Message_types)
+ pumMumber : PartyMumber + pisnMumber : partyMumber
+ serviceOption . ServiceOption + dummyRes : DummyRes
+ sessionParams : SessionParams

+ argExtension : PumrExtension

<<communication message>>
FuminterrogRes
{from PUMR_Message_types)
+ hasicSemice : BasicSevice
+ hostingAddr : PartyMumber
+ zerviceOption . SericeOption
+ interrogParams © SessionParams
+ argextension : PumrExtension

Figure 65: Contents of the PUMR response messages

ETSI

ETSI EG 201 872 V1.2.1 (2001-08)

PUM Errars

<<communication mess ages>
PumRegistrEr
{fram PUMR_Message_types)

+ pumRegErrors : PumRegErrors

<<communication mess age=>
PumDe-regErr
(from PUMR_Message_types)
+ purnDe-RegErrors : PumDe-regErrors

<<communication messages>
PisnEngErr
{fram PUMR_Message types)
+ pisnEngErrors - PisnEngErrors

<<communication messagess
PurnDelRegEr
{from PUMR_Message_types)
+ pumDelRegErrors © PumDelRegErrors

Figure 66: Contents of the PUMR error messages

<¢CUmFBUH|E¢RaT|U.nt"”AESSSQB”> <<communication message:: <<communication messages»
- IEIumpegﬁr E PumReqistrRes PumRegistrErr
+pumlserd - EUmlser + pumMumber : PartyMumber +pumReqErars - PumRegErors
+ basicSenice | BasicService i e i g ' d

+ hostingAddress : PartyNumber
+ activatinglseraddr : PartyNumber
+ serviceOption : ServiceOption

+ gerviceOption : ServiceOption
+gessionParams ;. SessionParams
+argExtension : PumrExtension

+ sessionParams ; SessionParams
+userPin: UsetPin
+argExtension : PurniExtension

Figure 67: PUMR registration message types

<<communication messages=
FurmDe-regfrg

+ pumUserid : PumlUserld

+ basicSenice : BasicSenvice

+ hostingAddr © PartyMumber

+ activatingUserAddr : PartyMNurmber
+ servicelption : ServiceOption

+ usetPin : UserPin

+ argExtension : PumrExtension

<communication messagess
FumDe-regErr

+ pumDe-RegErrors : PumDe-regErrors

Figure 68: PUMR de-registration message types

ETSI

<<communication messages>
FurmbDelRegiry

+ pumbserld : Pumllserld

+ basicService | BasicSevice

+ hostingAddr ;. PartyMumber

+ serviceOption : SericeOption
+ argextension : PurmrExtension

60

ETSI EG 201 872 V1.2.1 (2001-08)

<<communication messages>
FurmDelRegErr

+ pumDelRegErrors . FumDelRegErrars

<<communication message=>
FumDelRegRes

+ dummyRes : DummyRes

Figure 69: PUMR delete registration message types

<<communication messages>

Furminterrogéry

+ pumUserld : PumUserld
+basicSenice : BasicSevice

+ hosting&ddr : PatyNumber

+ senviceOption : SeniceOption
+ argExtension : PumrExtension

<<communication messages>
PuminterrogRes

PurminterrogErr

<<communication messages>

+basicSenice | BasicSevice
+hostingAddr : PartyMNurmber
+senviceOption : SeniceOption
+interogParams : SessionParams
+argextension : PumrExtension

+ puminterragErrors : PuminterrogEre

Figure 70: PUMR interrogation message types

s<communication messages=
FisnEngarg

+ alternativeld : Alternativeldentifier
+ argExtension . PurmrExtension

<<communication message=>
FisnEngRes

+ pisnMumber ; partyMumber

+ dummyRes: DummyRes

<<communication messages»=
FisnEngErr

+ pisnEngErrars - PisnEngErrors

Figure 71: PISN enquiry message types

ETSI

61 ETSI EG 201 872 V1.2.1 (2001-08)

<<enumeration== =<datatype ==
SendceCption SessionParams
+§ inCallRegistration : Integer=10 +§ durationOfSession @ Integer =1
+§ outCallRegistration : Integer =1 +% numberOfOutCalls © Integer=2
+§ allCallRegistration : Integer = 2

<<datatypes=
DummyRes

<=datatypes= <=datatype=>=
MullEritry FumrExtension

Figure 72: PUMR general data types

<<gnumerations= <<gnumeration>> <<enumerations>
PumRegErrars PumDelRegErars PisnEngEnors
+§ invalidSewedUsertlumber : Integer=1 +5 unspecified : Ineger = 3 +§ invalidServed
+§ notAutharized : Integer = 2 +§ notAvailable - Integer = 4 +§ unspecified : |..
+hunspecified : teger=3 +§ temporarilyUnaveilable - Integer =5 +§ supplementar...
+§ notAvailable ; Integer=4 +§ supplementary SenicelnteractionNotAllowed : Integer=6
+htemporariyUnavalable : nteger=5

+§ supplementary SendcelnteractionNotillowed : Integer =6
+§ pumbserMotSubscribedToThisSerdce : Integer=7

+§ pumUserFaledAut hertication : Integer =8

+§ hostingAddrivalid : nteger= 9

<<enumeration > <<enumeration>>
PurmDe-RegErors PumlnterrogErrars
+§ invalid3ervedUsertlumber : Integer = 1 +§ imvalidServedUserNumber : Integer =1
+h notAuthorized : Integer =2 +§ notAuthorized : Integer =2
+§ unspecified : Integer = 3 +§ unspecified : Integer=3
+§ termporatilyUnavailable : Integer=15 +§ supplementaryServicelnteractionMotAllowed : Integer =6
+§ supplementarySenicelnteractioniotAllowed © Integer = 6 +§ pumlsertailedAuthentication : Integer=18
+§ pumlJzerotSubscribedTaThisSenice | Integer = 7 +§ hostingAddrinvalid : Integer =9
+§ purmUserFailadAuthentication : Integer =8 +§ pumbserlotRegistered : Integer =10
+§ hostingAddrinvalid : Integer =9

+h purnUserilotregistered : Integer =10

Figure 73: PUMR error codes

ETSI

62 ETSI EG 201 872 V1.2.1 (2001-08)

<<datatype==
LlserFin

<<datatypes> =<datatype==
FumlJzerPin Activatingl)serPin
+ pumllserPin : CharString20 + activatingl)serFin : Charstring20

Figure 74: Type specification of PUM user PIN

<zdatatypes=
Pumlserld

<<datatypess <<datatype=>
PumMumber Alternativeldentifier
+ pumPlumber : PartyMumber + alternativeld : CharString20

Figure 75: Type specification of PUM user identifier

==datatypes=
PurmrExtension

-1”*

z=datatypes>
Extension
+ manufacturerlD : CharString20
+ ExtensionElement [0..7] : Byte

Figure 76: Type specification of PUMR message extension

ETSI

]

QS5
Messages

63

]

ETSI EG 201 872 V1.2.1 (2001-08)

Q515 Message types

Figure 77: QSIG message packages not specific to PUMR

“<communication message=»
SETURP

+ Calling User . PartyMumber
+ Called User : PartyMumber
+ Basic Semwice : BasicSevice

Z<communication message>>
COMMNECT

+ Connected User : PartyMumber

=<communication messages>

CALL_PROCEEDING

Figure 78: QSIG basic service messages

<<enumerationz»
BasicSenice

+§ allServices : Integer=10

+§ speech : Integer =1

+§ unrestrictedDigitalinfarmation : Integer =2
+§ audio3100Hz : Integer =3

+§ telephany © Integer =4

+§ teletex : Integer =45

+§ telefacgroupdClassl : Integer = B

+§ videotexSyntaxBased : Integer=7

+h videoTelephony © Integer =8

Figure 79: QSIG general data types

s<cammunication messages =
RELEASE

Z<communication messages>
RELEASE_COMPLETE

<<datatype==
CharString20

+ CharacterString : String

ETSI

This is a character
string which is limited
to a maximum of 20
characters in length.

64 ETSI EG 201 872 V1.2.1 (2001-08)

<<datatyperz
PartyNumber
<<datatypes> <edatatiness _<<dalatype>>
UnknownPartyhumber Dalaparly}I:qumber PrivatePartyNumber
+ unknown PartyNurmber : NurmberDigits . o + privateType Oftlumber : PvateTypeOfNumber
! ! + dataPartyhlumber NumberDigts + privateMumberDigits - NumbeDigits
<<datatyper: <adatatypess
PublicPartyllumber TelexPartyNumber | setstatypes>
+ publicTypeOfumber : PublicTypeOflumber| |+ telexPartyNumber : NurnberDigits NationalStandardPartyhumber
+ publichlumberDigits : MumberDigits +nationalStandardPartyMumber : NumberDigits

Figure 80: Type specification of QSIG party number

<<datatype=>=
MumberDigits

2

1.20
<<enumeration==
Digyit
+f0=0
+51=1
+52=2
+53=3
+54=4
+fH=45
+56=Fh
+57 =7
+55=5
+559=5

Figure 81: Type specification of QSIG digit string

ETSI

65 ETSI EG 201 872 V1.2.1 (2001-08)

A.2.4 Testing Model

The Testing Model is derived from the Context and Specification Mode and bridges the gap between the functional
specification and its associated test suite.

Identification of functional entities.

PUMR Home

O

PUMR Home

(Context Model Interfaces)

PUMR Visitor Q

PUMR Visitor

(Context Model Interfaces)

PUMR Directory i :

PUMR Directory

(Context Model Interfaces)

Figure 82: Functional entities

ETSI

66

Simple single tester test configuration.

ETSI EG 201 872 V1.2.1 (2001-08)

<<IUT>>

PINX

PUMR Directory PUMR Home

PUMR Visitor

<<MTC>>

Main Tester

PUMR Visitor

Figure 83: Test configuration with a single tester

ETSI

67 ETSI EG 201 872 V1.2.1 (2001-08)

Distributed test configuration.
<<|UT>>
PINX
PUMR Home
PCO 1 PCO 2 PCO3
<<PCO>> <<PCO>> <<PCO>>
<<PTC>> <<PTC>> <<PTC>>
TC1 TC2 TC3
PUMR Visitor PUMR Visitor PUMR Directory
A " CP1 CP2 CP3 \ Acts as
cts as New <<CP>> <<CP>> <<CP>> Directory PINX

Visitor PINX \

Acts as Previous

<<MTC>> Visitor PINX

Test Coordinator

Figure 84: Test configuration with distributed testers

ETSI

68

Test group and test case hierarchy.

ETSI EG 201 872 V1.2.1 (2001-08)

<<test group>>

Test cases
]]
<<test group>> <<test group>>
Capability tests Valid behaviour tests
[1 [1 [1 []
<<test case>> <<test case>> <<test case>> <<test case>>
CATestl CATest2 VBTestl VBTest2
Figure 85: Test case structure

ETSI

69 ETSI EG 201 872 V1.2.1 (2001-08)

Test purpose description for test
case VBTest1.

Test Coordinator PINX :IUT
4’| TC1 :VBTestl TC1 |

>|| TC2 :VBTestl TC2 |

‘ PUM_SETUP(pumRegistrArg) ‘
I

‘ CALL_PROCEEDING() ‘

‘ PUM_SETUP(pumDelRegArg)

‘ PUM_CONNECT(pumRegistrRes)

CALL_PROCEEDING()

RELEASE()

\
\
5

X

RELEASE_COMPLETE()

|
|
|
|
|
|
|
|
|
|
|
|
X

\
RELEASE_COMPLETE() ‘

L

L

Figure 86: Test purpose description

ETSI

70 ETSI EG 201 872 V1.2.1 (2001-08)

Behaviour description for test
component TC1 in test case VBTest1.

/PUM_SETUP(pumRegistrArg)

[Wait for Call Proceeding]

CALL_PROCEEDING

Wait for Connect

PUM_CONNECT(pumRegistrRes)/RELEASE()

[Wait for Release Complete]

RELEASE_COMPLETE

®

Figure 87: Behaviour description for test component TC1

Behaviour description for test
component TC2 in test case VBTest1.

Waiting for Setup

PUM_SETUP(pumDelRegArg)/CALL_PROCEEDING()

[Call Proceeding sent]

/PUM_CONNECT(pumbDelRegRes)

[Waiting for Release]

®

RELEASE/RELEASE_COMPLETE()

Figure 88: Behaviour description for test component TC2

ETSI

71 ETSI EG 201 872 V1.2.1 (2001-08)

Annex B (informative):
Summary of UML symbology

B.1 Introduction

For references purposes, this annex liststhe UML symbols used throughout the present document and for each one
provides a very brief description of its usage. The symbols are grouped as follows:

- structura symbols;
- behavioural symbols;
- relationships.

Thisisnot intended to be a complete UML symbology and only includes those symbol s that are covered by the
guidelinesin the present document. One of the many published UML tutorials and reference manuals should be
consulted for more detailed information.

ETSI

72 ETSI EG 201 872 V1.2.1 (2001-08)

B.2 Structural items

Class:
[<<stereotype>>] Used to specify entities such as systems, functional entities and message types
name
attributes
operations
Use case:
Used to specify functional scenarios in the form of a set of sequences of actions
Actor:
Used to represent external systems or some internal parts of a system which use
a particular subsystem
name
Component:
Used to specify functional entities and test components
[name]:class
Node:
name Used to specify test configurations
Package:
1
Used for collecting groups of related diagrams or items together
name
Note:
Used to annotate diagrams
<text>

ETSI

73 ETSI EG 201 872 V1.2.1 (2001-08)

B.3 Behavioural items

Initial state:

The starting point in an activity or statechart diagram
Final state:

@ The end point in an activity or statechart diagram
State:

name Used to indicate the valid processing states that can exist within a system

Transition:

event /[action
[] Used to show the effect of specific stimuli on the system

Action state:

< action) Used to indicate individual actions taken by a system

Branch or Merge:

<> Indicates possible alternative outcomes or the re-joining of two processing paths

Fork:

A complex transition allowing concurrent processing of actions

Join:
The combination of two or more concurrent threads into a single thread
Object flow:
—————— [name] : class Used to represent the flow of data items in an Activity or Statechart diagram

ETSI

74 ETSI EG 201 872 V1.2.1 (2001-08)

B.4 Relationships

<<stereotype>> Dependency:

name
SOUIMCE (e mmmme = target
> g A semantic relationship between two elements in which a change to one

element may affect the element depending upon it

name Association showing navigability (—) and multiplicity (0..1, *)

0.1 *

chid ~————— P> parent Generalization:

An association between a general element and a more specific element
derived from it. Used to show inheritance.

Composition:
S o P
The parts cannot survive without the composite item
Aggregation:
> 9ared

The parts can exist separately from the composite item

ETSI

75 ETSI EG 201 872 V1.2.1 (2001-08)

History
Document history
V111 March 2001 Publication
V121 June 2001 Membership Approval Procedure MV 20010817: 2001-06-19 to 2001-08-17
V121 August 2001 Publication

ETSI

	Intellectual Property Rights
	Foreword
	1 Scope
	2 References
	3 Definitions and abbreviations
	3.1 Definitions
	3.2 Abbreviations

	4 A methodology for the use of the UML in telecommunication standards development
	4.1 Introduction
	4.2 A process based upon the UML
	4.3 Examples based on the Private User Mobility (PUMR) supplementary service
	4.4 Develop a Context Model
	4.4.1 Activity overview
	4.4.2 Artefacts
	4.4.3 Compile feature list
	4.4.3.1 PUMR example

	4.4.4 Develop Domain Model
	4.4.4.1 Identify communication entities
	4.4.4.2 Identify system architecture
	4.4.4.3 Identify interfaces
	4.4.4.4 PUMR example

	4.5 Develop a Requirements Model
	4.5.1 Activity overview
	4.5.2 Artefacts
	4.5.3 Collect functional requirements
	4.5.3.1 Develop use cases
	4.5.3.2 Identifying actors
	4.5.3.3 Identifying use cases
	4.5.3.4 PUMR Example
	4.5.3.5 Describing each use case
	4.5.3.5.1 Activity Diagrams
	4.5.3.5.2 PUMR Example

	4.5.4 Collect non-functional requirements

	4.6 Develop a Specification Model
	4.6.1 Activity overview
	4.6.2 Artefacts
	4.6.3 Refining the model of communicating entities
	4.6.3.1 Class diagrams
	4.6.3.1.1 Identifying candidate classes
	4.6.3.1.2 Further iterations of the model

	4.6.3.2 Sequence diagrams
	4.6.3.3 Collaboration diagrams
	4.6.3.4 Statechart diagrams

	4.7 Use SDL and MSC to specify detailed behaviour
	4.8 Use the UML to support test development
	4.8.1 Activity overview
	4.8.2 Artefacts
	4.8.3 Identify components
	4.8.3.1 PUMR example

	4.8.4 Define test configurations
	4.8.4.1 PUMR example

	4.8.5 Define test case structure
	4.8.6 Define test cases
	4.8.6.1 PUMR example

	Annex A (informative): Case Study
	A.1 QSIG Private User Mobility Registration (PUMR) supplementary service
	A.2 PUMR UML models
	A.2.1 Context Model
	A.2.2 Requirements Model
	A.2.3 Specification Model
	A.2.4 Testing Model

	Annex B (informative): Summary of UML symbology
	B.1 Introduction
	B.2 Structural items
	B.3 Behavioural items
	B.4 Relationships

	History

